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ABSTRACT

Directed microbial evolution harnesses evolutionary processes in
the laboratory to construct microorganisms with enhanced or novel
functional traits. Directing evolutionary processes for applied goals
is fundamental to evolutionary computation, which harnesses the
principles of Darwinian evolution as a general purpose search en-
gine for solutions to computational problems. Despite overlapping
aims, artificial selection methods from evolutionary computing are
not commonly applied to living systems in the laboratory. Here, we
summarize recent work wherein we ask if parent selection algo-
rithms from evolutionary computation might be useful for directing
the evolution of microbial populations when selecting for multiple
functional traits. To do so, we developed an agent-based model of
directed microbial evolution, which we used to evaluate how well
three selection schemes from evolutionary computing (tournament
selection, lexicase selection, and non-dominated elite selection)
performed relative to schemes used in the laboratory (elite and top-
10% selection). We found that lexicase selection and non-dominated
elite selection generally outperformed the commonly used directed
evolution approaches. Our results are informing ongoing work to
transfer these techniques into the laboratory and motivate future
work testing more sophisticated selection schemes from evolution-
ary computation in a directed evolution context.
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1 INTRODUCTION

Directed evolution harnesses artificial selection in the laboratory
to generate biomolecules or organisms with desirable functional
traits [2, 22]. The scale and specificity of artificial selection has
been revolutionized by a deeper understanding of evolutionary and
molecular biology in combination with technological innovations
in sequencing, data processing, laboratory techniques, and cultur-
ing devices. These advances have cultivated growing interest in
directing the evolution of whole microbial communities with func-
tions that can be harnessed in medical, biotech, and agricultural
domains [22].

Of course, attempting to direct evolutionary processes for ap-
plied goals has not been limited to biological systems. Evolutionary
computing harnesses the principles of Darwinian evolution as a
general-purpose search algorithm. In this brief communication, we
overview recent work, “Artificial selection methods from evolution-
ary computing show promise for directed evolution of microbes”
([14]), wherein we use agent-based modeling to investigate the
whether parent selection algorithms developed for evolutionary
computing might be effective for directing the evolution of micro-
bial populations.

As in evolutionary computing, directed evolution in the labora-
tory begins with a library—or population—of variants (e.g., com-
munities, genomes, or molecules). Variants are scored based on a
phenotypic trait (or set of traits) of interest, and the variants with
the “best” traits are chosen to produce the next generation. Such
approaches to picking progenitors are known as elitist selection
algorithms in evolutionary computing [3]. Evolutionary computing
research has shown that these elitist approaches to artificial selec-
tion can be sub-optimal in complex search spaces. On their own,
elitist selection schemes fail to maintain diversity, which can lead
to premature convergence [12, 15], and they lack mechanisms to
balance multiple objectives. Artificial selection routines (i.e., parent
selection algorithms or selection schemes) are intensely studied in
evolutionary computing, and many in silico selection techniques
have been developed that improve the quality and diversity of
evolved solutions (e.g., [7, 8, 13, 16, 17, 21]).
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Given their success, we expect that artificial selection methods
developed for evolutionary computing will improve the efficacy
of directed microbial evolution in the laboratory, especially when
simultaneously selecting for more than one trait (a common goal in
evolutionary computation). However, directed microbial evolution
differs from evolutionary computing in ways that may inhibit our
ability to predict which techniques are most appropriate to apply
in the laboratory. For example, candidate solutions in evolutionary
computing are evaluated individually, resulting in high-resolution
genotypic and phenotypic information that can be used for select-
ing parents, which are then copied, recombined, and mutated to
produce offspring. In directed microbial evolution, individual-level
evaluation is often intractable at the scale required for directed
evolution; as such, evaluation often occurs at the population-level,
and the highest performing populations are partitioned (instead of
copied) to create “offspring” populations. Moreover, when traits of
interest do not benefit individuals’ reproductive success, population-
level artificial selection may work against individual-level selection,
which increases the difficulty of steering evolution. Additionally,
conducting directed evolution experiments in the laboratory can
be slow and labor intensive, making it difficult to evaluate and tune
new approaches to artificial selection in vitro. To address these
issues, we developed an agent-based model of directed evolution
of microbes for evaluating which techniques from evolutionary
computing might be most applicable in the laboratory.

In [14], we ask if artificial selection schemes developed for evo-
lutionary computing might be useful for directing the evolution of
microbial populations when selecting for multiple traits of interest:
both for enhancing multiple traits in a single microbial strain and
for producing a set diverse strains that specialize on different traits.
To do so, we use our agent-based model of laboratory directed evo-
lution wherein we evolve populations of self-replicating computer
programs (“digital microbes”) that perform computation that con-
tributes either to the phenotype of the individual or the phenotype
of the population. We evaluated how well three selection mech-
anisms from evolutionary computing (tournament, lexicase, and
non-dominated elite selection) performed in a setting that mimics
directed evolution on functions measurable at the population-level.
Overall, we found that lexicase selection and non-dominated elite
selection generally outperformed the selection schemes commonly
applied to directed microbial evolution (elite and top-10% selec-
tion). In particular, our findings suggest that lexicase selection is a
good candidate technique to transfer into the laboratory, especially
when aiming to evolve a diverse set of specialist microbial popu-
lations. We also found that a selection scheme’s performance in a
conventional evolutionary computing context does not necessarily
predict its performance in our model of laboratory directed micro-
bial evolution, which indicates the value of more directly modeling
laboratory setups for predicting which techniques will be effective.

2 RELATED WORK

For brevity, we limit this discussion of related work to relevant bio-
logical applications of evolutionary computing techniques. See [14,
22, 24] for an overview of current methods of directed evolution in
the laboratory.
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To the best of our knowledge, sophisticated methods of choos-
ing progenitors from evolutionary computing have not been ap-
plied to directed microbial evolution. However, artificial selec-
tion techniques from evolutionary computing have been applied
in a range of other biological applications. For example, multi-
objective evolutionary algorithms have been applied to DNA se-
quence design [4, 20]; however, these applications are treated as
computational optimization problems. A range of selection schemes
from evolutionary computing have also been proposed for both
biomolecule engineering [5, 9] and agricultural selective breeding,
especially for scenarios where genetic data can be exploited [19].
For example, using an NK landscape model, O’'Hagan et al. evalu-
ated the potential of elite selection, tournament selection, fitness
sharing, and two rule-based learning selection schemes for selective
breeding applications [18]. Inspired by genetic algorithms, island
model approaches [23] have been proposed for improving plant
and animal breeding programs [19, 25], and Akdemir et al. applied
multi-objective selection algorithms like non-dominated selection
to plant and animal breeding [1]. In each of these applications,
however, artificial selection acted at the level of individuals (e.g.,
individual genetic sequences). Therefore, our work focuses on ap-
plying artificial selection at the population-level in order to test the
applicability of evolutionary computing selection algorithms for
directed microbial evolution.

3 MODEL OVERVIEW

Here, we provide an abbreviated overview of our model of labora-
tory directed evolution; a more detailed description can be found
in [14]. Our model contains a population of populations (i.e., a
“metapopulation”). We initialize each population with a digital or-
ganism capable only of self-replication. After initialization, directed
evolution proceeds in cycles. During a cycle, we allow each pop-
ulation to evolve for a “maturation period” that comprises a fixed
number of time steps. After the maturation period, we then evaluate
each population’s performance on a set of objectives, and we select
performant populations as “parental” populations. To create an “off-
spring” population, we use a random sample of digital organisms
from the chosen parental population; in this work, we used 1% of
the maximum population size.

Digital organisms are self-replicating computer programs that re-
produce asexually by copying their genome instruction-by-instruc-
tion and then dividing. In addition to self-replicating, digital organ-
isms can perform functions by acquiring inputs from the environ-
ment, performing computations on those inputs, and producing
outputs. In this work, a population was evaluated based on the
number of designated functions (18 possible) that digital organ-
isms performed during the population’s maturation period, just as
we might screen for the production of different biomolecules in a
laboratory population.

4 LEXICASE AND NON-DOMINATED ELITE
SELECTION SHOW PROMISE FOR
DIRECTED EVOLUTION

Using our model of laboratory directed evolution, we investigated if
selection schemes from evolutionary computing might be useful for
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directed evolution of microbes. Specifically, we compared two selec-
tion schemes used in directed evolution (elite and top-10% selection)
with three other methods used in evolutionary computing (tourna-
ment, lexicase, and non-dominated elite selection). Additionally, we
ran two controls that ignored population-level performance: ran-
dom and no selection. We describe each of these artificial selection
methods in [14].

For each selection scheme, we ran 50 independent replicates
of our model of directed evolution for 2,000 cycles of population
maturation, evaluation, and propagation. Within each replicate, the
metapopulation comprised 96 populations (following the number
of samples held by a standard microtiter plate used in laboratory ex-
periments), each with a maximum carrying capacity of 1,000 digital
organisms. After 2,000 cycles of directed evolution, we measured
the task profiles of each population in the metapopulation. A popu-
lation’s task profile is the set of functions that individuals within
that population are capable of performing during a maturation pe-
riod. We define a metapopulation’s task profile as the union of all
population task profiles within the given metapopulation. We mea-
sured directed evolution success in two ways: “best-population task
coverage” and “metapopulation task coverage”. Best-population
task coverage is the size of the largest population task profile in
the metapopulation, and metapopulation task coverage is the size
of the metapopulation’s task profile.

Figures 1a and 1b show the best-population and metapopula-
tion task coverages, respectively. All selection schemes resulted in
greater single-population task coverage than both random and no
selection controls (Bonferroni-corrected Wilcoxon rank-sum test,
p < 10™%). Metapopulation coverage under tournament selection
was not significantly different than coverage under the no selection
control, but all other selection schemes resulted in significantly
better metapopulation coverage than both controls (Bonferroni-
corrected Wilcoxon rank-sum, p < 0.03). Overall, lexicase and
non-dominated elite selection scored the greatest population and
metapopulation task coverage out of all selection schemes, and
lexicase was the overall best selection scheme according to both
metrics of performance.

While differences were significant on the best-population task
coverage, they were not necessarily substantial. However, other
measures had more substantial differences. Both multi-objective
selection schemes—lexicase and non-dominated elite—had the great-
est metapopulation task coverage (Figure 1b), and the greatest di-
versity of task profiles in the final metapopulations (Figure 1c;
Bonferroni-corrected Wilcoxon rank-sum test, p < 10™%). Lexicase
selection in particular also had the greatest task profile spread (Fig-
ure 1d; Bonferroni-corrected Wilcoxon rank-sum test, p < 10'4),
which is a measure of how distinct task profiles are. Lexicase’s abil-
ity to produce diverse metapopulations are consistent with previous
results demonstrating that lexicase excels at maintaining diverse
specialists [6, 10-12].

We hypothesized that lexicase and non-dominated elite selec-
tion’s mechanisms for selecting different types of parental popula-
tions underpinned their improved performance over elite, top-10%,
and tournament selection. This, however, is confounded by each
selection scheme’s varying capacity to select a greater number of
different populations (regardless of differences in those selected).
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As such, we asked whether lexicase and non-dominated elite’s suc-
cess could be explained by a capacity to select a greater number of
different parental populations. Elite selection selected exactly one
population per cycle, top-10% selected 10, lexicase selected an aver-
age of 12, tournament selected an average of 50, and non-dominated
elite selected an average of 83 different populations. Thus, we can
rule out the number of populations selected per cycle as the sole
explanation for lexicase selection’s success; we argue that this, in
combination with our diversity data, suggests that directed evolu-
tion practitioners should consider incorporating mechanisms for
selecting phenotypically diverse parental populations into their
artificial selection approaches.

These results are also informative when compared to our ge-
netic programming control experiment (reported in [14]). While
results across these contexts are not directly comparable, we argue
that, taken together, our experiments suggest that steering evolu-
tion at the population-level is more challenging than steering at
the individual-level. For example, across all treatments, no single
population in our model of directed evolution performed all 18
population-level functions. Yet, after a similar number of organism-
level generations (~55, 000), both elite and lexicase selection pro-
duced programs capable of all functions in a genetic programming
context; even after only 2,000 generations (the number of rounds of
artificial selection in our directed evolution experiments), we found
that conventional genetic programming produced more performant
programs than those evolved under our model of laboratory di-
rected evolution (see [14]). We also observed differences in the
rank order of selection schemes between experiments. For exam-
ple, non-dominated elite selection performed poorly in a genetic
programming context relative to the other non-control selection
schemes; however, non-dominated elite outperformed all selection
schemes except lexicase selection in our model of laboratory di-
rected evolution. On its own, non-dominated elite’s difference in
performance is not surprising, as it is not conventionally used for
evolving computer programs where evaluation criteria are eval-
uated on a pass-fail basis. More broadly, however, we argue that
this result highlights modeling as an important intermediate step
when evaluating which techniques from evolutionary computing
are likely to be effective in a laboratory setting.

5 CONCLUSION

We see digital experiments like those reported here as a critical step
for transferring techniques developed for evolutionary computing
into the laboratory. Indeed, our results are currently informing the
design of laboratory experiments that apply evolutionary comput-
ing techniques to the directed evolution of E. coli. Our model of
directed microbial evolution provides a testbed for rigorously evalu-
ating different artificial selection methods with different laboratory
setups (e.g., metapopulation size, maturation period, etc.) before
embarking on costly or timing consuming laboratory experiments.
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