
Composing SDN Controller Enhancements with Mozart

Zhenyu Zhou
Duke University

zzy@cs.duke.edu

Theophilus A. Benson
Brown University

tab@cs.brown.edu

ABSTRACT

Over the last few years, we have experienced a massive transfor-

mation of the Software Defined Networking ecosystem with the

development of SDNEnhancements, e.g., Statesman, ESPRES, Pane,

and Pyretic, to provide better composability, better utilization of

TCAM, consistent network updates, or congestion free updates. The

end-result of this organic evolution is a disconnect between the SDN

applications and the data-plane. A disconnect which can impact an

SDN application’s performance and efficacy.

In this paper, we present the first systematic study of the inter-

actions between SDNEnhancements and SDN applications ± we

show that an SDN application’s performance can be significantly

impacted by these SDNEnhancements: for example, we observed

that the efficiency of a traffic engineering SDN application was re-

duced by 24.8%. Motivated by these insights, we present, Mozart,

a redesigned SDN controller centered around mitigating and reduc-

ing the impact of these SDNEnhancements. Using two prototypes

interoperating with seven SDN applications and two SDNEnhance-

ments, we demonstrate that our abstractions require minimal changes

and can restore an SDN application’s performance. We analyzed

Mozart’s scalability and overhead using large scale simulations of

modern cloud networks and observed them to be negligible.

CCS CONCEPTS

• Networks → Programmable networks; Network management.

KEYWORDS

Software Defined Networks, Composition, Compilers

ACM Reference Format:

Zhenyu Zhou and Theophilus A. Benson. 2019. Composing SDN Controller

Enhancements with Mozart. In SoCC ’19: ACM Symposium of Cloud Com-

puting conference, Nov 20±23, 2019, Santa Cruz, CA. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3357223.3362712

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SoCC ’19, November 20-23, Santa Cruz, CA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6973-2/19/11. . . $15.00
https://doi.org/10.1145/3357223.3362712

1 INTRODUCTION

ªThe art of simplicity is a puzzle of complexity.º

ÐDouglas Horton.

Cloud providers employ Software Defined Networking (SDN) to

simplify network management and amongst other things to expedite

virtual network provisioning [13, 15, 16, 30]. With SDNs, providers

can now configure their networking infrastructure using higher level

abstractions provided by SDN Applications (SDNApps) rather than

through low-level commands provided by device vendors.

To enable innovation, SDN-developers often decouple the cre-

ation and design of individual networking functionality (encapsu-

lated in SDNApps) from global network-wide optimizations (en-

capsulated in SDNEnhancements). Unlike SDNApps which provide

specific network functionality (e.g., traffic engineering or network

virtualization), SDNEnhancements are designed to address deficien-

cies in the SDN ecosystem and provide general optimizations for

SDNApps (e.g., better utilization of TCAM; consistent network

updates ± a more exhaustive list is provided in Table 1).

Class of

SDNEnhancement
Example Description

Conflict-Resolver [14, 48]
Enforces resource allocation

to different SDNApps

TCAM-Optimizer [25, 51]
Minimizes switch memory

(TCAM) utilization

Consistent Update [33, 40, 45]
Updates network paths in

a consistent manner

Invariant Checker [27, 28]
Checks to see if a network

invariant holds (e.g. no cycles)

SDNApp Composition [5, 35, 37]
Combines rules from

different SDNApps

Fault Tolerance Path [44]
Automatically creates backup

paths to overcome link failure

Table 1: Taxonomy of SDNEnhancements.

These SDNEnhancements have evolved organically in response

to the recent issues network administrators faced while deploying

SDNs. For example, the controller’s inability to perform congestion-

free network updates [33, 45] which results in network performance

anomalies or deficiencies within the data-plane update mechanisms,

e.i., consistent update problems [45] (Section 2).

As a result of this organic evolution, today many SDNEnhance-

ments have adhoc designs. In particular, SDNEnhancements are

either co-designed with SDNApps which limits their generality or

SDNEnhancements are inserted transparently into the SDN ecosys-

tem which, while improving generality, hurts the SDNApp’s per-

formance. The latter impacts performance because it creates a dis-

connect between the SDNApp’s view of the network and the actual

351

SoCC ’19, November 20-23, Santa Cruz, CA Zhenyu Zhou and Theophilus A. Benson

network state: a disconnect between the control messages (forward-

ing rules) generated by an SDNApp and the forwarding rules stored

in the data-plane which can impact an SDNApp’s performance by

as much as 28% (Section 3).

In this paper, we take a step back and ask more fundamental

questions:

ªWhat is the right interface for enabling principled interactions

between SDNApps and SDNEnhancements? What abstractions are

required to systematically include SDNEnhancements into the SDN

ecosystem?º

To answer these questions, we take inspiration from the compiler

community and their toolchain design where (1) compiler optimiza-

tions are explicitly configured by a developer, (2) flags are used to

express hints that ensure that the optimizations do not impact pro-

gram intent, and (3) optimizations are treated as transformations on

an intermediate representation which allows for more systematic rea-

soning of their implications. Motivated by these insights, we argue

for designing an intermediate representation of the SDNApp control

messages, a representation that is amendable to both principled analy-

sis and modifications by SDNEnhancements. Furthermore, we argue

that SDNEnhancements should be more systematically included

into the SDN environment but treated as black box transformation

engines that operate on intermediate representation and create inter-

mediate representation as output. Given this model, administrators

can control transformations with SDN-Flags.

Current solutions to SDN composition fail to answer our original

questions. First, traditional SDNApp composition (e.g. Pyretic [37])

focuses on safely combining multiple SDNApps and tackling the

complexity arising from sharing network resources. Instead, we fo-

cus on the SDNEnhancements applied to the resulting composed

rules. Second, novel interfaces between the SDNApp and SDNEn-

hancements, e.g., Athens [5], require the SDNApp developers to

write code that analyzes and evaluates the transformations made

by SDNEnhancements. Unfortunately, this interface requires the

SDNApp to understand the implications of all potential SDNEn-

hancements. We argue that developers should simply specify the

class of transformations that are tolerable, or not, without needing to

understand or evaluate the multitude of SDNEnhancements (or their

combined transformations).

In this paper, we propose Mozart, a novel controller framework

that introduces, a simple but powerful interface that standardizes

interactions between controllers and the SDNEnhancements thus

enabling us to systematically reason about SDNEnhancements: to

mitigate the implications of SDNEnhancements on SDNApps we

propose a set of SDN-Flags, akin to compiler flags, that lets SD-

NApps specify the class of transformations that impact correctness

or efficiency. While we have implemented our abstractions with two

popular controllers, we believe that our abstractions can be easily

incorporated into emerging research prototypes, e.g., SoL [18] and

YANC [36].

In summary, we make the following contributions:

• Systematic Study of Complexity: We present a systematic

study of the implications of applying realistic SDNEnhance-

ments to SDNApps and show that an SDNApp’s performance

can be reduced by as much as 24.8% (Section 3).

• SDN Abstractions: We describe a set of interfaces and ab-

stractions for mitigating and reducing the impact of these

SDNEnhancements on SDNApps (Section 4).

• Implementation & Evaluation: We build a working proto-

type implementation of Mozart on two controllers (Flood-

light [2] and Ryu [1]) and demonstrate the benefits of our

primitives with seven SDNApps and two SDNEnhancements

(Section 7). Our evaluations demonstrate that our prototype

can minimize the impact of these SDNEnhancements. More-

over, we show that our abstractions are non-invasive and

require as little as 18 lines of code changes to the SDNApps

(Section 7).

Roadmap. In Section 2, we describe the structure of modern

SDNApps and highlight problems in SDNEnhancements. Then, in

Section 3, we study the implications of applying SDNEnhancements

to SDNApps. In Sections 4 and 5, we present our abstractions and

models. In Sections 6 and 7, we present our prototype and its evalua-

tion. We present discussions and related works in Section 8 and 9.

Section 10 concludes with final remarks.

2 MOTIVATION

In this section, we describe the fundamental structure of an SDNApp,

present the simplifying assumptions that SDNApps make about the

networks, and conclude by discussing a subset of SDNEnhance-

ments that have been developed to correct the implications of these

assumptions.

2.1 The Case for SDNEnhancements

SDNApps encapsulate control-plane functionality (network policies)

and are designed to be event-driven. They interact with the data-plane

by generating SDN control messages, e.g., OpenFlow messages

(forwarding rules). We illustrate the need for SDNEnhancements by

examining a canonical traffic engineering SDNApp, e.g., Hedera [4],

and analyzing its interactions with the network. Hedera, Algorithm 1,

aims to improve data center performance by detecting elephant

flows and load balancing them on distinct paths. Hedera does this in

three steps: (1) monitoring the network and collecting statistics, (2)

detecting elephant flows and calculating new paths to ensure load

is balanced, and (3) configuring new paths into the network with

OpenFlow control messages.

SDNApps are written using one of two well-established patterns:

proactive [4, 8, 9, 20, 22] and reactive [41, 42]. The fundamen-

tal difference between the two patterns is that the event loops for

proactive SDNApps, e.g., Hedera, is triggered by a timer whereas

reactive SDNApps are triggered purely by the arrival of network

events, e.g., Packet-In events. The discussion below applies equally

to both classes of SDNApps. In applying these control messages

to the network, SDNApps, including Hedera, make the following

assumptions about the network:

Instantaneous Updates: SDNApps assume that the SDN con-

trollers instantaneously apply OpenFlow rules to the network de-

vices. However, network latency between the controller and devices

leads to out of order or delayed updates. A class of SDNEnhance-

ments [33, 45], Consistent-Update, have been developed to ensure

atomic and consistent updates.

352

Composing SDN Controller Enhancements with Mozart SoCC ’19, November 20-23, Santa Cruz, CA

1 while true do

/* Get Network Input */

2 foreach device in Network do

3 Counters .Append(device .GetStatistics())

4 end

/* Control Function */

5 Rules = BinPackinдHeuristic(Counters)

/* Send Output to Network */

6 foreach device in Network do

7 device .installRules(Rules)

8 end

9 Sleep100msecs

10 end

Algorithm 1: Pseudocode for Hedera, An SDN Application

for Traffic Engineering in Data Centers.

Implication on SDNApps: The SDNEnhancements introduce con-

sistency by employing techniques motivated by 2-phase commit or

causal consistency. The implication of these SDNEnhancements is a

temporary duplication of rules: the old and the new. This essentially

transforms the OpenFlow-message into two duplicate messages. Un-

fortunately, the SDNApps are unaware of the old rules and will

subsequently ignore them and their associated metadata. For exam-

ple, Hedera installs rules as output but also collect the metadata from

these rules as input. Unfortunately, Hedera will only ask for meta-

data for the rules it is aware of ± assuming that the old rules have

been deleted the Hedera will ignore them. Lacking such metadata

may reduce the efficiency or accuracy of the control functions of

SDNApps such as Hedera.

Infinite Hardware Resources: SDNApps assume an infinite amount

of device memory (TCAM); However, TCAM space is limited in

existing switches. Most can support ∼ 1K rules. The design choice

of abstracting out details and limitations of the physical hardware

is a common system design principles (e.g., an OS provides virtual

memory). However, unlike an operating system which provides ade-

quate abstractions to support this, an SDN controller does not. Thus

to overcome this limitation, a class of SDNEnhancements [25, 51],

TCAM-Optimizers, have been developed to provide the illusion of

infinite memory.

Impact on SDNApps: These SDNEnhancements create optimized-

rules that efficiently utilize switch TCAM by merging, moving or

splitting the rules generated by the SDNApp: essentially transform-

ing an OpenFlow-message into Coarser Granularity or Finer Gran-

ularity messages. Unfortunately, certain SDNApps install rules of

a certain granularity under the assumption that these rules can be

used to collect metadata of flows at the pre-specified granularity. The

implication of these coarser granularity rules is that metadata can

only be collected at that coarser granularity. For Hedera, a direct im-

plication is that the control function may be unable to load-balance

at a finer-granularity thus impacting Hedera’s effectiveness (we em-

pirically quantify this impact in Section 3).

Unmodified Actions: SDNApps assume that the network receives

and faithfully enforces the actions associated with the rules it in-

stalls.

Impact on SDNApps: In addition to modifying an OpenFlow-rule’s

match by making it coarser or finer, SDNEnhancements may also

change the OpenFlow-rule’s actions. For example, DiFane [51], a

TCAM optimizing SDNEnhancement alters paths and uses detours

to minimize the number of TCAM entries. In general, SDNEnhance-

ments may transform actions in one of the following ways: (1)

changing the network path by altering the interface associated with

an action, (2) changing the reachability by changing the action, or

(3) changing the QoS disciplines by changing the queues associated

with the action. For Hedera, a direct implication of path changes

(detours) is that large flows explicitly being isolated may be placed

on identical links resulting in congestion. This would minimize

Hedera’s effectiveness.

2.2 SDNEnhancement Definition

An SDNEnhancement is a controller add-on which augments con-

troller’s base functionality by providing additional properties to the

applications beyond simple demultiplexing and multiplexing of the

control messages. Given this definition, the fundamental distinction

between SDNApps and SDNEnhancements lies in where network

control and management policies lie. The SDNApps encapsulate

and contain the management policies ± the OpenFlow messages that

they generate reflect these policies. On the other hand, SDNEnhance-

ments take in the OpenFlow rules (or policies) created by SDNApps

and perform some optimizations (e.g., TCAM optimizers) or sanity

checks (e.g., conflict resolvers or consistent updates). In general, SD-

NEnhancements do not themselves contain any network policies and

by themselves. In short, SDNEnhancements cannot run or control

the network.

2.3 SDNEnhancement Deployment Scenarios

These SDNEnhancements are often bundled as a part of the con-

troller and in a few cases they are deployed as a proxy service

between the controller and the data-plane. In both situations, the

SDNEnhancements and the transformations that they perform are

hidden from the SDNApps.

Takeaways. Current SDN controllers lack appropriate primitives

to enable higher level SDNApps to efficiently and safely utilize

switch’s hardware. While many SDNEnhancements have been de-

veloped to provide these primitives to SDNApps, transparently ap-

plying SDNEnhancements to unsuspecting SDNApps can result in

disastrous consequences, e.g., correctness violations, compromised

accuracy, or reduced reactiveness. In this section, we present a rep-

resentative set of SDNEnhancements and SDNApps and use them

to illustrate the dangers of naively interposing SDNEnhancements

between SDNApps and the data-plane.

Moreover, our observations extend to other SDNEnhancements

not discussed here, such as, Invariant-Checkers [27, 28], which have

similar problems as Conflict-Resolver SDNEnhancements [14, 48].

353

SoCC ’19, November 20-23, Santa Cruz, CA Zhenyu Zhou and Theophilus A. Benson

3 UNDERSTANDING SDN-ENHANCEMENT

We now present empirical data to quantify the impact of SDNEn-

hancements on SDNApps: we focus on the TE-SDNApp discussed

in Section 2 (Hedera) and analyze reduction in aggregate bandwidth

(efficiency) which allows us to understand the immediate danger of

using SDNEnhancements.

3.1 Experiment Setup

We begin by describing the workloads and topologies used in our

study. We conduct our study in Mininet [32] (an emulator) using

a k = 4 Fat-Tree data center topology [3]. We investigate the SD-

NApps and SDNEnhancements under both realistic [7] and synthetic

workloads (described in [3]). We performed our tests on a 2.80GHz

quad core Intel Xeon PC with 16GB of memory running Ubuntu

14.04.

SDNEnhancements. We studied two different and representative

SDNEnhancements:

• TCAMOptimizer: an SDNEnhancement that aims to maxi-

mize TCAM utilization. This SDNEnhancement is modeled

after the optimizations discussed in [25].

• ConflictResolver: a canonical conflict resolving and resource

management SDNEnhancement modeled after Statesman [48].

3.2 Implications of SDNEnhancements

In our study, we compare the aggregate network bandwidth under

several different scenarios: None, no traffic engineering (provides us

with a lower bound on performance); Hedera, the traffic-engineering

SDNApp is used with no SDNEnhancements (provides us with

an upper-bound on performance); TCAMOptimizer, Hedera is run

with the TCAMOptimizer; ConflictResolver, Hedera is run with the

ConflictResolver; ALL, Hedera is run with both SDNEnhancements.

SDNApp Efficiency: In Figure 1, we compare the aggregate net-

work bandwidth against the number of TCAM entries used by Hed-

era. Recall, the goal of the SDNApp is to maximize network band-

width utilization while the goal of the TCAMOptimizer is to mini-

mize memory utilization. We observe that applying TCAMOptimizer

reduces TCAM utilization by 57.5% but at the cost of performance

(24.8% reduction in aggregate bandwidth). This reduction in band-

width occurs because TCAMOptimizer substitutes fine-grained rules

for coarse-grained rules which prevents Hedera from identifying

some elephant flows. Similarly, we observe a decrease in aggregate

bandwidth when ConflictResolver is used because Hedera’s reaction

latency increases thus prolonging periods of congestion and reducing

bandwidth for congested flows.

4 RETHINKING CONTROLLER

ARCHITECTURES

The last two sections highlight several alarming problems: first,

modern controllers lack appropriate primitives to support SDNApps,

and second, adhoc integration of SDNEnhancements, which provide

these missing primitives, can result in catastrophic consequences.

Existing design choices for attacking these problems broadly fall

into three categories.

First, introducing new abstractions that empower SDNApps and

SDNEnhancements to detect and react to each other (e.g., Athens [5]).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
O
N
E

H
edera

TC
AM

O
ptim

izer

C
onflictR

esolver

ALL

 0

 25

 50

 75

 100

A
g
g
re

g
a
te

 B
a
n
d
w

id
th

 (
G

b
p
s
)

T
o
ta

l
N

u
m

b
e
r

o
f
T

C
A

M
 E

n
tr

y
 U

s
a
g
e

Bandwidth Usage TCAM Usage

Figure 1: Aggregate Bandwidth and TCAM Usage.

This approach is prone to oscillations and convergence issues [5].

Furthermore, it unnecessarily burdens SDNApp developers to write

code for conflict detection and resolution. Second, developing new

controllers that allow SDNApps and SDNEnhancements to directly

specify their internal constraints and objectives; the controller then

solves an optimization problem to automatically arrive at an op-

timal solution (e.g., extending SoL [18] to support composition).

This approach requires SDNApp developers to agree on a com-

mon meta-objective on which the controllers can optimize and to

transform their internal objectives into this meta-objective. Finally,

forcing developers to write monolithic SDNApp that include SD-

NEnhancements, e.g., Niagara [24] which combines TE with TCAM

optimizations. Unfortunately, this does not scale and increases the

barrier for developing new SDNApps or SDNEnhancements. These

three alternatives all place unnecessary burdens on the SDNApp

developers countering one of the motivating factors of SDNs: ease

of developing custom SDNApps.

Instead, we take inspiration from the compiler community and ar-

gue that SDN controllers, SDNEnhancements, and SDNApps should

be redesigned to mirror the interactions between compilers, compiler

optimizations, and developers. Specifically, the compiler subsumes

and controls all optimizers and uses a set of compiler-flags to deter-

mine the set of optimizations to perform and how to perform them:

the flags are, in turn, controlled by the developer. For example, de-

velopers can specify ª-01º to turn off all optimizations and improve

compilation speed, or specify ª-fno-elide-constructorsº to turn off

a specific optimization. Similarly, the controller should subsume

and control, rather than be disjointed from, the SDNEnhancements

and the controller should leverage SDN-Flags from the SDNApps to

determine how to apply the SDNEnhancements to the SDNApps.

Our compiler-inspired approach explores a point in the spectrum

of available design choices, alternatively we could raise the level

of abstraction, by introducing a higher-level language [37, 44, 49]

for programming SDNApps ± this interface shifts the burden from

the developer to the runtime which automatically infers the set of

354

Composing SDN Controller Enhancements with Mozart SoCC ’19, November 20-23, Santa Cruz, CA

transformations that are allowable. Unfortunately, higher-level pro-

gramming APIs have received little adoption from the industry due

to the overheads required to train developers to learn the new lan-

guage. Motivated by our desire to integrate into currently deployed

controllers, e.g., ONOS, Floodlight, FAUCET and OpenDaylight,

we choose the former approach of enriching the current abstractions

and, thus, we apply a paradigm intimately that the developers are

familiar with ± compiler optimizations.

4.1 Compilers for SDNs

Next, we show how interactions within the SDN ecosystem can be

represented within a compiler-style abstraction. We focus on the

SDN control messages, on policies and SDNEnhancements.

At a high level, a traditional compiler takes in source code, trans-

forms it into an intermediate representation (a more general instruc-

tion set). In the intermediate form, code is grouped into blocks and a

DAG is created capturing the control flow between blocks. The com-

piler applies a set of local and global optimizations (transformations)

to the resulting DAG. The local optimizations focus on a block of

code, whereas global optimizations operate across blocks of code.

Next, we show how we map concepts within the SDN ecosystem

into the traditional compiler scenarios. We focus on (1) the individual

control messages that make up the SDN assembly code, (2) a novel

abstraction for capturing logical blocks of messages, (3) a method

for inferring control flow (and dependencies) between blocks, and

(4) a novel set of SDN-Flags.

SDN Instruction Set: In SDN, the controller configures the net-

work using a set of low-level control messages discussed earlier

(Section 2) ± OpenFlow uses rules (a pair of match and action tu-

ples). These are akin to low level assembly code. SDNEnhancements

transform these control messages into control messages, e.g., local

SDNEnhancements transform messages by changing the match or ac-

tion attributes and global SDNEnhancements transform messages by

changing their temporal ordering or spatial location in the network.

Transactional Policy: Unlike compilers which translate high-

level source to low-level assembly, the controller accepts low-level

commands from SDNApps and directly installs them into the net-

work. These low-level commands have forced SDNEnhancements

to generate different meta-abstractions for capturing higher-level

intent on which to perform optimizations, e.g., ªproposed stateº by

Statesman [48] or ªTransactionsº by STN [10] and ESPRES [40].

To address this lack of abstractions, we define a uniform abstrac-

tion on which all SDNEnhancements can operate. To do this, we

select the lowest common denominator: a network path.

More formally, a transactional policy, txi ,yi = {mi

1
,mi

2
, ...}, is

akin to a ªcode blockº and is a group of SDN instructions required to

configure a network policy between two hosts xi and yi (or groups

of hosts)1.

Thus, we formalize interactions between an SDNApp and the

network (and, in turn, the SDNEnhancements) as a policy set, T ,

where T is:

T = {tx1,y1 , tx2,y2 , ...}

1This path level abstraction echoes recent efforts in SDNs to build optimization-based
and monitoring-focused frameworks predicated on network paths.

Given this definition, an SDNEnhancement is a function, E, that

transforms one transactional policy, tx ,y , into an ªoptimizedº trans-

action policy t ′x ,y :

t ′x ,y = E(tx ,y)

With these definitions in mind, we can also formalize situations

where SDN-Flags are required by analyzing the interactions between

policies and packets in the data-plane. Specifically, we can examine

a set of packets:

P = {p1,p2, ...}

where each packet, pi , represents traffic between xi and yi that

will be processed by policy txi ,yi . By applying the transactional poli-

ciesT , a packet pi would gain a set of decisions di = T (pi), including

the routing path, dropping decision, queuing time, e.t.c. We com-

pare the decisions before and after applying the SDNEnhancement

function E:

T (P) = {d1,d2, ...}

(E ◦T)(P) = {d ′
1
,d ′

2
, ...}

and

N = |{i |di , d
′
i
}|

When there is a difference in behavior, then there is potentially

a need for SDN-Flags. Depending on the sources of and the cause

of these behavioral differences, the developers can employ different

SDN-Flags to eliminate or minimize the differences. In Section 4.2,

we characterize these SDN-Flags and discuss how developers can

introduce them.

Transactional Dependencies & Intermediate Representation:

This paper does not explicitly tackle conflicts between SDNEnhance-

ments or verification of SDNEnhancements. Instead, we present a

high-level description of ongoing efforts to do this. Conflict detec-

tion and verification requires an intermediate representation that

abstracts syntactic details and a notion of dependencies that formal-

izes conflicts.

We infer dependencies between transaction by building on the

definitions provided in SDNRacer [34] and LegoSDN [12]. For in-

termediate representation, we use Header Space Analysis which cap-

tures the reachability policies and augments it to include QoS-based

policies. Coupled with dependencies, the intermediate representation

enables us to reason about conflicts between SDNEnhancements and

verify policies.

4.2 Modeling Optimization Flags

SDN-Flags, like compiler flags, are designed to allow developers

(and consequently the SDNApps) to limit the class of transforma-

tions that can be applied rather than the set of SDNEnhancements:

the SDN-Flags (flags) do not specify specific SDNEnhancements

(optimizations) only transformations. This level of indirection frees

the SDNApp developer from having to understand the SDNEnhance-

ments that will be run in the network.

In modeling SDN-Flags, we aim to support a large variety of

operational networks. Thus, we study the OpenFlow specification

to understand the space of potential transformations that can be

performed, independent of any specific SDNEnhancements. In Ta-

ble 2, we present an exhaustive list of these transformations and a

representative list of SDNEnhancements that employ them (when

available). Transformations can be classified along four dimensions:

355

SoCC ’19, November 20-23, Santa Cruz, CA Zhenyu Zhou and Theophilus A. Benson

modifications to the rule’s match field (e.g., merging, duplicating,

or splitting rules); modifications to the rule’s actions (e.g., changing

ports); modifications to the rule’s temporal property (e.g., reordering

or delaying rules); and modifications to the rule’s spatial properties

(e.g., changing the switch that a rule is installed in).

Dimension of Type of Example SDN- SDN

Transformation Transformation Enhancement Flags

Match Fields
Merges Rules [46]

{IO}
Splits/Duplicates Rules [45]

Action List

Adds Actions None

{AD}Reorders Actions None

Deletes Actions None

Spatial Changes Destination
[25, 51] {LS}

(Location) Switch to Install Rules

Temporal Re-Orders Rules [40]
{PF}

(Ordering) Delays Rules [14, 48]

NULL Deletes SDN Message(s)

Table 2: List of Potential Transformations Made by SDNEn-

hancements and the SDN-Flags Specified by SDNApps.

Controlling SDNEnhancements with SDN-Flags: In Table 2

(column 4), we present SDN-Flags that SDNApps can use to control

transformations that violate correctness or efficiency. We note that

the current SDN-Flags are both general and simultaneously specific

because the control interface between the control plane and the for-

warding tables in both OpenFlow and P4 switches are limited and

narrow. Thus, the set of potential transformations that any SDNEn-

hancements may perform is finite and extremely limited. Next, we

elaborate on how these SDN-Flags can be used to address the issues

presented in Section 2:

• Input-Output dependence {IO}: specifies that the SDNApp’s

inputs are a function of the rules installed in the network (the

SDNApp’s output). This SDN-Flag allows the controller to

ensure the correctness of the SDNApps by circumventing

SDNEnhancements whose transformations lead to coarser

granularity rules. For SDNEnhancements whose transforma-

tions result in other or no transformations, the controller sim-

ply ensures that information for the finer-granularity rules

are coalesced (nothing is done or required for rules which

result in equivalent granularity). For example, if a controller

applies a TCAM-Optimizer SDNEnhancement that merges

rules into coarser granularity rules to the TE-App, which

has an Input-Output dependence, then Mozart may bypass

the SDNEnhancement for such SDNApps (or perform some

other operation) which would preserve the Input-Output de-

pendence.

• Action-Dependence {AD}: specifies that the SDNApp’s func-

tionality and correctness are tied to the actions created and

inserted into the FlowMods.

• Location-Specific {LS}: specifies that the SDNApp’s func-

tionality and correctness are tied to the specific switches

selected for the path.

• Push-Flag {PF}: When reacting to a failed link or an in-

truder, it is imperative to react first and to optimize second.

Figure 2: Re-Designed SDN Controller.

For these use-cases, we provide SDNApps with a Push-Flag

that signifies urgency. This SDN-Flag allows the controller

to directly perform the SDNApp’s proposed changes into the

network while simultaneously applying the SDNEnhance-

ments to these actions. When the SDNEnhancement returns

the optimized (transformed) rules, the controller replaces the

SDNApp rules with the optimized version.

Takeaways. SDNApps encapsulate a rather simple control loop

with a limited number of variations (Section 2). Through an examina-

tion of the specification, we observe that the space of transformations

is limited (Table 2). The implication of these insights is that a lim-

ited set of SDN-Flags will cover a dominant number of SDNApps.

Additionally, this constrained transformation space and our formal-

izations provide the groundwork for a system that automatically

generates SDN-Flag for SDNApps ± a system we plan to explore in

the future.

5 MOZART

In Figure 2, we present Mozart a redesign of the modern controller

architecture that applies compiler-optimizations philosophies to SD-

NEnhancements. Mozart exposes a novel interface to the SDNApps

which enables these SDNApps to bundle SDN commands into trans-

actional policies (Section 4.1) and to annotate the transactions with

SDN-Flags (Section 4.2). The controller includes an Orchestrator,

similar to compiler tools, that orchestrates SDNEnhancements, ap-

plies them to SDNApps, and ensures that SDN-Flags are respected.

In Mozart, SDNEnhancements are integrated into the controller as

isolated modules within the Orchestrator and communication be-

tween them is through function calls.

Interfaces: Mozart defines well-specified interfaces for how SD-

NApps should interact with the controller and for smoothly integrat-

ing the SDNEnhancements into the Orchestrator.

The SDNApp interface, Figure 3, specifies a call that Mozart

exposes to all SDNApps: apply(). Using apply(), an SDNApp

can specify a Transaction, i.e., a bundle of SDN instructions, to

apply to the network rather than individual instructions (or messages).

Furthermore, SDNApps may annotate transactions with SDN-Flags

either one SDN-Flag for the entire transaction or an SDN-Flag for

each instruction in the transaction.

The SDNEnhancement-interface, Figure 4, enables the Orches-

trator to manage SDNEnhancements and promotes interoperability

between SDNEnhancements. To this end, the interfaces specify the

set of functions that each SDNEnhancement must implement.

356

Composing SDN Controller Enhancements with Mozart SoCC ’19, November 20-23, Santa Cruz, CA

p u b l i c i n t e r f a c e Mozart {

C l a s s T r a n s a c t i o n {

Map <SDNMessage , SDNHint> bu nd l e ;

L i s t <SDNHint> g l o b a l ;

}

p u b l i c vo id a p p l y (L i s t < T r a n s a c t i o n >) ;

}

Figure 3: Interface Exposed to SDNApps by Mozart.

Each SDNEnhancement must implement the following functions:

init(), process_transaction(), and configure().

process_transaction() takes a list of transactions as input

and optionally returns a list of (zero or more) transactions.

p u b l i c i n t e r f a c e Enhancement {

p u b l i c L i s t < T r a n s a c t i o n > p r o c e s s _ t r a n s a c t i o n

(L i s t < T r a n s a c t i o n >) ;

p u b l i c vo id i n i t () ;

p u b l i c vo id c o n f i g u r e (Map < S t r i n g , S t r i n g >) ;

}

Figure 4: Interface for SDNEnhancements.

When the Orchestrator initializes a new SDNEnhancement, due

to a new DAG or modifications to an existing DAG, it calls the

SDNEnhancement’s init() function. As network administrators

modify configurations for an SDNEnhancement, the Orchestrator

calls configure() to reconfigure the SDNEnhancement. When

an SDNApp calls apply(), the Orchestrator accepts the transac-

tion and passes it through the set of SDNEnhancements listed in the

DAG: then process_transaction() is called for each SDN-

Enhancement ± the output of one process_transaction() is

used as input for the next process_transaction().

Orchestrator: Runs within the controller and accepts an administrator-

defined configuration: a linear DAG of SDNEnhancements to apply

to each SDNApp. The Orchestrator accepts a transaction from an

SDNApp, through the apply(), determines the DAG for the SDN-

App, and propagates the transaction through SDNEnhancements in

the DAG. The output of the final SDNEnhancement (in the DAG)

is fed to the Checker which compares the transformed transactions

against the original transactions to ensure that the transformations

are valid with respect to the specified SDN-Flags.

At a high level, the Checker verifies that for each SDN-Flag

specified none of the violating transformations (in Table 2) are

applied to the transaction. For example, when the {IO} SDN-Flag

is specified, the Checker verifies that ªmerge ruleº transformations

are not applied ± if applied, the Checker reverts the transaction to

the original transaction. When the {PF} SDN-Flag is specified, the

Orchestrator monitors the chain of SDNEnhancements and if they

take longer than a predefined timeout, δ , to process the transaction,

then the Orchestrator directly applies the original transaction to the

network and subsequently updates the network with the optimized

(transformed) transaction after the SDNEnhancements are done.

5.1 Using Mozart

In Mozart, the network operator specifies a linear DAG of SDNEn-

hancements to apply to each SDNApp ± the Orchestrator uses this

DAG to determine orchestration. The operators also specify a list

of SDNEnhancements that cannot be avoided, e.g., a security SDN-

Enhancement should have priority over SDN-Flags specified by any

SDNApps.

The developer writes SDNApps to leverage the interface and

employs SDN-Flags when necessary. There are several options for

the developer:

• Fine Granularity Use of SDN-Flags: Either rewrite the SDN-

App to integrate SDN-Flags at a fine granularity, e.g., an

SDN-Flag for each transaction, similar to how pragmas and

annotations are included in programs to aid optimizers.

• Coarse Granularity Use of SDN-Flags: Or, specify the SDN-

Flags at a coarser granularity, e.g., specific SDN-Flags for

edge devices and different SDN-Flags for core devices. This

direction eliminates the burden of rewriting the SDNApp

while providing the developer with the ability to benefit from

our system. These SDN-Flags can be specified either through

command line arguments (or in a configuration file). More

concretely, the SDNApp developer can specify the set of

SDN-Flags to apply to different function calls, e.g., for edge

devices versus for core devices.

• Automated SDN-Flag Generation: We could develop a sim-

ulation framework that enables Mozart to automatically learn

the appropriate SDN-Flags based on operators specified in-

variants on packets and data-plane behavior (e.g., SDNEn-

hancements should not impact performance by more thanX%,

or SDNEnhancements should not consume more than Y% of

the network’s resources). Given these invariants, Mozart can

use a simulator to compare the performance of SDNApps

with and without SDNEnhancements and explore the dif-

ferent SDN-Flags using a greedy heuristic (e.g., Simulated

Annealing) to effectively discover the appropriate SDN-Flags.

Employing SDN-Flags requires administrators to explore a trade-

off between invasiveness and resolution; the finer the granularity, the

more involved the changes are to existing SDNApps. Whereas with

more automated insertion of SDN-Flags, naturally the administrators

lose control over precise SDNApp behavior. We show in Section 7,

there are significant benefits when SDN-Flags are applied at a coarse

granularity.

6 PROTOTYPE

We developed prototypes of Mozart by integrating our designs

into two production quality controllers ± one used at Google (i.e.,

FAUCET [6] a fork of RYU). Our SDNApps mirror crucial proper-

ties of production SDNApps, e.g., Hedera’s control loop is philosoph-

ically similar to Microsoft’s-SWAN [20] and Google’s-B4 [22] both

of which feed switch statistics into the traffic-engineering algorithm.

Mozart’s design differs from a traditional controller in two ways:

it exposes an interface for applications to utilize our primitives

and it explicitly incorporates SDNEnhancements functionality. We

357

SoCC ’19, November 20-23, Santa Cruz, CA Zhenyu Zhou and Theophilus A. Benson

 0.01

 0.1

 1

 10

 100

H
edera

Fw
ding

LB N
AT

R
tM

gr

LSw
itch

R
tFlow

T
ra

n
s
a

c
ti
o

n
 P

ro
c
e

s
s
in

g
 T

im
e

 (
m

s
)

PF Tag Set No PF Tag Set

 0.01

 0.1

 1

 10

 100

H
edera

Fw
ding

LB N
AT

R
tM

gr

LSw
itch

R
tFlow

T
ra

n
s
a

c
ti
o

n
 P

ro
c
e

s
s
in

g
 T

im
e

 (
m

s
)

PF Tag Set No PF Tag Set

(a) (b)

Figure 5: (a) {PF} SDN-Flags’ Impact on Transaction Processing Time. (b) {PF} SDN-Flags’ Impact with Multiple Simultaneous

SDNApps.

Class of Code Modified Instances LoC

SDNEnhancements
ConflictResolvers 134 (20%)

TCAMOptimizer 119 (11.4%)

SDNApps

Hedera 18 (0.4%)

Forwarding 33 (1.7%)

Load Balancer 13 (0.4%)

NAT 18 (1.5%)

Route Manager 19 (1.1%)

Five versions of Learning Switch 18 (1.2%)

Route Flow 13 (0.3%)

Controller
Floodlight 1326 (1.5%)

Ryu 116 (0.6%)

Table 3: Lines of Code Changed.

chose to explicitly incorporate SDNEnhancement functionality as a

module as this allows us to explicitly inform an SDNEnhancement

of the primitives used by each SDNApp. Moreover, we modified

the controller to monitor and log the transformations made by the

SDNEnhancements for debugging purposes. Our prototypes are built

atop the Floodlight controller in 1326 Lines of Code (LoC) and Ryu

controller in 116 LoC. Mozart interacts with the SDNEnhancements

using functions calls. The SDNEnhancements and the SDNApps

have been modified to generate SDN-Flags and to use SDN-Flags

respectively.

Changes to SDNEnhancements: We changed the TCAMOpti-

mizer, 119 LoC (11.4%), and the ConflictResolver, 134 LoC (20%),

to provide the functionality discussed in Section 5. Our modifications

to the SDNEnhancement, the SDNApp, the Floodlight controller

and the Ryu controller are detailed in Table 3.

Changes to SDNApps: We changed seven SDNApps to leverage

our SDN-Flags and Mozart’s interface. From Table 3, we observe

that the changes to the SDNApps were minimally invasive (generally

less than 2% of the codebase was modified). Note for Ryu, we had

five versions of the Learning Switch SDNApp, and we modified all

five versions.

7 EVALUATION

To understand Mozart’s effectiveness in maintaining application

performance in the face of SDNEnhancement transformations, we

evaluate Mozart against the SDNEnhancements and SDNApps dis-

cussed in Section 6. We investigate Mozart under a combination of

synthetic and realistic traces [7] and with a variety of data center

topologies. This diversity allows us to draw general conclusions

about our abstractions and their implications. In evaluating Mozart,

we aim to answer the following questions:

• Is Mozart able to effectively improve an SDNApp’s perfor-

mance? (§ 7.2)

• What fraction of Mozart’s benefits are achieved when Mozart

is applied in a backward compatible manner (requiring no

code changes to the SDNApps)? (§ 7.3)

• How much overhead does Mozart introduce? (§ 7.4)

• How much additional work does Mozart’s interface introduce

when SDNApps are updated? (§ 7.5)

7.1 Experiment Setup

We begin by describing the workloads, and the topologies used

in our evaluations. We conduct our experiments in an emulator,

Mininet [32], and with a simulator. The emulator allows us to un-

derstand the accuracy and efficacy of Mozart whereas the simulator

allows us to understand the scaling implications of Mozart. In both

our emulations and simulations, we consider the SDNApps and

SDNEnhancements discussed in Section 6. We consider a Fat-Tree

topology [3] and investigate both realistic and synthetic workloads.

For realistic workloads, we consider the traffic patterns for a medium

data center [7]. For the synthetic workloads, we consider the best

case (Random) and the worst case (Stride) traffic matrices used in

recent data center proposal [3, 4]. The stride pattern has multiple

358

Composing SDN Controller Enhancements with Mozart SoCC ’19, November 20-23, Santa Cruz, CA

flows from the same source edge switch to the same destination edge

switch.

Simulator: In the absence of a large-scale testbed to study the

overheads and scaling implications of Mozart, we instead developed

a simulator to model the network. We simulate various network

events and the corresponding messages exchanged between the net-

work devices and the controller (e.g., the control messages sent

to the controller by the switches when statistics are requested or

when the switch is powered on/off). By simulating only network

events, our simulator is transparent to the SDNApps, the SDNEn-

hancements, and Mozart. This transparency allows them to operate

as usual ensuring that we can objectively evaluate the overheads of

Mozart. This approach allows us to focus on the performance of

Mozart in a large-scale setting while being unconstrained by the size

and topology of our local resources. In our simulations, the network

controller is deployed on a 2.80GHz quad core Intel Xeon PC with

16GB of memory running Ubuntu 14.04.

Unless explicitly specified, our default experiments are run on the

Fat-Tree topology, with 20 nodes, 16 hosts, 1Gbps links and with

the stride traffic pattern.

7.2 Implications of Mozart

We begin this section, by investigating the high-level impact of

Mozart on the broad set of SDNApps evaluated then we focus on

two specific SDNApps to understand SDNApp-specific performance:

in particular, to illustrate the interactions between Mozart and the

two classes of SDNApps, we focus on a proactive SDNApp and a

reactive SDNApp.

Broad Analysis: In Figures 5 and 6, we analyze the impact of two

specific flags on our SDNApps. In general, the flags have varying

benefits which are correlated to the functionality of the different

SDNApps.

 15

 20

 25

 30

 35

 40

 45

H
edera

Fw
ding

LB N
AT

R
tM

gr

LSw
itch

R
tFlow

#
 o

f
T

C
A

M
 R

u
le

s

IO Tag Set No IO Tag Set

Figure 6: Number of TCAM Entries when {IO} is Enabled.

To better understand the impact of Mozart, we examined the av-

erage transaction processing time when {PF} is enabled. Figure 5

shows the transaction processing time with and without {PF} en-

abled for several SDNApps. We observe that {PF} does, in fact,

decrease processing time demonstrating the benefit of introducing

and using such a flag. Next, in Figure 6 we observe the impact of the

{IO} Flag on the number of TCAM rules in the network. We observe

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
one

H
edera

TC
AM

-O
PT

TC
AM

-O
PT+M

ozart

C
R

C
R
+M

ozart

TC
AM

-O
PT/C

R

TC
AM

-O
PT/C

R
+M

ozart

 0

 25

 50

 75

 100

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
G

b
p

s
)

T
o

ta
l
N

u
m

b
e

r
o

f
T

C
A

M
 E

n
tr

y
 U

s
a

g
e

Bandwidth Usage TCAM Usage

Figure 7: Aggregate Bandwidth and TCAM Usage.

that the flag does inflate the number of rules however this inflation

is modest and acceptable in light of the potential benefit: namely,

improved performance.

Proactive App (Hedera): Next, we drill into a proactive SDN-

App and compare the aggregate network bandwidth under sev-

eral different scenarios: None scenario, no traffic engineering pro-

vides us a lower bound on performance; Hedera scenario, Hed-

era traffic-engineering is used with no SDNEnhancements ± this

provides us with an upper-bound on performance; TCAM-OPT,

Hedera is run with the TCAMOptimizer; CR, Hedera is run with

the ConflictResolver; TCAM-OPT/CR, Hedera is run with both

the ConflictResolver/TCAMOptimizer; TCAM-OPT+Mozart, Hed-

era is applied with the TCAMOptimizer and Mozart; CR+Mozart,

Hedera is applied with the ConflictResolver and Mozart; TCAM-

OPT/CR+Mozart, Hedera is applied with both ConflictResolver and

TCAMOptimizer and Mozart.

In Figure 7, we compare the aggregate network bandwidth against

the number of TCAM entries used by Hedera. We observe that apply-

ing the TCAMOptimizer, reduces TCAM utilization by 57.5% but at

the cost of performance (24.8% reduction in aggregate bandwidth).

This decrease occurs because the TCAMOptimizer eliminates Hed-

era’s ability to effectively determine which flows are elephants. Sim-

ilarly, we observe a decrease in aggregate bandwidth when Con-

flictResolver is used because Hedera’s reaction time is increased

thus prolonging periods of congestion and reducing bandwidth for

congested flows.

In applying Mozart, we observe that bandwidth is improved to

within the optimal solution. While Mozart drastically improves Hed-

era’s performance, we observe that the efficiency of the TCAMOp-

timizer is reduced ± the TCAMOptimizer is only able to achieve

18.2% of TCAM usage saving (the fourth bar). This performance

to TCAMOptimizer trade-off occurs because Mozart improves per-

formance by limiting coalescing on certain OpenFlow entries. The

improvement over the ConflictResolver on the other hand occurs be-

cause Mozart temporarily ignores ConflictResolver and retroactively

applies the optimization of the impact of the SDNEnhancements.

Reactive App (RtFlow): Lastly, we evaluate the impact of the

SDNEnhancements on a reactive SDNApp, we focus on the route-

setup. In this scenario, the TCAMOptimizer has no impact and

thus we exclude it and focus solely on these two scenarios: CR and

359

SoCC ’19, November 20-23, Santa Cruz, CA Zhenyu Zhou and Theophilus A. Benson

CR+Mozart. We observe that ConflictResolver has a similar impact

in that it reduces the ability of the SDNApp to install paths and to

react to the injected failure events. In Figure 8, we present a time

series of the number of active flows within the network. We observe

that with CR during the initial 3.3 seconds there are no active flows

and that at the second 50 there is another dip in the number of

active flows when a link is deleted from the network. Unlike, CR, we

observe that CR+Mozart has a much lower initial ramp of phase and

time to recovery with CR+Mozart being 7.8 times and 44.8 times

faster than CR. This displayed the benefits of employing Mozart2.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90

N
u

m
b

e
r

o
f

A
c
ti
v
e

 P
in

g
s

Time Since Start (s)

PF Tag Set
No PF Tag Set

Figure 8: Ping Latency in Link Failure Experiment.

7.3 Resolution of Mozart

Fundamentally, Mozart introduces a set of abstractions that facilitate

exchange of information. As discussed in Section 4, these interfaces

can be used at a varying-resolutions:

• static, with the same SDN-Flags applied to all OpenFlow-

messages or at a fine-resolution,

• dynamic, the default behavior, with SDN-Flags judiciously

applied to each OpenFlow-message.

• static-dev, to support ease of integration, in Section 4, we

suggested that SDN-Flags be applied statically at the granu-

larity of function calls and device types. More concretely, the

SDNApp developer can specify the set of SDN-Flags to apply

for different function calls, for edge devices, and for core

devices. The decision to delineate device along the core-edge

boundaries builds on recent trends to separate the core from

the edge [11, 30, 43].

There is a trade-off between invasiveness and resolution; the finer

the granularity, the more involved the changes are to existing SD-

NApps. At one extreme, static requires absolutely no change and

at the other extreme dynamic requires changes to the SDNApp;

however, these changes are minimal. As a middle-ground option,

static-dev, requires a simple addition ± the inclusion of a configura-

tion file.

2We note that while our implementation of ConflictResolver takes about 10 seconds to
process, the relative speeds are subject to change given different implementations of
ConflictResolver. Furthermore, while ConflictResolver potentially improves network
performance it can result in transient periods of conflicting resource allocations.

We observed that with static-dev the simple distinction between

core and edge is sufficient to maximize the trade-off between SDN-

App accuracy and SDNEnhancement efficiency. static-dev’s per-

formance and efficiency are close to dynamic without incurring the

overheads of re-writing the SDNApp. Intuitively, static-dev performs

close to dynamic because the information required to detect conges-

tion is present at the edge, and, additionally, most of the congestion

occurs within the edge. This result demonstrates the feasibility of

adopting Mozart without invasive modifications to the applications.

More generally, we believe that static-dev is broadly applicable to

other SDNApps because, in most SDNApps, there is a distinction in

the functionality applied at the core from that applied at the edge of

the network.

Orthogonally, with static, we observed that blindly applying the

same SDN-Flags impacts and hurts performance. Fortunately, we

believe that static-dev provides a promising and non-invasive step

forward for a broad set of SDNApps.

7.4 MicroBenchmarks

We examine the overhead of employing Mozart and investigate

how these overheads scale along two dimensions. First, in terms

of additional latency for the Orchestrator to compose services and

evaluate the SDN-Flags. Second, in terms of the throughput of the

controller. To do this, we evaluate Mozart using our simulator.

We examine the throughput and latency for processing OpenFlow-

messages on a number of topologies with varying sizes. In Figure 9,

we focus on the largest data center topology evaluated: Fat-tree with

2000 hosts and 500 network devices. From Figure 9, we make two ob-

servations: first, that the overheads imposed by Mozart are sub-linear

and second, the overheads imposed are minimal and acceptable with

additional SDNEnhancements imposing a 1.58% overhead to latency

and no observable overhead to throughput.

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 10

R
e

la
ti
v
e

 L
a

te
n

c
y
 o

f
M

o
z
a

rt
C

o
m

p
a

re
d

 t
o

 N
o

 M
o

z
a

rt
 i
n

 %

Number of Extensions

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10

R
e

la
ti
v
e

 T
h

ro
u

g
h

p
u

t
o

f
M

o
z
a

rt

C
o

m
p

a
re

d
 t

o
 N

o
 M

o
z
a

rt
 i
n

 %

Number of Extensions

(a) (b)

Figure 9: (a) Relative Latency of Mozart Compared to No

Mozart in %. (b) Relative Throughput of Mozart Compared

to No Mozart in %.

7.5 Implication of SDN-Flags on SDNApp

Evolution

Finally, we conclude by examining the impact of Mozart on a devel-

oper’s ability to manage an evolving codebase. Here we focus on a

specific SDNApp on Ryu (Learning Switch). Currently, Ryu comes

360

Composing SDN Controller Enhancements with Mozart SoCC ’19, November 20-23, Santa Cruz, CA

with five versions of this SDNApp ± one for each of the different ver-

sions of the OpenFlow interface3. In Figure 10, we plot the number

of transactions required. We observe that the only change happens

between version 1.2 and 1.3 when an additional transaction is added

due to new feature in the specification (i.e., Table Miss).

 0

 1

 2

 3

1.0 1.2 1.3 1.4 1.5

#
 o

f
T

ra
n
s
a
c
ti
o
n
s

App Version

Figure 10: Number of Transactions for Different Versions of the

Learning Switch SDNApp.

8 DISCUSSION

Implications on security and other properties? We explored the

implications of SDNEnhancements on efficiency, complexity, and

fidelity. There are other dimensions along which SDNEnhancements

may impact an SDNApp. For example, security, network utilization,

performance, isolation, etc. As part of future work, we intend to

explore these dimensions. For example, we could integrate Mozart

with Rosemary [47], a security oriented controller architecture, to

analyze how SDNEnhancements impact security policies. Moreover,

we plan to more concretely explore the connection between SDNEn-

hancements and complexity in network management, by analyzing

how SDNEnhancements impact the ability of network operators to

debug networks using common tools [38, 39].

Does ignoring an SDNEnhancement obviate its benefits? The

single biggest limitation of Mozart is that, in certain situations,

Mozart acts in a binary fashion: a subset of SDN-Flags prevent

transformations which may render an SDNEnhancement ineffective.

Fortunately, we showed in Table 1 that multiple SDNEnhancements

can provide the same property, e.g., consistent-updates [33, 40, 45],

and one of these alternative SDNEnhancements may be able to

preserve the SDNApp’s correctness. As part of future work, we plan

to design a more flexible Orchestrator that automatically replaces

an SDNEnhancement rendered ineffective by SDN-Flags with an

equivalent one with appropriate transformations.

Do our abstractions provide complete coverage? As the SDN-

ecosystem becomes richer with more SDNApps and SDNEnhance-

ments, our abstractions will naturally have to evolve. However, we

note that since our abstractions are fundamentally tied to the core

properties of FlowTable entries, we expect our abstractions will

evolve at a significantly slower pace than that of the entire SDN-

ecosystem.

3They support different versions of OpenFlow from 1.0 to 1.5 (Ryu does not offer
built-in support for OpenFlow 1.1).

How do we handle interactions between multiple SDNApps?

Multiple SDNApps can read and modify the same OpenFlow rules,

this is akin to reading/writing to the same key-value stores. There are

two ways to deal with this, both using SDNExtensions. Either the

first writer wins approach taken by the Network-State management

service or the capability/priority approach taken by Participatory

Networking. Within our system, such conflicts can still exist and

the SDNExtensions are responsible for tackling such conflicts. The

existing conflict resolvers [14, 48] make two types of transforma-

tions: first, a null transformation which denies SDNApp and deletes

the transaction. Second, a temporal transformation which delays

transformations. Our system will not interfere with these resolvers.

How do we handle conflicts between SDNEnhancements? We

explore the interactions between SDNEnhancements and SDNApps.

Another more interesting set of interactions is that between a set

of SDNEnhancements. SDNEnhancements are bound to conflict

or to contradict each other. In this work, we do not explicitly ad-

dress these issues, instead we take the first step towards addressing

them by re-architecting controllers to explicitly include SDNEn-

hancements and explicitly compose SDNEnhancements. By making

SDNEnhancements a more explicit member of the SDN ecosystem,

conflicts can be readily detected, analyzed, and tackled. We plan to

design a simulator to empirically detect these conflicts.

9 RELATED WORKS

Most notable work focus on re-architecting controllers to support

scalability [31, 50], security [47], and reliability [12]. These works

focus on improving the core architecture of the controller. Our ap-

proach is orthogonal and builds on them by proposing ways to extend

the controller and directly incorporating SDNEnhancements. The

most closely related work on SDN composition [14, 17, 23, 35, 37]

focuses on providing SDNEnhancements that promote principled

composition of SDNApps with different objectives [14, 35, 37] or

SDNApps running on different controllers [23]. Our work presents a

fundamental departure from existing work in the composition space,

rather than focusing on the SDNApps, we concentrate on the SD-

NEnhancements. Thus, allowing us to introduce a similar level of

rigor and understanding to SDNEnhancement-composition as we

currently have for SDNApp-composition. Essentially, related work

asks that each application should reimplement certain functionality,

whereas Mozart extracts and pushes the functionality down to a

lower and common layer: the controller. Furthermore, while related

works focus on ensuring cooperation between SDNApps, we focus

on ensuring cooperation between SDNApps and SDNEnhancements.

Additionally, unlike Mozart, Athens [5] and SOL [18] operate

at the level of paths which places a key limitation on them: they

can only detect harmful interactions between SDNApps and SD-

NEnhancements when the intersection of generated paths is empty.

In Section 2, we showed that even if paths remain the same (a

non-empty intersection), but other properties of rules are modified,

e.g., by merging, then violations will exist. Mozart offers a funda-

mental advantage over them because it operates at a lower level of

abstraction. SOL can not be easily modified to operate at this lower

level because the lower level negates existing scaling optimizations

forcing a fundamental redesign of its core algorithms. Athens can

361

SoCC ’19, November 20-23, Santa Cruz, CA Zhenyu Zhou and Theophilus A. Benson

operate at this lower granularity; however, this change will signif-

icantly exacerbate Athens’ existing scaling and complexity issue.

Recall, Athens requires all SDNEnhancements and SDNApps to

understand each other’s logic and anticipate all interactions.

Our abstractions represent a natural extension of Operating Sys-

tem hints, such as X-tags [26], Intentional Networking [19] to the

SDN’s Network Operating System. Similarly, our SDN-Flags allow

the SDNApps to expose their internal objectives in a qualitative

manner without disclosing their internal structure. Unlike exist-

ing O.S. hints, our abstractions are motivated by domain-specific

knowledge of design patterns and structure of SDNApps and SD-

NEnhancements. The design of our composition operators and con-

figuration language are inspired by existing works on extensible

system [21, 29, 52].

10 CONCLUSION AND FUTURE WORK

In this paper, we make the first attempt towards understanding and

quantifying the implications of applying SDNEnhancements to SD-

NApps. We observe that SDN controllers are ill-equipped with poor

primitives for supporting SDNApps and abstractions for enabling

SDNEnhancements. Motivated by these observations, we argue for

the design of a more powerful interface between the SDNApps and

the SDN controllers ± this interface allows for a systematic and

principled inclusion of SDNEnhancements into the SDN ecosystem.

Our design and prototype implementation of Mozart is the first

step towards a holistic controller architecture capable of supporting

SDNEnhancements in a manner that does not compromise the sim-

plicity promised by SDNs (or the performance, and efficiency of the

SDNApps). We believe this idea of a holistic controller architecture

capable of integrating and composing SDNEnhancements presents a

rich field of future research and will become only more important

as SDN deployments continue to grow. As part of future work, we

aim to expand on our flags and tackle problems related to detecting

conflicts between SDNEnhancements and verifying transformations

made by an SDNEnhancement.

11 ACKNOWLEDGMENTS

We thank Eric Keller, Hyojoon Kim, and the anonymous reviewers

for their invaluable comments. We also thank Chen Liang for his

help with the prototype. This work is supported by NSF grants

CNS-1409426 and CNS-1749785.

REFERENCES
[1] 2017. Ryu SDN Framework. https://osrg.github.io/ryu/.
[2] 2019. Project Floodlight. http://www.projectfloodlight.org/.
[3] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A Scalable,

Commodity Data Center Network Architecture. In SIGCOMM.
[4] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson

Huang, and Amin Vahdat. 2010. Hedera: Dynamic Flow Scheduling for Data
Center Networks. In NSDI.

[5] Alvin AuYoung, Yadi Ma, Sujata Banerjee, Jeongkeun Lee, Puneet Sharma, Yoshio
Turner, Chen Liang, and Jeffrey C Mogul. 2014. Democratic Resolution of
Resource Conflicts Between SDN Control Programs. In CoNext.

[6] Josh Bailey and Stephen Stuart. 2016. FAUCET: Deploying SDN in the Enterprise.
In ACM Queue.

[7] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network Traffic
Characteristics of Data Centers in the Wild. In IMC.

[8] Theophilus Benson, Aditya Akella, Anees Shaikh, and Sambit Sahu. 2011. Cloud-
NaaS: A Cloud Networking Platform for Enterprise Applications. In SoCC.

[9] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2011. Mi-
croTE: Fine Grained Traffic Engineering for Data Centers. In CoNEXT.

[10] Marco Canini, Daniele De Cicco, Petr Kuznetsov, Dan Levin, Stefan Schmid, and
Stefano Vissicchio. 2014. STN: A Robust and Distributed SDN Control Plane. In
ONS.

[11] Martin Casado, Teemu Koponen, Scott Shenker, and Amin Tootoonchian. 2012.
Fabric: A Retrospective on Evolving SDN. In HotSDN.

[12] Balakrishnan Chandrasekaran and Theophilus Benson. 2014. Tolerating SDN
Application Failures with LegoSDN. In HotNets.

[13] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman
Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,
James Alexander Docauer, et al. 2018. Andromeda: Performance, Isolation, and
Velocity at Scale in Cloud Network Virtualization. In NSDI.

[14] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca, and Shriram
Krishnamurthi. 2013. Participatory Networking: An API for Application Control
of SDNs. In SIGCOMM.

[15] Daniel Firestone. 2017. VFP: A Virtual Switch Platform for Host SDN in the
Public Cloud. In NSDI.

[16] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. 2018. Azure Accelerated Networking: SmartNICs in the Public
Cloud. In NSDI.

[17] Victor Heorhiadi, Sanjay Chandrasekaran, Michael K Reiter, and Vyas Sekar.
2018. Intent-Driven Composition of Resource-Management SDN Applications.
In CoNEXT.

[18] Victor Heorhiadi, Michael K. Reiter, and Vyas Sekar. 2016. Simplifying Software-
Defined Network Optimization Using SOL. In NSDI.

[19] Brett D. Higgins, Azarias Reda, Timur Alperovich, Jason Flinn, T. J. Giuli, Brian
Noble, and David Watson. 2010. Intentional Networking: Opportunistic Exploita-
tion of Mobile Network Diversity. In MobiCom.

[20] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. 2013. Achieving High Utilization with Software-
Driven WAN. In SIGCOMM.

[21] Norman C Hutchinson and Larry L Peterson. 1991. The X-Kernel: An Architecture
for Implementing Network Protocols. Software Engineering, IEEE Transactions

on.
[22] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun

Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. 2013. B4: Experience with A Globally-
Deployed Software Defined WAN. In SIGCOMM.

[23] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. 2015. CoVisor: A
Compositional Hypervisor for Software-Defined Networks. In NSDI.

[24] Nanxi Kang, Monia Ghobadi, John Reumann, Alexander Shraer, and Jennifer
Rexford. 2015. Efficient Traffic Splitting on Commodity Switches. In CoNEXT.

[25] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. 2013. Op-
timizing the "One Big Switch" Abstraction in Software-Defined Networks. In
CoNEXT.

[26] Thomas Karagiannis, Richard Mortier, and Antony Rowstron. 2008. Network Ex-
ception Handlers: Host-network Control in Enterprise Networks. In SIGCOMM.

[27] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKe-
own, and Scott Whyte. 2013. Real Time Network Policy Checking Using Header
Space Analysis. In NSDI.

[28] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten
Godfrey. 2013. VeriFlow: Verifying Network-wide Invariants in Real Time. In
NSDI.

[29] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans Kaashoek.
2000. The Click Modular Router. In ACM Transactions on Computer Systems

(TOCS).
[30] Teemu Koponen, Keith Amidon, Peter Balland, Martín Casado, Anupam Chanda,

Bryan Fulton, Igor Ganichev, Jesse Gross, Natasha Gude, Paul Ingram, et al. 2014.
Network Virtualization in Multi-Tenant Datacenters. In NSDI.

[31] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon
Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki
Hama, and Scott Shenker. 2010. Onix: A Distributed Control Platform for Large-
Scale Production Networks. In OSDI.

[32] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Network in A Laptop:
Rapid Prototyping for Software-Defined Networks. In HotNets.

[33] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wattenhofer, and
David Maltz. 2013. zUpdate: Updating Data Center Networks with Zero Loss. In
SIGCOMM.

[34] Jeremie Miserez, Pavol Bielik, Ahmed El-Hassany, Laurent Vanbever, and Mar-
tin T. Vechev. 2015. SDNRacer: Detecting Concurrency Violations in Software-
Defined Networks. In SOSR.

[35] Jeffrey C. Mogul, Alvin AuYoung, Sujata Banerjee, Lucian Popa, Jeongkeun
Lee, Jayaram Mudigonda, Puneet Sharma, and Yoshio Turner. 2013. Corybantic:
Towards the Modular Composition of SDN Control Programs. In HotNets.

[36] Matthew Monaco, Oliver Michel, and Eric Keller. 2013. Applying Operating
System Principles to SDN Controller Design. In HotNets.

[37] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David
Walker. 2013. Composing Software-Defined Networks. In NSDI.

362

Composing SDN Controller Enhancements with Mozart SoCC ’19, November 20-23, Santa Cruz, CA

[38] Tim Nelson, Da Yu, Yiming Li, Rodrigo Fonseca, and Shriram Krishnamurthi.
[n.d.]. Simon: Scriptable Interactive Monitoring for SDNs (SOSR ’15).

[39] István Pelle, Tamás Lévai, Felicián Németh, and András Gulyás. [n.d.]. One Tool
to Rule Them All: A Modular Troubleshooting Framework for SDN (and Other)
Networks (SOSR ’15).

[40] Peter Perešíni, Maciej Kuzniar, Marco Canini, and Dejan KostiÂc. 2014. ESPRES:
Easy Scheduling and Prioritization for SDN. In ONS.

[41] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson,
and Guofei Gu. 2012. A Security Enforcement Kernel for OpenFlow Networks.
In HotSDN.

[42] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and
Minlan Yu. 2013. SIMPLE-fying Middlebox Policy Enforcement Using SDN. In
SIGCOMM.

[43] Barath Raghavan, Martín Casado, Teemu Koponen, Sylvia Ratnasamy, Ali Ghodsi,
and Scott Shenker. 2012. Software-Defined Internet Architecture: Decoupling
Architecture from Infrastructure. In HotNets.

[44] Mark Reitblatt, Marco Canini, Arjun Guha, and Nate Foster. 2013. Fattire: Declar-
ative Fault Tolerance for Software-Defined Networks. In HotSDN.

[45] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
2012. Abstractions for Network Update. In SIGCOMM.

[46] Myriana Rifai, Nicolas Huin, Christelle Caillouet, Frédéric Giroire, D Lopez-
Pacheco, Joanna Moulierac, and Guillaume Urvoy-Keller. 2015. Too Many SDN
Rules? Compress Them with MINNIE. In GLOBECOM.

[47] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jaewoong Chung,
Phillip Porras, Vinod Yegneswaran, Jiseong Noh, and Brent Byunghoon Kang.
2014. Rosemary: A Robust, Secure, and High-performance Network Operating
System. In CCS.

[48] Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang, and Ahsan
Arefin. 2014. A Network-state Management Service. In SIGCOMM.

[49] Andreas Voellmy, Junchang Wang, Y Richard Yang, Bryan Ford, and Paul Hudak.
2013. Maple: Simplifying SDN Programming Using Algorithmic Policies. In
SIGCOMM.

[50] Soheil Hassas Yeganeh and Yashar Ganjali. 2014. Beehive: Towards A Simple
Abstraction for Scalable Software-Defined Networking. In HotNets.

[51] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. 2010. Scalable
Flow-Based Networking with DIFANE. In SIGCOMM.

[52] Erez Zadok and Jason Nieh. 2000. FiST: A Language for Stackable File Systems.
In USENIX ATC.

363

	Abstract
	1 Introduction
	2 Motivation
	2.1 The Case for SDNEnhancements
	2.2 SDNEnhancement Definition
	2.3 SDNEnhancement Deployment Scenarios

	3 Understanding SDN-Enhancement
	3.1 Experiment Setup
	3.2 Implications of SDNEnhancements

	4 Rethinking Controller Architectures
	4.1 Compilers for SDNs
	4.2 Modeling Optimization Flags

	5 Mozart
	5.1 Using Mozart

	6 Prototype
	7 Evaluation
	7.1 Experiment Setup
	7.2 Implications of Mozart
	7.3 Resolution of Mozart
	7.4 MicroBenchmarks
	7.5 Implication of SDN-Flags on SDNApp Evolution

	8 Discussion
	9 Related Works
	10 Conclusion and Future Work
	11 Acknowledgments
	References

