In-Network Compute: Considered Armed and
Dangerous

Theophilus A. Benson

Brown University

Abstract

Programmable data planes promise unprecedented flexibil-
ity and innovation. But enormous management issues arise
when these programmable data-planes, and the in-network
compute functionality they enable, are deployed within pro-
duction networks. In this paper, we present an overview of
these management challenges, then explore the limitations
of existing management techniques. Finally, we propose a
system, Harmony, that encapsulates new abstractions and
primitives to address these problems.

CCS Concepts «Networks — Programmable networks;
Network management.

Keywords in-network computing; programmable network
devices

ACM Reference Format:

Theophilus A. Benson. 2019. In-Network Compute: Considered
Armed and Dangerous. In Workshop on Hot Topics in Operating
Systems (HotOS ’19), May 13-15, 2019, Bertinoro, Italy. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3317550.3321436

1 Introduction

The last few decades have seen a significant debate over
the use and design of in-network functionality (NF). Until
recently, much of this in-network functionality has been
at layer-7, e.g., proxies. With the recent emergence of pro-
grammable data planes [7, 49], the functionality being placed
into the network has shifted from pure layer-7 networking
to include computing functionality, i.e., in-network compute
(iCF).

A key defining property of iCF is a blurring of the tradi-
tional division between computing and networking infras-
tructures. In Table 1, we present a representative list of the
functionality being developed for programmable data planes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotOS ’19, May 13-15, 2019, Bertinoro, Italy

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6727-1/19/05...$15.00
https://doi.org/10.1145/3317550.3321436

216

Functions Type | Mode
Caching [31, 32, 32, 36, 43] iCF | Offload

e.g., NetCache [32]

NFV [24, 45, 46, 61] NF | Transparent
e.g., SilkRoad [46]

Consensus [16, 17, 27, 37, 38] iCF | Transparent
e.g., P4xos [16]

ML/AL e.g., [53] iCF | Offload
Stream processing [13, 29, 54] | iCF | Offload

e.g., DAIET [54]

Table 1. Taxonomy of functionality deployed on pro-
grammable dataplanes.

For many of these approaches, e.g., Daiet [54], a fraction
of the application logic is rewritten and offloaded onto pro-
grammable data planes (PDPs) within the network (Offload
mode in Table 1). * The code running on a PDP is called a
PDP program and written in a PDP language, e.g., P4.

When combining networking and computing functional-
ity onto a PDP, network operators must grapple with man-
agement issues, e.g., infrastructure updates, troubleshooting,
and diagnosis, for both networking and computing infras-
tructures. Moreover, as adoption of iCFs grows in size and
prevalence, we believe these issues will only worsen.

The principal position of this paper is that rearchitecting
server applications to cross administrative boundaries (network
and compute) introduces a semantic gap in existing, otherwise
silo-ed, management techniques and complicates infrastructure
managment. In particular, while iCFs enables server appli-
cations to cross logical boundaries between computing and
networking infrastructure, many current management ab-
stractions, algorithms, and frameworks are limited in scope
to either the networking or computing domains, and thus
lack sufficient information and data plane primitives to ef-
fectively manage applications that cross these boundaries.
For example, to install an iCF on a network device, the net-
work requires both placement information (e.g., location)
and network virtualization primitives that enforce isolation.

Naively merging existing management tools to enable
cross-layer management is unscalable; creating new cross-
layer tools is undesirable, since such tools would disregard
practical administrative boundaries (i.e., NetOps versus De-
vOps). Instead of merging or rewriting existing tools, we

“Note that while some in-network compute functionality require appli-
cation modifications, some do not (i.e., transparent mode in Table 1).

HotOS ’19, May 13-15, 2019, Bertinoro, Italy

argue that we should augment existing management tech-
niques with abstractions and algorithms to enable a cross-
layer exchange of information, allowing existing methods to
more effectively manage the network.

To this end, we propose a system, Harmony, that facili-
tates cross-layer management of iCFs by introducing abstrac-
tions for data exchange between networking and computing
management systems and a set of supporting data plane
primitives. Harmony is inspired by recent work on cloud
management [2, 3, 6, 51] while addressing issues specific to
programmable data planes.

In particular, we identify the following key management
challenges and introduce data plane primitives and informa-
tion sharing abstrations to address them. Harmony must (1)
simultaneously and dynamically support multiple iCFs, (2)
allow for the transfer of placement information, (3) enable
on-demand reaction to management events, and (4) disentan-
gle diagnosis complexity. Programmable data planes support
abroad range of functionality (Table 1). Thus, a key challenge
lies in simultaneously ensuring generality and practicality;
we illustrate the generality and practicality of our abstrac-
tions with several classes of emerging in-network compute
applications.

2 Background
2.1 Managing Distributed Infrastructures

Many distributed applications are required to survive server
failures and to scale in response to application workload
fluctuations. We use the term orchestrator to broadly clas-
sify the processes that manage these applications (i.e., the
process that allocates resources, monitors the tasks for fail-
ures, or scales them in response to workload fluctuations).
For containers and microservices, Kubernetes is a popular
orchestrator. For big data processing systems, e.g., MapRe-
duce, the job manager is the orchestrator. On the networking
side, a controller encapsulates the control logic that manages
distributed switches (i.e., the process that installs network
paths, configures/installs NFs, and reacts to failures).

2.2 Overview of NF

In Table 1, we present a taxonomy of recent approaches clas-
sified by the type of functionality, i.e., iCF or NF, and the
mode of operation, i.e., offloaded (requires server application
rewrite) or transparent (server application is transparent).
We note that NFs do not require modifications to applica-
tions because these functions are naturally distinct from
applications. An iCF, in contrast, may or may not require
application modifications depending on the functionality
being embedded into the network. Next, we highlight the
salient features of iCFs by describing two complementary
approaches.

217

Theophilus A. Benson

e NetCache [32]: NetCache improves the performance of
traditional key-value stores by using programmable data-
planes as a caching layer between application servers
and the key-value stores. The NetCache iCF is designed
to run on ToR switches, which, traffic destined to the
key-value servers will naturally traverse. The memory
requirement for the PDP program is a function of the num-
ber of cache servers at the ToR. Failure of a programmable
device impacts performance but not correctness because
the network maintains only soft state.

To effectively utilize NetCache, the orchestrator much
be able to configure the PDP program based on runtime
knowledge of the location of key-value stores and the
number of key-value servers at each ToR. Without or-
chestrator involvement, the controller is, thus, unable to
appropriately place or configure NetCache.

e DAIET [54]: DAIET offloads reducer tasks into the net-
work. The network is used to aggregate results and, in
turn, reduce latencies and improve throughput. The fail-
ure of a DAIET element significantly impacts the map-
reduce job, because a DAIET iCF stores persistent state,
the job may need to be re-run if intermediate data is lost.
This problem is analogous to the failure of an interme-
diate server node in MapReduce which forces the job to
recalculate lost components [33].

To effectively utilize DAIET, the orchestrator must in-
form the controller of the location of the different mapper
tasks as well as the reducer PDP program(s) to run. Given
this information, the controller can appropriately place
and route traffic through the reducer iCF (s).

Takeaway: As illustrated above, the use of programmable
data planes as compute units naturally requires some coordi-
nation between the orchestrator and controller. The type and
level of coordination is a function of the type of computation
being embedded into the network. For example, placement
information is required for resource allocations and work-
load information may be required for configuration.

Thus, migration of traditional computing tasks into the
network complicates the functionality of an orchestrator
because the orchestrator must now interact with and manage
both the conventional application processes on servers and
the iCFs within the data plane.

3 Management Challenges

In this section, we discuss several emerging trends in com-
puting and discuss the management implications of a tighter
coupling between the orchestrator and controller.
Challenge 1: Networking as a Utility. Emerging virtu-
alization trends are slowly eliminating the explicit depen-
dencies between the applications and the network. Two par-
ticular trends stand-out, microservice service-mesh [10] and

In-Network Compute: Considered Armed and Dangerous

TaaS-overlay networking [15, 20, 35]. In both trends, the net-
work is abstracted into one “big switch” with overlay tunnels
used to transport traffic between endpoints.

Impact: A consequence of this trend is that the orchestra-
tors are unaware of the underlying network and make many
decisions in a network agnostic manner.

Requirement: The move to push compute functionality into
the network will require orchestrators to either understand
the topology to perform placements or to delegate placement
functionality to controllers.

Challenge 2: Maintenance Activities. Most operational
data centers require constant maintenance, e.g., hardware
maintenance or firmware upgrades, which often needs re-
booting one or more switches or taking switches offline.
Today, elaborate algorithms [41, 62] are required to schedule
maintenance activities in a manner that minimizes disruption
of the network. These intelligent algorithms shield applica-
tions from maintenance activities by ensuring that certain
invariants hold during each maintenance window. The move
to offload compute into the network magnifies the disruption
caused by these maintenance activities.

Impact: To effectively operate during maintenance win-
dows, iCF must either be migrated off devices before a reboot
(or shutdown) or the application must be redesigned to ex-
plicitly handle maintenance activities within the network.
We argue that the least disruptive option, in-network sup-
port for migration, should be explored. While this option
aligns with an application’s expectation, it introduces new
challenges.

Requirement: Migrating iCF requires coordination between
the controller and the orchestrator to ensure that: (1) migra-
tion preserves the placement constraints, (2) the appropriate
state is effectively migrated, and (3) migration is fast, correct,
and incurs low overhead.

Challenge 3: Brittle Virtualization Abstractions. Cen-
tral to a thriving iCF ecosystem is the ability to run multiple
functions on a single device. For example, a ToR switch run-
ning a NetCache iCF will need to additionally run an ECMP
NF to route and balance traffic.

Impact: Today, programmable data plane devices lack vir-
tualization primitives, i.e., they can support only one pro-
gram. Thus, there are no appropriate techniques for ensuring
isolation and resource management between the different
programs colocated on a device.

Requirement: The design of a virtualization and compo-
sition primitive for programmable data planes is a funda-
mentally distinct problem from the composition and virtu-
alization of OpenFlow rules [5, 30, 48] because PDP pro-
grams [8] include complex structures (i.e., control flow and
parser graphs) that must be appropriately virtualized. More-
over, both the PDP hardware and language constructs, e.g.,
Tofino and P4, provide insufficient primitives for building a
virtualization framework.

218

HotOS 19, May 13-15, 2019, Bertinoro, Italy

Challenge 4: Insufficient Diagnosis Abstractions. Data
center diagnosis and troubleshooting falls into two broad
classes. First, distributed tracing [14, 21, 44, 56] traces RPC
calls between functions to localize the offending compo-
nent(s). Second, cross-layer diagnosis [4, 23] aims to localize
the rootcause of a problem to either the network or end-host
after which more appropriate techniques can be used.

Impact: The introduction of in-network compute compli-
cates both directions: first, programmable devices do not
provide a rich enough abstraction to support traditional trac-
ing. Second, cross-layer diagnosis assumes a clear division
between the network and the end host; however, in-network
compute blurs this distinction.

Requirement: Fortunately, emerging programmable data
planes provide a primitive, network telemetry, for introspect-
ing on internal device state. We argue that a natural first step
is to extend existing distributed tracing to incorporate net-
work telemetry [11]. However, combining network teleme-
try with distributed tracing requires rethinking assumptions
and limitations about tracing. While network telemetry has
proved useful for tracking packet trajectories, distributed
tracing requires capturing additional information and main-
taining potentially complex and stateful data structures.

4 Design of Harmony

The insight behind Harmony is that the management chal-
lenges introduced by the in-network compute paradigm arise
for two reasons: (1) a silo between the compute and the net-
work resource managers (i.e., controller and orchestrator)
which prevents the exchange of information necessary for
coordination and orchestration of resources, and (2) a lack of
appropriate abstractions within the PDP ecosystem to sup-
port virtualization. To address these two broad challenges,
we present Harmony, a system that (1) introduces new mech-
anisms into the data plane for virtualizing the network (i.e.,
supporting isolation and providing QoS), and (2) provides
new abstractions that allow the controller to capture (or ex-
pose) policy information from the orchestrator to efficiently
manage and allocate resources.

Figure 1 presents an overview of Harmony. They key
mechanisms and abstractions provided by Harmony are in-
corporated in the following components (orange boxes in
Figure 1). First, a lightweight hardware virtualization layer,
PDPVisor, that enables efficient composition of multiple
PDP programs through source code merging and provides
provable isolation and safety through compiler optimiza-
tions; the PDPVisor also introduces a primitive for augment-
ing iCF to automatically generate distributed tracing data.
Second, a set of management interfaces: NWLeases, a push-
based interface, which allows the orchestrator to specify and
push placement requirements and configuration as an an-
notated graph; and NWCallBacks, a pull-based interface,
which allows the controller to inform the orchestrator of

HotOS ’19, May 13-15, 2019, Bertinoro, Italy

Theophilus A. Benson

[RNP

App

Appllcatlon

Challenge 1:
Fast, expressive network
topology abstractions

Orchestrator

—
- Tracing
Application Policy
Developer I—

[[NWLease | |NWUpCaIIs|

T

. > Network
Controller

Network
Operator

Challenge 2:
Life-cycle events |

| =

Managed
by DevOps

Challenge 3:
Virtualization

P4 Switch | |P4 Switch

Challenge 4:
Diagnosis

Managed
by NetOps

P4 Switch

P4 Switch

Figure 1. Harmony: high level vision.

network dynamics and allows the orchestrator to react ap-
propriately, e.g., perform state management and cleanup.

4.1 Bridging the Semantic Gap

Placement and configuration are two key pieces of infor-
mation required to ensure that iCFs function correctly and
appropriately accelerate applications. For configuration, we
anticipate that this can be expressed in a configuration file.

For placement information, there are two broad directions.
First, Harmony could expose network information to the
orchestrator to decide placement. Network information can
be exposed directly, e.g., as a graph of the physical topol-
ogy [39], or abstractly, e.g., via a query interface [2, 55].
This direction has a few drawbacks: it introduces scalability
challenges, raises potential privacy/security issues when the
network/compute are run by different organizations, and
complicates networking resource allocation because two
different entities are performing allocation/management of
the same network resources. Second, Harmony could ex-
pose application requirements [5, 6, 28] to the network for
the controller to perform placement. This direction central-
izes resource allocation logic and allows for more efficient
placement decisions, but requires a flexible and expressible
interface or a domain-specific language (DSL) to effectively
capture varied application requirements.

While more challenging, we opt for the latter direction
because it provides one entity, the controller, with global vis-
ibility and control over resource allocations. This enables the
controller to explore globally efficient placement decisions
that maximize use of network resources.

Existing interfaces [6, 28] for capturing application place-
ment requirements are ineffective because they are targetted
towards capturing placement information that impacts VM
performance relative to other VMs. We require interfaces
that allow us instead to capture VM/endhost performance rel-
ative to the choice of network PDP devices used for iCFs. For

219

example, abstractions in Oktopus [6] allow tenants to specify
placement constraints as bandwidth requirements, where as
existing iCFs, e.g., NetCache or SilkRoad, will require precise
control over placement (e.g., placement on a directly con-
nected ToR). Additionally, these abstractions do not enable
placement of a reducer relative to the location of specific
mappers. Extending these existing interfaces requires signif-
icant modifications to accept graph-based representations.

Crafting Expressive Abstractions: The orchestrator in-
forms the controller of placement information as a graph
that indicates the placement of iCFs relative to pre-allocated
VMs or server applications. The graph consists of two types
of nodes: iCF (indicated as circles in Figure 2) and servers (in-
dicated as boxes in Figure 2). The iCF nodes can be annotated
as ToR or non-ToR to indicate strict placement constraints,
e.g., in Figure 2 (b), the nodes are annotated with a T for ToR.
Edges in the graph capture relative placement constraints
and indicate routing constraints. For example, to specify
that a reducer’s placement is relative to the server(s) host-
ing mappers, the reducer node should have links directly to
the mapper nodes (in Figure 2 (c), the links represent con-
straints between two mappers (CF5 and CF6) and a reducer
iCF (iCF7)).

NWLeases: More formally, our abstraction, NWLeases,
captures the PDP program (source code), the placement con-
straints (as a graph), resource requirements (as configura-
tions), and the requested time length of the lease. The abstrac-
tion (Table 2) provides mechanisms to modify the NWLease,
renew it, or delete it. In designing our abstraction, we aim
to minimize the complexity of the controller. In particular,
we reduce the state and functionality at the controller by ex-
pressing resource allocation as leases, freeing the controller
from tracking application availability.

The orchestrator creates and modifies the NWLeases as the
deployed application is modified. Since many applications
can operate without their iCFs, a lease can be created at any

In-Network Compute: Considered Armed and Dangerous

Operation Returns Description

new NWLease() LeaselD creates a new lease
ConfigLease(LeaselD, Boolean augments the PDP program,
Program, placement parameters, or configuration of a lease
PlacementGraph, Config)

ReNewLease(LeaseID) Boolean Renews the NWLease
DeleteLease(LeaselD) Boolean Deprovisions the iCFs

and their associated paths

Table 2. NWLease APIL: supported calls.

point. Successful creation of the NWLease may reroute traffic
to utilize the newly placed iCFs. Additionally, modifications
to a NWLease may also lead to traffic rerouting if placement
decisions are modified.

Enforcing Placement and Configuration: Given the
above abstraction, the controller can solve a placement prob-
lem which tries to place different iCFs (and NFs) subject to
placement and resource configuration constraints from the
orchestrator, physical device constraints placed by the PDP
devices, and operator specified objectives. Formulating the
placement problem and providing practical solutions is out
of the scope of this work; however, we note that several direc-
tions [12, 19, 52, 66] are being made along these lines within
the context of NFV-placement — we believe such work can
be easily extended to our domain.

4.2 Optimizing for Network Changes

The NWLeases abstraction enables the controller to trans-
parently react to maintenance activities (e.g., upgrades) by
creating a new placement and reallocating iCFs. However,
reallocating iCFs can impact application performance. Next,
we discuss an interface that optimizes performance during
network dynamics by enabling the orchestrator to react to
these network events directly.

We argue that while initial provisioning and configuration
are amenable to a push-based interface, for real-time reaction
to network changes, a pull-based approach is required. The
controller pulls information from the orchestrator to enable
efficient reaction to network changes. We envision that dur-
ing network changes, the controller alerts the orchestrator
of the change, provides the orchestrator with an opportu-
nity to perform cleanup or bookkeeping activities, and pulls
information from the orchestrator to inform placement or
migration.

Our interface is inspired by container management primi-
tives, i.e., Kubernetes’ lifecycle hooks [63]. These “upcalls”
allow hypervisors to run pre-specified code in containers
during lifecycle events (e.g., container creation or deletion).
In our context, the orchestrator registers for events concern-
ing their iCFs. Given these registered handlers, the controller
makes appropriate upcalls. We envision that Harmony will

220

HotOS 19, May 13-15, 2019, Bertinoro, Italy

support events including migration (no state is lost but po-
tential performance penalties may be incurred during migra-
tion), reallocation (migration due to placement optimization),
and shutdown (an event that results in state loss).

NetOps

[switch | [switch] [Switch] [Switch]

[switch] [switch] [switch| [Switch |

Switch Switch
(b) NetCache (c) Daiet
(@) Physical Data Center Graph Graph

Figure 2. (a) Physical data center with NetCache (yellow) and
DAIET (green), (b) NWLeases for NetCache , and (c) NWLeases
for DAIET.

4.3 Composing In-Network Functionality

As discussed in Section 3, the PDP hardware and software
toolchain do not support running multiple P4 programs con-
currently, either on programmable switches or smart NICs.
Existing approaches [25, 65] to virtualize programmable data-
planes explore emulated virtualization; unfortunately, the
emulation introduces significant overheads (e.g., as high as
20X [67]). Furthermore, PDP devices do not include prim-
itives required to support more efficient virtualization ap-
proach, e.g., paravirtualization. Instead, we propose a non-
conventional approach: Lightweight virtualization through
source code merging where virtualization is achieved by
merging all the PDP programs into one, which retains the
functionality of the original PDP programs. Our source code
merging-based approach to virtualization introduces the fol-
lowing key challenges:

e First, we need to ensure that, when merged, the final pro-
gram retains the properties of each of the original NFs
and iCFs while simultaneously providing isolation and

PDPVisor Compiler

CeC+m

. merged
weights program Compile Time
Run Time
D]Im Switch ASIC

Queues

Figure 3. PDPVisor: overview.

HotOS ’19, May 13-15, 2019, Bertinoro, Italy

enforcing resource quotas. During compilation, PDP pro-
grams are represented as directed acyclic graphs (DAGs),
so we can view the merge as a DAG merging problem and
place appropriate constraints, e.g., the merged graph must
be a DAG, to ensure that the merged DAG ensures isola-
tion between the different functions on a PDP device. An-
other benefit of DAG-based representations is that we can
easily enforce resource allocation constraints on nodes
within the graph. Moreover, we recently showed that the
program merging problem is equivalent to the weighted
maximum independent set (WMIS) graph problem, which,
while NP-hard, can often be solved in polynomial time
with a greedy heuristic [67].

Second, at runtime, we need to enforce quality of service
guarantees, e.g., an iCF should be allocated 60% of a de-
vice’s processing cycles. Fortunately, the number cycles
required to process a packet can be determined apriori by
analyzing the merged PDP program. Thus, we can con-
trol the cycles allocated to each NF and iCF by allocating
queues and token buckets [57].

Third, updating the PDP program on a device introduces
several seconds of disruption because the device needs
to reboot to maintain state consistency [59] (similar to
OS updates). Thus, provisioning or de-provisioning NFs
and iCFs will introduce disruptions because the merged

program will need to be updated. An open challenge lies
in understanding how to perform headless updates to the
data plane without impacting availability.

Figure 3 presents an overview of PDPVisor. The main
component is the compiler, which takes as input N PDP
programs and creates as output one PDP program with as-
sociated queue weights. The use of the compiler enables
Harmony to analyze the programs, ensure isolation and al-
locate resources according to predefined resource sharing
constraints. Resource allocations for ASIC processing cycles
are enforced with queues and token buckets; allocations for
switch memory are enforced by limiting the number of table
entries allocated.

4.4 In-Network Tracing

Extending tracing [21, 44] into the network requires intro-
ducing primitives into the data plane to capture contextual
information (i.e., IDs, tags, and timings) and policies to de-
termine when to capture and report them. While this logic is
easy to implement on servers, limited programming models
make introducing primitives and policies to PDPs nontriv-
ial. Additionally, while emerging in-network telemetry tech-
niques [11, 26, 40] provide packet trajectories, i.e., the path
taken by a packet, these techniques do not include some of
the broader contextual information required for distributed
tracing. For example, although P4 makes it easy to capture in-
formation for a specific RPC request, understanding changes

221

Theophilus A. Benson

and evolution requires maintaining state within the switch,
a more challenging task.

Language model (i.e., P4) and programmable switch de-
sign (e.g., Tofino) introduce limitations on how state can be
stored (e.g., in array registers) and accessed (e.g., sequen-
tial and once-per-packet). Our main innovation is to design
stateful data structures that efficiently store contextual in-
formation required to effectively create distributed traces
while respecting hardware constraints. For example, design-
ing sketch-based algorithms for compactly sampling and
capturing per-application contexts.

5 Related Work

Existing work focuses largely on demonstrating the flex-
ibility of modern programmable dataplanes to support a
broader range of computation [17, 29, 31, 32, 36, 43, 53, 54]
or network functionality [24, 45, 47, 58], or on develop-
ing abstractions and algorithms to improve the function-
ality [9, 34, 50], flexibility [25, 65], efficiency [1], and man-
agement [18, 22, 42, 60, 64] of existing PDPs.

Our work differs from existing PDP management approaches
[18, 64], in that we aim to support integration of the network
control plane with the compute control plane. Existing man-
agement directions will benefit from the information that
our work exposes.

While our work is inspired by a rich body of work on
cloud management [2, 3, 6, 51] our work revisits these ques-
tions within the context of in-network compute and explores
the practical challenges introduced by programmable data
planes: limited resources and a significantly constrained lan-
guage model.

6 Conclusion

Designing a network management plane that explicitly em-
braces in-network computation introduces many interesting
challenges. In addition to the diagnosis, maintenance, and
management challenges discussed here, in-network compute
also complicates security and reliability. Our goal is to begin
the discussion on a subset of these management issues by
shedding light on a few key issues. As part of future work,
we will explore other directions including security and relia-
bility.

7 Acknowledgments

We thank the anonymous reviewers and our shepherd, Eddie
Kohler, for their helpful comments. This work was supported
by NSF award CNS-1749785.

References
[1] A. Abhashkumar,]. Lee, J. Tourrilhes, S. Banerjee, W. Wu, J.-M. Kang,
and A. Akella. P5: Policy-driven Optimization of P4 Pipeline. In
Proceedings of the Symposium on SDN Research, SOSR °17, pages 136~
142, New York, NY, USA, 2017. ACM.

In-Network Compute: Considered Armed and Dangerous

(2]

—_ —
[eINEN |
—

(10]

(11]
(12]
(13]

(14]

[15]

(18]

(19]

A. Agache, M. Ionescu, and C. Raiciu. CloudTalk: Enabling Distributed
Application Optimisations in Public Clouds. In Proceedings of the
Twelfth European Conference on Computer Systems, EuroSys *17, pages
605-619, New York, NY, USA, 2017. ACM.

N. Amit and M. Wei. The Design and Implementation of Hyperupcalls.
In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages
97-112, Boston, MA, 2018. USENIX Association.

B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred. Taking
the Blame Game out of Data Centers Operations with NetPoirot. In
Proceedings of the 2016 ACM SIGCOMM Conference, SSIGCOMM °16,
pages 440-453, New York, NY, USA, 2016. ACM.

A. AuYoung, Y. Ma, S. Banerjee, J. Lee, P. Sharma, Y. Turner, C. Liang,
and J. C. Mogul. Democratic Resolution of Resource Conflicts Between
SDN Control Programs. In Proceedings of the 10th ACM International
on Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’14, pages 391-402, New York, NY, USA, 2014. ACM.

H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards pre-
dictable datacenter networks. In Proceedings of the ACM SIGCOMM
2011 Conference, SSIGCOMM ’11, pages 242-253, New York, NY, USA,
2011. ACM.

Barefoot Networks. Barefoot Tofino, 2018.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al. P4: Pro-
gramming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review, 44(3):87-95, 2014.

P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, and M. Horowitz. Forwarding Metamorphosis: Fast Pro-
grammable Match-action Processing in Hardware for SDN. SIGCOMM
Comput. Commun. Rev., 43(4):99-110, Aug. 2013.

B. Burns and D. Oppenheimer. Design Patterns for Container-based
Distributed Systems. In 8th USENLX Workshop on Hot Topics in Cloud
Computing (HotCloud 16), Denver, CO, 2016. USENIX Association.

P. B. Changhoon Kim and E. Doe. In-band Network Telemetry (INT),
2016. [Online; accessed 14-July-2016].

M. Charikar, Y. Naamad, J. Rexford, and X. K. Zou. Multi-Commodity
Flow with In-Network Processing. CoRR, abs/1802.09118, 2018.

L. Chen, G. Chen, J. Lingys, and K. Chen. Programmable Switch as a
Parallel Computing Device. CoRR, abs/1803.01491, 2018.

M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch. The Mystery
Machine: End-to-end performance analysis of large-scale Internet
services. In Proceedings of the 11th symposium on Operating Systems
Design and Implementation, 2014.

M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta, B. Fahs, D. Ru-
binstein, E. C. Zermeno, E. Rubow, J. A. Docauer, J. Alpert, J. Ai, J. Ol-
son, K. DeCabooter, M. de Kruijf, N. Hua, N. Lewis, N. Kasinadhuni,
R. Crepaldi, S. Krishnan, S. Venkata, Y. Richter, U. Naik, and A. Vahdat.
Andromeda: Performance, Isolation, and Velocity at Scale in Cloud
Network Virtualization. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages 373-387, Renton,
WA, 2018. USENIX Association.

H. T. Dang, P. Bressana, H. Wang, K. S. Lee, M. Canini, N. Zilberman,
F. Pedone, and R. Soulé. P4xos: Consensus as a Network Service.
Technical Report 2018/01, University of Lugano, May 2018.

H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé. NetPaxos:
Consensus at Network Speed. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research, SOSR ’15, pages
5:1-5:7, New York, NY, USA, 2015. ACM.

H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford, R. Soulé,
and H. Weatherspoon. Whippersnapper: A P4 Language Benchmark
Suite. In Proceedings of the Symposium on SDN Research, SOSR ’17,
pages 95-101, New York, NY, USA, 2017. ACM.

G. Even, M. Rost, and S. Schmid. An Approximation Algorithm for
Path Computation and Function Placement in SDNs. In Proc. 23rd
International Colloquium on Structural Information and Communication

222

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

HotOS 19, May 13-15, 2019, Bertinoro, Italy

Complexity (SIROCCO), 2016.

D. Firestone. VFP: A virtual switch platform for host SDN in the public
cloud. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 315-328, Boston, MA, 2017. USENIX
Association.

R. Fonseca, G. Porter, R. H. Katz, and S. Shenker. X-Trace: A Pervasive
Network Tracing Framework. In 4th USENIX Symposium on Networked
Systems Design & Implementation (NSDI 07), Cambridge, MA, 2007.
USENIX Association.

L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, and
M. Barcellos. Uncovering Bugs in P4 Programs with Assertion-based
Verification. In Proceedings of the Symposium on SDN Research, SOSR
’18, pages 4:1-4:7, New York, NY, USA, 2018. ACM.

M. Ghasemi, T. Benson, and J. Rexford. Dapper: Data Plane Perfor-
mance Diagnosis of TCP. In Proceedings of the Symposium on SDN
Research, SOSR ’17, pages 61-74, New York, NY, USA, 2017. ACM.

H. Giesen, L. Shi, J. Sonchack, A. Chelluri, N. Prabhu, N. Sultana,
L. Kant, A. J. McAuley, A. Poylisher, A. DeHon, and B. T. Loo. In-
network Computing to the Rescue of Faulty Links. In Proceedings of
the 2018 Morning Workshop on In-Network Computing, NetCompute
’18, pages 1-6, New York, NY, USA, 2018. ACM.

D. Hancock and J. van der Merwe. HyPer4: Using P4 to Virtualize
the Programmable Data Plane. In Proceedings of the 12th International
on Conference on Emerging Networking EXperiments and Technologies,
CoNEXT ’16, pages 35-49, New York, NY, USA, 2016. ACM.

N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown.
I Know What Your Packet Did Last Hop: Using Packet Histories to
Troubleshoot Networks. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14), pages 71-85, Seattle,
WA, 2014. USENIX Association.

Z. Istvan, D. Sidler, G. Alonso, and M. Vukolic. Consensus in a Box:
Inexpensive Coordination in Hardware. In 13th USENLX Symposium
on Networked Systems Design and Implementation (NSDI 16), pages
425-438, Santa Clara, CA, 2016. USENIX Association.

V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
Bridging the Tenant-provider Gap in Cloud Services. In Proceedings
of the Third ACM Symposium on Cloud Computing, SoCC 12, pages
10:1-10:14, New York, NY, USA, 2012. ACM.

T. Jepsen, M. Moshref, A. Carzaniga, N. Foster, and R. Soulé. Life in the
Fast Lane: A Line-Rate Linear Road. In Proceedings of the Symposium
on SDN Research, SOSR °18, pages 10:1-10:7, New York, NY, USA, 2018.
ACM.

X. Jin, J. Gossels, J. Rexford, and D. Walker. CoVisor: A Compositional
Hypervisor for Software-defined Networks. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementation,
NSDI'15, pages 87-101, Berkeley, CA, USA, 2015. USENIX Association.
X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and L. Stoica.
NetChain: Scale-Free Sub-RTT Coordination. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18),
pages 35-49, Renton, WA, 2018. USENIX Association.

X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and L. Stoica.
NetCache: Balancing Key-Value Stores with Fast In-Network Caching.
In Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 121-136, New York, NY, USA, 2017. ACM.

S.Y. Ko, I. Hoque, B. Cho, and I. Gupta. On Availability of Intermediate
Data in Cloud Computations. In Proceedings of the 12th Conference on
Hot Topics in Operating Systems, HotOS 09, pages 6-6, Berkeley, CA,
USA, 2009. USENIX Association.

T. Kohler, R. Mayer, F. Diirr, M. Maaf}, S. Bhowmik, and K. Rothermel.
P4CEP: Towards In-Network Complex Event Processing. In Proceedings
of the 2018 Morning Workshop on In-Network Computing, NetCompute
’18, pages 33-38, New York, NY, USA, 2018. ACM.

T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
L. Ganichev, J. Gross, P. Ingram, E. Jackson, A. Lambeth, R. Lenglet,

HotOS ’19, May 13-15, 2019, Bertinoro, Italy

(36]

(37]

(38]

(39]

(40]

(41]

[42]

(43]

[44]

[45]

[46]

(47]

(48]

(49]

S.-H. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan, S. Shenker,
A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang.
Network Virtualization in Multi-tenant Datacenters. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14), pages 203-216, Seattle, WA, 2014. USENIX Association.

B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and
L. Zhang. KV-Direct: High-Performance In-Memory Key-Value Store
with Programmable NIC. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, pages 137-152, New York, NY,
USA, 2017. ACM.

J. Li, E. Michael, and D. R. K. Ports. Eris: Coordination-Free Consistent
Transactions Using In-Network Concurrency Control. In Proceedings
of the 26th Symposium on Operating Systems Principles, SOSP *17, pages
104-120, New York, NY, USA, 2017. ACM.

J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. K. Ports. Just Say
No to Paxos Overhead: Replacing Consensus with Network Ordering.
In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI'16, pages 467-483, Berkeley, CA,
USA, 2016. USENIX Association.

Y. Li, D. Wei, X. Chen, Z. Song, R. Wu, Y. Li, X. Jin, and W. Xu. Dumb-
Net: A Smart Data Center Network Fabric with Dumb Switches. In
Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18, pages
9:1-9:13, New York, NY, USA, 2018. ACM.

J. Liang, J. Bi, Y. Zhou, and C. Zhang. In-band Network Function
Telemetry. In Proceedings of the ACM SIGCOMM 2018 Conference on
Posters and Demos, SSIGCOMM ’18, pages 42-44, New York, NY, USA,
2018. ACM.

H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz.
zUpdate: Updating Data Center Networks with Zero Loss. SIGCOMM
Comput. Commun. Rev., 43(4):411-422, Aug. 2013.

J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H. Wang,
C. Cascaval, N. McKeown, and N. Foster. P4V: Practical Verification
for Programmable Data Planes. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, SSIGCOMM
’18, pages 490-503, New York, NY, USA, 2018. ACM.

M. Liu, L. Luo,]J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya. In-
cBricks: Toward In-Network Computation with an In-Network Cache.
In Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’17, pages 795-809, New York, NY, USA, 2017. ACM.

J. Mace and R. Fonseca. Universal context propagation for distributed
system instrumentation. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys 18, pages 8:1-8:18, New York, NY, USA, 2018.
ACM.

I. Martinez-Yelmo, J. Alvarez-Horcajo, M. Briso-Montiano, D. Lopez-
Pajares, and E. Rojas. ARP-P4: A Hybrid ARP-Path/P4Runtime Switch.
In 2018 IEEE 26th International Conference on Network Protocols (ICNP),
pages 438-439, Sep. 2018.

R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. SilkRoad: Making Stateful
Layer-4 Load Balancing Fast and Cheap Using Switching ASICs. In
Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, SSIGCOMM 17, pages 15-28, New York, NY, USA,
2017. ACM.

R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. SilkRoad: Making Stateful
Layer-4 Load Balancing Fast and Cheap Using Switching ASICs. In
Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, SSIGCOMM ’17, pages 15-28, New York, NY, USA,
2017. ACM.

C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker. Composing
Software Defined Networks. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages 1-13, Lombard,
IL, 2013. USENIX Association.

R. Ozdag. Intel® Ethernet Switch FM6000 Series-Software Defined
Networking. 2012.

223

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

Theophilus A. Benson

P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and
T. Anderson. Floem: A Programming System for NIC-accelerated
Network Applications. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, OSDI’18, pages 663—
679, Berkeley, CA, USA, 2018. USENIX Association.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, You, Get off
of My Cloud: Exploring Information Leakage in Third-party Compute
Clouds. In Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS *09, pages 199-212, New York, NY, USA,
2009. ACM.

G. Sallam, G. R. Gupta, B. Li, and B. Ji. Shortest Path and Maximum
Flow Problems Under Service Function Chaining Constraints. In IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications, pages
2132-2140, April 2018.

D. Sanvito, G. Siracusano, and R. Bifulco. Can the Network Be the
AI Accelerator? In Proceedings of the 2018 Morning Workshop on In-
Network Computing, NetCompute ’18, pages 20-25, New York, NY,
USA, 2018. ACM.

A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis. In-
Network Computation is a Dumb Idea Whose Time Has Come. In
Proceedings of the Sixteenth ACM Workshop on Hot Topics in Networks,
2017.

J. Seedorf and E. Burger. Application-Layer Traffic Optimization
(ALTO) Problem Statement. RFC 5693, Oct. 2009.

B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a large-scale distributed
systems tracing infrastructure. Google research, 2010.

A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown.
Programmable Packet Scheduling at Line Rate. In Proceedings of the
2016 ACM SIGCOMM Conference, SIGCOMM ’16, pages 44-57, New
York, NY, USA, 2016. ACM.

J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith. Turboflow: Infor-
mation Rich Flow Record Generation on Commodity Switches. In
Proceedings of the Thirteenth EuroSys Conference, EuroSys '18, pages
11:1-11:16, New York, NY, USA, 2018. ACM.

J. Sonchack, O. Michel, A.]J. Aviv, E. Keller, and J. M. Smith. Scal-
ing Hardware Accelerated Network Monitoring to Concurrent and
Dynamic Queries With *Flow. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18), pages 823-835, Boston, MA, 2018. USENIX
Association.

R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu.
Debugging P4 Programs with Vera. In Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on Data Communication,
SIGCOMM 18, pages 518-532, New York, NY, USA, 2018. ACM.

N. Sultana, S. Galea, D. Greaves, M. Wojcik, J. Shipton, R. Clegg, L. Mai,
P. Bressana, R. Soulé, R. Mortier, P. Costa, P. Pietzuch, J. Crowcroft,
A.W.Moore, and N. Zilberman. Emu: Rapid Prototyping of Networking
Services. In 2017 USENIX Annual Technical Conference (USENIX ATC
17), pages 459-471, Santa Clara, CA, 2017. USENIX Association.

P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang, and A. Arefin. A
Network-state Management Service. In Proceedings of the 2014 ACM
Conference on SIGCOMM, SIGCOMM 14, pages 563-574, New York,
NY, USA, 2014. ACM.

The Kubernetes Authors. Container Lifecycle Hooks, 2019.

H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster, and
H. Weatherspoon. P4FPGA: A Rapid Prototyping Framework for P4.
In Proceedings of the Symposium on SDN Research, SOSR ’17, pages
122-135, New York, NY, USA, 2017. ACM.

C.Zhang,]. Bi, Y. Zhou, A. B. Dogar, and J. Wu. HyperV: A High Perfor-
mance Hypervisor for Virtualization of the Programmable Data Plane.
In 2017 26th International Conference on Computer Communication and
Networks (ICCCN), pages 1-9, July 2017.

In-Network Compute: Considered Armed and Dangerous HotOS ’19, May 13-15, 2019, Bertinoro, Italy

[66] J. Zhang, A. Sinha, J. Llorca, A. M. Tulino, and E. Modiano. Opti- [67] P.Zheng, T. Benson, and C. Hu. P4Visor: Lightweight Virtualization
mal Control of Distributed Computing Networks with Mixed-Cast and Composition Primitives for Building and Testing Modular Pro-
Traffic Flows. IEEE INFOCOM 2018 - IEEE Conference on Computer grams. In Proceedings of the 14th International Conference on Emerging
Communications, pages 1880-1888, 2018. Networking EXperiments and Technologies, CONEXT ’18, pages 98-111,

New York, NY, USA, 2018. ACM.

224

	1-hotos19-final144
	1 Introduction
	2 The null-Kernel
	2.1 null-Kernel Capabilities
	2.2 null-Kernel Structures

	3 null-Kernel in Practice
	4 Related Work
	5 Conclusions
	6 Acknowledgements
	References

	2-hotos19-final120
	Abstract
	1 Introduction
	2 Unikernels
	3 Key Goals and Possible Approaches
	4 Unikernel Linux (UKL)
	4.1 Implementation Overview
	4.2 Build Process
	4.3 Early Challenges
	4.4 Initial Evaluation
	4.5 Required work

	5 Where We Are Going
	6 Concluding Remarks
	References

	3-hotos19-final72
	Abstract
	1 Introduction
	2 History: fork began as a hack
	3 Advantages of the fork API
	4 Fork in the modern era
	5 Implementing fork
	Fork in a research OS: the K42 experience

	6 Replacing fork
	7 Get the fork out of my OS!
	Acknowledgements
	References

	4-hotos19-final52
	Abstract
	1 Introduction
	2 Threat Scenario
	3 Timing-Channel Mechanisms
	3.1 Timing Lo progress
	3.2 Timing Hi events

	4 Closing the Leaks: Time Protection
	4.1 Spatially and temporally partitioning hardware
	4.2 Implementing time protection
	4.3 Preventing algorithmic channels

	5 Proving Time Protection
	5.1 Reasoning about hardware state
	5.2 Hardware formalisation
	5.3 Information-flow proofs
	5.4 TLB

	6 Conclusions
	7 Acknowledgments
	References

	5-hotos19-final153
	Abstract
	1 Introduction
	2 Related Work
	2.1 Verification of Distributed Systems
	2.2 Inductive Invariants

	3 Algorithm
	4 Evaluation
	4.1 Lock Server
	4.2 Leader Election
	4.3 Distributed lock protocol
	4.4 Comparison With Other Tools

	5 Discussion
	6 Conclusion
	References

	6-hotos19-final131
	Abstract
	1 Introduction
	2 Overview of RedLeaf
	3 Leveraging Rust for Verification
	4 Verification of the Core Kernel
	5 Conclusions
	Acknowledgments
	References

	7-hotos19-final119
	Abstract
	1 Introduction
	2 Motivating example
	3 Design
	3.1 Configuration database
	3.2 Policies
	3.3 Synthesizing optimization models
	3.4 Runtime
	3.5 Debugging

	4 Evaluation
	5 Conclusions
	References

	8-hotos19-final103
	1 Introduction
	2 Background and Motivation
	3 Designing Watchdogs for Software
	3.1 A Watchdog Abstraction
	3.2 What Makes for a Good Watchdog?
	3.3 How to Write Watchdog Checkers?

	4 Toward Generating Watchdogs
	4.1 Program Logic Reduction
	4.2 Preliminary Results

	5 Discussion
	5.1 Challenges
	5.2 Opportunities

	6 Related Work
	7 Conclusion
	References

	9-hotos19-final21
	Abstract
	1 Introduction
	2 Motivation
	3 Vision
	4 Design
	4.1 Components
	4.2 Tools
	4.3 Resource Management

	5 Preliminary Results
	6 Discussion
	7 Conclusion
	References

	10-hotos19-final121
	Abstract
	1 Introduction
	2 Background
	3 Overview
	3.1 Externalizable API
	3.2 Message Queue-based Interface
	3.3 Security Measures
	3.4 Enclaves for Secure I/O

	4 A Case Study
	5 Research Challenges & Discussions
	5.1 Peripheral Buses
	5.2 Secure Memory Access
	5.3 Economy of IDaaS

	6 Conclusions
	References

	11-hotos19-final14
	Abstract
	1 Introduction
	2 Kernel-Bypass Accelerators in the Datacenter
	3 Evolving the Datacenter OS for Kernel Bypass
	3.1 Optimize for User-Level I/O Processing
	3.2 Offer an Efficient I/O-Processing Abstraction
	3.3 Implement Differing OS Functionality

	4 The Demikernel
	4.1 Demikernel Architecture
	4.2 Demikernel I/O Queues
	4.3 Demikernel System Call Interface
	4.4 Event and Thread Scheduling
	4.5 Memory Management

	5 Future Work
	5.1 Library OS Design
	5.2 Network Protocols
	5.3 File Systems and Storage

	6 Related Work
	7 Conclusion
	References

	12-hotos19-final36
	Abstract
	1 Introduction
	2 Motivation: Many OS abstractions are problematic
	3 Solution
	4 Discussion
	5 Conclusion
	Acknowledgments
	References

	13-hotos19-final28
	Abstract
	1 Introduction
	2 Existing approaches
	3 The multiverse approach
	4 Making multiverse databases practical
	4.1 Specifying privacy policies
	4.2 Sharing state and computation
	4.3 Dynamic universe creation
	4.4 Consistency

	5 Proof of concept
	6 Discussion and research directions
	7 Conclusion

	14-hotos19-final37
	Abstract
	1 Introduction
	2 Background and related work
	3 Isolation on the CPU
	4 Isolation on the GPU
	5 Securing communication
	6 Securing future systems
	7 Conclusion
	References

	15-hotos19-final128
	Abstract
	1 Introduction
	2 Motivating Example
	3 System Overview
	3.1 Goals
	3.2 System Design
	3.3 Functional Units
	3.4 Security Architecture
	3.5 Management and Governance

	4 Applications
	4.1 Decentralized Lotteries
	4.2 E-Voting

	5 Related Work
	6 Discussion
	7 Conclusion
	References

	16-hotos19-final70
	Abstract
	1 Introduction
	2 Motivation
	2.1 Stateless and RInK Architecture
	2.2 Stateless and RInK Architecture Limitations
	2.3 State-of-the-art RInK Stores

	3 Eliminating RInK stores
	3.1 Stateful application servers
	3.2 Custom in-memory stores

	4 LInK store: Raising the Abstraction
	4.1 Auto-Sharder: Necessary but Insufficient
	4.2 LInK Store
	4.3 API and Architecture

	5 Open Problems and Opportunities
	5.1 Open Problems
	5.2 Opportunities

	6 Conclusion
	Acknowledgments
	References

	17-hotos19-final67
	Abstract
	1 Introduction
	2 Background
	3 What is a far memory data structure?
	3.1 Metrics for performance
	3.2 Requirements

	4 Hardware primitives
	4.1 Indirect addressing
	4.2 Scatter-gather
	4.3 Notifications

	5 Far memory data structures
	5.1 Simple data structures
	5.2 Maps
	5.3 Queues
	5.4 Refreshable vectors

	6 Case study: Monitoring
	7 Implementation scalability
	7.1 Indirect addressing in large far memories
	7.2 Notification scalability

	8 Related work
	9 Conclusion
	References

	18-hotos19-final26
	Abstract
	1 Introduction
	2 Current systems limitations
	3 Cache-coherent FPGAs (ccFPGAs)
	4 Project PBerry
	4.1 PBerry FPGA Module (PBF)
	4.2 PBerry kernel daemon (PBK)
	4.3 Emulating PBF (PBSim)

	5 Using PBerry for remote memory
	6 Other use cases
	7 Preliminary results
	8 Related work
	9 Conclusion
	References

	19-hotos19-final56
	Abstract
	1 Introduction
	1.1 A little more terminology

	2 Many flavors of SLOs
	3 What makes SLO definitions hard?
	4 Lessons from statistical thinking
	5 Are we barking up the wrong tree?
	5.1 Coping with customer behavior
	5.2 CBEs vs. burstable instances

	6 Open questions
	7 Putting it all together
	References

	20-hotos19-final112
	Abstract
	1 Introduction
	2 The case for synchrony
	2.1 Is asynchrony inherent?
	2.2 Why is asynchrony so common?
	2.3 What is so bad about asynchrony?

	3 How could it be done?
	3.1 Network layer
	3.2 Synchronized clocks
	3.3 Building blocks
	3.4 Node hardware
	3.5 Software
	3.6 Responding to faults
	3.7 Scheduling

	4 Related Work
	5 Conclusion
	References

	21-hotos19-final123
	Abstract
	1 Introduction
	2 Motivation: New Applications
	2.1 Real-Time Data-Intensive Processing
	2.2 Micro-Lambdas

	3 Challenges
	4 Granular Computing Infrastructure
	4.1 Services
	4.2 Addressing
	4.3 Group Communication
	4.4 Handling Bursts
	4.5 Persistence

	5 Conclusion
	Acknowledgments
	References

	22-hotos19-final89
	Abstract
	1 Introduction
	1.1 Motivations
	1.2 Contributions

	2 Methodology
	2.1 Incidents in our study
	2.2 Threats to validity

	3 What are the bugs?
	3.1 Data-format incidents
	3.2 Fault-related incidents
	3.3 Timing incidents
	3.4 Constant-value setting incidents
	3.5 Other software bugs

	4 How were they resolved?
	5 Past and Future
	6 Related work
	7 CONCLUSION
	Acknowledgments

	23-hotos19-final43
	Abstract
	1 Introduction
	2 Query Model
	2.1 Model Components
	2.2 High-Level Views

	3 Usage Scenarios
	3.1 Use-After-Free Detection
	3.2 Iterative Observations
	3.3 Correlating Observations

	4 Design
	4.1 Preprocessing
	4.2 Selection
	4.3 Generation
	4.4 Execution

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

	24-hotos19-final44
	Abstract
	1 Introduction
	2 Existing Errors
	2.1 Linux Error Handling
	2.2 Types of Errors

	3 Current Approaches
	4 Incremental Extensibility with Rust
	4.1 Challenges
	4.2 Proposed Solutions

	5 Discussion
	6 Conclusion
	References

	25-hotos19-final105
	Abstract
	1 Compiling for modern accelerators
	1.1 New ideas often require new primitives

	2 Compiling kernels is hard
	2.1 Compiling for accelerators
	2.2 The monolithic kernel approach
	2.3 Compiling custom kernels
	2.4 ML framework APIs are inflexible

	3 Compiling programs is harder
	3.1 Layout
	3.2 Numerical precision
	3.3 Interdependent global optimizations
	3.4 Manual vs automatic search strategies

	4 Evolving programming models
	4.1 Opaque operators hurt extensibility
	4.2 Opaque operators hurt modularity
	4.3 Ordered dimensions considered harmful

	5 A way forward
	References

	26-hotos19-final113
	Abstract
	1 Introduction
	2 Challenges
	2.1 Selecting a model-variant
	2.2 Heterogeneous hardware architectures
	2.3 Varying load and query patterns
	2.4 Start-up latency

	3 Towards managed and model-less inference serving
	4 Conclusion
	5 Acknowledgments
	References

	27-hotos19-final49
	Abstract
	1 Introduction
	2 Motivation
	2.1 SSD Models are Low Fidelity
	2.2 Black-Box Analysis is Error Prone

	3 Reverse Engineering SSDs
	3.1 Hardware Probes
	3.2 SSD Hacking

	4 Related Work
	5 Conclusions
	References

	28-hotos19-final88
	Abstract
	1 Introduction
	2 Storage Device Failures
	3 Honey, I Shrunk the SSD
	4 Capacity-Variant SSDs
	4.1 Over-Provisioning
	4.2 Redundancy
	4.3 SLC Mode Change
	4.4 Other Techniques
	4.5 Discussion

	5 Using Capacity-Variant SSDs
	5.1 File Systems
	5.2 RAID and LVM

	6 Conclusion and Agenda
	Acknowledgments
	References

	29-hotos19-final92
	Abstract
	1 Introduction
	2 Technology Background
	2.1 The Bottom Line

	3 Deployment Approaches
	4 Principles for In-Network Computation
	5 Classifying Potential Benefits
	6 Open Challenges
	7 Conclusion
	References

	30-hotos19-final83
	Abstract
	1 Introduction
	2 Background
	2.1 Managing Distributed Infrastructures
	2.2 Overview of NF

	3 Management Challenges
	4 Design of Harmony
	4.1 Bridging the Semantic Gap
	4.2 Optimizing for Network Changes
	4.3 Composing In-Network Functionality
	4.4 In-Network Tracing

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

