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ABSTRACT

Directed microbial evolution harnesses evolutionary processes in

the laboratory to construct microorganisms with enhanced or novel

functional traits. Directing evolutionary processes for applied goals

is fundamental to evolutionary computation, which harnesses the

principles of Darwinian evolution as a general purpose search en-

gine for solutions to computational problems. Despite overlapping

aims, artificial selection methods from evolutionary computing are

not commonly applied to living systems in the laboratory. Here, we

summarize recent work wherein we ask if parent selection algo-

rithms from evolutionary computation might be useful for directing

the evolution of microbial populations when selecting for multiple

functional traits. To do so, we developed an agent-based model of

directed microbial evolution, which we used to evaluate how well

three selection schemes from evolutionary computing (tournament

selection, lexicase selection, and non-dominated elite selection)

performed relative to schemes used in the laboratory (elite and top-

10% selection). We found that lexicase selection and non-dominated

elite selection generally outperformed the commonly used directed

evolution approaches. Our results are informing ongoing work to

transfer these techniques into the laboratory and motivate future

work testing more sophisticated selection schemes from evolution-

ary computation in a directed evolution context.
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1 INTRODUCTION

Directed evolution harnesses artificial selection in the laboratory

to generate biomolecules or organisms with desirable functional

traits [2, 22]. The scale and specificity of artificial selection has

been revolutionized by a deeper understanding of evolutionary and

molecular biology in combination with technological innovations

in sequencing, data processing, laboratory techniques, and cultur-

ing devices. These advances have cultivated growing interest in

directing the evolution of whole microbial communities with func-

tions that can be harnessed in medical, biotech, and agricultural

domains [22].

Of course, attempting to direct evolutionary processes for ap-

plied goals has not been limited to biological systems. Evolutionary

computing harnesses the principles of Darwinian evolution as a

general-purpose search algorithm. In this brief communication, we

overview recent work, łArtificial selection methods from evolution-

ary computing show promise for directed evolution of microbesž

([14]), wherein we use agent-based modeling to investigate the

whether parent selection algorithms developed for evolutionary

computing might be effective for directing the evolution of micro-

bial populations.

As in evolutionary computing, directed evolution in the labora-

tory begins with a libraryÐor populationÐof variants (e.g., com-

munities, genomes, or molecules). Variants are scored based on a

phenotypic trait (or set of traits) of interest, and the variants with

the łbestž traits are chosen to produce the next generation. Such

approaches to picking progenitors are known as elitist selection

algorithms in evolutionary computing [3]. Evolutionary computing

research has shown that these elitist approaches to artificial selec-

tion can be sub-optimal in complex search spaces. On their own,

elitist selection schemes fail to maintain diversity, which can lead

to premature convergence [12, 15], and they lack mechanisms to

balance multiple objectives. Artificial selection routines (i.e., parent

selection algorithms or selection schemes) are intensely studied in

evolutionary computing, and many in silico selection techniques

have been developed that improve the quality and diversity of

evolved solutions (e.g., [7, 8, 13, 16, 17, 21]).
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Given their success, we expect that artificial selection methods

developed for evolutionary computing will improve the efficacy

of directed microbial evolution in the laboratory, especially when

simultaneously selecting for more than one trait (a common goal in

evolutionary computation). However, directed microbial evolution

differs from evolutionary computing in ways that may inhibit our

ability to predict which techniques are most appropriate to apply

in the laboratory. For example, candidate solutions in evolutionary

computing are evaluated individually, resulting in high-resolution

genotypic and phenotypic information that can be used for select-

ing parents, which are then copied, recombined, and mutated to

produce offspring. In directed microbial evolution, individual-level

evaluation is often intractable at the scale required for directed

evolution; as such, evaluation often occurs at the population-level,

and the highest performing populations are partitioned (instead of

copied) to create łoffspringž populations. Moreover, when traits of

interest do not benefit individuals’ reproductive success, population-

level artificial selection may work against individual-level selection,

which increases the difficulty of steering evolution. Additionally,

conducting directed evolution experiments in the laboratory can

be slow and labor intensive, making it difficult to evaluate and tune

new approaches to artificial selection in vitro. To address these

issues, we developed an agent-based model of directed evolution

of microbes for evaluating which techniques from evolutionary

computing might be most applicable in the laboratory.

In [14], we ask if artificial selection schemes developed for evo-

lutionary computing might be useful for directing the evolution of

microbial populations when selecting for multiple traits of interest:

both for enhancing multiple traits in a single microbial strain and

for producing a set diverse strains that specialize on different traits.

To do so, we use our agent-based model of laboratory directed evo-

lution wherein we evolve populations of self-replicating computer

programs (łdigital microbesž) that perform computation that con-

tributes either to the phenotype of the individual or the phenotype

of the population. We evaluated how well three selection mech-

anisms from evolutionary computing (tournament, lexicase, and

non-dominated elite selection) performed in a setting that mimics

directed evolution on functions measurable at the population-level.

Overall, we found that lexicase selection and non-dominated elite

selection generally outperformed the selection schemes commonly

applied to directed microbial evolution (elite and top-10% selec-

tion). In particular, our findings suggest that lexicase selection is a

good candidate technique to transfer into the laboratory, especially

when aiming to evolve a diverse set of specialist microbial popu-

lations. We also found that a selection scheme’s performance in a

conventional evolutionary computing context does not necessarily

predict its performance in our model of laboratory directed micro-

bial evolution, which indicates the value of more directly modeling

laboratory setups for predicting which techniques will be effective.

2 RELATEDWORK

For brevity, we limit this discussion of related work to relevant bio-

logical applications of evolutionary computing techniques. See [14,

22, 24] for an overview of current methods of directed evolution in

the laboratory.

To the best of our knowledge, sophisticated methods of choos-

ing progenitors from evolutionary computing have not been ap-

plied to directed microbial evolution. However, artificial selec-

tion techniques from evolutionary computing have been applied

in a range of other biological applications. For example, multi-

objective evolutionary algorithms have been applied to DNA se-

quence design [4, 20]; however, these applications are treated as

computational optimization problems. A range of selection schemes

from evolutionary computing have also been proposed for both

biomolecule engineering [5, 9] and agricultural selective breeding,

especially for scenarios where genetic data can be exploited [19].

For example, using an NK landscape model, O’Hagan et al. evalu-

ated the potential of elite selection, tournament selection, fitness

sharing, and two rule-based learning selection schemes for selective

breeding applications [18]. Inspired by genetic algorithms, island

model approaches [23] have been proposed for improving plant

and animal breeding programs [19, 25], and Akdemir et al. applied

multi-objective selection algorithms like non-dominated selection

to plant and animal breeding [1]. In each of these applications,

however, artificial selection acted at the level of individuals (e.g.,

individual genetic sequences). Therefore, our work focuses on ap-

plying artificial selection at the population-level in order to test the

applicability of evolutionary computing selection algorithms for

directed microbial evolution.

3 MODEL OVERVIEW

Here, we provide an abbreviated overview of our model of labora-

tory directed evolution; a more detailed description can be found

in [14]. Our model contains a population of populations (i.e., a

łmetapopulationž). We initialize each population with a digital or-

ganism capable only of self-replication. After initialization, directed

evolution proceeds in cycles. During a cycle, we allow each pop-

ulation to evolve for a łmaturation periodž that comprises a fixed

number of time steps. After the maturation period, we then evaluate

each population’s performance on a set of objectives, and we select

performant populations as łparentalž populations. To create an łoff-

springž population, we use a random sample of digital organisms

from the chosen parental population; in this work, we used 1% of

the maximum population size.

Digital organisms are self-replicating computer programs that re-

produce asexually by copying their genome instruction-by-instruc-

tion and then dividing. In addition to self-replicating, digital organ-

isms can perform functions by acquiring inputs from the environ-

ment, performing computations on those inputs, and producing

outputs. In this work, a population was evaluated based on the

number of designated functions (18 possible) that digital organ-

isms performed during the population’s maturation period, just as

we might screen for the production of different biomolecules in a

laboratory population.

4 LEXICASE AND NON-DOMINATED ELITE

SELECTION SHOW PROMISE FOR

DIRECTED EVOLUTION

Using our model of laboratory directed evolution, we investigated if

selection schemes from evolutionary computing might be useful for
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directed evolution of microbes. Specifically, we compared two selec-

tion schemes used in directed evolution (elite and top-10% selection)

with three other methods used in evolutionary computing (tourna-

ment, lexicase, and non-dominated elite selection). Additionally, we

ran two controls that ignored population-level performance: ran-

dom and no selection. We describe each of these artificial selection

methods in [14].

For each selection scheme, we ran 50 independent replicates

of our model of directed evolution for 2,000 cycles of population

maturation, evaluation, and propagation. Within each replicate, the

metapopulation comprised 96 populations (following the number

of samples held by a standard microtiter plate used in laboratory ex-

periments), each with a maximum carrying capacity of 1,000 digital

organisms. After 2,000 cycles of directed evolution, we measured

the task profiles of each population in the metapopulation. A popu-

lation’s task profile is the set of functions that individuals within

that population are capable of performing during a maturation pe-

riod. We define a metapopulation’s task profile as the union of all

population task profiles within the given metapopulation. We mea-

sured directed evolution success in two ways: łbest-population task

coveragež and łmetapopulation task coveragež. Best-population

task coverage is the size of the largest population task profile in

the metapopulation, and metapopulation task coverage is the size

of the metapopulation’s task profile.

Figures 1a and 1b show the best-population and metapopula-

tion task coverages, respectively. All selection schemes resulted in

greater single-population task coverage than both random and no

selection controls (Bonferroni-corrected Wilcoxon rank-sum test,

𝑝 < 10
-4). Metapopulation coverage under tournament selection

was not significantly different than coverage under the no selection

control, but all other selection schemes resulted in significantly

better metapopulation coverage than both controls (Bonferroni-

corrected Wilcoxon rank-sum, 𝑝 < 0.03). Overall, lexicase and

non-dominated elite selection scored the greatest population and

metapopulation task coverage out of all selection schemes, and

lexicase was the overall best selection scheme according to both

metrics of performance.

While differences were significant on the best-population task

coverage, they were not necessarily substantial. However, other

measures had more substantial differences. Both multi-objective

selection schemesÐlexicase and non-dominated eliteÐhad the great-

est metapopulation task coverage (Figure 1b), and the greatest di-

versity of task profiles in the final metapopulations (Figure 1c;

Bonferroni-corrected Wilcoxon rank-sum test, 𝑝 < 10
-4). Lexicase

selection in particular also had the greatest task profile spread (Fig-

ure 1d; Bonferroni-corrected Wilcoxon rank-sum test, 𝑝 < 10
-4),

which is a measure of how distinct task profiles are. Lexicase’s abil-

ity to produce diverse metapopulations are consistent with previous

results demonstrating that lexicase excels at maintaining diverse

specialists [6, 10ś12].

We hypothesized that lexicase and non-dominated elite selec-

tion’s mechanisms for selecting different types of parental popula-

tions underpinned their improved performance over elite, top-10%,

and tournament selection. This, however, is confounded by each

selection scheme’s varying capacity to select a greater number of

different populations (regardless of differences in those selected).

As such, we asked whether lexicase and non-dominated elite’s suc-

cess could be explained by a capacity to select a greater number of

different parental populations. Elite selection selected exactly one

population per cycle, top-10% selected 10, lexicase selected an aver-

age of 12, tournament selected an average of 50, and non-dominated

elite selected an average of 83 different populations. Thus, we can

rule out the number of populations selected per cycle as the sole

explanation for lexicase selection’s success; we argue that this, in

combination with our diversity data, suggests that directed evolu-

tion practitioners should consider incorporating mechanisms for

selecting phenotypically diverse parental populations into their

artificial selection approaches.

These results are also informative when compared to our ge-

netic programming control experiment (reported in [14]). While

results across these contexts are not directly comparable, we argue

that, taken together, our experiments suggest that steering evolu-

tion at the population-level is more challenging than steering at

the individual-level. For example, across all treatments, no single

population in our model of directed evolution performed all 18

population-level functions. Yet, after a similar number of organism-

level generations (∼55, 000), both elite and lexicase selection pro-

duced programs capable of all functions in a genetic programming

context; even after only 2,000 generations (the number of rounds of

artificial selection in our directed evolution experiments), we found

that conventional genetic programming produced more performant

programs than those evolved under our model of laboratory di-

rected evolution (see [14]). We also observed differences in the

rank order of selection schemes between experiments. For exam-

ple, non-dominated elite selection performed poorly in a genetic

programming context relative to the other non-control selection

schemes; however, non-dominated elite outperformed all selection

schemes except lexicase selection in our model of laboratory di-

rected evolution. On its own, non-dominated elite’s difference in

performance is not surprising, as it is not conventionally used for

evolving computer programs where evaluation criteria are eval-

uated on a pass-fail basis. More broadly, however, we argue that

this result highlights modeling as an important intermediate step

when evaluating which techniques from evolutionary computing

are likely to be effective in a laboratory setting.

5 CONCLUSION

We see digital experiments like those reported here as a critical step

for transferring techniques developed for evolutionary computing

into the laboratory. Indeed, our results are currently informing the

design of laboratory experiments that apply evolutionary comput-

ing techniques to the directed evolution of E. coli. Our model of

directed microbial evolution provides a testbed for rigorously evalu-

ating different artificial selection methods with different laboratory

setups (e.g., metapopulation size, maturation period, etc.) before

embarking on costly or timing consuming laboratory experiments.
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