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Abstract

The addition of parasites to a host population can drive an
escalation in the host population’s phenotypic complexity —
even in the absence of a direct fitness advantage for this
increase. Parasites restrict certain regions of the genotype
space, decreasing the fitness and the probability of survival of
particular host phenotypes. While many artificial life frame-
works model a direct correlation between genotype and fit-
ness, the structure of genotype-phenotype maps can have im-
portant effects on evolutionary dynamics. Using a simple
coarse-grained model for phenotypic transitions during evo-
lution, we show that the escalation in phenotypic complexity
under neutral co-evolution is dependent on the structure of the
genotype-phenotype map. We discuss these results using the
metaphor of evolutionary spandrels and highlight how these
structural considerations might allow us to capture biological
phenomena more accurately.

Introduction

Extant life on earth uses a common method of information
storage and transfer — the sequence of DNA bases compris-
ing the genome. This information is converted into media-
tors of chemical and physical interactions in the cell — pro-
teins and RNAs — which in turn determine the phenotype
of an organism embedded within a particular environment.
A primary goal of artificial life is to recreate processes that
mimic living systems. At the same time, predicting the out-
come of such processes in biological systems, but using arti-
ficial life frameworks, has been a fruitful endeavor (Goldsby
et al., 2014; Nelson and Sanford, 2011; Wilke et al., 2001).
Many digital frameworks model genetic information at a
level where it is directly involved in phenotype determina-
tion. However, in a cell for example, the phenotype is an
emergent property of many interacting processes at multi-
ple scales. How structural properties of genotype-phenotype
(GP) maps affect the processes and outcomes of evolution
deserves much more attention. In this work, we will investi-
gate how architectural features of the GP-map influences the
coevolution of complexity using a simple theoretical model.

Specifically, in neutral environments where all pheno-
types are equally fit, we find that a population of organisms
will distribute evenly over the genotype space. Phenotypes

encoded by a larger number of genotypes will be more likely
to appear solely due to the unbiased nature of the mutation
process. Addition of a coevolving parasite population, how-
ever, throws this equilibrated host population into disarray.
The host population must now switch between phenotypes
to escape infection and therefore survive. Indeed, these co-
evolutionary dynamics have been harnessed to improve evo-
lutionary algorithms many times (Hillis, 1990; Floreano and
Nolfi, 1997; Miikkulainen and Stanley, 2004; Wagner et al.,
2020; Watson and Pollack, 2001). Envisioning this “arms
race” over a limited number of states, we hypothesize and
show that the structure of the mapping between genotypes
and phenotypes plays an important role in the coevolution-
ary escalation in complexity (and diversity) and, therefore,
might be the ultimate evolutionary spandrel.

Model
Coarse-graining the genotype network

Consider a genotype space consisting of bit-strings of length
L. This space consists of a total of 2* sequences which
can be divided into different phenotypes depending on how
the chemistry in the system allows this information to be
decoded into physical traits (phenotypes) of the organism.
This process, which we will hereby refer to as partitioning
of the genotype space, can be performed in different ways.
On top of this set-like structure of the partitioned genotype
space, there is a secondary network-like structure that arises
out of mutational proximity between the genotypes. Con-
necting these partitioned genotypes through single-mutation
edges constructs the partitioned genotype network (Figure
1). The mutation process is, in general, unbiased across
the entire space and the probability of traversing a particular
path through the network in a single generation can be given
in terms of the per-site mutation rate (m) and the mutational
distance ([) between any two given genotypes.

Pgj—g: = (1- m)Lil(gj)gi)ml(gj’gi) (1

Using the values obtained from the above equation, we
can form a genotype-transition matrix (G) consisting of
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Figure 1: Partitioning of 3-bit genotypes into phenotypes and the network structure of the genotype space. Considering all
binary strings (bit-strings) of a particular length L (here, L=3), we identify the space of all genotypes (left). Next, we partition
these genotypes into phenotypes (here, Np=3) depicted as different colors (center). Finally, we connect bit-strings accessible
by a single mutation with an edge to construct the complete partitioned genotype network (right).

transition probabilities between genotypes through muta-
tion.

G';; =probability of transition from genotype g; to g;

in a generation

This matrix quantifiably captures the network-like struc-
ture of the genotype space. The partitioning into pheno-
types can be described by a separate matrix, the partitioning-
scheme matrix (.5, as follows.

1
Sij =
-4

Assuming that the mutation and selection processes do
not discriminate between genotypes under the same pheno-
type and that all genotype transitions are equally probable,
we can coarse-grain the genotype transition matrix into a
phenotype-transition matrix (P).

, if genotype g; belongs to phenotype % @)

, otherwise

P =SGS” &)
Where S7 is the transpose of the partitioning-scheme matrix
and the matrix P is normalized column-wise. Each term of
the matrix P approximates the probability of transition from
one phenotype to another in a single generation. While us-
ing genotype transitions is not feasible due to the sheer size
of the genotype space for non-trivial values of L, calcula-
tion of the phenotype-transition matrix makes computational
simulation of host and parasite populations under these phe-
notypes possible. We have verified that the coarse-grained
version gives similar results as the fine-grained genotype-
by-genotype model under the same conditions.

Phenotypic Complexity

Next, we turn to the problem of defining phenotypic com-
plexity in an operational and meaningful way. Because com-
plexity is a term used to cover a set of related concepts, a
singular unambiguous definition is elusive. We are inter-
ested in capturing a notion of evolutionary difficulty, or in

other words, the amount of surprise upon observing a trait
that did in fact evolve (Wagner, 2017)

Certain traits are easier to innovate and can thus be speci-
fied flexibly by a large number of similar genotypes. On the
other hand, some traits might require a very specific geno-
type sequence and thus be harder to discover by an evolving
population. In Avida for example, the inclusion of a simple
NOT task in the genome requires only one logical NAND in-
struction (Ofria and Wilke, 2004). On the other hand, the al-
gorithmically complex EQU task requires at least 5 NAND in-
structions (and many others for proper bookkeeping). Given
just this simple restriction, the number of genotypes that en-
code the NOT task is on the order of a million times larger
than genotypes that encode the EQU task. Therefore in this
example, the algorithmic complexity of a phenotype is cap-
tured in the size of the subset of genotype space in which it
is encoded.

From a more information theoretic viewpoint, observation
of the phenotype of an organism specifies the set of geno-
types that it can possibly occupy. Using these arguments,
Wagner (2017) shows that the complexity of an organism’s
phenotype can be defined as the excess information obtained
upon observing a phenotype, which increases as the size of
the genetic space decreases (Wagner, 2017). The informa-
tion content (or complexity) of a phenotype P that contains
|G p| genotypes in it, out of a total of |G| genotypes in the
entire space, is then given by,

Cp = logy |G| — log,|G p| 4
This metric is analogous to the to the definition of biolog-
ical complexity used previously (Adami et al., 2000). As
demonstrated above, it can also be shown to be positively
correlated with more functional measures like the algorith-
mic complexity of tasks that determine the phenotype (For-
tuna et al., 2017). The population complexity is calculated
as the mean of the phenotypic complexity of all organisms
present in the population. The basal complexity (Cy) of a
host population is the mean population complexity evolved
in the absence of parasites. Here, we measure the increase



in complexity upon addition of parasites as the fractional in-
crease over this quantity.

Partitioned Network Structure

Multiple different metrics can be used to quantify the struc-
ture of a network. In this article, we use the two most promi-
nent measures that we expect to affect the way the popula-
tion evolves through the genotype-phenotype map. The first
quantity is dependent entirely on the set-like structure of the
partition and measures the skew of the genotype-phenotype
map. Given a phenotype P; that has |G p,| genotypes under
it, the skew of the network is given by,

) &)

skew = Z G, log, (lfg

|G
The highest skew (zero) is achieved for partitions that have
all the genotypes under a single phenotype. The lowest value
(—log Np) is achieved when the genotypes are distributed
equally between the different phenotypes, where Np is the
total number of phenotypes.

The network structure can also be summarized from the
perspective of each genotype (node) in the network. Here
we look at the heterogeneity in connections (phenotypes that
a node connects to) for each genotype node and average it
over the entire network to get a measure of neighborhood
heterogeneity. Given a node, its connective neighborhood
heterogeneity (NH) is defined as,

NH of a given node = — Z B (LPk)ZOQQ (E(f’f)) (6)
k

Where E(Py) is the number of edges from that node that end
up in phenotype Pj; and L is the genotype length (the total
number of one-step mutants of a L-length bitstring is equal
to L). For a given node, this quantity is maximized when
it has one-step mutants distributed evenly across all pheno-
types and minimized when all its one-step mutants belong to
the same phenotype.

i

Population dynamics on the GP-map

We use the Gillespie method to stochastically model inter-
actions between host and parasite populations on the coarse-
grained phenotype map (Gillespie, 1977). Parasites and
hosts interact following a matching-alleles model, where
only identical phenotypes are allowed to interact. The in-
teraction equations used are as follow,

H; 5 2H; (Host-birth) )

H;, + P LN 2P; (Parasite reproduction) ®)
P; % () (Parasite death) )

H, —% H ;7 (Host phenotype transition) (10)

m

P; LN P;  (Parasite phenotype transition)  (11)
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Figure 2: Increase in steady state complexity upon the ad-
dition of parasites. For this experiment we used a randomly
generated GP-map with a genome length of 10 and 10 dif-
ferent phenotypes. The black line is the basal complexity,
Cy achieved when the host population occupies each geno-
type with equal likelihood. (A) Host population complexity
without parasites relaxes to the basal complexity value over
time (Inset: Population dynamics of individual host pheno-
types without parasites). (B) Host population complexity in
the presence of parasites relaxes to a value greater than the
basal complexity (Insets: Population dynamics of host and
parasite phenotypes 1 and 4).

Where P, and H, are parasites and hosts belonging to
2" and y*" phenotypes, respectively. P?; is the transi-
tion rate as obtained from the phenotype transition matrix
P at a given mutation rate m. The quantities r, b and ¢
are host-birth, parasite-infection and parasite-death rates re-
spectively. We use the following parameter values in this
paper:

Parameter Name Symbol Name Value
Host birth rate T 5.0x 1071
Parasite reproduction/virulence b 1.0x107*
Parasite death rate c 5.0 x 107!
Mutation rate m 2.0 x 1073

These values were chosen by simulating the system under
a wide range of values and isolating a set of parameters that
gave non-zero, finite steady state populations for all the gen-



erated genotype-phenotype maps. Note that due to a lack of
either a resource or a space limit for the hosts, the host popu-
lation increases indefinitely in the absence of parasites (See
figure 2A inset). The populations are initialised with 1000
hosts in each of the three lowest complexity phenotypes and
50 parasites of the second lowest complexity phenotype.

Generation of random GP-maps

The GP-maps used in this work were generated using a two-
step process (given genotype length L and Np number of
phenotypes),

1. Randomize the ordered set of genotypes (Size 2¥) and
randomly place Np — 1 separators between the elements
to generate N p partitions containing different numbers of
genotypes.

2. Arrange the partitions in the descending order of number
of genotypes to get the set of phenotypes ordered by com-
plexity.

For all the simulations except those in figure 5, we used
L=10 and Np=10. For figure 5, we started with a spe-
cific GP-map (L=10, Np=7) that was constructed by hand to
have a low node-heterogeneity. This map was then mutated
by genotype exchange to give maps with different network
structure but the same skew.

Results

Parasites drive escalations in host phenotypic
complexity

As seen in earlier work by Zaman et al. (2014), the addition
of an initial population of parasites leads to an increase in
the steady state complexity reached by the host population
(Figure 2b). In the absence of parasites the host population
equilibrates over the entire genotype map leading to a basal
level of complexity, Cy (Figure 2a).

Note that both the mean host complexity and phenotypic
heterogeneity of the host population changes over time in
these simulations (Figure 2b). To get a single steady-state
value of these quantities we take an average over the last
100 time-steps of the simulation.

Basal complexity on a genotype-phenotype map is
equal to the magnitude of the skew

We find that in the absence of parasites, the host popula-
tion equilibrates to a distribution such that the phenotypic
complexity is exactly equal to the negative skew of the un-
derlying genotype-phenotype map (Figure 3). This occurs
because the distribution of host organisms across different
phenotypes is expected to be in proportion to the number of
genotypes under these phenotypes on a given GP-map. The
expression for the skew gives the basal complexity if we as-
sume the distribution of hosts mirrors that of the genotypes
(See equation 5).
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Figure 3: Mean host complexity evolved in the absence of
parasites (Cp) as a function of GP-map skew. Note that these
two are expected to be exactly equal in magnitude if the host
population does distribute proportionally over the entire GP-
map. The solid line denotes y = —z.

Skew of the GP-map positively affects the evolved
phenotypic complexity

By definition, highly skewed GP-maps have a large number
of genotypes occupying low complexity (common) pheno-
types and few genotypes under high complexity (rare) phe-
notypes. If parasites are unleashed in a host population
equilibrated on such maps, parasites will evolve to reflect
a distribution where most of the parasite phenotypes lie un-
der the low complexity phenotypes (i.e., they will target the
most common host). In that case, there would be a signif-
icant push for host populations to move towards the higher
complexity phenotypes because they are scarcely targeted
by parasites. At the same time, maps with less skew have
basal complexities closer to the level of the most complex
phenotypes. Therefore, we hypothesize that an increasingly
skewed genotype-phenotype map will lead to greater lev-
els of coevolved complexity when parasites are introduced.
We found this to hold true when tested with randomly gen-
erated genotype-phenotype maps (Figure 4). Note that we
measured the ratio of complexity in the presence and in the
absence of parasites, such that what we are measuring is the
effect of coevolution on the escalation in complexity over
the basal level.

As noted before, the basal complexity over which we cal-
culate this escalation is equal in magnitude to the skew of the
underlying map (but opposite in sign). To show that this cor-
relation is not an effect of the lowering of basal complexity
for highly skewed maps, we also plot the mean host com-
plexity against the skew of the genotype-phenotype maps
(Figure 4 inset). It is interesting to note that for extremely
skewed GP-maps, it is possible to get an almost 2.5-fold in-
crease in complexity.
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Figure 4: Escalation in host population complexity over
basal (C/Cy) plotted against the skew of randomly gener-
ated GP-maps. The blue line indicates a linear regression
with shaded regions indicating the 95% confidence interval
(indistinguishable). Inset: Mean host population complex-
ity (C) plotted against the skew of the genotype-phenotype
map. Note that the basal complexity evolved without para-
sites is the negative of the skew of the genotype-phenotype
map.
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Figure 5: Evolved host population complexity over basal
(C/Cy) plotted against the mean neighborhood heterogene-
ity for randomly generated GP-maps with a constant skew
(see text for details on map generation).
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Figure 6: Evolved host population heterogeneity plotted
against the skew of randomly generated GP-maps. The dot-
ted black line is the expected population heterogeneity in the
absence of parasites (equal to the skew in magnitude). The
blue line indicates a linear regression with shaded regions
indicating the 95% confidence interval.

GP-maps with higher mean neighborhood
heterogeneity have more variable complexity

Neighborhood heterogeneity (defined above) is a property
of genotypes that reflects the interconnected nature of the
phenotypic space. Certain connections between genotypes
may take a sequence from a very low complexity pheno-
type to the highest complexity phenotype in a single mu-
tation. At the same time, it is possible to have GP-maps
where mutations only explore phenotypes with similar lev-
els of complexity. In this respect, this quantity is analogous
to the evolvability of the GP-map, as increasing neighbor-
hood heterogeneity would allow easier transitions between
phenotypes.

To control for skew effects, we generated random maps
using a Markov chain starting from a partition with a low
mean neighborhood heterogeneity. In each step, we mu-
tate this GP-map by swapping the phenotype labels between
pairs of genotypes, thus generating maps with identical skew
but different structure. Following this, we performed host-
parasite coevolution on these maps to get the steady-state
host complexities over the basal level. We find that coevolu-
tion using GP-maps with higher mean neighborhood hetero-
geneity lead to more variable outcomes in complexity (Fig-
ure 5). A large neighborhood heterogeneity indicates the
presence of extremely evolvable genotypes that might act
bidirectionally in a neutral environment — either taking a low
complexity genotype to a very high complexity phenotype in
the next generation, or vice versa.



Host population diversity at steady state is
dependent on the structure of the GP-map

Another interesting — and slightly more tangible — feature of
an evolved population is the heterogeneity of the final phe-
notypes (i.e., diversity) of hosts. In the absence of parasites,
the diversity (defined as the Shannon entropy of the pheno-
type distribution) of the host population mimics the magni-
tude of the skew of the partition — as the population equili-
brates between the phenotypes in proportion to their geno-
type counts. In the presence of parasites however, we see
that the difference between the basal and realized phenotypic
heterogeneity increases as the skew of the map increases —
indicating that the steady state distribution of phenotypes in
the coevolved host population is not just a simple additive
effect of parasites increasing diversity above the basal level
(Figure 6).

Conclusion

Using a simple model of host-parasite coevolution we show
that the escalation in host complexity upon addition of para-
sites is positively correlated with the skew of the underlying
genotype-phenotype map (Figure 4). Although host diver-
sity (i.e., heterogeneity) decreases with GP-map skew, the
difference between host diversity in the absence of parasites
(Figure 6 — dashed line) and the evolved level of diversity
when parasites are included (Figure 6 - blue line) increases.
Together, these results suggest that increases in complexity
and diversity are driven more strongly by the way antagonis-
tic coevolution is deforming the fitness landscape (the map
between phenotypes and reproductive success) than the un-
derlying genetic topology.

While we have presented two major metrics that affect the
outcome, their relationship with the final complexity is in no
way explicit. In addition, our simulations are performed at
specific mutation levels, virulence, and birth/death rates; it
is likely that the relationship between these variables and
the final complexity also changes under different GP-map
structures — an area of enquiry that has direct implications
for work that aims to characterize host-parasite population
dynamics more generally.

Specifically, our coevolution experiments occurred in an
otherwise neutral fitness landscape. How robust these re-
sults are to more complex genotype-phenotype maps is one
interesting direction to explore. For example, does having
genotypes that represent inviable organisms change the rela-
tionship between neighborhood heterogeneity and complex-
ity? We also assume that the hosts and parasites have similar
genotype-phenotype maps, an assumption not generally true
for most systems observed in nature. In the future, we seek
to explore the effect of variation in the genotype-phenotypes
maps of both hosts and parasite independent of each other.

At the values of the parameters used in these simulations,
we do not see a strong dependence on the local network
structure of the GP-map, other than the fact that networks

with higher neighborhood heterogeneity seem to be more
variable (Figure 5). Perhaps our requirement of coexistence
across the entire range of random GP-maps was too strin-
gent. It might have constrained parameter values to regions
where the dynamics depend primarily on skew (a statistical
property of the distribution over genotypes) rather than be-
ing dependent on the network structure of the map between
genotypes and phenotypes.

The broad goal of this article is twofold — firstly, to high-
light that we can improve the predictive capabilities of arti-
ficial life frameworks by studying the structure of the under-
lying mapping between genotypes and phenotypes, and sec-
ondly, to demonstrate that coevolutionary dynamics on dif-
fering genotype-phenotype mappings is an interesting area
for theoretical study. The structure of such systems is simi-
lar to the two-level classification of indistinguishable micro-
(genotypes) and distinguishable macrostates (phenotypes) in
classical statistical physics, except the system is not in equi-
librium due to the presence of external sources and sinks of
energy (manifesting here as the differential birth and death
processes). While expected, it is interesting to see that the
outcome of a dynamical process on such a map is so strongly
tied to its statistical properties. It might thus be possible to
draw accurate predictions about coevolutionary populations
based entirely on the genotype-phenotype map they evolve
on - especially in regimes where neutral and selective forces
are comparable in magnitude.

The major implication of these results is that certain fea-
tures seen in coevolved host populations — like escalation
in diversity, complexity, and the effects of other parameters
on these — might be outcomes sensitive to the statistical fea-
tures of the genotype-phenotype map. These properties, be-
ing affected by the architecture of the underlying mapping
between the genotype and phenotype space, thus conform to
the idea of evolutionary spandrels as discussed extensively
in classical and recent works in evolutionary theory (Gould
et al., 1979; Valverde et al., 2018). The extent to which bio-
logical processes themselves shape these structures remains
an open and exciting question. For example, on multidimen-
sional fitness landscapes, parasites may evolve to occupy re-
gions with higher neighborhood heterogeneity, which could
improve the evolutionary access to several host genotypes.
In the context of artificial life, we believe that accounting
for these structure-dependent outcomes will greatly increase
the predictive power of Alife frameworks.
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