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Fig. 1: Top: The Gatekeeper model protects identity by delivering relevant data at different levels directly through the API, while
withholding raw gaze samples that contain biometric features. This approach cannot be used directly with applications that require
raw gaze samples. Bottom: In scenarios where a Gatekeeper API cannot be implemented, we instead apply a privacy mechanism to
raw gaze samples to serve applications that use gaze samples or event data directly.

Abstract— Eye-tracking technology is being increasingly integrated into mixed reality devices. Although critical applications are
being enabled, there are significant possibilities for violating user privacy expectations. We show that there is an appreciable risk of
unique user identification even under natural viewing conditions in virtual reality. This identification would allow an app to connect a
user’s personal ID with their work ID without needing their consent, for example. To mitigate such risks we propose a framework that
incorporates gatekeeping via the design of the application programming interface and via software-implemented privacy mechanisms.
Our results indicate that these mechanisms can reduce the rate of identification from as much as 85% to as low as 30%. The impact of
introducing these mechanisms is less than 1.5◦ error in gaze position for gaze prediction. Gaze data streams can thus be made private
while still allowing for gaze prediction, for example, during foveated rendering. Our approach is the first to support privacy-by-design in
the flow of eye-tracking data within mixed reality use cases.
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1 INTRODUCTION

As eye trackers are integrated into mixed reality hardware, data gath-
ered from a user’s eyes flows from the mixed reality platform to the
applications (apps) that use this data. This data is a critical enabler
for a number of mixed reality use cases: streaming optimization [63],
foveated rendering [10, 66, 67, 79], redirected walking [49, 50, 54, 99],
gaze-based interfaces [34, 84, 107], education [81], and social interac-
tion [26, 61, 64, 70, 74]. The eye-tracking data also contains a variety of
information about the user which are not necessarily needed by each
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application. For example, eye movements identify attributes such as
gender, bio-markers for various health conditions, and identity. As a
result, how this data is handled, and to whom, has privacy and security
implications.

The problem of applications receiving data and passing it along to
colluding apps or parent companies erodes public trust in technology,
and cannot be “regulated away”. It has received public attention in the
context of similar personal devices, such as smartphones. Recently,
The Weather Channel took location data it mined from users’ foot
traffic at different businesses, and sold it to hedge funds to inform their
investments before quarterly income statements were released.1 Even
with regulation, imagine that the weather app collecting location data
colludes with an advertising application that belongs to the same parent
company. The user will then be served personalized ads based on her
location: such as car ads appearing after a visit to the car dealership
for an oil change. Now imagine that the parent company also knows
which cars she glanced at while waiting, or that she actually spent most
of the time looking at the motorcycle parked out front relative to the
other vehicles.

This problem becomes even more severe when we recognize that
mixed reality headsets are going to have as much enterprise use as
personal use. A user might log in at work to do their job-related
training with their known real-world identity, but attend labor union
meetings as User X to avoid negative repercussions.2,3 The agent that
connects these two identities has the power to “out” the user to her
work organization.

In this paper, we have investigated the threat of biometric identifi-
cation of a user from their eye movements when they are being eye
tracked within immersive virtual reality environments. For several
mixed reality use cases, raw eye-tracking data does not need to be
passed along to the application. As shown in Figure 1, a Gatekeeper
that resides between the eye tracking platform and applications can
alleviate this threat by encapsulating raw data within an application
programming interface (API). We have proposed a design for such an
API in Section 4.

This philosophy of serving data on a “need-to-know basis” is effec-
tive in preventing data from being used for deviant purposes instead
of their originally intended purpose. However, there remain certain
applications that rely on access to raw gaze data. In this case, we have
proposed privacy mechanisms to erase identifying signatures from the
raw gaze data before it is passed on to the application. We have evalu-
ated how the proposed privacy mechanisms impact utility, i.e., what the
application needs gaze data to do. Finally, we have investigated how
the proposed privacy mechanisms impact applications that need access
to eye events, i.e., eye-tracking data labeled as fixations, saccades, or
smooth pursuits.

Our work is part of a broader thrust in the eye tracking and virtual
reality communities on characterizing risks related to unregulated mas-
sive scale user eye tracking, and developing technological mitigations
for these risks. For risks associated with an adversary gaining access
to the eye image itself, we direct readers to the privacy mechanisms
presented in [22, 44]. For a differential privacy perspective, we direct
readers to [45, 59, 97]. For a differential privacy perspective on the
identification of users by colluding apps, we direct readers to the de-
tailed analysis in [15,97], with the caveat that the utility task considered
in this body of work is gaze-based document type classification. In
contrast, we focus on utility tasks that are specific to mixed reality. Our
goal is to provide a foundation for future researchers and developers to
organize their thinking around the risks created by the flow of behav-
ioral data in mixed reality, and the proactive rather than reactive design
of mitigation strategies.

1https://www.nytimes.com/interactive/2019/12/19/opinion/

location-tracking-cell-phone.html
2https://tcf.org/content/report/virtual-labor-organizing/
3https://www.foley.com/en/insights/publications/2015/09/

be-careful-what-you-say-during-a-union-organizing

2 EYE-TRACKING APPLICATIONS IN MIXED REALITY

We can expect eye tracking to run as a service within a mixed reality
device, analogous to the way that location services run on phones today.
Eye tracking is a specific case of more general behavioral tracking
services in mixed reality, including head, hand, and body tracking.
Mixed reality platforms such as Microsoft and Facebook will collect
raw data from the native sensors, process it to perform noise removal
and event detection, and pass the processed data up the software stack.
Because a rich, self-sustaining mixed reality ecosystem will rely on
independent content developers, a mixed reality web browser, akin
to a conventional web browser, will provide the software interface
to access a wide array of content for consumers. In this section, we
highlight critical eye-tracking applications for mixed reality that use
aggregate-level, individual-level, and sample-level gaze data.

2.1 Aggregate-level eye-tracking applications

Aggregate gaze data is collected from many viewers to drive applica-
tions such as highlighting salient regions using heatmaps [28, 82, 95],
and learning perceptual-based streaming optimizations for 360◦ con-
tent [63, 101]. These applications typically rely on a data collection
process conducted in research lab environments for a sample of viewers.
Viewer data is then used to train machine-learning models or evaluate
the most effective streaming methodology within the dataset. Results
from the dataset are then released in aggregate form to inform the de-
ployment of such methods on consumer devices. This provides utility
to the consumer without creating privacy risks, however training data
for machine-learning models may pose a risk to privacy [25], as well
as publicly-released datasets that include the raw gaze data used to
generate aggregate representations [1, 40, 41, 57, 102].

2.2 Event-level eye-tracking applications

Eye movement behavior captured by eye-tracking events, such as fix-
ations, saccades, and smooth pursuit, contribute to gaze-based inter-
faces [34,77], evaluating training scenarios [19,30,43], and identifying
neurodegenerative diseases [75] and ASD [18]. Detecting eye-tracking
events enables improved techniques for redirected walking [49, 50, 54],
a critical application for VR that expands the usable space of virtual
environment within a confined physical environment. The most com-
mon method to quantify an individual’s gaze behavior is to mark Areas
of Interest (AOIs) within content and measure how gaze interacts with
this region. Typical metrics for these regions depend on fixation and
saccade events only, recording dwell times, the number of fixations or
glances, and fixation order [55, 76]. Event data also poses a privacy
risk, as it reveal the viewer’s intent and preferences based on how gaze
interacts with different stimuli content.

2.3 Sample-level eye-tracking applications

Multiple key mixed reality applications depend on individual gaze
samples from an eye-tracker of a sampling rate of at least 60Hz. This
includes foveated rendering [10, 66, 67, 79], which is expected to have
the biggest impact on deploying immersive VR experiences on low-
power and mobile devices. This application relies on gaze samples
to determine where the foveal region of the user currently is, and to
predict where it will land during an eye movement to ensure that the
user does not perceive rendering artifacts [3]. Similarly, gaze prediction
models are trained that predict future gaze points while viewing 360◦

imagery and 3D rendered content [40, 41].
Another key set of applications that require sample-level data are

gaze guidance techniques [88, 89]. Gaze guidance takes advantage
of sensitivity to motion in the periphery to present a flicker in lumi-
nance that will attract the user’s eyes, using eye tracking to remove
the flicker before the user can fixate upon the region and perceive the
cue [8, 38]. This technique enables manipulation of visual attention,
and ultimately user behavior. For example, gaze guidance in 2D en-
vironments has been shown to improve spatial information recall [7],
improve training of novices to identify abnormalities in mammogram
images [96], and improve retrieval task performance in real-world envi-
ronments [12]. Gaze guidance has also been used to enhance redirected
walking techniques in VR by evoking involuntary eye movements, and



Table 1: State-of-the-art gaze-based biometric methods. Key: RBF = Radial Basis Function Network, RDF = Random Decision Forests, STAT =
Statistical test, SVM = Support Vector Machine.

Method Features Classifier Dataset Results
Schroder et al. [93] Fixation, Saccade RBF BioEye 2015, MIT data set IR: 94.1%, 86.76%
Schroder et al. [93] Fixation, Saccade RDF BioEye 2015, MIT data set IR: 90.9%, 94.67%
George&Routray [35] Fixation, Saccade RBF BioEye 2015 IR: 93.5%
Lohr et al. [60] Fixation, Saccade STAT VREM-R1, SBA-ST EER: 9.98%, 2.04%
Lohr et al. [60] Fixation, Saccade RBF VREM-R1, SBA-ST EER: 14.37%, 5.12%
Eberz et al. [31] Fixations, Binocular Pupil SVM [31] EER: 1.88%
Rigas et al. [86] Fixations, Saccades, Density maps Multi-score fusion [86] EER: 5.8%, IR: 88.6%
Monaco [68] Gaze Velocity/Acceleration STAT EMVIC 2014 IR: 39.6%

taking advantage of saccadic suppression [99]. Guiding gaze through
saccades and manipulating the user allows for use of a 6.4m×6.4m vir-
tual space within a 3.5m×3.5m physical space, significantly improving
upon the usable area within VR experiences. This application requires
an eye tracker sampling rate of 250Hz or more, and requires sample-
level data to know precisely when gaze moves towards the periphery
cue. Providing sample-level data with high accuracy at this frequency
poses a serious risk to user privacy in the form of gaze-based biometric
features that can then be extracted from these gaze positions.

3 RELATED WORK

Human eyes reflect their physical attributes. For example, algorithms
can estimate the ages of users by monitoring the change in the gaze
patterns as they age [73, 106], their gender based on the temporal
differences in gaze patterns while viewing faces [92], and their race
from the racial classification of faces they tend to look at [9].

Beyond physical attributes, gaze allows rich insights into psycho-
logical attributes, such as neurological [56] and behavioral disor-
ders [27,72,80]. The eyes can also reveal whether an individual suffers
from an affective disorder—anxious individuals’ gaze is characterized
by vigilance for threat during free viewing, while depressed individuals’
gaze is characterized by reduced maintenance of gaze on positive stim-
uli [5]. Eye tracking has also been used to investigate gaze behavior in
individuals on the autism spectrum, finding that they generally tend to
fixate less on faces and facial features [13, 23].

Pupillometry, when combined with scene metadata could allow al-
gorithms to infer user sexual orientation, as shown in clinical studies
measuring genital responses, offering a less invasive way to infer in-
dividual’s preferences [85]. In addition to allowing sexual orientation
inferences, pupillometry can reveal insight into women’s hormonal cy-
cles using similar methodology [52]. Pupil size also reveals the user’s
cognitive load [29] as well as emotional arousal, as shown in studies
with images [17, 53] and videos [83]. Interestingly, pupil response
seems to be modulated by subconscious processing, changing when the
mind wanders [100].

Body mass index (BMI) status appears to influence gaze parame-
ters that are not under conscious control, allowing BMI estimation
when presenting individuals with images of foods of differing caloric
content [37]. These risks involve knowledge of both eye position and
stimuli, whereas user identification can be applied to raw eye move-
ments without knowledge of what the stimuli was.

3.1 State-of-the-art in user identification based on eye
movements

Gaze patterns can be used to identify individuals as they contain unique
signatures that are not under a user’s voluntary control [47, 48]. The
Eye Movement Verification and Identification Competitions in 2012
and 2014 challenged researchers to develop algorithms that identified
users based on their eye movements when they followed a jumping
dot (2012) and when they looked at images of human faces (2014). The
best models’ accuracy ranged from 58% to 98% for the jumping dot
stimuli, and nearly 40% accuracy compared to a 3% random guess
probability for viewing faces.

Based on recent surveys on eye movements biometrics [33, 87] as
well as our own literature search, we identified algorithms that have

been shown to successfully identify individual users from their eye
movements in Table 1. These algorithms have been applied to existing
gaze-biometric challenge datasets, as well as the natural viewing of
image stimuli in 2D (MIT data set). The method with the best biometric
performance produces an Equal Error Rate of 1.88% using pupil-based
features [31], however the majority of consumer applications in mixed-
reality do not require pupil diameter. Thus, we selected to implement
the RBF approach proposed by George and Routray [35], as it relies
only on fixation and saccade events. This method also produces impres-
sive results with VR eye-tracking data [60] and natural viewing of 2D
images [93].

3.2 State-of-the-art in eye-tracking security and privacy

In recent years privacy concerns related to eye-tracking applications
has grown significantly [16, 42, 44, 51, 58, 98]. In response, researchers
have developed methods to enhance privacy of aggregate features, like
saliency heatmaps [59] and event statistics [15, 32, 97]. These methods
have been shown to reduce performance in classification of gender
and identity, however the methods operate only on aggregate gaze data
after it has been collected and processed. Recent work by Li et al. has
applied formal privacy guarantees to raw streams of gaze designed to
obfuscate viewer’s gaze relative to AOIs within stimuli over time [58].
The ability to protect biometric identity was was evaluated empirically
on the 360 em dataset [1], reducing identification to chance rate. Our
work develops a threat model based on the streaming of gaze samples
and the privacy risk related to biometric identification within an XR
ecosystem.

4 DESIGNING AN API FOR GAZE PRIVACY

The typical architecture and data flow in an eye-tracking platform is
shown in Figure 1. Existing eye trackers process user data in three
stages: eye image capture, which images the user’s eye, eye position
estimation, which infers the point of regard from the eye image, and
event detection, which classifies each point of regard as belonging
to a fixation, saccade, blink, etc. When eye trackers were specialty
equipment, all this data was made available to the application. These
applications were typically research data gathering software. The
major difference now is that the applications will have a profit-based
business model. This model will naturally create incentives to share
user gaze data and make inferences by combining data across devices
for advertising revenue, for example. We have identified privacy risks
created by this ecosystem in Section 3. In this section, we define our
threat model and propose the design of an application programming
interface (API) which adopts a privacy-preserving approach to passing
gaze data to downstream applications.
Threat Model We assume that the components comprising the eye-
tracking platform and API are trusted, i.e., the integrity of the hardware
and software could be attested through mechanisms such as secure
boot [4] and integrity measurement [90], and we assume that the op-
erating system is protected, e.g., through SELinux mandatory access
controls [69]. The adversary is capable of examining all data transmit-
ted to the eye-tracking applications, and seeks to use this information
to re-identify the user. An adversarial application has the capability to
collude with other applications by sharing information through either
overt or covert channels [65] in order to re-identify users.



Our privacy-preserving solution is focused on preventing biometric
identification of users from their gaze data. First, the eye is imaged by a
camera, producing an eye image that is provided to the platform, which
processes the image into position coordinates. The platform provides
this eye position to trusted applications like the browser, which then
pass the eye position on to browser apps that perform tasks such as AOI
analysis for performance in training scenarios, saccade detection for
redirected walking, and smooth pursuits for gaze-based interaction.
Naı̈ve API Design The simplest way to provide a gaze API would be
to pass along the raw gaze data to applications. At any point in time,
the application would be able to request getGazePosition(). From
this, the application would be able to compute fixations, saccades, and
dwell time; in particular, an AOI application would be able to compute
fixations in an AOI, time to first saccade into the AOI, and dwell time
in the AOI.

Providing raw gaze data also allows for computation of the velocity
of eye movements, and other features that are commonly used for
identity classification tasks [33, 35, 93]. Allowing for raw gaze access
in an untrusted context, such as the web, allows arbitrary apps the
ability to re-identify users.

4.1 Enabling AOI Metrics

However, we can modify the gaze API to be privacy-preserving by
acting as a Gatekeeper. Privacy vulnerabilities are caused by the design
assumption that the application is benign, and the data is used only for
the purpose for which it is collected. As discussed previously, appli-
cations need not be benign, and connecting user data across devices
will allow for richer inferences to be made about that user. This threat
motivates our proposed Gatekeeper design. An added benefit of our
proposed design is that the Gatekeeper model provides desired metrics
directly to applications, instead of requiring applications to process
streamed user gaze data and calculate the metrics themselves.

Advertisers and other AOI applications are interested in the number
of fixations and the dwell time of a fixation in a predetermined AOI.
Under the Gatekeeper framework, instead of passing along raw gaze
positions, an API allows requests for this information. For example,
a getFixations method takes a rectangular area and returns a list of
fixations that had occurred in that area, and a getDwellTime method
takes as input a fixation and returns in milliseconds the dwell time of the
fixation. Additionally, we provide a getSaccades method that would
return a list of saccades into the AOI. Saccades are a strong classifier
feature for identity, when raw gaze points are included, however we
mitigate this risk by providing only lower dimensional summary data.

It is important to note that this API is designed specifically to pro-
vide AOI metrics and summary data of eye movement events. The
API does not scale to address applications such as platform foveated
rendering, which requires raw gaze samples for utility. The Gatekeeper
model does support streaming optimizations based on the current gaze
position within a discrete set of tiles [20, 78], by providing only infor-
mation about which tile they are currently attending too. This type
of optimization is critical for low-power devices to ensure high visual
quality while preserving precious network resources.

4.2 Enabling Real-time Event Data

In some situations, such as gaze-based interfaces and redirected walk-
ing, applications will need to be notified when a new fixation or saccade
occurs, instead of querying for all fixations or saccades.

In this scenario, we can use an EventListener model instead of a
query-based model. When a new event occurs, the EventListener
will be notified and given the event data, (x, y, t) and a boolean indi-
cating if it is a fixation, saccade, or smooth pursuit. More complex eye
movements are difficult to detect in real-time with the sampling rate of
mixed reality eye-tracking devices, and typically are not implemented
in real-time applications.

Our typical model for streaming event data is to send an event when
the eye movement has concluded. For example, in a gaze-based inter-
face the application needs to be notified that a smooth pursuit occurred,
and where it landed. In applications such as redirected walking it is
critical to know when a saccade begins, to take advantage of saccadic

Table 2: Privacy mechanism variable definitions.

Variable Description
x Horizontal gaze position
y Vertical gaze position
t Timestamp
e Event label: Fix. (F), Sacc. (S), Smooth Pursuit (SP)
X Input time series of gaze samples
G Number of gaze positions in time series
X ′ Output privacy-enhanced time series
K Temporal downsample factor relative to sampling rate
L Spatial downsample factor relative to 3840×2160
M Number of rows in equirectangular projection
N Number of columns in equirectangular projection

δx Horizontal step size: 360
N

δy Vertical step size: 180
M

blindness [49,50,54,99]. In this case, one mode of the EventListener
will be to indicate when a saccade event has started and finished, as
opposed to only when the saccade has finished.

4.3 Enabling Privacy-enhanced Sample Data

Most applications will be able to function with the aforementioned API
designs; however, two key mixed reality applications that will require
sample-level data are foveated rendering and subtle gaze guidance.

Foveated rendering is critical for performance on next generation
wearable VR headsets. In an ideal situation, platforms will use GPU-
based foveated rendering—where gaze information is sent to the graph-
ics driver, informing it to do fewer calculations for the parts of the
screen that are away from the center of view. This requires cooperation
with the graphics hardware driver for optimal performance. Experi-
ments on native platforms show up to a 2.71 times speed up in frames
per second [66]. This will not be possible in all cases, so platforms
and browsers will also need to leverage software-based foveated ren-
dering and streaming optimization [71]. In this scenario, gaze samples
are transmitted directly to the content or webpage, which then knows
where it should render objects in more detail. However, this exposes
the raw gaze data to the application and allows the content to perform
further processing on the raw gaze information, whether that is user
identification or inferring sensitive characteristics.

In these scenarios the eye-tracking platform must stream sample-
level data, and it is impossible to simply abstract data using a privacy-
preserving API. Therefore, we propose the use of a privacy mechanism
to manipulate gaze samples as they are streamed to increase privacy.

5 METHODOLOGY

In this section, we propose, implement, and evaluate three privacy
mechanisms with the goal of mitigating the threats identified in Sec-
tion 4. Our goal is to reduce the accuracy of user identification based
on features derived from common eye events, such as fixations and
saccades. We consider the following privacy mechanisms: addition of
Gaussian noise to raw gaze data, temporal downsampling, and spatial
downsampling. We implement these mechanisms and evaluate them
against the baseline identification rate when raw gaze data is passed
to the application as is. For each of the privacy mechanisms, we also
evaluate the utility of the data that is passed downstream.

5.1 Privacy Mechanism Definitions

We define the data received by the privacy mechanism to be a time
series where each tuple is comprised of horizontal and vertical gaze
positions (x,y), a time stamp t, and the event label assigned to the sam-
ple e: X = {(x1,y1, t1,e1),(x2,y2, t2,e2), ...,(xG,yG, tG,eG)}, a set of
G gaze positions. This data is processed via a privacy mechanism and
the processed output as a time series X ′, with additional variables de-
fined in Table 2. The following three privacy mechanisms are explored
in this paper.



Table 3: Dataset characteristics.

Dataset Participants # Stimuli Avg. # Stimuli Stimuli Duration Stimuli Type Task
ET-DK2 (ours) 18 50 50 25s 360◦ Images Free Viewing

VR-Saliency [95] 130 23 8 30s 360◦ Images Free Viewing
VR-EyeTracking [102] 43 208 148 20s-70s 360◦ Videos Free Viewing

360 em [1] 13 14 14 38s-85s 360◦ Videos Free Viewing
DGaze [40] 43 5 2 180s-350s 3D Rendered Scene Free Viewing

Additive Gaussian Noise Noise is sampled from a Gaus-
sian distribution of zero mean and standard deviation σ de-
fined in visual degree and added to the gaze positions. Noise
is independently sampled for horizontal and vertical gaze posi-
tions as X ′ = {(x1 +N(0,σ),y1 +N(0,σ), t1,e1),(x2 +N(0,σ),y2 +
N(0,σ), t2,e2), ...,(xG +N(0,σ),yG +N(0,σ), tG,eG)}.

Temporal Downsampling Temporal downsampling reduces the
temporal resolution of the eye-tracking data stream. Downsampling
is implemented by streaming the data at a frequency of the original
sampling rate divided by a scaling parameter K. The output time
series is defined as X ′ = {(x(K·p)+1,y(K·p)+1, t(K·p)+1,e(K·p)+1), ...}

for all integers p ∈ [0, G
K ]. For example, with a scaling pa-

rameter of two, the private gaze positions are defined as X ′ =
{(x1,y1, t1,e1),(x3,y3, t3,e3),(x5,y5, t5,e5), ...}, retaining only every
other gaze sample. For a scaling parameter of three, X ′ =
{(x1,y1, t1,e1),(x4,y4, t4,e4),(x7,y7, t7,e7), ...}.

Spatial Downsampling Spatial downsampling reduces the resolu-
tion of eye-tracking data down to a discrete set of horizontal and vertical
gaze positions. Intuitively, the scene is divided into a grid and each
gaze sample is approximated by the grid cell that it lies within. Spa-
tial downsampling is performed by defining a target equirectangular
domain spanning 180◦ vertically and 360◦ horizontally with M rows
and N columns. For smaller values of M and N there are less possible
positions, and thus reduced spatial resolution. Raw gaze positions
(x ∈ [0,360◦),y ∈ [0,180◦), t) are transformed by first computing the

horizontal step size δy =
180
M and vertical step size δx =

360
N . Downsam-

pled gaze positions are then computed as (% x
δx
& ·δx,%

y
δy
& ·δy, t), where

%·& represents the floor function that rounds down to the nearest integer.
For the results presented in this paper, we parameterize spatial

downsampling as a factor L relative to an equirectangular domain

of M = 2160 and N = 3840, mapping to a domain of M = 2160
L and

N = 3840
L . For example, an input downsampling factor of L equals two

will result in M = 1080 and N = 1920, a factor of L equals three will
result in a resolution of M = 720 and N = 1280, and so on.

5.2 Datasets

In order to evaluate the privacy mechanisms on how effectively they
prevented an adversary from re-identifying the user, we selected five
existing datasets of VR eye-tracking data. Table 3 presents character-
istics of each dataset included in analysis. Datasets were selected to
have diversity in the number of participants, the number of stimuli pre-
sented, and the task being performed. Four of the datasets are publicly
available, while ET-DK2 consists of data previously collected by the
authors.4

5.2.1 ET-DK2

The ET-DK2 dataset consists of twenty participants viewing fifty 360◦

images using an Oculus-DK2 HMD with integrated SMI 60Hz binocu-
lar eye tracker. Data was collected under an IRB approved protocol in
December 2017 for the purpose of generating saliency maps from gaze
data. Two participants were not included in analysis, as one participant
got motion sickness, and the data collection software did not log data
from all 50 images for one participant. The remaining 18 individuals
were made up of five females and thirteen males with an average age of
32, and an age range of 23 to 52 years. Each participant viewed images
from the Salient360! [82] dataset in random order. Participants were

4The dataset will be released publicly when the manuscript is published

seated in a swivel chair so they could rotate and explore each 360◦

scene while eye and head movements were recorded.
All participants performed a 9-point calibration at the beginning of

the experiment, and eye-tracking accuracy was validated to less than
2◦ visual angle before image viewing. Each 360◦ image was shown
for 25 seconds, following the Salient360! [82] protocol. In contrast
to their protocol, we varied the starting orientation of the participant
within the 360◦ image across eight orientations instead of being held
constant. Halfway through the experiment participants were given a
five minute break, after which the eye tracker was re-calibrated before
viewing the rest of the images. The entire data collection process took
approximately 40 minutes, including informed consent and a post-study
demographics survey.

5.2.2 VR-Saliency

The VR-Saliency [95] dataset includes gaze data collected from par-
ticipants viewing 360◦ images on a 2D display, in VR while seated in
a swivel chair, and in VR while standing. We analyze only the seated
VR condition, as it is the only VR condition with raw data available
at 120Hz for all stimuli. Free-viewing data was collected in a similar
manner to ET-DK2 for the purpose of saliency map generation, however
only eight 360◦ images were viewed by each participant.

5.2.3 VR-EyeTracking

The VR-EyeTracking [102] dataset includes gaze data collected at
100Hz from participants viewing 360◦ videos. The dataset application
is to train a deep network model for predicting gaze within dynamic
VR environments. The video stimuli did not have a fixed duration, as in
ET-DK2 and VR-Saliency, however participants viewed many videos
and took many breaks to avoid motion sickness.

5.2.4 360 em

The 360 em [1] dataset includes gaze data collected at 120Hz from
participants viewing 360◦ videos. Fourteen of the stimuli consisted of
typical 360◦ videos from YouTube, while one stimuli was created by
the authors to elicit specific eye and head movements. The dataset ap-
plication is to train and evaluate event detection algorithms, classifying
fixation, saccade, smooth pursuit, and OKN events in VR viewing data.
For our analysis we only consider the fourteen stimuli downloaded
from YouTube.

5.2.5 DGaze

The DGaze [40] dataset includes gaze data collected at 100Hz from
participants that explore and navigate various 3D rendered scenes.
Within each environment multiple animals dynamically move around,
attracting visual attention of the participant. Gaze data is used to train
and evaluate the DGaze model for gaze prediction. DGaze can predict
gaze position given head orientation, or predict the next gaze position
given the current gaze position. Gaze prediction by DGaze has been
demonstrated in the context of foveated rendering, and can help account
for latency in the eye-tracking and rendering pipeline [3, 40, 79].

5.3 Metrics

For each dataset metrics are computed to identify privacy risks, and
evaluate the impact of privacy mechanisms on application utility. Utility
measures depend on the application of eye-tracking within the datasets,
ranging from AOI analysis to gaze prediction. We define a utility metric
for each dataset depending on the type of stimuli and application.



5.3.1 Privacy

In our context, privacy refers to how effectively the mechanism prevents
an adversary from identifying an individual. Identification is defined
as a classification task: an algorithm matches the input to the database
and return the closest match. If the algorithm matches the input to
the ground truth identity, then the comparison is counted as a True
Positive, otherwise it is considered a False Negative. The Identification
Rate (IR), is the total number of True Positive classifications divided
by the total number of comparisons [47, 48, 93]. A high IR indicates
accurate classification of identity, and therefore, low privacy.

5.3.2 Utility

Predicting future gaze position from eye-tracking data is a critical area
of research that has yet to be solved [40, 41]. Using the DGaze dataset
we evaluate the ability to predict ground truth gaze position 100 ms into
the future when gaze data output from a privacy mechanism is used
as the testing data, and as both the training and testing data. Utility is
measured as angular gaze prediction error for each input gaze sample,
with lower values indicating higher accuracy.

The most common form of eye-tracking analysis is performed us-
ing static AOIs defined within image content [55, 76]. AOI analysis
is used to study gaze behavior during social interaction [11], while
viewing websites [103], and to evaluate content placement in 3D envi-
ronments [2], among many other applications. A key AOI metric that
is robust to fixation detection parameters is dwell time [76]. Dwell
time measures how long a viewer’s gaze fell within an AOI, and allows
for comparison between which AOIs attracted the most attention. We
evaluate the loss in utility between ground truth and gaze data out-
put by a privacy mechanism by computing the Root Mean Squared
Error (RMSE) between AOI dwell times. AOI utility is measured for
the ET-DK2 dataset, as two rectangular AOIs are marked within each
image that correspond with a salient object, such as people or natural
landmarks, to measure individual viewing behavior within the scene.

Eye-tracking data is also used to generate saliency maps, which
represent a probability distribution over visual content that highlights
regions most likely to be looked at by a viewer [55]. Saliency maps
are generated from aggregate eye-tracking data from many viewers
and are used to train and evaluate deep learning models for saliency
and scanpath prediction [6, 24]. Saliency metrics are computed for
both 360◦ images (VR-Saliency), and 360◦ video (VR-EyeTracking
and 360 em). We compute KL-Divergence [55] to measure the impact
on aggregate-level gaze measures and saliency modeling.

5.4 Implementation Details: Biometric Re-identification

We define two classifiers for biometric identification using a Radial
Basis Function (RBF) network [35, 60], with one network to classify
fixation events and one to classify saccade events. This method is anal-
ogous to a traditional neural network with an input layer representing
a feature vector!x ∈ Rp containing p fixation or saccade features from
a single event, one hidden layer consisting of m nodes, and an output
layer containing c class scores, one for each unique individual in the
dataset. The output class scores are used to measure which individual
the input feature vector is most similar to. Thus, larger scores indicate
a higher probability of the fixation or saccade event being from that
class, or individual. Each node in the hidden layer is defined by an
activation function φi(!x) and a set of real-valued activation weights wi,c,
where i ∈ [1,2, . . . ,m] and j ∈ [1,2, . . . ,C]. The similarity score for a
given class c in the output layer is computed as a weighted sum of all
activation functions in the hidden layer,

Scorec(!x) =
m

∑
i=1

wi,c ·φi(!x). (1)

The activation function of each hidden node takes the form of a
Gaussian distribution centered around a prototype vector!µi with spread
coefficient βi. The function is defined as

φi(!x) = e−βi||!x−!µi||2 , (2)
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Fig. 2: Evaluation procedure for the gaze-based biometric classifier.

with shape coefficient βi and prototype feature vector!µi defined prior
to training the network. Thus, an RBF network must be constructed
in two stages by first defining the prototypes and then optimizing the
activation weights.

First, k-means clustering is applied to a training set of n feature
vectors to determine k representative feature vectors per individual [35,
60]. Through this process βi and !µi are defined for each of the m = k ·c
hidden nodes. The activation function φi(!x) is then defined using the

cluster centroid as !µi, and βi as 1
2σ , where σ is the average distance

between all points in the cluster and the centroid !µi.
Second, the activation weights wi,c are learned from the same set

of training data used to define the activation functions. Weights are
trained using only fixation or saccade features from the training set.
Training can be implemented using gradient descent [94], or by the
Moore–Penrose inverse when setting up the network as a linear sys-
tem [35]. The latter method is implemented in this work by defining
the RBF network using an activation output matrix An×m, where rows
consist of the n training feature vectors input to the m previously de-
fined activation functions, weight matrix Wm×c comprised of activation
weights wi,c, and an output matrix Yn×c generated as a one-hot encod-
ing of the ground truth identity labels. Using matrix multiplication the
following system defines the RBF Network A ·W = Y .

The weight matrix W is then learned by computing W =A∗ ·Y , where
A∗ is the Moore-Penrose inverse of A computed using MATLAB’s pinv
implementation. Class score predictions Ŷ are then generated for the
testing data Â by computing Â ·W = Ŷ . Every sample in the testing set
is then classified as the class label with the maximum score. To classify
a stream of events the class scores from all events are first summed
together, and then the class with the maximum value returned. Scores
from the fixation RBF and saccade RBF are combined by summing the
average of scores from each network for equal contribution to the final
classification.

5.5 Evaluation Protocol

The evaluation protocol for the RBF-based biometric, illustrated in
Figure 2, is derived from [93], where a stream of gaze data collected
from multiple participants viewing numerous static images is used for
training and testing the identity classification. The size of the training
and testing sets are defined by the number of stimuli from which gaze
data is used. For example, with a train/test split of 50%/50%, gaze
data from half of the dataset is selected at random and used for training
and the other half for testing. Fixation and saccade events data from
all C participants are aggregated from the training stimuli and are then
used to train the fixation and saccade RBF networks for classifying
identity, as described in Section 5.4. Fixation and saccade events from
the testing set are input to the trained RBF networks to classify the
identity of each participant. Each participant is present in both the
training set and the testing set. Identification rate is then computed as
the number of correct matches divided by the number of comparisons.

6 RESULTS

In this section we will compute privacy and utility metrics to evaluate
the proposed privacy mechanisms from Section 5.1 for each dataset
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Fig. 3: Mean and standard deviations of identification rates across
datasets of 360◦ images (ET-DK2, VR-Saliency), 360◦ videos (VR-
EyeTracking, 360 em), and 3D rendered scenes (DGaze). Lines for
each dataset indicate a baseline of random guessing for the given
number of subjects.

listed in Table 3. In Section 6.1, we first compute identification rate
using the RBF biometric for each dataset without modification, to
establish a baseline privacy risk. Then, we compute identification rate
for the privacy mechanisms for different parameter values and discuss
observed effects. Last, in Section 6.2 we explore the privacy achieved
by each mechanism, and the measured impact on eye-tracking utility.

6.1 Gaze-based Biometric

We evaluate the RBF biometric by splitting gaze data from stimuli
viewed by each participant into training and testing sets as described
in Section 5.5. For each dataset we evaluate a 75%/25%, 50%/50%,
and 25%/75% train/test split, except for DGaze as each participant only
saw two stimuli. Identification rate is computed over ten runs with
random stimuli selected as part of the training and test set, to account
for variance in stimuli content.

Figure 3 presents the mean and standard deviation of identification
rates for each dataset, along with a baseline rates corresponding to
random guessing. For all datasets, identification rate were highest when
there was more training data than testing data, i.e., a 75%/25% split.
ET-DK2 produced the highest identification rate with 85% on average,
where participants viewed 50 static 360◦ images. VR-Saliency used a
similar protocol with 130 participants, however only eight images were
shown to each individual on average. A lower identification rate of 9%
was observed in this dataset, compared to a baseline guess rate of 0.77%.
Further analysis comparing identification rates for ET-DK2 using only
eight stimuli, and VR-Saliency with eighteen random subjects closed
the gap, producing identification rates of 47% and 22% respectively.
Identification rates for the VR-EyeTracking and 360 em datasets are
lower on average than the ET-DK2 dataset, reporting rates of 33% and
47%. We observed that DGaze produced an identification rate of 2.7%,
showing only slight improvement over a baseline rate of 2.3%. This
dataset differs in that participants moved through two 3D rendered
virtual scenes using a controller for teleportation for several minutes at
a time, instead of viewing many 360◦ scenes from a fixed viewpoint.

In summary, we observe that using more data for training and view-
ing many different stimuli produces higher identification rates. Thus,
it will become easier and easier to re-identify an individual as a large
volume of gaze data is collected in a variety of contexts. Identification
rates are as high as 85% depending on the circumstances, highlighting
the need to enforce privacy in future mixed reality applications.

Figure 4 presents the mean and standard deviations achieved when
privacy mechanisms are applied to each dataset. A training/testing split
of 75%/25% is used to generate these results. We observe that Gaussian
noise achieves the most privacy, reducing the identification rate of ET-
DK2 from 85% to 30% on average. Temporal downsampling is not

recommended, as it had the least observed impact on identification rate
and event detection is degraded at sampling rates less than 120Hz [104].

6.2 Utility Evaluation

The utility of eye-tracking data depends on the context of the appli-
cation, thus we evaluate the impact of our privacy mechanisms at
three different scales: sample-level gaze points, individual-level gaze
behavior, and aggregate-level gaze behavior over many individuals.
First, we evaluate sample-level utility by computing gaze prediction
error using the DGaze neural network architecture, then, individual-
level utility by computing dwell time for AOIs defined in the ET-DK2
dataset, and finally, we compute aggregate-level utility measures for
generating saliency heatmaps of 360◦ images and video by computing
KL-Divergence for the VR-Saliency, VR-EyeTracking, and 360 em
datasets. Tables 4, 5, and 6 present the impact of privacy mechanisms
on utility based on the parameter that provided the largest decrease in
identification rate.
Gaze Prediction Evaluating gaze prediction accuracy involved config-
uring the DGaze neural network to predict gaze position 100ms into
the future, which as a baseline produces an average gaze prediction
error of 4.30◦. Gaze prediction error was as high as 9.50◦ for the Gaus-
sian mechanism, more than double the baseline gaze prediction error
reported in [40]. Next, we evaluated performance by re-training the
DGaze model from scratch and applying privacy mechanisms to both
training and testing data dataset. This resulted in much lower prediction
errors, with results as low as 5.44◦ (Table 4), which are comparable to
the 4.30◦ reported in [40].

Introducing the privacy mechanism to both training and testing
data implies that raw gaze data is not shared with any party during
model training and deployment. Our experiments indicate that it is still
possible to learn a reasonable gaze prediction model without access to
the raw gaze data. Withholding raw gaze data from the training dataset
is desirable, as it removes the need to safeguard additional data and
alleviates the risk of membership inference attacks [25]. We expect
future gaze prediction models will improve in performance, and in turn
decrease the absolute gaze prediction error when using gaze data output
from the privacy mechanisms.
AOI Analysis The impact of privacy mechanisms on area of inter-
est (AOI) analysis is measured as the Root Mean Squared Error (RMSE)
between AOI metrics. There are several popular AOI metrics, suitable
for different analyses, such as number of visits to an AOI [103], time
to first fixation, and number of visits to an AOI [43]. For an overview
of AOI analysis, see the discussion by Le Meur and Baccino [55]. For
an investigation into privacy mechanisms, we select Dwell Time as
a representative AOI metric. Dwell time is the amount of time spent
by a user on an AOI, computed as the sum of the durations of all the
fixations inside that AOI. The key logical operation is checking whether
a fixation location falls within the bounding box that demarcates the
AOI, which is the typical first step in all AOI metrics.

If the fixation location is perturbed, such as with the privacy mecha-
nisms proposed above, then we can anticipate an error being introduced
in the dwell time computation. We report the RMSE computed be-
tween AOI Dwell Time for each individual on the original dataset and
after privacy mechanisms are applied, averaged across all stimuli in the
dataset. RMSE in dwell time computation for additive Gaussian noise
and temporal downsampling is below 40ms (Tables 4 and 5), which is
insignificant for the practical application of AOI metrics, as a fixation
itself typically lasts 200ms [91, 105]. However, for spatial downsam-
pling, an RMSE of 247ms is introduced, which is greater than the
length of one visual fixation. While being a few fixations off on average
may not have a large effect on AOI applications such as evidence-based
user experience design, it may be noticeable in scenarios with multiple
small AOIs close together, such as figuring out which car the user spent
longest looking at on a virtual visit to a car dealership.
Saliency Map Generation Saliency maps represent a spatial probabil-
ity distribution of attention over an image or video. Maps are generated
by aggregating fixations from eye-tracking data of multiple observers
to highlight regions that attract the most attention in the stimulus [46].
Saliency maps are used directly for gaze prediction [24] and to opti-
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Fig. 4: Mean and standard deviation of identification rate for each privacy mechanism with different internal parameters. Gaussian noise generates
the lowest observed identification rates across all datasets, while temporal downsampling has the least impact.

Table 4: This table illustrates the impact of introducing the Gaussian Noise privacy mechanism on the identification rate as well as on three use
cases. The reported numbers are for σ = 10◦. The second column shows how the identification rate falls after the privacy mechanism is applied.
The fourth column reports an error metric that is relevant to that use case.

Mechanism Identif. Rate Utility Impact on Utility Dataset
Gaussian
Noise

3% → 2% Gaze Prediction Avg. Prediction Error Difference = 1.14◦ DGaze (Re-trained)

Gaussian
Noise

85% → 30% AOI Analysis Dwell Time RMSE = 0.0359s ET-DK2 (360◦ images)

Gaussian
Noise

33% → 9% Generate Saliency Map KL-Divergence = 0.0367 VR-EyeTracking (360◦ videos)

Table 5: This table illustrates the impact of introducing the Temporal Downsample privacy mechanism on the identification rate as well as on
three use cases. The reported numbers are for K = 3. The second column shows how the identification rate falls after the privacy mechanism is
applied. The fourth column reports an error metric that is relevant to that use case.

Mechanism Identif. Rate Utility Impact on Utility Dataset
Temporal
Downsample

3% → 3% Gaze Prediction Avg. Prediction Error Difference = 0.22◦ DGaze (Not Re-trained)

Temporal
Downsample

85% → 79% AOI Analysis Dwell Time RMSE = 0.006s ET-DK2 (360◦ images)

Temporal
Downsample

9% → 7% Generate Saliency Map KL-Divergence = 0.0019 VR-Saliency (360◦ images)

Table 6: The lowest achievable identification rate (IR) for the Spatial Downsample was at L = 64, and the corresponding impact on utility are
reported below. The arrow indicates the IR before and after the privacy mechanism is applied.

Mechanism Identif. Rate Utility Impact on Utility Dataset
Spatial
Downsample

3% → 2% Gaze Prediction Avg. Prediction Error Difference = 0.51◦ DGaze (Re-trained)

Spatial
Downsample

85% → 48% AOI Analysis Dwell Time RMSE = 0.2473s ET-DK2 (360◦ images)

Spatial
Downsample

47% → 29% Generate Saliency Map KL-Divergence = 0.1293 360 em (360◦ videos)

mize streaming [63, 101] or rendering [62]. We compute error as the
KL-Divergence between a saliency map generated from the original
gaze data and the saliency map generated by gaze data after the privacy
mechanisms have been applied. KL-Divergence measures the rela-
tive entropy between the two saliency maps and is commonly used in
loss functions to train deep saliency prediction models and to evaluate
learned models [21, 24, 39, 55]. The spatial errors introduced by the
privacy mechanism may cause regions highlighted by the saliency map
to shift or spread out, leading to larger KL-Divergence values. A recent
survey revealed the best performing model in predicting human fixa-
tions produced a KL-Divergence of 0.48 for the MIT300 dataset, with
baseline models producing values of 1.24 or higher [14]. We observed
that spatial downsampling produces the largest KL-Divergence on
average of 0.1293, while Gaussian and temporal downsampling mecha-
nisms produces much smaller values of 0.0367 and 0.0019 respectively.

Spatial downsampling introduced errors that are approximately a fourth
of the existing gap in fixation prediction. Errors of this magnitude will
cause saliency maps generated from spatially downsampled gaze data
to deviate from ground truth, and negatively impact performance of
models that use the maps for training.

7 CONCLUSIONS AND FUTURE WORK

As eye-tracking technology is built into mixed reality devices, they
open up possibilities for violating user privacy. In this paper, we have
examined a specific threat to user privacy: unique user identification
based on their eye movement data. This identification would enable
colluding applications to connect a user logged in “anonymously” with
their work ID, for example.

We first determine biometric identification rates across five datasets
of eye movements in immersive environments. We show that identifica-



tion rates can reach as high as 85% depending on the type of stimulus
used to elicit the eye movements, and the amount of eye movement data
collected in total. Our highest identification rates were achieved when
viewing many 360◦ images with short duration (ET-DK2), with all
datasets having an identification rate higher than chance except DGaze.
We hypothesize this is the result of the DGaze dataset providing view-
ers only two scenes to explore, containing sparse environments with
animals that they can follow around by using teleporting to navigate. In
the context of saliency Borji [14] describes the role that stimuli plays
in eye movements elicited by viewers, suggesting that datasets from
more diverse stimuli is needed to improve generalized performance of
saliency prediction models. In the context of privacy, this suggests that
the presence of biometric features within gaze data collected in envi-
ronments differs for photorealistic, static, and dynamic stimuli. Given
enough eye movement data collected from the right stimuli, there is an
appreciable risk for identification.

We propose a Gatekeeper model to alleviate biometric authentication
by apps that need AOI metrics or event specific data for their utility.
This model provides API calls that return desired metrics and summary
information of fixation and saccades to applications without providing
streams of raw gaze data, which suffices for certain classes of mixed
reality use cases. However, in the case of use cases such as foveated
rendering, streaming gaze data is required. We propose that in this
case, privacy mechanisms be applied to the raw data stream to reduce
identification rate, while maintaining the utility needed for the given
application. We evaluated three privacy mechanisms: additive Gaussian
noise, temporal downsampling, and spatial downsampling. Our best
results used additive Gaussian noise to reduce an identification rate
of 85% to 30% while supporting AOI analysis, gaze prediction, and
saliency map generation.

Implications Imagine the scenario described earlier of a worker that
anonymously attends labor union meetings as User X. The eye-tracking
data collected during a VR union meeting attended by User X is exposed
through a database breach or collusion with the employer, who then
discovers a match between User X and their real identity at a rate greater
than chance. Even though they were not the only worker to attend this
meeting, biometric data suggested they were the most likely employee
to have attended, turning User X into a scapegoat for the entire group.
The individual may then have their reputation tarnished in retaliation
by their employer. Our investigations are a first step towards protecting
such a user. Though the proposed mechanisms lower identification
rates, they do not eliminate the possibility of weak identification. More
work is needed to create and evaluate mechanisms that allow users,
organizations, and platforms to trust eye tracking, and more broadly,
behavioral tracking, within mixed reality use cases.

Limitations Our threat model assumes a trusted platform. In cases
where the platform itself cannot be trusted, there is a need for user-
implementable solutions, similar in spirit to the user-implementable
optical defocus in [42]. Our characterization of the proposed privacy
mechanisms is based on one biometric authentication approach (RBFN).
As newer methods are developed, we will likely need new privacy
mechanisms that can applied as a software patch for the mixed reality
headset. This work also considers each privacy mechanism individually.
We expect there will be greater gains in terms of privacy when applying
a combination of different privacy mechanisms.

Future Work In addition to exploring combinations of privacy mech-
anisms, future work might draw inspiration from research in location
privacy, and investigate adapting location k-anonymity schemes for
gaze [36]. It would also be interesting to characterize stimuli as be-
ing dangerous from the perspective of biometric signatures, akin to
“click-bait”. More broadly, while our work considers the user privacy,
future work might also consider security from a platform’s perspective.
Consider the case of an attacker injecting gaze positions to fool an AOI
metric into thinking that an AOI has been glanced at (for monetization
of advertisements). One potential solution to this problem is direct
anonymous attestation in a trusted platform module (TPM) to assure
gaze consumers that there have been no injections.
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