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Abstract
The ability to sense and respond to physical forces is critical for the proper function of cells, tissues, and organisms across
the evolutionary tree. Plants sense gravity, osmotic conditions, pathogen invasion, wind, and the presence of barriers in the
soil, and dynamically integrate internal and external stimuli during every stage of growth and development. While the field
of plant mechanobiology is growing, much is still poorly understood—including the interplay between mechanical and bio-
chemical information at the single-cell level. In this review, we provide an overview of the mechanical properties of three
main components of the plant cell and the mechanoperceptive pathways that link them, with an emphasis on areas of
complexity and interaction. We discuss the concept of mechanical homeostasis, or “mechanostasis,” and examine the ways
in which cellular structures and pathways serve to maintain it. We argue that viewing mechanics and mechanotransduc-
tion as emergent properties of the plant cell can be a useful conceptual framework for synthesizing current knowledge and
driving future research.

Introduction
In its simplest form, a plant cell can be visualized as a water
balloon trapped inside a cardboard box (Fester Kratz, 2011).
The box represents the cell wall, and the water balloon rep-
resents the protoplast. The protoplast is crowded with mol-
ecules, ions, macromolecular structures, and organelles. As a
result, water readily moves in, causing it to swell and gener-
ate turgor pressure—the force that pushes the plasma
membrane (PM) against the inner side of the cell wall. As
long as the wall is stiff enough to counteract this force, the
system remains in equilibrium. If the cell wall is too weak,
then it will either stretch to accommodate the contents of
the protoplast or break open. While the balloon-in-a-box
analogy neatly summarizes the essential players in plant cell
mechanics, the reality is much more complicated. In this

review, we introduce the mechanical properties of the cell
wall, the PM, and the protoplast, and discuss the ways in
which the dynamic and inter-connected material properties
of each of these components produce and maintain the
overall mechanics of the plant cell.

Both exogenous (touch, wounding, dehydration, flood-
ing, pathogen entry, and gravity) and endogenous
(growth, cell movement, division, and morphogenesis)
sources cause changes to cellular mechanics which must
be sensed and dealt with (Monshausen and Haswell, 2013;
Haswell and Verslues, 2015; Moulia et al., 2021; Robinson,
2021; Trinh et al., 2021). Here we outline several mecha-
nisms by which the plant cell is thought to sense me-
chanical signals at (1) the PM, (2) the cell wall, and (3)
inside the cell. We also consider how information from
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these different cellular compartments may be integrated
to inform adaptive responses and maintain mechanical
homeostasis at the cellular level.

While we focus here on plant cell mechanobiology, it is im-
portant to keep in mind that measurements and observa-
tions made at the single-cell level would most certainly be
altered by cell–cell signaling, close connections via plasmodes-
mata, and shared cell walls. The mechanics are even more
complicated at the tissue and organismal levels, where cell–
cell and tissue tissue interactions add additional forces, con-
straints, and feedback. Several recent reviews address these
important and intriguing issues (Sassi and Traas, 2015;
Echevin et al., 2019; Moulia et al., 2019; Long et al., 2020;
Trinh et al., 2021). Readers interested in the ways in which
cell-level events are integrated into supracellular mechanical
responses are referred to a recent review (Moulia et al., 2021).

The mechanics of the cell wall, the PM, and
the vacuole
Below, we discuss three components of the cell that contrib-
ute to cell mechanics: the primary cell wall, the PM, and the
vacuole. The mechanical contributions of the cytoskeleton
are addressed in several recent reviews (Xiao and Anderson,
2016; Hamant et al., 2019) and are not discussed here.

The cell wall
Cell wall mechanics is a highly active area of study, particu-
larly in relation to growth, anisotropy, and development.
Several recent reviews cover our current understanding in
more detail than possible here (Braybrook and Jönsson,
2016; Höfte and Voxeur, 2017; Fruleux et al., 2019; Grones et
al., 2019). Briefly, the cell wall must be able to (1) counteract
the high pressure generated by the protoplast within, yet (2)
allow for cell expansion and growth. To do both, it must be
simultaneously strong and flexible. In fact, biophysical mod-
els of the cell wall have characterized this material as
“viscoelastoplastic” (Braybrook and Jönsson, 2016; Fruleux et
al., 2019), meaning that it is flexible enough to return to its
original shape after a deforming force is removed, unless the
force exceeds a yield threshold. When the latter occurs, the
“plastic” part of the material description comes into play
and the cell wall is permanently stretched to a new shape
(Cosgrove, 2018). The importance of tuning the yield thresh-
old of the cell wall is illustrated by the opening and closing
of mature guard cells. The guard cell can expand and con-
tract repeatedly without its wall undergoing plastic deforma-
tion—at least, at relevant turgor pressures (Rui et al., 2018).

Mechanical differences between cell types and temporal/
geometric mechanical tuning within the same cell produce
the varied shapes, sizes, and growth patterns of plant cells.
For an excellent example of how dynamic changes in cell
wall mechanics play out during growth, see recent reviews
on pollen tube tip-growth (Cameron and Geitmann, 2018;
Cascallares et al., 2020; Ma et al., 2021). As detailed below,
the tunable viscoelastoplastic behavior of the plant cell wall

is achieved by a heterogeneous mix of materials that are dy-
namically interconnected and whose material properties can
be locally modulated by divalent cations, biosynthesis of
new materials, and enzymatic modifications (Anderson and
Kieber, 2020). The primary components of the cell wall are
cellulose, hemicelluloses, pectins, and callose (Lampugnani et
al., 2018).

In its crystalline state, cellulose is the strongest material in
the primary cell wall and is organized into microfibrils,
which are composed of multiple straight chains of b(1!4)
linked D-glucose (Polko and Kieber, 2019). Mechanically
speaking, the main role of this material is to resist tensile
(stretching) forces. Noncovalent contacts between cellulose
microfibrils create a network that holds much of the stress
in the wall (Zhang et al., 2021). The mechanical contribution
of this network is tuned during synthesis by the orientation
of cellulose deposition (Höfte and Voxeur, 2017), rate of
synthesis (Kesten et al., 2017, Polko and Kieber, 2019), crys-
tallinity (Li et al., 2014), and possibly the degree of polymeri-
zation (Fang et al., 2020). While there is some evidence for
postdeposition enzymatic remodeling of the cellulose struc-
ture via plant-secreted cellulases (Tsabary et al., 2003; Glass
et al., 2015), cellulosic strength is primarily controlled
through modification of its interactions with other cell wall
components, as explained below.

Unlike the conserved uniformity of cellulose, hemicellulo-
ses are a diverse group of polysaccharides that vary widely
in type and abundance across tissues and species, and in-
clude heteromannans, heteroxylans, xyloglucans, and mixed
linkage glucans (Scheller and Ulvskov, 2010; Pauly et al.,
2013). A common structural element amongst these poly-
mers is the presence of a b(1!4) linked backbone, which is
thought to form noncovalent interactions with cellulose
(Scheller and Ulvskov, 2010). The exact roles and interac-
tions of hemicelluloses, particularly xyloglucans, have been
questioned in the last several years as part of an effort to
understand cell wall organization. One current hypothesis is
that there are distinct areas—termed “biomechanical
hotspots”—where the xyloglucan binds tightly to cellulose
(Park and Cosgrove, 2012b; Zhao et al., 2014; Nili et al.,
2015). This idea is supported by genetic evidence; for exam-
ple, Arabidopsis plants lacking xyloglucan (xxt1 xxt2) have
only mild cell wall disruption but do exhibit defects in the
organization of cellulose deposition (Cavalier et al., 2008;
Anderson et al., 2010; Park and Cosgrove, 2012a; Xiao et al.,
2016). New cell walls developed by xxt1 xxt2 protoplasts
showed no effect on cellulose organization, implying that
xyloglucan does not play a major role during initial wall for-
mation (Kuki et al., 2020). The interactions between cellu-
lose and hemicellulose may be modulated in multiple ways.
Expansin proteins, which can loosen the cell wall and lead
to cell expansion (McQueen-Mason et al., 1992), have been
hypothesized to alter the bonds between cellulose and
hemicellulose (McQueen-Mason and Cosgrove 1995; Ma et
al., 2013; Wang et al., 2013). Lastly, enzymes such as

130 | THE PLANT CELL 2022: 34: 129–145 J. M. Codjoe et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/article/34/1/129/6370713 by W

ashington U
niversity in St. Louis user on 09 Septem

ber 2022



xyloglucan endotransglucosylase/hydrolases (Miedes et al.,
2013) and xylosidases (Shigeyama et al., 2016) may further
influence the mechanical contribution of hemicelluloses,
though direct evidence is largely lacking (Stratilová et al.,
2020). Future work will refine our understanding of the spa-
tial layout of the cell wall and the role of hemicelluloses.
Multidisciplinary approaches, such as computational model-
ing (e.g. Nili et al., 2015; Zhang et al., 2021), will likely be cru-
cial here.

Pectins comprise a large group of polysaccharides typically
with homogalacturonan or rhamnogalacturonan-based back-
bones that can be decorated with an impressive array of
substitutions and sidechains (Harholt et al., 2010; Atmodjo
et al., 2013). Mechanically, pectins contribute to the porosity
and water content of the cell wall and resist compressive
forces (Bidhendi and Geitmann, 2016). A notable material
property of pectins is their controllable and reversible gel
formation in vitro, which is the result of crosslinking of de-
esterified pectin in the presence of divalent calcium (Ca2 + ;
see Peaucelle et al., 2012; Bidhendi and Geitmann, 2016) for
recent reviews). The esterification status of pectin has been
found to influence overall cell shape (Haas et al., 2020).
However, it is worth noting that the ultimate effect of de-
esterification on wall mechanics is not always straightfor-
ward, as it is determined by the de-esterification patterning
and the concentration of cations. Discontinuous pectin de-
esterification or low Ca2 + concentrations can result in a
weakened wall (Bidhendi and Geitmann, 2016). De-
esterification of pectin may also negatively affect expansin-
mediated wall loosening (Wang et al., 2020). Moreover, pec-
tin likely does not passively surround the cellulose/hemicel-
lulose network as previously proposed, but instead interacts
with them and the other cell wall polymers (Phyo et al.,
2017; Rongpipi et al., 2018). The nature of these interactions
has recently been investigated in vivo where it was found
that reduced pectin synthesis in Arabidopsis quasimodo2
mutants negatively influences cellulose deposition and orga-
nization (Du et al., 2020). The effect of the pectin–cellulose
network on mechanics has been noted in vitro where it was
shown that the addition of a pectin hydrogel after cellulose
deposition resulted in a material with higher load-bearing
capabilities. A weaker material results if the pectin is present
during cellulose deposition (Lopez-Sanchez et al., 2016,
2017).

Callose is a b-1,3-glucan chain with occasional b-1,6
branches (Chen and Kim, 2009). Commonly found in
healthy somatic cells, callose is often referred to as a “leak
sealant” as it is deposited by cells after injury (Bacete et al.,
2018). However, callose deposition is also associated with a
variety of other processes including pollen development, ger-
mination, and tube growth (Ma et al., 2021), cell plate for-
mation (Drakakaki, 2015), plasmodesma permeability
regulation (De Storme and Geelen, 2014), and pathogen re-
sponse (Wang et al., 2021). An in vitro analysis of callose–
cellulose hydrogels suggests that callose adds flexibility to a
cell wall, helping to avoid stress-induced fractures (Abou-

Saleh et al., 2018). In pollen tubes, callose has been found to
increase the load-bearing capability of the wall (Parre and
Geitmann, 2005). Further analysis of the mechanical contri-
butions of callose in these settings as well as its in vivo
interactions with other cell wall polymers remains to be
explored.

In summary, the mechanics of the cell wall change dy-
namically in time and space and in response to develop-
mental and stress-related cues. Dynamic control is
accomplished at least in part by fine-tuning the assembly of
and the interactions between a diverse array of structural
components including cellulose, hemicellulose, pectin, and
callose. Proteins such as arabinogalactan proteins (Silva et
al., 2020) are also proposed to contribute to cell wall me-
chanics (Lamport et al., 2018). Secondary cell wall compo-
nents also add mechanical complexity. For example, the
phenolic compound lignin increases cell wall resistance to
deformation (Özparpucu et al., 2017). Because these compo-
nents do not function independently, but strongly influence
one another, it is challenging to understand the mechanical
effect of a certain material in vivo through classical genetic
approaches. Moreover, cell age, cell type, species, and expo-
sure to abiotic/biotic stresses all affect cell wall mechanics,
complicating comparisons between studies and leaving am-
ple room for further inquiry.

The PM
Compared to the cell wall, the PM does not contribute as
directly to cell mechanics because it is far more flexible and
less resistant to forces. However, it can act as a mediator be-
tween the inside and the outside of the cell, and as a signal-
ing platform that senses mechanical cues from either
direction (Le Roux et al., 2019; Ackermann and Stanislas,
2020). Both fluid and transient solid behaviors give the cellu-
lar membrane its key physical properties, including compres-
sion, lateral tension, and curvature (Le Roux et al., 2019)—
and these properties are likely to be highly dynamic. For ex-
ample, the extent to which the PM is compressed between
the resistant cell wall and the protoplast pressing outward
changes with turgor. Osmotic swelling and shrinking (Le
Roux et al., 2019) and modifications to the cell wall (Jaillais
and Ott, 2020) are also likely to dynamically impact mem-
brane tension, thickness, and curvature.

Proteins embedded in the PM and the presence of special-
ized lipids can influence the overall mechanical properties of
the cell, sometimes in a highly localized fashion (Gronnier et
al., 2018; Le Roux et al., 2019). For example, while it is often
assumed that localized stretching can quickly diffuse across
the membrane because the lipids in a membrane behave
like a fluid, the degree of tension diffusion can vary due to
local differences in lipid composition, membrane curvature,
or anchoring proteins (Kozlov and Chernomordik, 2015;
Cohen and Shi, 2020). Furthermore, the cell wall likely stabil-
izes proteins in the membrane and minimizes lipid diffusion
(Martiniere et al., 2012), perhaps through chemical interac-
tions between extracellular residues of membrane proteins
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and residues in the wall (Feraru et al., 2011; McKenna et al.,
2019; Dan�ek et al., 2020; Li et al., 2021).

The PM is physically connected both to the cell wall and
to the components inside the cell. A direct connection be-
tween the PM and cell wall is revealed by Hechtian strands,
thin strings of PM that become visible when the cell is plas-
molyzed. The exact composition, effects, and function of
these attachments remain mysterious, though a recent study
found that Hechtian strand removal via laser microdissec-
tion leads to increased callose in the wall of that cell
(Yoneda et al., 2020). This result points to a potential func-
tion of PM–cell wall connections in sensing and responding
to cell wall composition. On the cytoplasmic side, the PM
engages in dynamic physical connections with the endoplas-
mic reticulum (ER) at locations called ER–PM contact sites
(discussed further below).

The physical integrity of the PM must be tightly con-
trolled (Schapire et al., 2008; Perez-Sancho et al., 2015), as a
breach due to osmotic shock, freezing (Yamazaki et al.,
2008), drying, or puncture could result in losing cellular con-
tents, exposing organelles to harmful conditions, and a loss
of turgor. For example, to protect membranes from tearing
due to freezing, lipid composition is modulated, and mem-
brane surface area is controlled (Yamazaki et al., 2008;
Takahashi et al., 2016). Control of membrane surface area
also occurs in response to changes in turgor, with high tur-
gor inducing exocytosis, and low turgor inducing endocyto-
sis (Zonia and Munnik, 2007; Zwiewka et al., 2015). Changes
in turgor are also proposed to affect the deposition of cell
wall material (Proseus and Boyer, 2005), and the presence/
clustering of membrane proteins like PIN-FORMED1, an
auxin efflux carrier (Nakayama et al., 2012; Zwiewka et al.,
2015), and aquaporins, which allow for water diffusion
through the membrane (Martinière et al., 2019). The rela-
tionship between mechanically influenced endo/exocytosis
and the resulting modifications in membrane volume or
composition—which in turn regulate the mechanics of the
cell—is another example of the emergent properties of plant
mechanobiology. Future research should also consider how
cell type-specific differences in PM properties could affect
the mechanical attributes of the PM as well as its interac-
tions with the cell wall and intracellular components.

The vacuole
Turgor pressure is a crucial contributor to the stiffness of
the overall plant (Beauzamy et al., 2014). The turgor of a
plant cell averages around 0.44 MPa (Beauzamy et al., 2015)
and can be as high as 2 MPa (Weber et al., 2015). For refer-
ence, a car tire has a hydrostatic pressure of around
0.25 MPa! While all internal components may affect the me-
chanics of the cell to a degree and at various time scales
(Bashline et al., 2014), one organelle with a high degree of
influence is the vacuole. The vacuole is the largest organelle
in most plant cells and can serve a variety of functions. It is
key for turgor regulation, ion storage and homeostasis, and
the degradation of cellular components (Tan et al., 2019;
Kaiser and Scheuring, 2020). There are two main types:

protein storage vacuoles, which are specialized storage for
seeds, and lytic vacuoles, which are more generally found
across plant cells (Shimada et al., 2018; Cui et al., 2019).
Lytic vacuoles hold a solution of proteins, sugars, and
metabolites in a compartment separate from the rest of the
cell, drawing water in and allowing the cell to control turgor
without interfering with cytoplasmic contents or cytoplas-
mic volume.

The relationship between turgor pressure, vacuoles, and
cell expansion is complicated. It is thought that wall loosen-
ing is followed by water uptake, resulting in an increase in
vacuolar volume during cell growth. Recent evidence sug-
gests that increasing vacuolar volume serves to restrict cyto-
plasmic volume in an already expanding cell, not to drive
that expansion as previously thought (for more details, see
Dünser and Kleine-Vehn, 2015; Kaiser and Scheuring, 2020;
Cui et al., 2020). The mechanisms by which vacuole expan-
sion and remodeling are integrated with cell wall loosening
and stress relaxation during growth are still being studied
(Dünser et al., 2019, see below). In guard cells, vacuole ex-
pansion and stomata opening require an inward pumping
of solutes followed by water entry (Eisenach and De Angeli,
2017). During development, extra vacuolar membrane may
be derived from the ER (Viotti et al., 2013) or via fusion be-
tween smaller vacuoles (Cui et al., 2019).

While inhibition of vacuole expansion has been shown to
correlate with a reduction in cell expansion (Kaiser et al.,
2019), a dramatically expanded vacuole is not strictly re-
quired for cell growth. Tubulated or fragmented vacuoles
are seen across many cell types, including actively dividing
cells, growing root cells, guard cells, and tip-growing cells
like pollen tubes and root hairs (Cui et al., 2020). How vacu-
olar tubulation or fragmentation affects the overall mechani-
cal properties of a plant cell is not yet clear, though there is
a close association between vacuolar dynamics and guard
cell closing (Gao et al., 2005). Future studies should take a
closer look at vacuole morphology, what controls it, and
how it affects cellular mechanics in both growing and non-
growing cells. As vacuole morphology changes reversibly
along with stomatal opening and closing, guard cells may be
a good model system for asking these questions in the fu-
ture (Tanaka et al., 2007; Zheng et al., 2014).

Mechanotransduction and mechanostasis
The process of sensing and responding to mechanical stim-
uli can be understood as a version of signal transduction,
which we term mechanotransduction. According to this par-
adigm, changes to a cell’s mechanical environment trigger
mechanosensors to initiate signaling events that lead to
adaptive responses. Such adaptive responses include rapid
movements, like the closing of a Venus flytrap (Mano and
Hasebe, 2021), or more slowly revealed adaptations like thig-
momorphogenesis in response to repeated touch (Braam
and Chehab, 2017). At the cellular level, mechanotransduc-
tion can induce altered hormone signaling, changes in gene
expression (Chehab et al., 2011), defense or stress responses
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(Coutand, 2020; Ghosh et al., 2021), or a permanent decision
such as programmed cell death (Basu and Haswell, 2020).

Another outcome of mechanotransduction is a return to
mechanical homeostasis (or, as we term it here,
“mechanostasis,” (Chan et al., 2011)). When a cell is in
mechanostasis, the strength of the cell wall and the strength
of turgor pressure are in balance, and membrane deforma-
tions are at basal levels. Figure 1 illustrates the concept of
mechanostasis in response to hypo-osmotic cell swelling.
The cell might return to its original size through osmotic
processes that decrease turgor or through a change in the
mechanical properties of the cell, such as strengthening the
cell wall. Alternatively, the cell might expand, decreasing tur-
gor by virtue of an increased cell volume. All these responses
return the cell to a state where turgor and cell wall strength
are in balance. If a mechanosensor fails to sense swelling
and one of these downstream outcomes is not activated,
the cell can lose integrity and potentially lyse. Below we will
examine signaling pathways that respond to changes in
membrane tension and to changes in cell wall mechanics
that are thought to maintain mechanostasis of the cell.

Mechanical stimuli can be transient (i.e. touch or wind) or
continuous (i.e. gravity or turgor), and it remains unknown
if sustained stimuli continually activate the same mechano-
sensors used to sense transient stimuli (Toyota and Gilroy,
2013). In the following section, we review our current under-
standing of mechanotransduction with a focus on the roles
of two types of membrane-embedded molecular mechano-
sensors: mechanosensitive (MS) ion channels and receptor-
like kinases (RLKs). However, we note that mechanosensors
come in a range of scales, and that structures like the cyto-
skeleton, entire cells like trichomes, and even tissues can be
MS (see Hamant and Haswell, 2017 for more discussion).

MS ion channels: sensors of membrane
mechanics
The PM is a critical platform for the perception of mechani-
cal stimuli in plant cells (Ackermann and Stanislas, 2020).
For a plant cell, monitoring the lateral tension in the PM
provides one way to perceive osmotic cell swelling (Haswell
and Verslues, 2015), cell expansion (Kell and Glaser, 1993),
cell wall loosening (Frachisse et al., 2020), vibrations (Ghosh
et al., 2016; Tran et al., 2021), plant cell invasion (i.e. by fun-
gal hyphae [Westman et al., 2019], or even dehydration,
when the PM pulls away from the cell wall and forms
Hechtian strands [Haswell and Verslues, 2015]).

Membrane tension is perceived and signaled through the
action of MS ion channels. In response to increased lateral
membrane tension, MS ion channels open, conducting ions
between cellular compartments or into and out of cells.
Most are proposed to open due to their interactions with
the lipid bilayer in which they are embedded, according to
the general principle of “force-from-lipids” (Cox et al., 2017).
Recent structures of plant MS channels (Jojoa-Cruz et al.,
2018; Liu et al., 2018; Zhang et al., 2018; Maity et al., 2019;
Deng et al., 2020; Li et al., 2020) also support a biophysical
model wherein changes in the energetics of lipid deforma-
tion drive channel behavior (Wiggins and Phillips, 2005;
Ursell et al 2008). Recent cryoEM structures of the open
and closed states of Arabidopsis MscS-Like1 (MSL1) provide
evidence for a striking molecular mechanism: the channel
imposes a dramatic local membrane curvature when closed,
and membrane stretch flattens both the membrane and
transmembrane domains of the channel, causing it to open
(Figure 2; Li et al., 2020; Deng et al., 2020). Similarly, the
cryoEM structure of the Arabidopsis REDUCED HYPER
OSMOLALITY-INDUCED CA2 + INCREASE1.2 (OSCA1.2)
channel revealed local deformation of the membrane at a
region of the protein hypothesized to be MS, although other
models have been proposed (Jojoa-Cruz et al., 2018; Liu et
al., 2018; Zhang et al., 2018). Once opened, MS channel ion
conductance could lead to osmoregulation, intracellular
Ca2 + signaling, membrane depolarization, and/or changes in
extracellular pools of ions (Figure 2). There is further evi-
dence for a nonconducting function that relies on dephos-
phorylation of MSL10 (Veley et al., 2014; Maksaev et al.,
2018), indicating that posttranslational modifications and
protein–protein interactions can also contribute to MS
channel signal transduction.

MS channels are found in all domains of life; in plant cells,
they localize to the PM as well as organellar membranes
and are expressed in a range of cell types and developmen-
tal stages (Hamilton et al., 2015b). The classes of MS chan-
nels or MS channel homologs encoded in plant genomes
include the OSCA, MSL, MID1-COMPLEMENTING
ACTIVITY (MCA), TWO-PORE K + (TPK; Frachisse et al.,
2020) and PIEZO families (Zhang et al., 2019b; Radin et al.,
2021). There are additional MS activities detected in plant
membrane patches, such as the Rapid Mechanically

Figure 1 Restoration of cellular mechanostasis after hypo-osmotic
swelling. Hypo-osmotic cell swelling is caused by an increase in turgor
pressure (inner arrows), which disrupts the homeostatic balance be-
tween turgor and the cell wall. The cell could regain balance between
turgor and cell wall stiffness by returning to its previous size through
osmoregulation, by undergoing expansion, or by stiffening the cell
wall to counter the increased turgor.
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Activated (RMA) current (Guerringue et al., 2018), that has
yet to be attributed to any gene (Haswell, 2007).

PM MS channels as cell swelling sensors
While MS ion channels are obvious candidates for cell swell-
ing sensors due to their ability to respond to increased
membrane tension, the molecular mechanism by which
they do so is not fully understood. One possibility is that
MS channels take up a larger area as their pore opens
(Phillips et al., 2009), so simply opening could help relieve
increased membrane tension caused by cell swelling.
Alternatively, MS ion channels could contribute to mecha-
nostasis by directly ameliorating osmotic cell swelling
through the release of osmolytes. In fact, this was the first
discovered role of MS channels; the release of osmolytes by
bacterial MS channels is thought to protect cells from rup-
turing during hypo-osmotic shock (Levina et al., 1999; Boer
et al., 2011; Buda et al., 2016). The pollen-specific nonselec-
tive MS ion channel MSL8 likely serves an analogous role
during pollen hydration and germination (Hamilton et al.,
2015a; Hamilton and Haswell, 2017).

In addition, it has long been hypothesized that MS Ca2 +

channel(s) sense cell swelling and activate intracellular
responses by mediating cytoplasmic Ca2 + transients (Cazalé
et al., 1998; Pauly et al., 2001; Nakagawa et al., 2007; Nguyen
et al., 2018). The hypothesis has gained molecular under-
standing in recent years. The MCA1 channel enhances Ca2 +

influx in response to hypo-osmotic but not hyperosmotic
shock (Nakagawa et al., 2007; Stephan et al., 2016), and was
recently reported to be inherently MS (Yoshimura et al.,
2021). The Ca2 + -permeable channel responsible for the
RMA current, which requires the DEFECTIVE KERNEL 1 pro-
tein is stimulated by membrane tension (Tran et al., 2017),
and could be activated during cell swelling. Finally, cell swell-
ing could activate an MS channel that does not conduct
Ca2 + directly, but that subsequently activates a voltage-
gated Ca2 + channel through membrane depolarization
(Frachisse et al., 2020), which may be the case for MSL10
(Basu and Haswell, 2020).

MS channels in the response to cell shrinking
OSCA1.1 was discovered in a screen for decreased cytosolic
Ca2 + levels in response to hyperosmotic stress (Hou et al.,
2014; Yuan et al., 2014), and, along with OSCA3.1 and
OSCA1.2, is a PM stretch-activated channel with nonselec-
tive cation conductance (Murthy et al., 2018; Zhang et al.,
2018). How might OSCAs be activated by hyperosmotic
stress, a condition that might be predicted to decrease
rather than increase membrane tension? It is possible that
membrane tension could be produced locally at Hechtian
strands during dehydration, but OSCA1.1 also opens in re-
sponse to hyperosmolarity when heterologously expressed in
mammalian cells (Yuan et al., 2014). This suggests that
OSCAs can also respond directly to stimuli other than mem-
brane tension, such as PM hyperpolarization or changes in
osmolarity. Thus, how OSCA1.1 mechanosensitivity is related
to its ability to promote resistance to hyperosmotic stress
remains an exciting topic for future study.

Adaptive responses to MS ion channel activity
Arabidopsis and rice MCA1 and MCA2 (Nakagawa et al.,
2007; Kurusu et al., 2012; Mori et al., 2018), and Arabidopsis
OSCAs (Yuan et al., 2014; Thor et al., 2020), PIEZO (Mousavi
et al., 2021; Radin et al., 2021), and MSL10 (Basu and
Haswell, 2020) all promote Ca2 + transients, and MCA1 and
MSL10 have been reported to promote reactive oxygen spe-
cies accumulation (Kurusu et al., 2012; Basu and Haswell,
2020). How these signaling intermediates are connected to
downstream outcomes is still unknown. In the long term,
some MS channel signaling pathways are expected to result
in adaptive responses that lead to a reestablishment of
mechanostasis, such as strengthening the cell wall to rein-
force against potential future mechanical challenges. In sup-
port of this idea, when cell walls are softened
pharmacologically with cellulose synthase inhibitors, MCA1
promotes lignification (Denness et al., 2011; Engelsdorf et al.,
2018) which could lead to strengthening of the cell wall.
Perhaps a lack of lignification and cell wall stiffening is what
prevents mca1 roots from penetrating hard agar (Nakagawa
et al., 2007; Yamanaka et al., 2010). MCA1 and MSL10

Figure 2 Activation through membrane flattening and potential signaling outputs of MS ion channels. Once opened by membrane tension, MS
ion channels mediate ion movement according to their electrochemical gradient. Some MS channels allow Ca2 + to enter the cytoplasm from the
apoplast which could serve as a secondary messenger for mechanotransduction signaling cascades. Other MS channels release anions which could
theoretically depolarize the membrane and/or function in osmoregulation by reducing cytoplasmic ion concentrations. Nonselective MS channels
conduct both cations and anions. Some channels may have nonconducing functions, such as interacting with and activating other signaling
partners.

134 | THE PLANT CELL 2022: 34: 129–145 J. M. Codjoe et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/article/34/1/129/6370713 by W

ashington U
niversity in St. Louis user on 09 Septem

ber 2022



promote the expression of TOUCH-INDUCED (TCH) genes
(Nakagawa et al., 2007; Basu and Haswell, 2020). TCH gene
induction in response to cell swelling may have adaptive
consequences for cell mechanics as TCH4 is a xyloglucan
endotransferase/hydrolase (Shinohara et al., 2017), though
the magnitude of the effect of xyloglucans on cell wall me-
chanics is debated (Park and Cosgrove, 2015). In response to
cell swelling, changes in cytosolic Ca2 + levels may stimulate
exocytosis, which could alleviate membrane stretching
(Frachisse et al., 2020) to restore PM mechanostasis.

MS channels promote adaptive responses beyond re-
establishing mechanostasis. For example, OSCAs promote
survival in hyperosmotic conditions (Yuan et al., 2014; Cao
et al., 2020; Zhai et al., 2020) and contribute to stomatal clo-
sure during immune signaling (Thor et al., 2020), Piezo con-
tributes to defense against systemic viruses (Zhang et al.,
2019b), and MCA1 and MCA2 promote cold tolerance
(Mori et al., 2018). MSL10 promotes programmed cell death
in response to cell swelling (Basu and Haswell, 2020), which
might be adaptive if it allows for the recovery of materials
from cells with excessive membrane damage after swelling.
Transcripts of MSL10 and OSCA homologs are expressed in
the sensory cells of Venus flytrap trigger hairs and tentacles
of Cape sundew (another carnivorous plant). An exciting hy-
pothesis is that these MSL10 homologs open when trigger
hairs are stimulated, leading to the depolarization of sensory
cells, generating an action potential to close the Venus fly-
trap (Iosip et al., 2020; Procko et al., 2021).

RLKs: candidate sensors of cell wall
mechanics
Plant cells must continuously sense and mitigate changes in
cell wall mechanics during normal growth and in response
to environmental and developmental stresses (Beauzamy et
al., 2014; Rui and Dinneny, 2020). Losing the wall’s structural
support threatens PM integrity and can cause cell bursting
and cell death (Hamann et al., 2009; Feng et al., 2018). But
what is the relevant trigger for plant cells to respond to
changes in cell wall mechanics? It could be stress—the ten-
sion within the wall arising from turgor pressure acting on
it. Alternatively, it could be strain, which is the cell wall’s de-
formation due to that stress (Fruleux et al., 2019), or the dis-
placement of the PM relative to the cell wall (Vaahtera et
al., 2019; Bacete and Hamann, 2020).

Another stimulus for cell wall sensors is often referred to as
“cell wall integrity.” Cell wall integrity signaling has been studied
by genetically or pharmacologically inhibiting the biosynthesis of
wall components or by treating plants with cell wall-degrading
enzymes. The problem with such manipulations is that they al-
ter both the mechanical properties of the cell wall (like stress
and strain) and the chemical composition of the cell wall, and
“cell wall integrity sensors” could be responding to either stimu-
lus. Even if the stimulus is mechanical, cell wall integrity is itself
a challenging concept. What is being perceived—just a weaken-
ing of the cell wall, or complete cell wall rupture? The ultimate
outcome of defective cell wall integrity pathways is often cell

bursting (Boisson-Dernier et al., 2009; Ge et al., 2017; Feng et al.,
2018), but it is not clear what the normal trigger for such path-
ways is. Nor are the adaptive responses that these pathways
lead to fully understood. It is believed that they protect cell in-
tegrity through cell wall strengthening, and this has been pro-
posed to take place via a range of mechanisms: deposition of
general cell wall materials (Boisson-Dernier et al., 2013), modifi-
cation of pectin crosslinking (Feng et al., 2018), ectopic lignifica-
tion (Hamann et al., 2009) or callose deposition (Mecchia et al.,
2017), but direct evidence that these modifications are responsi-
ble for cell wall stiffening in these contexts is lacking.

For sensors that do indeed respond to cell wall mechani-
cal properties, “cell wall mechanosensor” might be a more
appropriate term. To establish that a protein is a cell wall
mechanosensor, researchers should first test if it is required
for responses to exogenous mechanical manipulations like
compression or indentation, which in the short term should
not modify the chemical components of the cell wall. How
to obtain direct evidence of a cell wall sensor’s mechanosen-
sitivity is a future question for the field and may in the end
require studies in a heterologous or in vitro system, similar
to what is used to establish the mechanosensitivity of ion
channels. We focus below on proteins that appear to be di-
rect cell wall mechanosensors, while acknowledging that the
situation is complicated by the fact that they also bind cell
wall epitopes and/or peptides.

One important class of candidate cell wall mechanosen-
sors are RLKs (Galindo-Trigo et al., 2016; Nissen et al., 2016;
Doblas et al., 2018; Gigli-Bisceglia et al., 2020). RLKs have an
intracellular kinase domain and diverse extracellular domains
separated by a single transmembrane domain. There are
hundreds of RLKs in plant genomes with a multitude of
functions (Dievart et al., 2020). Several from the
Catharanthus roseus RLK1-Like (CrRLK1L) family have been
implicated in cell wall mechanosensing; THESEUS1 (THE1)
does so in roots and cotyledons (Hamann et al., 2009;
Engelsdorf et al., 2018), FERONIA (FER) in roots (Shih et al.,
2014; Engelsdorf et al., 2018; Feng et al., 2018), and Buddha’s
Paper Seal (BUPS)1 in pollen tubes (Zhou et al., 2021).
Other CrRLK1Ls (Galindo-Trigo et al., 2016) and members of
other RLK families (Xu et al., 2008; Wolf et al., 2014; Van der
Does et al., 2017) participate in related processes like cell ex-
pansion, tip growth, and cell wall modification. These pro-
cesses involve many changes in cell biomechanics, and it is
possible that some of these other RLKs are mechanosensory
although that has yet to be demonstrated.

FER, THE1, and BUPS1 as cell wall–PM proximity
sensors
CrRLK1L signal transduction has primarily been studied
upon activation with extracellular peptide ligands called
rapid alkalinization factors (RALFs). However, RALFs are not
required for the FER- and THE1-dependent response to cell
wall damage in roots (Feng et al., 2018; Gonneau et al.,
2018). Instead, the extracellular domain of FER can bind pec-
tin in vitro (Feng et al., 2018; Lin et al., 2018), theoretically
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allowing FER and other CrRLK1Ls to report cell wall defor-
mation to the cytoplasm. FER is required for cytosolic Ca2 +

transients and apoplastic alkalinization when roots are per-
turbed by bending, touched with a glass micropipette, or
subjected to hypo-osmotic shock (Shih et al., 2014), and for
cell integrity and Ca2 + transients in response to salinity
stress. The latter causes a decrease in the stiffness of epider-
mal cell walls in the elongation zone of Arabidopsis roots
due to impaired pectin crosslinking (Feng et al., 2018).
BUPS1 promotes pollen tube survival upon exit from the
constrictive style tissue into the more open transmitting
tract (as well as thin, compressive microchannels that
widen), perhaps by promoting a stiffening of the cell wall
(Zhou et al., 2021).

THE1 is required for the deposition of lignin, production
of ROS, and jasmonic acid and salicylic acid accumulation in
response to cellulose deficiency throughout the plant,
whether induced genetically (Hématy et al., 2007; Merz et
al., 2017) or pharmacologically (Denness et al., 2011; Merz et
al., 2017; Engelsdorf et al., 2018). These responses can be
suppressed by lowering turgor pressure using high osmolar-
ity media (Hamann et al., 2009; Engelsdorf et al., 2018),
which has led to speculation that THE1 senses the displace-
ment of the PM toward the cell wall in response to local
cell wall softening (Figure 3A; Vaahtera et al., 2019; Bacete
and Hamann, 2020). It is also possible that other perturba-
tions that activate FER—hypo-osmotic shock, bending, and
indentation—also lead to PM displacement, but more work
is required to determine the specific stimulus or stimuli in
each of these cases. In the case of BUPS1, perhaps there is
also a transient decrease in the distance between the PM
and cell wall as pollen tubes with soft apical cell walls
emerge into the transmitting tract and lose the compressive
forces imposed by style cells (Zhou et al., 2021).

Adaptive responses to CrRLK1L activity
Binding to RALFs triggers CrRLK1L autophosphorylation
(Haruta et al., 2014) and transphosphorylation by cytoplas-
mic kinases (Du et al., 2016). Hallmarks of RALF/CrRLK1L
signaling in roots are alkalinization of the apoplast, cytoplas-
mic Ca2 + fluxes, and ROS accumulation (Boisson-Dernier et
al., 2013; Haruta et al., 2014; Gonneau et al., 2018;
Figure 3B). These signal transduction events are likely trig-
gered by the CrRLK1L phosphorelay, although the kinase ac-
tivity of CrRLK1s is not always required (Shih et al., 2014;
Haruta et al., 2018; Gronnier et al., 2020). FER promotes the
phosphorylation of H + -ATPase 2, which is thought to in-
hibit H + -ATPase activity and lead to alkalinization of the
apoplast (Haruta et al., 2014). Additionally, activated FER sig-
nals through plant Rho-GTPases (RAC/ROPs) and activates
NADPH oxidase-dependent ROS accumulation (Duan et al.,
2010, 2014) and positively regulates the stability of the F-ac-
tin cytoskeleton (Dong et al., 2019). BUPS1 activates ROP1,
whose activation is correlated with pectin de-
methylesterification and wall thickening, likely stiffening the
cell wall of pollen tubes (Zhou et al., 2021) by increasing
rates of pectin methylesterase exocytosis (Luo et al., 2017).

The Ca2 + channel directly or indirectly activated by
CrRLK1Ls remains unknown. FER is also thought to serve as
a scaffold for immune receptors, with binding to RALFs
inhibiting its scaffolding function (Stegmann et al., 2017).

Impairing cell wall integrity in seedlings leads to growth
arrest, presumably to prevent cell expansion until the cell
wall can be reinforced through cell wall modifications
(Cano-Delgado et al., 2003; Hématy et al., 2007; Hamann et
al., 2009; Tsang et al., 2011; Engelsdorf et al., 2018). Put an-
other way, growth arrest may allow cells with softened cell
walls to return to mechanostasis without the confounding
mechanical challenges of normal growth (Feng et al., 2018).
Even under standard conditions, fer roots grow aberrantly,
sometimes faster and sometimes slower than wild-type
roots, and experience greater fluctuations in strain in the
elongation zone. This aberrant growth pattern suggests that
fer roots have impaired mechanosensory feedback, consis-
tent with the role of FER as a mechanosensor (Shih et al.,
2014). In contrast, THE1 seems to require cell wall damage
for activation (Hématy et al., 2007; Merz et al., 2017;
Vaahtera et al., 2019). Perhaps, CrRLK1Ls have different
thresholds of activation, which would allow plants to fine
tune their responses to different degrees of cell wall impair-
ment, allowing plant cells to differentiate large, short-term
increases in cell wall stress/strain and the smaller increases
associated with long-term growth processes.

Interactions between MS channel and RLK
signaling
The mechanosensing pathways of the cell wall and the PM
may be integrated beyond the fact that both compartments
are inextricably linked during mechanical manipulations
(Figure 3A). For example, RLKs may modify the activity of
MS channels. MCA1 is genetically downstream of THE1 in
promoting lignification and hormone accumulation in re-
sponse to isoxaben treatment, which inhibits cellulose bio-
synthesis (Engelsdorf et al., 2018). When WAK1, a member
of the WALL-ASSOCIATED KINASE RLK family, binds oligo-
galacturonides, MSL6 is phosphorylated (Kohorn et al.,
2016). Conversely, future studies may reveal that MS ion
channel conductance can alter cell wall mechanics, and
therefore RLK activity, by delivering or removing ions that
affect polymer crosslinking, enzyme activity, or electrostatic
interactions between different cell wall components.
Additionally, ions present or complexed in the cell wall
could influence ion flux through MS channels (Volkov,
2015). For all the reasons listed above, it is difficult, or even
impossible to untangle signaling pathways that are begun by
mechanical perturbations to the PM or to the cell wall. For
the plant cell, it may not be critical to differentiate them.

Subcellular mechanotransduction
Additional mechanosensory components in the cell wall–
PM continuum almost certainly await discovery. However,
the search for mechanosensors should not be focused
solely on the cell periphery. As discussed below, our
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current understanding of mechanotransduction in multi-
ple subcellular compartments illustrates the need for an
integrated vision of plant cell mechanobiology at the cel-
lular scale.

Vacuolar mechanosensors
There has long been evidence for vacuolar mechanosensing;
excised patches of vacuolar membrane, or tonoplast, from
red beet and onion cells display MS currents (Alexandre and

Figure 3 Possible activators and signaling outputs of RLKs. A, Expected changes in cell wall–PM proximity in response to mechanical signals.
Some RLKs are required for responses to hypo-osmotic shock, indentation, and bending (FER) and to cell wall weakening (FER and THE1). They
might respond to the altered distance between the PM and certain cell wall components during these manipulations, and/or the compression of
the PM against the cell wall. Lowering turgor pressure using osmolytes, which would be predicted to relieve the PM compression or displacement
that occurs when cell walls are impaired, suppresses RLK signaling. B, PM-localized CrRLK1Ls are hypothesized to be activated by cell wall mechan-
ics through their interaction with cell wall components, although this is less well-understood than their activation by RALF peptide ligands. RALFs
mediate the interaction of CrRLK1Ls with LORELEI-like glycophosphatidylinositol-anchored protein co-receptors (LLGs) and Leucine-Rich-Repeat
Extensins (LRXs) (Mecchia et al., 2017; Xiao et al., 2019). Activated CrRLK1Ls promote apoplastic alkalinization (perhaps by inhibiting the activity
of H + -ATPases), the opening of unknown Ca2 + channel(s), cytoplasmic kinase cascades, and ROPGEF signaling, which activates ROS production
through NADPH oxidases and is thought to promote exocytosis of cell wall components (Zhou et al., 2021). CrRLK1L kinase activity is not re-
quired for all signaling outputs and may depend on the stimulus. Components are not drawn to scale.
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Lassalles, 1991; Badot et al., 1992). The tonoplast TPK1 chan-
nel protects isolated vacuoles from lysis during hypo-
osmotic shock (Maathuis, 2011). Modeling of water flux
through vacuolar aquaporins suggests that they are mecha-
nosensitive and predicts that they close when membrane
tension is high (Leitao et al., 2014; Goldman et al., 2017),
providing protection to vacuolar integrity during hypo-
osmotic shock by limiting further water influx and helping
the vacuole maintain turgor. Plant PIEZOs localize to the to-
noplast where they promote vacuole tubulation, tonoplast
internalization, and/or fission in tip-growing moss proto-
nema and Arabidopsis pollen tubes (Radin et al., 2021). Cell
wall damage transcriptionally downregulates aquaporin ex-
pression (Hamann et al., 2009), and through FER, triggers
vacuolar fragmentation (Dünser et al., 2019). Root growth
through stiff media also promotes vacuolar fragmentation
(Dünser et al., 2019), indicating that vacuolar reorganization
may be a general response to more than one mechanotrans-
duction pathway.

Plastid mechanosensors
Two MS ion channel homologs found in the plastid enve-
lope, MSL2 and MSL3, are implicated in plasmid osmoregu-
lation (Haswell and Meyerowitz, 2006). The abnormal
swelling of nongreen plastids in msl2 msl3 mutant leaf and
root epidermis can be rescued by growth on media supple-
mented with osmolytes that presumably enter the cyto-
plasm and reduce the hypo-osmolarity of the plastid stroma
(Veley et al., 2012). The same phenomenon is observed in
mutants lacking functional members of the K + EXCHANGE
ANTIPORTER family (Kunz et al., 2014). Downstream effects
of MSL2 and MSL3 deficiency include callus formation and
superoxide accumulation in the shoot apical meristem, and
these phenotypes can likewise be partially suppressed by
growing seedlings on media with osmotic support (Wilson
et al., 2016). Interestingly, plastid mechanosensation is in-
volved in downstream responses to cell wall–PM disruption,
as MSL2 and MSL3 contribute to the accumulation of JA af-
ter isoxaben treatment (Engelsdorf et al., 2018).
Furthermore, MSL2 is required for the systemic spread of
H2O2 after high light treatment (Fichman et al., 2021).
Perhaps, MSL2 plays a similar role in chloroplasts as MSL1 in
mitochondria, which contributes to redox homeostasis and
the dissipation of excess membrane potential, and may be
activated by ROS (Lee et al., 2016). We are only just begin-
ning to understand organellar osmoregulation and mecha-
nobiology, and they are topics that warrant future study.

Mechanotransduction in the ER and plasmodesmata
Evidence is growing that the ER plays a role in mechano-
transduction in plants. Contact sites between the PM and
the ER are places of connection to the actin and microtu-
bule cytoskeletons (Wang et al., 2014, 2016), and may serve
as important signaling hubs wherein mechanical information
from the cell wall–PM–cytoskeleton continuum is conveyed
to the ER. SYNAPTOTAGMIN 1 (SYT1), an integral ER
membrane protein enriched at ER–PM contact sites, helps

maintain PM integrity in response to salinity stress as well
as mechanical pressure (Schapire et al., 2008; Perez-Sancho
et al., 2015). SYT1 and other ER–PM contact site proteins,
such as VAP27s, preferentially localize to Hechtian strands
(Wang et al., 2016; Lee et al., 2020). Plasmodesmata contain
tight connections between the ER and PM (Tilsner et al.,
2016) and close in response to mechanical perturbation
(Jaffe et al., 1985) and to differences in turgor between
neighboring cells (Oparka and Prior, 1992). Modeling sug-
gests that the plasmodesmal structure itself is inherently
mechanosensitive, as the tethered desmotubules could
move due to pressure differentials between cells and occlude
the pores (Park et al., 2019).

Nuclear mechanotransduction
The biomechanics of and mechanotransduction in the nu-
cleus, while well-studied in animals (Janota et al., 2020), is
barely studied in plants (Goswami et al., 2020a).
Hyperosmotic stress leads to a stiffening of the nucleus in
root cells accompanied by a decrease in nuclear size and cir-
cularity. This shrinking and stiffening may result from chro-
matin condensation (Goswami et al., 2020b) as it does in
animals (Irianto et al., 2013). During development, nuclei at
the shoot apical meristem–organ boundary are compressed
due to tissue folding and display changes in chromatin ar-
chitecture and linker histone expression compared to neigh-
boring, noncompressed cells (Fal et al., 2021). Future
biomechanical studies of the plant nucleus should address
whether cell wall-derived mechanical changes can be con-
veyed to the nucleus, and what, if any, role nuclear shape
has on gene expression changes that contribute to reestab-
lishing nuclear and cellular mechanostasis. The nuclear Ca2 +

transients long associated with mechanical signaling (van
Der Luit et al., 1999; Pauly et al., 2001), may derive from as-
yet-unidentified MS Ca2 + channels in the nuclear mem-
brane (Itano et al., 2003; Xiong et al., 2004; Enyedi and
Niethammer, 2016).

Summary and perspective
Here we have described our current understanding of the ma-
terial properties of three key components of the plant cell:
the PM, the cell wall, and the protoplast. Their mechanics are
interdependent, connected through direct and indirect physi-
cal connections and through mechanotransduction pathways.
As a result, physical changes to one component often dynam-
ically lead to the alteration of other components through os-
moregulation, cell wall modifications, or membrane
trafficking. We have outlined two major PM-based mechano-
transduction systems (based on MS ion channels and RLKs as
mechanosensors) and several known or suspected intracellular
mechanisms for conveying mechanical information, including
the vacuole, plastids, the ER, plasmodesmata, and the nucleus.
We have highlighted multiple interactions between these vari-
ous pathways, such as synergy between MS channels and
RLKs, and between RLKs and vacuoles.
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We also introduce the concept of mechanostasis, wherein
the strength of the cell wall and the strength of turgor pres-
sure are in balance. We argue that many mechanotransduc-
tion processes serve as feedback loops designed to bring the
cell back into a state of mechanostasis. Considering its loca-
tion between the protoplast and the cell wall, the PM might
be considered the de facto organizing center for mechano-
stasis; yet the vacuole and other intracellular organelles are
likely also involved.

Thus, in many ways, plant cell mechanics can be viewed
as an emergent property of all the components, rather than
individual contributions that are simply summed together.
Even when considering an individual cellular component,
there is a multitude of factors that influence mechanics and
mechanotransduction—such as the interactions between
different cell wall polymers, whose properties are constantly
being tuned in space and in time. In some cases, this inter-
connectedness is an experimental asset, for instance being
able to suppress cell wall integrity defects with osmotic sup-
port (Hamann et al., 2009; Engelsdorf et al., 2018). However,
the interdependence of the mechanical properties of cell
components can also be experimentally challenging. While
one can measure the stiffness of a plant cell or tissue using
atomic force microscopy, it can be difficult to separate the
effects of turgor and of cell wall properties (Braybrook,
2015). Future plant cell mechanobiology research will reveal
how these many components and mechanotransduction
pathways work together dynamically to create a holistic, ho-
meostatic entity capable of maintaining mechanostasis or
undergoing adaptive changes, as appropriate.
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