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ABSTRACT
Eye-tracking is a critical source of information for understanding
human behavior and developing future mixed-reality technology.
Eye-tracking enables applications that classify user activity or pre-
dict user intent. However, eye-tracking datasets collected during
common virtual reality tasks have also been shown to enable unique
user identi�cation, which creates a privacy risk. In this paper, we
focus on the problem of user re-identi�cation from eye-tracking
features. We adapt standardized privacy de�nitions of k-anonymity
and plausible deniability to protect datasets of eye-tracking features,
and evaluate performance against re-identi�cation by a standard
biometric identi�cation model on seven VR datasets. Our results
demonstrate that re-identi�cation goes down to chance levels for
the privatized datasets, even as utility is preserved to levels higher
than 72% accuracy in document type classi�cation.
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1 INTRODUCTION
Re-identi�cation attacks in literature have been extensively ex-
plored for social networks [Narayanan and Shmatikov 2009], loca-
tion data [Primault et al. 2018], and medical data [El Emam et al.
2011]. Real-world re-identi�cation attacks have been demonstrated
to learn the medical prescriptions of a politician [Sweeney 2002] or
reveal the Net�ix preferences of half of a million users [Narayanan
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and Shmatikov 2009]. As a result of the Net�ix dataset attack, a
woman sued the company over the risk that her leaked viewing
patterns would reveal her sexual orientation to her family [Singel
2009]. There are an increasing number of algorithms that can au-
thenticate a user based on eye movement data [George and Routray
2016; Lohr et al. 2021; Schröder et al. 2020; Sluganovic et al. 2018].
Numerous datasets of eye-tracking data for virtual reality (VR) ap-
plications are publicly available [David-John et al. 2021a; Emery
et al. 2021; Hu et al. 2021; Sitzmann et al. 2018; Steil et al. 2019;
Xu et al. 2018]. Taken together, this means that re-identi�cation
attacks using eye movements are not only plausible, but imminent.

Do people care? Surveys by Adams et al. [2018] and Steil et
al. [2019] have established that both users and developers have
privacy concerns over VR and eye-tracking data collection and how
they are applied to make inferences about the user. For example, VR
developers have cited that they are aware of privacy concerns for
users and share their sentiments; however, most developers are not
privacy experts and there is a lack of standards for how to address
topics like ethics or privacy issues. For users, survey participants
have indicated that they would be willing to accept bene�cial VR
applications that collect eye-tracking data if they are sharing the
data with trusted governmental health agencies or with a university
for research purposes. The same users also responded that they
would not share their data publicly or with private services, unless
there were constraints in place for how the data was being used.

Is regulation the answer? Privacy laws in certain regions are
designed to protect traditional biometric identi�ers, such as iris
patterns and face scans [Heller 2020]. However, legal scholars have
pointed out that privacy laws rarely hold up in court, and would
not apply to behavioral data streams due to ambiguous wording
over what is considered a biometric [Roberg-Perez 2016]. A lack of
enforceable privacy laws and data release standards implies that
VR platforms could store or sell identities through eye-tracking
and behavioral data captured alongside demographics, which are
typically used for personalized ads on the web [Datta et al. 2015].

Scope and contributions. In this paper we propose two novel adap-
tions of privacy mechanisms to achieve k-anonymity and plausible
deniability (PD) guarantees for datasets of eye-tracking features.
We compared our mechanisms against the previously established
Exponential mechanism for DP. We found that our k-same-select
sequence approach defended against re-identi�cation and achieved
superior utility in document type recognition by maintaining ac-
curacy �72% across all parameter values. Our mechanisms are
appropriate for protecting identity in eye-tracking datasets through
o�ine processing, in contrast to real-time privacy mechanisms for
interactive systems or APIs [David-John et al. 2021a; Li et al. 2020].
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Table 1: Privacy mechanisms for eye-tracking data with formal privacy guarantees. Shaded rows indicate our mechanisms.
Mechanism Guarantee Data Type Input to Mechanism Adaption to Eye Tracking
Kal� ido [Li et al. 2020] �,w, r -DP Gaze

Samples
Window ofw gaze

positions, current ROI
radius r

Adapt spatial DP mechanism [Andrés et al. 2013]
to incorporate a sequence [Kellaris et al. 2014] of
gaze positions relative to dynamic ROIs in scene

Gaussian [Liu et al.
2019]

�,� -DP Saliency
Maps

User �xation map Adapt DP noise mechanism [Dwork 2006] to
protect �xation counts over image pixels

Exponential-DP [Steil
et al. 2019]

�-DP Statistical
Features

Gaze features extracted
over window of time t

Adapt DP Noise mechanism [Dwork et al. 2014]
applied to features independently

DCFPA [Bozkir et al.
2021]

�-DP Statistical
Features

Gaze features extracted
over window of time t

Adapt Fourier DP mechanism [Rastogi and Nath
2010] to include di�erence and chunking of sliding

windows over time
k-same-select
sequence (ours)

k-anonymity Statistical
Features

Gaze features extracted
over window of time t

Randomly group features and apply
k-same-select [Gross et al. 2005] over a sequence

Task-based
Marginals (ours)

k,� -PD Statistical
Features

Gaze features extracted
over window of time t

Apply Marginals Generative Model and PD
test [Bindschaedler et al. 2017] to each task

2 RELATEDWORK
Mechanisms that achieve formal privacy guarantees have been
explored for protecting eye-tracking data against re-identi�cation
attacks for gaze samples [Li et al. 2020] and for features extracted
from gaze data [Bozkir et al. 2021; Steil et al. 2019]. The un-shaded
rows in Table 1 lists existing mechanisms that achieve formal pri-
vacy guarantees for eye-tracking data, type of input data, and how
they were adapted to eye-tracking. The only formal privacy guar-
antee that has been explored is di�erential privacy (DP). While DP
is popular in the privacy community due to the robust de�nition,
there is an inevitable trade-o� between increased DP privacy and
lower data utility [Kifer and Machanavajjhala 2011].

We consider protecting eye-tracking data against re-identi�cation
attacks through alternative privacy guarantees. First, we explored
k-anonymity to provide intuitive protection in that individual data
cannot be distinguished from k-1 others. By adapting k-same-
select [Gross et al. 2005], an upper bound on attack success is
established while retaining utility. However, this approach releases
k copies of the same data values. From an eye-tracking perspective,
releasing duplicate data is not a satisfying solution. We shifted to
considering PD, which extends a similar intuition for synthetic data.
Synthetic data retains utility by reproducing characteristics of the
original data. We explored guarantees speci�c to re-identi�cation,
and found superior utility with k-anonymity and that synthetic
data has promise for preserving privacy in eye-tracking datasets.

3 METHODOLOGY
We conducted an evaluation of re-identi�cation attacks on eye-
tracking features and apply privacy mechanisms to protect identity.
This section describes the protocol for re-identi�cation attacks,
privacy mechanisms for processing features, datasets included in
the evaluation, and the approach used for biometric classi�cation.

3.1 Threat Model
We assume that an adversary has access to a public eye-tracking
dataset. The adversary trains an identi�cation model to take eye-
tracking feature vectors as input and output the associated identity.
Given new eye-tracking data, from playing a VR game for example,

the adversary can use the trained model to guess at the identity of
the player. The re-identi�cation attack is successful if the correct
identity is returned.

3.2 Proposed Solution
We propose two privacy mechanisms that can be applied to the
eye tracking dataset prior to releasing it for public use. Thus, the
adversary will train their model on privatized datasets. We assume
that the adversary acquires un-privatized, i.e., raw data for the
purposes of the re-identi�cation attack, which is considered the
test set. The privacy mechanisms are successful if they reduce the
the rate of re-identi�cation to below chance levels.

3.3 Privacy Mechanisms
In this section, we contribute two privacy mechanisms, one that
satis�es k-anonymity and one that satis�es plausible deniability.
We provide pseudocode for ease of re-implementation and publicly
release code for k-same-select sequence.1 Both mechanisms are
adaptations of prior work to consider eye-tracking features. For
completeness, we provide pseudocode for our implementation of
the DP-oriented mechanism de�ned by Steil et al. [2019].

k-same-select sequence. Thek-same family of mechanisms [Gross
et al. 2005; Newton et al. 2005] accomplish k-anonymity by �rst
splitting individual data into groups of size k . Each group is av-
eraged to produce a value which is then released k times in the
released dataset. This enforces the upper bound on re-identi�cation
probabilities, as k of the identities from the original dataset will
have equal contribution to the privatized data.

The implementation of k-same depends on the format of data
being released. For example, k-same can be applied directly to
face images by clustering and releasing averages [Newton et al.
2005]. For eye-tracking, the computed feature vectors are grouped
and averaged to satisfy k-anonymity. We adapted the k-same-select
mechanism by separately processing the sequence of feature vectors
generated for each task in the dataset. Lines of code in blue indicate
the original k-same-select method and orange indicate our adapted

1https://doi.org/10.5281/zenodo.6463850
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steps. The data from all individuals are processed sequentially, i.e.,
the �rst feature vector of all individuals viewing a speci�c stimulus
within a given task are randomly placed into groups of size k to
compute average values for release. The mechanism assumes that
there is data from at least k individuals available for grouping.
The same groupings of individuals are used for each stimulus to
achieve k-anonymity across the entire sequence of feature vectors.
The adapted sequence mechanism is generalized by processing
feature vectors in sequence; however, there is no guarantee that
each individual had the same number of feature vectors per stimulus.
Data are padded to repeat the last feature vector in the sequence
for individuals with less features.
1: procedure k ������������ �������(k, feature_data: structure index-

ing data by id and task)
2: form = 1 to num_task do . Process features from each task

independently
3: curr_data  f eature_data[m]
4: Randomize N individuals into H groups of size k
5: for i = 1 to num_f eature_�ectors do . Loop over

sequence of feature vectors within taskm
6: curr_f eatures  curr_data[i, :] . i-th feature vector

from each individual viewing current stimulus
7: a��_f eatures  a��_�roups(curr_f eatures, G) .

Compute average feature vector for each group
8: curr_data[i, :] a��_f eatures
9: f eature_data[m] curr_data . Update feature vector

data for taskm
return f eature_data

Task-based Marginals Model (PD). Plausible deniability (PD) is
not a condition of a privacy mechanism, but instead a privacy cri-
terion that is checked before data is released [Bindschaedler et al.
2017]. Any number of approaches can be applied to generate data
that satis�es PD. A generative model takes a raw feature vector as
input and PD establishes that at least k � 1 other inputs from the
original dataset could have plausibly generated the output synthetic
feature. A parameter� is used to control how close relative probabil-
ities must be to be considered plausible, and k controls the number
of features from the original dataset that have to pass the privacy
test before synthetic data can be released. The formal de�nition
and privacy test are detailed in the Supplementary Material.

To achieve PD we applied the Marginals approach with publicly
available code [Bindschaedler et al. 2017]. Marginals builds a dis-
tribution of discrete values for each feature column and releases
synthetic data by randomly sampling each feature independently.
The learned feature distributions are representative of each task.
Resulting distributions are used to synthesize data by task and re-
tain utility. We adapted this approach by binning each continuous
feature into B = 30 discrete buckets over the range of values (orange
lines of code). The generated synthetic feature vectors consist of
discrete values corresponding to buckets that cover the range of
feature values. We sample values between the min and max range
from the corresponding bucket with a random uniform distribution
to map synthetic data back into continuous feature values. The
synthetic dataset is strati�ed to contain the same number of feature
vectors for each individual and task as the original dataset. The PD
guarantee di�ers from k-anonymity, in that PD guarantees k � 1
other features from the original dataset could have generated the

synthetic output, while k-anonymity guarantees that k � 1 other
individuals could have generated a sequence of output features.
1: procedure T���������M��������M����(k, � , B, feature_data: struc-

ture indexing data by id and task)
2: bin_f eature_data  BinData(f eature_data, B) . Map each

feature dimension into B uniformly sized bins
3: form = 1 to num_task do . Process features from each task

independently
4: M  Mar�inalsDist (bin_f eature_data[m]) . Learn

distribution of discrete values for each feature
5: s�nth_data  Sample(M, num_samples) . Randomly sample

each feature column independently
6: pr i�ate_data  Pr i�ac�T est (s�nth_data) . Privacy test

detailed in Supplementary Material
7: bin_f eature_data[m] pr i�ate_data . Update feature vector

data for taskm with synthetic data
8: f eature_data  BinToContinuous(bin_f eature_data) .

Convert feature vectors to continuous values
return f eature_data

Exponential-DP Mechanism. The Exponential-DP noise mecha-
nism was proven to be �-DP by Steil et al. [2019] and applies to each
individual feature in the feature set.2 Exponential noise is sampled
independently for each feature vector and depends on the range
of each feature and the task duration. The �rst step in applying
Exponential-DP is to compute the range �i for each feature i as the
maximum value minus the minimum value. The maximum number
of feature vectors tmax from any individual during viewing is used
for padding the data from other individuals. The last feature vector
recorded for an individual is repeated to ensure that each individ-
ual has tmax total feature vectors. For each feature a value � is
sampled from an Exponential distribution with a scale of 1

� , where
� = �

2·tmax ·�i . The additive noise is then computed as r = ± lo�e (�)
� ·tmax

and the positive or negative sign is randomly assigned. Values of r
are computed for every feature from the task, and are added to the
original data to produce noisy feature vectors to release.
1: procedure E�����������DP(� , feature_data: structure indexing data

by id and task)
2: �  Ran�e(f eature_data) . Max value for each feature

minus minimum value
3: form = 1 to num_st imuli do . Process feature vectors from

each individual and task independently
4: �  �

2·tmax ·� . � computed for each feature dimension based
on � and tmax from task

5: Exp  Exponential (scales = 1
� ) . De�ne Exponential

distribution for each feature based on �
6: for i = 1 to num_f eature_�ectors do . Loop over

sequence of feature vectors within taskm
7: �  SampleExponential (Exp) . Sample value from

Exponential distribution for each feature
8: r  lo�e (�)

� ·tmax
. Compute additive noise value

9: r  ±r . Randomly �ip values between positive and
negative sign

10: f eature_data[m, i] f eature_data[m, i] + r
return f eature_data

3.4 Datasets
We evaluate the above detailed privacy mechanisms on publicly
available VR datasets of eye-tracking features. The datasets vary

2Due to The Composition Theorem, Exponential-DP achieves a guarantee of � times
the number of features. For consistency with [Steil et al. 2019], we reference � as the
noise parameter for each feature, and not the composed guarantee.
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Table 2: Characteristics of VR eye-tracking datasets.
Dataset # Ppts. Chance Rate # Stim. Data Per Ppt. Stimuli Type Task
MPIIDPEye [Steil et al. 2019] 20 1/20 Ppts. = 5.0% 3 30 mins Documents VR Reading
ET-DK2 [David-John et al. 2021a] 18 1/18 Ppts. = 5.5% 50 21 mins 360� Images Free Viewing
VR-Saliency [Sitzmann et al. 2018] 130 1/130 Ppts. = 0.8% 8 4 mins 360� Images Free Viewing
360_em [Agtzidis et al. 2019b] 13 1/13 Ppts. = 7.7% 14 17 mins 360� Videos Free Viewing
VR-EyeTracking [Xu et al. 2018] 43 1/43 Ppts. = 2.3% 208 Avg: 88 mins 360� Videos Free Viewing
OpenEDS [Emery et al. 2021] 44 1/44 Ppts. = 2.3% 2 10 mins 3D Scene Free Exploration
EHTask [Hu et al. 2021] 30 1/30 Ppts. = 3.3% 15 30 mins 360� Videos Free Viewing, Search,

Saliency, Track

based on the number of individuals, amount of data available, task
being performed, and type of stimulus being viewed. Table 2 sum-
marizes the characteristics of datasets included in our evaluation.

3.5 Feature Sets
Six of the datasets listed in Table 2 release raw gaze sample data,
while MPIIDPEye included both raw samples and a set of pre-
computed sliding windows of gaze-based features [Bulling et al.
2010]. To maintain consistency with past results from MPIIDPEye,
we used their feature set in our analysis of this dataset. For all other
datasets, we replicate the approach from David-John et al. [2021a]
and extract features from �xation and saccade events detected using
the I-S5T algorithm with default parameters [Agtzidis et al. 2019a].
The features extracted from �xation and saccades events leverage
common statistics such as duration and amplitude, as well as the
velocity and acceleration of gaze during the event [George and
Routray 2016]. A feature set is generated for each type of event and
a separate classi�cation model is trained for each feature set.

3.6 Biometric Classi�er
A Radial Basis Function (RBF) network is used to classify identity
using feature vectors as input and is commonly used to identify
users from eye-tracking data [David-John et al. 2021a; George and
Routray 2016; Schröder et al. 2020]. An RBF network features a
single hidden layer of nodes consisting of activation functions.
The output of the activation functions is weighted to generate a
probability that input is from each target class. The predicted class
with the highest probability is considered the individual most likely
to have produced the input feature vector, which is then used for
biometric identi�cation. Biometric identi�cation relies on a set of
features from an unknown individual viewing at least one stimulus.
The feature vectors from all stimuli for an unknown individual are
classi�ed by the network, and the output scores are used to predict
identity by averaging prediction scores.

As described in Section 3.5, the majority of datasets included
in our evaluation use features extracted from both �xation and
saccade events, requiring an RBF network trained independently on
both features [George and Routray 2016]. The output identi�cation
scores are �rst averaged within each type of event, then a �nal
classi�cation is made with a weighted average between �xation
and saccade scores. Aweight of 0.4 was applied to the �xation scores
with a weight of 0.6 for saccade scores, as saccade features provided
a slightly higher accuracy in user identi�cation. For MPIIDPEye the

prediction scores from all inputs within a task are simply averaged
before classifying identity.

4 RESULTS
In this section, we present privacy and utility metrics to evaluate the
implemented privacy mechanisms from Section 3.3 for each dataset
listed in Table 2. We compared our proposed privacy mechanisms
with Exponential-DP as an established approach for DP. Section 4.1
presents identi�cation rates for each privacy mechanism using a
biometric identi�cation model trained on processed data and tested
on the original data. Section 4.2 presents utility results for document
type recognition on the MPIIDPEye dataset.

4.1 Biometric Identi�cation
Re-identi�cation risk for eye-tracking data is evaluated by split-
ting eye-tracking features into training sets processed by privacy
mechanisms and testing sets of unmodi�ed data. Identi�cation rates
higher than chance, which is one divided by the number of indi-
viduals in a dataset, indicate that there is risk of re-identi�cation
from released data. Figure 1 presents the identi�cation rates for
each dataset and mechanism. The ET-DK2 dataset produced the
highest identi�cation rate of all datasets with 100% identi�cation
with the original data. All datasets produced identi�cation rates
higher than chance prior to privacy mechanisms being applied.

When privacy mechanisms were applied, the identi�cation rates
of all datasets dropped to chance. The Exponential-DP andMarginals
approaches degraded the identi�cation rates to chance across all pa-
rameter values. The only exceptionwasMPIIDPEye for Exponential-
DP, which required a parameter value of � = 2 for an identi�-
cation rate of 6%, compared to a chance rate of 5%. k-same also
reduces identi�cation rates to chance, with a larger value of k
needed to bring ET-DK2 to chance (5.6%). Our results suggest that
privacy mechanisms protect against re-identi�cation attacks on eye-
tracking features using a standard biometric identi�cation model.

4.2 Utility Evaluation
Releasing a privacy-preserving dataset that is useful relies on achiev-
ing a practical level of utility. We evaluated utility for each privacy
mechanism applied to the MPIIDPEye dataset to classify document
type being read using gaze features.

Steil et al. [2019] �rst evaluated MPIIDPEye using an SVMmodel
to classify document type as either Comic, Newspaper, or Textbook.
The SVM used an RBF kernel, bias parameter C set to one, and



For Your Eyes Only: Privacy-preserving eye-tracking datasets ETRA ’22, June 8–11, 2022, Sea�le, WA, USA

None 2 4 6 8
 k

0
10
20
30
40
50
60
70
80
90

100

Id
en

tif
ic

at
io

n 
R

at
e 

(%
)

 k-same
MPIIDPEye
ET-DK2
VR-Saliency
360_em
VR-EyeTracking
OpenEDS
EHTask

None 2 4 6 8
 k

0
10
20
30
40
50
60
70
80
90

100

Id
en

tif
ic

at
io

n 
R

at
e 

(%
)

Marginals Generative Model (PD)
MPIIDPEye
ET-DK2
VR-Saliency
360_em
VR-EyeTracking
OpenEDS
EHTask

None100 80 60 40 20 10 5 2 1
0

10
20
30
40
50
60
70
80
90

100

Id
en

tif
ic

at
io

n 
R

at
e 

(%
)

Exponential-DP
MPIIDPEye
ET-DK2
VR-Saliency
360_em
VR-EyeTracking
OpenEDS
EHTask

Figure 1: Privacy evaluation for identi�cation rate from eye-tracking features. Privatizing the dataset with our presented
mechanisms lowers all identi�cation rates to chance for k = 8 in k-same and Marginals, and � = 2 for Exponential-DP. Chance
identi�cation rates demonstrate that identity is protected within a group of individuals. The di�erent datasets contain eye-
tracking data on tasks performed within a variety of VR environments (reading documents, 360� images, 360� videos, and 3D
rendered scenes). Chance rates (1/#Ppts.) vary for each dataset based on the number of identities, and are listed in Table 2.
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Figure 2: Utility evaluation for accuracy of document type classi�cation with an SVM model. Privatizing the dataset with
our k-same mechanism retains the utility of the dataset for its intended application. In comparison, the Marginals Genera-
tive method does not retain utility above 53%, and the Exponential-DP mechanism rapidly leads to utility loss as we reach a
parameter range of �  2, where MPIIDPEye identi�cation rates fell below chance.

expressivity parameter � set to one divided by the number of fea-
tures. The model was trained on data from each individual during
the �rst half of reading that was processed by the privacy mech-
anism, and tested on data from the second half. Figure 2 presents
feature-level model accuracy results for each mechanism. Each plot
demonstrates utility relative to the original data and chance rate of
guessing (33%). We observed that the Exponential-DP mechanism
reduced accuracy to chance, or near chance rates. For Exponential-
DP, accuracy started at 80% for � = 100, and fell to chance at � = 20.
For Marginals, a low level of utility was retained as accuracy re-
mained near 53% for all parameters. The k-same approach was
stable across parameter values, with slightly lower accuracy for
higher levels of k . k-same across all parameters maintained perfor-
mance greater than 72%. This level of accuracy would be practical
for an assistive reading interface that needs to identify the correct
document type the majority of the time [Toyama et al. 2013].

5 CONCLUSION AND DISCUSSION
This paper addresses the open challenge of applying formal pri-
vacy de�nitions to behavioral data streams. Our work is the �rst

to adapt the de�nitions of k-anonymity and PD to eye-tracking
features. The de�nition of k-anonymity is intuitive as the theoreti-
cal risk of re-identi�cation attacks are bounded above by 1

k . The
k-same-select sequence mechanism produced identi�cation rates at
chance while preserving model accuracy of 72% for document type
classi�cation. PD is a promising privacy criterion as it provides
a clear interpretation with respect to re-identi�cation, similar to
k-anonymity; while using synthetic data to preserve privacy and
retain utility. A Marginals mechanism for PD retains slight utility
with an accuracy of 53% compared to a 33% guess rate. Deploying
PD is computationally expensive, as a large-scale dataset of syn-
thetic candidates are �rst generated before applying the privacy test.
It took less than a minute to execute k-same and Exponential-DP,
compared to roughly 30 minutes to generate and test synthetic data.
Both k-same and Marginals mechanisms retain stable utility across
their parameters, while the Exponential mechanism loses utility at
the level of privacy needed for chance rates of identi�cation.

Implications. The presented adaptations o�er alternatives to
DP, and demonstrate higher utility at chance rates for document
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type recognition. We recommend using k-same-select sequence
for classi�cation-based datasets to protect against re-identi�cation
as it is computationally e�cient with an intuitive privacy guaran-
tee. The presented mechanisms are applied to datasets o�ine prior
to their release. In real-time systems, privacy-preserving stream-
ing [David-John et al. 2021a; Li et al. 2020] enables sharing gaze
metrics, features, or samples processed by privacy mechanisms
with applications directly.

Limitations. Our identi�cation results were limited to an RBF
network, although prior work explored random forest [Schröder
et al. 2020], SVM [Miller et al. 2020], k-NNs [Bozkir et al. 2021]
and deep network [Miller et al. 2021] models. In terms of DP, we
only evaluated the Exponential-DP mechanism, although an alter-
native formulation of DP exists for time-series in the frequency
domain [Bozkir et al. 2021]. While limitations impact the general-
ization of our empirical results, it does not impact the theoretical
framing and comparison of privacy de�nitions.

Future Work. Our work provides motivation to adapt privacy
guarantees to VR behavioral data in the form eye tracking. It would
be useful to explore how well privacy methods preserve utility
for other classi�cation-based applications, such as intent predic-
tion [David-John et al. 2021b]. Beyond exploring additional datasets
and utilities, the �eld of eye-tracking privacy would bene�t from
further development of approaches related to PD. Such techniques
can achieve an intuitive de�nition of privacy while preserving
utility through synthetic data that appears real. Our proposed pri-
vacy mechanisms can also be applied to a breadth of mixed-reality
sensors, including head and hand tracking, EEG, and EMG data.
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