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Abstract. It was shown recently by [23] that Nesterov’s accelerated gradient method for minimiz-4

ing a smooth convex function f can be thought of as the time discretization of a second-order ODE,5

and that f(x(t)) converges to its optimal value at a rate of O(1!t2) along any trajectory x(t) of this6

ODE. A variational formulation was introduced in [25] which allowed for accelerated convergence7

at a rate of O(1!tp), for arbitrary p > 0, in normed vector spaces. This framework was exploited in8

[8] using time-adaptive geometric integrators to design efficient explicit algorithms for symplectic9

accelerated optimization. In [3], a second-order ODE was proposed as the continuous-time limit10

of a Riemannian accelerated algorithm, and it was shown that the objective function f(x(t)) con-11

verges to its optimal value at a rate of O(1!t2) along solutions of this ODE, thereby generalizing12

the earlier Euclidean result to the Riemannian manifold setting. In this paper, we show that on13

Riemannian manifolds, the convergence rate of f(x(t)) to its optimal value can also be accelerated14

to an arbitrary convergence rate O(1!tp), by considering a family of time-dependent Bregman La-15

grangian and Hamiltonian systems on Riemannian manifolds. This generalizes the results of [25]16

to Riemannian manifolds and also provides a variational framework for accelerated optimization17

on Riemannian manifolds. In particular, we will establish results for objective functions on Rie-18

mannian manifolds that are geodesically convex, weakly-quasi-convex, and strongly convex. An19

approach based on the time-invariance property of the family of Bregman Lagrangians and Hamil-20

tonians was used to construct very efficient optimization algorithms in [8], and we establish a similar21

time-invariance property in the Riemannian setting. This lays the foundation for constructing sim-22

ilarly efficient optimization algorithms on Riemannian manifolds, once the Riemannian analogue23

of time-adaptive Hamiltonian variational integrators has been developed. The experience with the24

numerical discretization of variational accelerated optimization flows on vector spaces suggests that25

the combination of time-adaptivity and symplecticity is important for the efficient, robust, and26

stable discretization of these variational flows describing accelerated optimization. One expects27

that a geometric numerical integrator that is time-adaptive, symplectic, and Riemannian manifold28

preserving will yield a class of similarly promising optimization algorithms on manifolds.29

1. Introduction30

Efficient optimization has become one of the major concerns in data analysis. Many machine31

learning algorithms are designed around the minimization of a loss function or the maximization32

of a likelihood function. Due to the ever-growing scale of the data sets and size of the problems,33

there has been a lot of focus on first-order optimization algorithms because of their low cost per34

iteration. The first gradient descent algorithm was proposed in [5] by Cauchy to deal with the very35

large systems of equations he was facing when trying to simulate orbits of celestial bodies, and36

many gradient-based optimization methods have been proposed since Cauchy’s work in 1847.37

In 1983, Nesterov’s accelerated gradient method was introduced in [19], and was shown to con-38

verge in O(1!k2) to the minimum of the convex objective function f , improving on the O(1!k)39

convergence rate exhibited by the standard gradient descent methods. This O(1!k2) convergence40

rate was shown in [20] to be optimal among first-order methods using only information about ∇f41

at consecutive iterates. This phenomenon in which an algorithm displays this improved rate of42

convergence is referred to as acceleration, and other accelerated algorithms have been derived since43

Nesterov’s algorithm, such as accelerated mirror descent [18] and accelerated cubic-regularized44

Newton’s method [21]. More recently, it was shown in [23] that Nesterov’s accelerated gradient45

method limits to a second-order ODE, as the timestep goes to 0, and that the objective function46
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f(x(t)) converges to its optimal value at a rate of O(1!t2) along the trajectories of this ODE. It47

was then shown in [25] that in continuous time, the convergence rate of f(x(t)) can be accelerated48

to an arbitrary convergence rate O(1!tp) in normed spaces, by considering flow maps generated49

by a family of time-dependent Bregman Lagrangian and Hamiltonian systems which is closed un-50

der time rescaling. This variational framework and the time-invariance property of the family of51

Bregman Lagrangians was then exploited in [8] using time-adaptive geometric integrators to design52

efficient explicit algorithms for symplectic accelerated optimization. It was observed that a careful53

use of adaptivity and symplecticity could result in a significant gain in computational efficiency.54

In the past few years, there has been some effort to derive accelerated optimization algorithms in55

the Riemannian manifold setting [2–4; 15; 26; 27]. In [3], a second-order ODE was proposed as the56

continuous-time limit of a Riemannian accelerated algorithm, and it was shown that the objective57

function f(x(t)) converges to its optimal value at a rate of O(1!t2) along solutions of this ODE,58

generalizing the Euclidean result obtained in [23] to the Riemannian manifold setting.59

In this paper, we show that in continuous time, the convergence rate of f(x(t)) to its opti-60

mal value can be accelerated to an arbitrary convergence rate O(1!tp) on Riemannian manifolds,61

thereby generalizing the results of [25] to the Riemannian setting. This is achieved by consid-62

ering a family of time-dependent Bregman Lagrangian and Hamiltonian systems on Riemannian63

manifolds. This also provides a variational framework for accelerated optimization on Riemannian64

manifolds, generalizing the normed vector space variational formulation of accelerated optimization65

introduced in [25]. We will then illustrate the derived theoretical convergence rates by integrating66

the Bregman Euler–Lagrange equations using a simple numerical scheme to solve eigenvalue and67

distance minimization problems on Riemannian manifolds. Finally, we will show that the family68

of Bregman dynamics on Riemannian manifolds is closed under time rescaling, and we will draw69

inspiration from the approach introduced in [8] to take advantage of this invariance property via a70

carefully chosen Poincaré transformation that will allow for the integration of higher-order Bregman71

dynamics while benefiting from the computational efficiency of integrating lower-order Bregman72

dynamics on Riemannian manifolds.73

2. Definitions and Preliminaries74

We first introduce the main notions from Riemannian geometry and Lagrangian and Hamiltonian75

mechanics that will be used throughout this paper (see [3; 9; 10; 12; 13; 16] for more details).76

2.1. Riemannian Geometry.77

Definition 2.1. Given a manifold Q, the tangent bundle TQ and cotangent bundle T ∗Q are78

defined by79

TQ = {(q, v)∣q ∈ Q, v ∈ TqQ} and T ∗Q = {(q, p)∣q ∈ Q, p ∈ T ∗q Q}.80

Definition 2.2. Suppose we have a Riemannian manifold Q with Riemannian metric g(⋅, ⋅) = ⟨⋅, ⋅⟩,81

represented by the positive-definite symmetric matrix (gij) in local coordinates. Then, we define the82

musical isomorphism g♭ ∶ TQ→ T ∗Q by83

g♭(u)(v) = gp(u, v) ∀p ∈ Q and ∀u, v ∈ TpQ,84

and its inverse musical isomorphism g♯ ∶ T ∗Q → TQ. The Riemannian metric g(⋅, ⋅) = ⟨⋅, ⋅⟩85

induces a fiber metric g∗(⋅, ⋅) = ⟪⋅, ⋅⟫ on T ∗Q by86

⟪u, v⟫ = ⟨g♯(u), g♯(v)⟩ ∀u, v ∈ T ∗Q,87

represented by the positive definite symmetric matrix (gij) in local coordinates, which is the inverse88

of the Riemannian metric matrix (gij).89
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Definition 2.3. The Riemannian gradient gradf(q) ∈ TqQ at a point q ∈ Q of a smooth function90

f ∶ Q→ R is the tangent vector at q such that91

⟨gradf(q), u⟩ = df(q)u ∀u ∈ TqQ,92

where df is the differential of f .93

Definition 2.4. A vector field on a Riemannian manifold Q is a map X ∶ Q → TQ such that94

X(q) ∈ TqQ for all q ∈ Q. The set of all vector fields on Q is denoted X(Q). The integral curve95

at q of X ∈ X(Q) is the smooth curve c on Q such that c(0) = q and c′(t) =X(c(t)).96

Definition 2.5. A geodesic in a Riemannian manifold Q is a parametrized curve γ ∶ [0,1] → Q97

which is of minimal local length. It can be thought of as a curve having zero “acceleration” or98

constant “speed”, that is as a generalization of the notion of straight line from Euclidean spaces99

to Riemannian manifolds. Given two points q, q̃ ∈ Q, a vector in TqQ can be transported to Tq̃Q100

along a geodesic γ by an operation Γ(γ)q̃q ∶ TqQ → Tq̃Q called parallel transport along γ. We101

will simply write Γq̃q to denote the parallel transport along some geodesic connecting the two points102

q, q̃ ∈ Q, and given A ∈ X(Q), we will denote by Γ(A) the parallel transport along integral curves103

of A. Note that parallel transport preserves inner products: given a geodesic γ from q ∈ Q to q̃ ∈ Q,104

gq(u, v) = gq̃ (Γ(γ)q̃qu,Γ(γ)q̃qv) ∀u, v ∈ TqQ.105

Definition 2.6. Given X,Y ∈ X(Q), the covariant derivative ∇XY ∈ X(Q) of Y along X is106

∇XY (q) = lim
h→0

Γ(γ)q
γ(h)Y (γ(h)) − Y (q)

h
,107

where γ is the unique integral curve of X such that γ(0) = q, for any q ∈ Q.108

Definition 2.7. A function f ∶ Q → R is called L-smooth if for any two points q, q̃ ∈ Q and109

geodesic γ connecting them,110

∥gradf(q) − Γ(γ)qq̃gradf(q̃)∥ ≤ L length(γ).111

Definition 2.8. The Riemannian Exponential map Expq ∶ TqQ→ Q at q ∈ Q is defined by112

Expq(v) = γv(1),113

where γv is the unique geodesic in Q such that γv(0) = q and γ′v(0) = v, for any v ∈ TqQ.114

Expq is a diffeomorphism in some neighborhood U ⊂ TqQ containing 0, so we can define its inverse115

map, the Riemannian Logarithm map Logp ∶ Expq(U)→ TqQ.116

Definition 2.9. Given a Riemannian manifold Q with sectional curvature bounded below by Kmin,117

and an upper bound D for the diameter of the considered domain, define118

ζ =
⎧⎪⎪⎨⎪⎪⎩

√
−KminD coth (

√
−KminD) if Kmin < 0

1 if Kmin ≥ 0
. (2.1)119

Note that ζ ≥ 1 since x cothx ≥ 1 for all real values of x.120

2.2. Convexity in Riemannian Manifolds.121

Definition 2.10. A subset A of a Riemannian manifold Q is called geodesically uniquely convex122

if every two points of A are connected by a unique geodesic in A. A function f ∶ Q → R is called123

geodesically convex if for any two points q, q̃ ∈ Q and geodesic γ connecting them,124

f(γ(t)) ≤ (1 − t)f(q) + tf(q̃) ∀t ∈ [0,1].125

Note that if f is a smooth geodesically convex function on a geodesically uniquely convex subset A126

of a Riemannian manifold, then127

f(q) − f(q̃) ≥ ⟨gradf(q̃),Logq̃(q)⟩ ∀q, q̃ ∈ A.128
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A function f ∶ A → R is called geodesically λ-weakly-quasi-convex with respect to q ∈ Q for129

some λ ∈ (0,1] if130

λ (f(q) − f(q̃)) ≥ ⟨gradf(q̃),Logq̃(q)⟩ ∀q̃ ∈ A.131

A function f ∶ A→ R is called geodesically µ-strongly-convex for some µ > 0 if132

f(q) − f(q̃) ≥ ⟨gradf(q̃),Logq̃(q)⟩ +
µ

2
∥Logq̃(q)∥2 ∀q, q̃ ∈ A.133

A local minimum of a geodesically convex or λ-weakly-quasi-convex function is also a global mini-134

mum, and a geodesically strongly convex function either has no minimum or a unique global mini-135

mum. Also note that a geodesically convex function is λ-weakly-quasi-convex with λ = 1.136

2.3. Lagrangian and Hamiltonian Mechanics. Given a n-dimensional Riemannian manifold Q137

with local coordinates (q1, . . . , qn), a Lagrangian is a function L ∶ TQ×R→ R. The corresponding138

action integral S is defined to be the functional139

S(q) = ∫
T

0
L(q, q̇, t)dt, (2.2)140

over the space of smooth curves q ∶ [0, T ] → Q. Hamilton’s Variational Principle states that141

δS = 0 where the variation δS is induced by an infinitesimal variation δq of the trajectory q that142

vanishes at the endpoints. Hamilton’s Variational Principle can be shown to be equivalent to the143

Euler–Lagrange equations144

d

dt
( ∂L
∂q̇k
) = ∂L

∂qk
for k = 1, . . . , n. (2.3)145

The Legendre transform FL ∶ TQ → T ∗Q of L is defined fiberwise by FL ∶ (qi, q̇i) ↦ (qi, pi)146

where pi = ∂L
∂q̇i
∈ T ∗Q is the conjugate momentum of qi. We can then define the associated147

Hamiltonian H ∶ T ∗Q→ R by148

H(q, p, t) =
n

∑
j=1

pj q̇
j −L(q, q̇, t)

@@@@@@@@@@@pi= ∂L

∂q̇i

. (2.4)149

We can also define a Hamiltonian Variational Principle on the Hamiltonian side in momentum150

phase space151

δ∫
T

0

n

∑
j=1
[pj q̇j −H(q, p, t)]dt = 0, (2.5)152

where the variation is induced by an infinitesimal variation δq of the trajectory q that vanishes at153

the endpoints. This is equivalent to Hamilton’s equations, given by154

ṗk = −
∂H

∂qk
(p, q), q̇k = ∂H

∂pk
(p, q) for k = 1, . . . , n, (2.6)155

which can also be shown to be equivalent to the Euler–Lagrange equations (2.3).156

3. Variational Formulation and Convergence Rates157

3.1. Inspiration. A variational framework was introduced in [25] for accelerated optimization on158

normed vector spaces. Given a convex, continuously differentiable function h ∶ X → R on a normed159

vector space X such that ∥∇h(x)∥ → ∞ as ∥x∥ → ∞, its corresponding Bregman divergence is160

defined by161

Dh(x, y) = h(y) − h(x) − ⟨∇h(x), y − x⟩. (3.1)162

The Bregman Lagrangian and Hamiltonian are then defined to be163

Lα,β,γ(x, v, t) = eαt+γt [Dh (x + e−αtv, x) − eβtf(x)] ,
Hα,β,γ(x, r, t) = eαt+γt [Dh∗ (∇h(x) + e−γtr,∇h(x)) + eβtf(x)] ,

(3.2)164
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which are scalar-valued functions of position x ∈ X , velocity v ∈ Rd or momentum r ∈ Rd, and of165

time t. Here, h∗ ∶ X ∗ → R denotes the Legendre transform (or convex dual function) of h, defined by166

h∗(w) = supz∈X [⟨w, z⟩ − h(z)]. The Bregman Lagrangian and Hamiltonian family is parametrized167

by smooth functions of time, αt = α(t),βt = β(t),γt = γ(t), which are said to satisfy the ideal scaling168

conditions if169

β̇t ≤ eαt and γ̇t = eαt . (3.3)170

If the ideal scaling conditions are satisfied, then by Theorem 1.1 in [25],171

f(x(t)) − f(x∗) ≤ O(e−βt). (3.4)172

Another very important property of this family of Bregman Lagrangians is its closure under time173

dilation, proven in Theorem 1.2 of [25]:174

Theorem 3.1. If x(t) satisfies the Euler-Lagrange equations corresponding to the Bregman La-175

grangian Lα,β,γ, then the reparametrized curve y(t) = x(τ(t)) satisfies the Euler-Lagrange equations176

corresponding to the modified Bregman Lagrangian Lα̃,β̃,γ̃ where α̃t = ατ(t)+ log τ̇(t), β̃t = βτ(t), and177

γ̃t = γτ(t). Furthermore α,β,γ satisfy the ideal scaling conditions (3.3) if and only if α̃, β̃, γ̃ do.178

We will now extend these results to the Riemannian manifold setting. Throughout this paper, we179

will make the following assumptions on the function f ∶ Q→ R to be minimized and on the ambient180

Riemannian manifold Q, which are standard assumptions in Riemannian optimization [3; 4; 26; 27]:181

Assumption 1. Solutions of the differential equations derived in this paper remain inside a geodesi-182

cally uniquely convex subset A of a complete Riemannian manifold Q (i.e. any two points in Q183

can be connected by a geodesic), such that diam(A) is bounded above by some constant D, that184

the sectional curvature is bounded from below by Kmin on A, and that Expq is well-defined for any185

q ∈ A, and its inverse Logq is well-defined and differentiable on A for any q ∈ A. Furthermore, f is186

bounded below, geodesically L-smooth and all its minima are inside A.187

3.2. Convex and Weakly-Quasi-Convex Cases. Suppose that f ∶ Q→ R is a given geodesically188

λ-weakly-quasi-convex function, and that Assumption 1 holds true. Since a geodesically convex189

function is λ-weakly-quasi-convex with λ = 1, the following treatment also applies to the case190

where f is geodesically convex. We define a family of Bregman Lagrangians Lα,β,γ ∶ TQ × R → R191

parametrized by smooth functions of time α,β,γ by192

Lα,β,γ(X,V, t) =
1

2
eλ
−1ζγt−αt⟨V,V ⟩ − eαt+βt+λ−1ζγtf(X), (3.5)193

and the corresponding Bregman Hamiltonians Hα,β,γ ∶ T ∗Q ×R→ R are given by194

Hα,β,γ(X,R, t) =
1

2
eαt−λ−1ζγt⟪R,R⟫ + eαt+βt+λ−1ζγtf(X), (3.6)195

where X ∈ Q denotes position on the manifold Q, V is the velocity vector field, R is the momentum196

covector field, t is the time variable, and ζ is given by equation (2.1). This family of functions is197

a generalization of the Bregman Lagrangians and Hamiltonians introduced in [25] for the convex198

continuously differentiable function h(x) = 1
2⟨x,x⟩. Throughout this paper, we will assume that199

the parameter functions α,β,γ satisfy the ideal scaling conditions (3.3).200

Theorem 3.2. The Bregman Euler–Lagrange equation corresponding to the Bregman Lagrangian201

Lα,β,γ is given by202

∇ẊẊ + (λ−1ζeαt − α̇t) Ẋ + e2αt+βtgradf(X) = 0. (3.7)203

Proof. See Appendix A.1.204
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Theorem 3.3. Suppose that f ∶ Q → R is a geodesically λ-weakly-quasi-convex function, and that205

Assumption 1 is satisfied. Then, any solution X(t) to the Bregman Euler–Lagrange equation (3.7)206

converges to a minimizer x∗ of f with rate207

f(X(t)) − f(x∗) ≤
2λ2eβ0 (f(x0) − f(x∗)) + ζ∥Logx0(x

∗)∥2

2λ2eβt
= O(e−βt). (3.8)208

Proof. See Appendix B.209

A p > 0 parametrized subfamily of Bregman Lagrangians and Hamiltonians, that is of particular210

practical interest, is given by the choice of parameter functions211

αt = log p − log t, βt = p log t + logC, γt = p log t, (3.9)212

where C > 0 is a constant. This yields the p-Bregman Lagrangian and Hamiltonian given by213

Lp(X,V, t) =
tλ
−1ζp+1

2p
⟨V,V ⟩ −Cpt(λ

−1ζ+1)p−1f(X), (3.10)214

215

Hp(X,R, t) =
p

2tλ−1ζp+1
⟪R,R⟫ +Cpt(λ

−1ζ+1)p−1f(X), (3.11)216

and the corresponding p-Bregman Euler–Lagrange equations are given by217

∇ẊẊ + ζp + λ

λt
Ẋ +Cp2tp−2gradf(X) = 0. (3.12)218

Theorem 3.4. Suppose that f ∶ Q → R is a geodesically weakly-quasi-convex function, and that219

Assumption 1 is satisfied. Then, the p-Bregman Euler–Lagrange equation (3.12) has a solution,220

and any solution X(t) converges to a minimizer x∗ of f with rate f(X(t)) − f(x∗) ≤ O(1!tp) .221

Proof. See Appendix C.1 for the existence of a solution to the p-Bregman Euler–Lagrange equations.222

The O(1!tp) convergence rate follows directly from Theorem 3.3.223

Note that this theorem reduces to Theorem 5 from [3] when p = 2 and C = 1!4.224

Remark. To construct this variational framework for accelerated optimization, we first constructed225

candidate p-equations with the desired O(1!tp) convergence rates, and then designed Lagrangians226

whose p-Bregman Euler–Lagrange equations matched the candidate p-equations, by inspection. We227

then used a similar approach to extend these results to the general α,β,γ case presented here.228

Remark. In our generalization of the Bregman Lagrangian and Hamiltonian to Riemannian mani-229

folds, we have specialized to the case where h(x) = 1
2∥x∥

2, because its Hessian ∇2h(x) is the identity230

matrix, which significantly simplifies the Euler–Lagrange equations and the analysis. In addition,231

it avoids the complication of making intrinsic sense of terms like X + e−αV in the vector space232

Bregman Lagrangians and Hamiltonians, which require the use of Riemannian geodesics and expo-233

nentials since X ∈ Q while V ∈ TXQ.234

3.3. Strongly Convex Case. Suppose f ∶ Q → R is a geodesically µ-strongly-convex function,235

and that Assumption 1 is satisfied. With ζ given by equation (2.1), let236

η = ( 1√
ζ
+
√
ζ)√µ. (3.13)237

We define the corresponding Lagrangian LSC ∶ TQ ×R→ R by238

LSC(X,V, t) = eηt

2
⟨V,V ⟩ − eηtf(X), (3.14)239
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and the corresponding Hamiltonian HSC ∶ T ∗Q ×R→ R is given by240

HSC(X,R, t) = e−ηt

2
⟪R,R⟫ + eηtf(X). (3.15)241

Theorem 3.5. The Euler–Lagrange equation corresponding to the Lagrangian LSC is given by242

∇ẊẊ + ηẊ + gradf(X) = 0. (3.16)243

Proof. The derivation of the Euler–Lagrange equation is presented in Appendix A.2.244

Theorem 3.6. Suppose f ∶ Q → R is a geodesically µ-strongly-convex function, and suppose that245

Assumption 1 is satisfied. Then, the Euler–Lagrange equation (3.16) has a solution, and any246

solution X(t) converges to a minimizer x∗ of f with rate247

f(X(t)) − f(x∗) ≤
µ∥Logx0(x

∗)∥2 + 2 (f(x0) − f(x∗))

2e

√
µ
ζ
t

. (3.17)248

Proof. See Appendix C.2 for the existence of a solution to the Euler–Lagrange equation (3.16), and249

Theorem 7 from [3] for the convergence rate.250

251

4. Numerical Experiments252

The p-Bregman Euler–Lagrange equation (3.12) can be rewritten as the first-order system253

Ẋ = V, ∇V V = −ζp + λ

λt
V −Cp2tp−2gradf(X), (4.1)254

for the geodesically λ-weakly-quasi-convex case, and the Euler–Lagrange equation (3.16) corre-255

sponding to the Lagrangian LSC can be rewritten as the first-order system256

Ẋ = V, ∇V V = −( 1√
ζ
+
√
ζ)√µV − gradf(X), (4.2)257

for the µ-strongly convex case. As in [3], we can adapt a semi-implicit Euler scheme (explicit Euler258

update for the velocity V followed by an update for position X based on the updated value of V )259

to the Riemannian setting to obtain the following algorithm:260

Algorithm 1: Semi-Implicit Euler Integration of the p-Bregman Euler–Lagrange Equations

Input: A function f ∶ Q→ R. Constants C,h, p > 0. X0 ∈ Q. V0 ∈ TX0Q.
1 while convergence criterion is not met do
2 if f is µ-geodesically strongly convex then

3 bk ← 1 − h( 1√
ζ
+
√
ζ)√µ, ck ← 1

4 else if f is λ-weakly-quasi-convex then

5 bk ← 1 − ζp+λ
λk , ck ← Cp2(kh)p−2

6 Version I: ak ← bkVk − hckgradf(Xk)
7 Version II: ak ← bkVk − hckgradf (ExpXk

(hbkVk))
8 Xk+1 ← ExpXk

(hak), Vk+1 ← ΓXk+1
Xk

ak

261

Version I of Algorithm 1 corresponds to the usual update for the Semi-Implicit Euler scheme,262

while Version II is inspired by the reformulation of Nesterov’s method from [24] that uses a cor-263

rected gradient ∇f(Xk+hbkVk) instead of the traditional gradient ∇f(Xk). Note that the SIRNAG264

algorithm presented in [3] corresponds to the special case where p = 2 and C = 1!4.265

266
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The first problem we have investigated is the problem presented in [3] of minimizing the (strongly267

convex) distance function f(x) = 1
2d(x, q)

2 for a given point q, on a subset of chosen finite diameter268

of the hyperbolic plane H2, which is a manifold with constant negative curvature K = −1.269

The second problem we have investigated is Rayleigh quotient optimization. Eigenvectors corre-270

sponding to the largest eigenvalue of a symmetric n × n matrix A maximize the Rayleigh quotient271

v⊺Av
v⊺v over Rn. Thus, a unit eigenvector v∗ corresponding to the largest eigenvalue of the matrix A272

is a minimizer of the function f(v) = −v⊺Av, over the unit sphere Q = Sn−1, which can be thought273

of as a Riemannian submanifold with constant positive curvature K = 1 of Rn endowed with the274

Riemannian metric inherited from the Euclidean inner product gv(u,w) = u⊺w. More information275

concerning the geometry of Sn−1, such as its tangent bundle, its orthogonal projection and expo-276

nential map can be found in [1]. Solving the Rayleigh quotient optimization problem efficiently277

is challenging when the given symmetric matrix A is ill-conditioned and high-dimensional. Note278

that an efficient algorithm that solves the above minimization problem can also be used to find279

eigenvectors corresponding to the smallest eigenvalue of A by using the fact that the eigenvalues of280

A are the negative of the eigenvalues of −A.281

282

Experiments carried out in [3] showed that SIRNAG (the convex p = 2 Algorithm 1) and the283

strongly convex Algorithm 1 were of comparable efficiency or more efficient than the standard Rie-284

mannian Gradient Descent (RGD) method, depending on the properties of the objective function285

and on the geometry of the Riemannian manifold. We have conducted further numerical experi-286

ments to investigate how the simple discretization of higher-order p = 6 Bregman dynamics com-287

pared to its p = 2 counterpart, and to see whether it matches the theoretical O(t−p) convergence288

rate. The numerical results obtained for the distance minimization and Rayleigh minimization289

problems are illustrated in Figure 1, where all the algorithms were implemented with the same290

fixed timestep. We can see that the p = 6 algorithms outperform their p = 2 counterparts, and that291

the efficiency improvement is very important. Furthermore, both versions of the p = 6 Algorithm 1292

exhibit a faster convergence rate than the theoretical O(t−6) rate. While Version I of Algorithm 1293

exhibits polynomial rates of O(t−10.8) and O(t−9) on the objective functions considered, Version II294

of Algorithm 1 exhibits a much faster exponential rate of convergence on both examples.295
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Figure 1. Comparison of the rates of convergence of the µ-strongly convex (SC)
Algorithm 1 and convex Algorithms 1 with different values of p and with the two
versions of the update corresponding to the traditional and corrected gradients.
Note that all the algorithms were implemented with the same timestep h.
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Figure 2 displays the evolution of the rates of convergence of Version 1 of the convex Algorithm296

1 as the value of the parameter p is increased from p = 4 to p = 16 for the distance minimization and297

Rayleigh minimization problems. We can clearly see an improvement in the convergence rates as298

the value of p increases, and for each value of p the algorithm achieves a faster rate of convergence299

than the theoretical O(t−p) rates.300
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Figure 2. Evolution of the rates of convergence of Version 1 of the convex Algo-
rithm 1 with different values of p. Note that all the algorithms were implemented
with the same timestep h.

Note however that an increase in the value of p in Algorithm 1, which corresponds to an increase301

in the order of the Bregman dynamics integrated, requires a decrease in the timestep, in agreement302

with intuitive expectations. This timestep decrease requirement is especially important due to303

the polynomially growing h(kh)p−2 coefficient multiplying the gradient of f in the updates of304

the algorithm. Such a decrease in the timestep does not really affect the convergence rate, but305

the transition between the initialization and convergence phases takes longer. As a consequence,306

by using larger timesteps, the algorithm corresponding to a smaller value of p might achieve a307

desired convergence criterion with fewer iterations than the algorithm corresponding to a larger308

value of p, despite having a slower convergence rate. Similar issues arise when discretizing the309

continuous Euler–Lagrange flow associated with accelerated optimization on vector spaces, and in310

that situation, it was observed that time-adaptive symplectic integrators based on Hamiltonian311
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variational integrators resulted in dramatically improved robustness and stability. As such, it will312

be natural to explore generalizations of time-adaptive symplectic integrators based on Hamiltonian313

variational integrators applied to Poincaré transformed Hamiltonians, that respect the Riemannian314

manifold structure in order to yield more robust and stable numerical discretizations of the flows we315

have studied in this paper in order to construct accelerated optimization algorithms on Riemannian316

manifolds. We will lay the foundation for such time-adaptive symplectic integrators in Section 5.317

Finally, Figure 3 shows that the discretization empirically converges to the solution of the ODE318

as the timestep h goes to 0. Note that although all the discretizations follow the ODE trajectory319

closely, smaller timesteps result in a larger number of iterations, especially to transition from the320

initialization plateau to the convergence phase (around time t = 4 in the example presented in321

Figure 3). A theoretical shadowing result bounding the error between the discrete-time RGD and322

its continuous-time limiting ODE was obtained in [3]. It would be desirable to obtain similar323

shadowing results in the future for discretizations of the class of ODEs considered here, perhaps324

drawing inspiration from [28]. However, such a result might be very difficult to obtain because325

momentum methods lack contraction, are nondescending, and are highly oscillatory [3; 22]. While326

it is hoped that the continuous analysis in this paper will eventually guide the convergence analysis327

of discrete-time algorithms, this does not appear to be a straightforward exercise, as one would first328

need to reconcile the arbitrarily fast O(1!tp) rate of convergence of the continuous-time trajectories329

with Nesterov’s barrier theorem of O(1!k2) for discrete-time algorithms.330
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Figure 3. Discretization errors (top graph) and convergence rates (bottom graphs)
of Version I of the p = 5 convex Algorithm 1 with different values of h for the
distance minimization problem. The true solution of the differential equation was
approximated by the same algorithm with a very small timestep h = 10−5.

5. Time Invariance and Poincaré Transformation331

Let f ∶ Q → R be a given λ-weakly-quasi-convex function, and suppose Assumption 1 is satis-332

fied. In Section 3, we formulated a variational framework for the minimization of f , via Bregman333

Lagrangians and Hamiltonians. We now extend Theorem 3.1 to Riemannian manifolds.334

Theorem 5.1. Suppose that Assumption 1 is satisfied and that the curve X(t) satisfies the Rie-335

mannian Bregman Euler–Lagrange equation (3.7) corresponding to Lα,β,γ. Then the reparametrized336

curve X(τ(t)) satisfies the Bregman Euler–Lagrange equation (3.7) corresponding to the modified337

Riemannian Bregman Lagrangian Lα̃,β̃,γ̃ where α̃t = ατ(t) + log τ̇(t), β̃t = βτ(t), and γ̃t = γτ(t).338

Furthermore α,β,γ satisfy the ideal scaling conditions (3.3) if and only if α̃, β̃, γ̃ do.339

Proof. See Appendix D.340
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As a special case, we have the following theorem:341

Theorem 5.2. Suppose that f ∶ Q → R is a geodesically λ-weakly-quasi-convex function, and that342

Assumption 1 is satisfied. Suppose X(t) satisfies the p-Bregman Euler–Lagrange equation (3.12).343

Then, the reparametrized curve X(tp̊+p) satisfies the p̊-Bregman Euler–Lagrange equation (3.12).344

Thus, the entire subfamily of Bregman trajectories indexed by the parameter p can be obtained345

by speeding up or slowing down along the Bregman curve in spacetime corresponding to any specific346

value of p. Inspired by the computational efficiency of the approach introduced in [8], it is natural347

to attempt to exploit the time-rescaling property of the Bregman dynamics together with a care-348

fully chosen Poincaré transformation to transform the p-Bregman Hamiltonian into an autonomous349

version of the p̊-Bregman Hamiltonian in extended phase-space, where p̊ < p. This would allow us to350

integrate the higher-order p-Bregman dynamics while benefiting from the computational efficiency351

of integrating the lower-order p̊-Bregman dynamics. Explicitly, the time rescaling τ(t) = tp̊+p is352

associated to the monitor function353

dt

dτ
= gp→p̊(t) =

p

p̊
t1−p̊+p, (5.1)354

and generates a Poincaré transformed Hamiltonian355

H̄p→p̊(X̄, R̄) = gp→p̊(Xt) (Hp (X̄,R) +Rt) , (5.2)356

in the extended space Q̄ = Q × R where X̄ = [X
Xt] and R̄ = [R

Rt]. We will make the conventional357

choice Xt = t, with conjugate momentum Rt, and Rt(0) = −Hp(X(0),R(0),0) = −H0, which is358

chosen so that H̄p→p̊(X̄, R̄) = 0 along all integral curves through (X̄(0), R̄(0)). The time t shall be359

referred to as the physical time, while τ will be referred to as the fictive time. The corresponding360

Hamiltonian equations of motion in the extended phase space are then given by361

˙̄X =
∂H̄p→p̊

∂R̄
, ˙̄R = −

∂H̄p→p̊

∂X̄
. (5.3)362

Now, suppose (X̄(τ), R̄(τ)) are solutions to these extended equations of motion, and let (x(t), r(t))363

solve Hamilton’s equations for the original Hamiltonian Hp. Then364

H̄p→p̊(X̄(τ), R̄(τ)) = H̄p→p̊(X̄(0), R̄(0)) = 0.365

Thus, the components (X(τ),R(τ)) in the original phase space of (X̄(τ), R̄(τ)) satisfy

Hp(X(τ),R(τ), τ) = −Rt(τ), Hp(X(0),R(0),0) = −Rt(0) = Hp(x(0), r(0),0).
Therefore, (X(τ),R(τ)) and (x(t), r(t)) both satisfy Hamilton’s equations for the original Hamil-366

tonian Hp with the same initial values, so they must be the same.367

As a consequence, instead of integrating the p-Bregman Hamiltonian system (3.11), we can focus368

on the Poincaré transformed Hamiltonian H̄p→p̊ in extended phase-space given by equation (5.2),369

with Hp and gp→p̊ given by equations (3.11) and (5.1), that is370

H̄p→p̊(X̄, R̄) = p2

2p̊(Xt)λ−1ζp+p̊+p
⟪R,R⟫ + Cp2

p̊
(Xt)(λ

−1ζ+1)p−p̊+pf(X) + p

p̊
(Xt)1−p̊+pRt, (5.4)371

The resulting integrator has constant timestep in fictive time τ but variable timestep in physical372

time t. In our prior work on discretizations of variational formulations of accelerated optimization373

on normed spaces [8], we performed a very careful computational study of how time-adaptivity and374

symplecticity of the numerical scheme improve the performance of the resulting numerical optimiza-375

tion algorithm. In particular, we observed that time-adaptive Hamiltonian variational discretiza-376

tions, which are automatically symplectic, with adaptive timesteps informed by the time invariance377
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of the family of p-Bregman Lagrangians and Hamiltonians yielded the most robust and computa-378

tionally efficient numerical optimization algorithms, outperforming fixed-timestep symplectic dis-379

cretizations, adaptive-timestep non-symplectic discretizations, and Nesterov’s accelerated gradient380

algorithm which is neither time-adaptive nor symplectic. As such, it would be desirable to general-381

ize the time-adaptive Hamiltonian variational integrator framework to Riemannian manifolds, and382

apply it to the variational formulation of accelerated optimization on Riemannian manifolds.383

6. Conclusion384

We have shown that on Riemannian manifolds, the convergence rate in continuous time of a385

geodesically convex or weakly-quasi-convex function f(x(t)) to its optimal value can be accelerated386

to an arbitrary convergence rate, which extended the results of [25] from normed vector spaces to387

Riemannian manifolds. This rate of convergence is achieved along solutions of the Euler–Lagrange388

and Hamilton’s equations corresponding to a family of time-dependent Bregman Lagrangian and389

Hamiltonian systems on Riemannian manifolds. As was demonstrated in the normed vector space390

setting, such families of Bregman Lagrangians and Hamiltonians can be used to construct practical,391

robust, and computationally efficient numerical optimization algorithms that outperform Nesterov’s392

accelerated gradient method by considering geometric structure-preserving discretizations of the393

continuous-time flows.394

Numerical experiments implementing a simple discretization of the p-Bregman Euler–Lagrange395

equations applied to a distance minimization and Rayleigh minimization problems confirmed that396

the higher-order algorithms outperform significantly their lower-order counterparts and their the-397

oretical O(1!tp) convergence rates. Numerical results also showed that using a corrected gradient398

in the update instead of the traditional gradient, as was done in [24], improved the theoretically399

predicted polynomial convergence rate to an exponential rate of convergence in practice. While400

higher values of p result in faster rates of convergence, they usually require smaller timesteps and401

also appear to be more prone to stability issues under numerical discretization, which can cause402

the numerical optimization algorithm to diverge, but we anticipate that symplectic discretizations403

will address these stability issues.404

Finally, in analogy to what was done in [25] for normed vector spaces, we proved that the family405

of time-dependent Bregman Lagrangian and Hamiltonians on Riemannian manifolds is closed under406

time rescaling. Inspired by the computational efficiency of the approach introduced in [8], we can407

then exploit this invariance property via a carefully chosen Poincaré transformation that will allow408

us to integrate higher-order p-Bregman dynamics while benefiting from the computational efficiency409

of integrating a lower-order p̊-Bregman Hamiltonian system.410

It was observed in our prior computational experiments in the normed vector space case [8]411

that geometric discretizations which respect the time-rescaling invariance and symplecticity of the412

Bregman Lagrangian and Hamiltonian flows were substantially less prone to stability issues, and413

were therefore more robust, reliable, and computationally efficient. As such, it is natural to develop414

time-adaptive Hamiltonian variational integrators for the Bregman Hamiltonian introduced in this415

paper describing accelerated optimization on Riemannian manifolds.416

Developing an intrinsic extension of Hamiltonian variational integrators to manifolds will require417

some additional work, since the current approach involves Type II/Type III generating functions418

H+
d (qk.pk+1), H−d (pk, qk+1), which depend on the position at one boundary point, and the momen-419

tum at the other boundary point. However, this does not make intrinsic sense on a manifold, since420

one needs the base point in order to specify the corresponding cotangent space, and one should421

ideally consider a Hamiltonian variational integrator construction based on discrete Dirac mechan-422

ics [14], which would yield a generating function E+
d (qk, qk+1, pk+1), E−d (qk, pk, qk+1), that depends423

on the position at both boundary points and the momentum at one of the boundary points. This424
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approach can be viewed as a discretization of the generalized energy E(q, v, p) = ⟨p, v⟩ −L(q, v), in425

contrast to the Hamiltonian H(q, p) = extv⟨p, v⟩ −L(q, v) = ⟨p, v⟩ −L(q, v)∣p=∂L
∂v
.426

However, a more practical method relies on the fact that we have a Riemannian manifold, which427

is endowed with a Riemannian exponential and Riemannian logarithm that can be used to construct428

an extension of Hamiltonian variational integrators using geodesic normal coordinates. For many429

important matrix manifolds, one can replace the Riemannian exponential in the geodesic normal430

coordinates by a retraction [1], which is often constructed using matrix factorizations.431

Another important case involves Riemannian submanifolds that are embedded in a Riemannian432

linear manifold and are realized as the level set of a submersion. The characterization of the sub-433

manifold as the level set of a submersion, together with the linear space structure of the embedding434

space, and the variational characterization of the dynamics naturally lends itself to the use of the435

Lagrange multiplier theorem, which allows one to use Hamiltonian variational integrators defined436

on the embedding space by including a Lagrange multiplier term involving the submersion in the437

Lagrangian or Hamiltonian [6]. This is analogous to the derivation of the SHAKE and RATTLE438

methods as a variational integrator for constrained systems (see, for example, §3.5 of [17]). Another439

practical method can be obtained by projecting the updates of Hamiltonian variational integrators440

defined on the embedding space onto the constraint manifold [7].441

We anticipate that applying an appropriate generalization of Hamiltonian variational integrators442

to the Bregman Hamiltonians introduced in this paper will yield a novel class of robust and effi-443

cient accelerated optimization algorithms on Riemannian manifolds. It would also be desirable to444

analyze the resulting discrete-time algorithms and rigorously establish their rates of convergence.445

In addition, we would like to better understand how to reconcile the arbitrarily high rate of conver-446

gence one expects from the continuous-time analysis, with Nesterov’s barrier theorem on the rate447

of convergence of discrete-time algorithms.448

449

Acknowledgments450

The authors were supported in part by NSF under grants DMS-1411792, DMS-1345013, DMS-451

1813635, by AFOSR under grant FA9550-18-1-0288, and by the DoD under grant 13106725 (Newton452

Award for Transformative Ideas during the COVID-19 Pandemic).453

454

Appendix A. Derivation of the Euler–Lagrange Equations455

A.1. Convex and Weakly-Quasi-Convex Cases.456

Theorem A.1. The Euler–Lagrange equation corresponding to the Lagrangian457

Lα,β,γ(X,V, t) =
1

2
eλ
−1ζγt−αt⟨V,V ⟩ − eαt+βt+λ−1ζγtf(X),458

is given by459

∇ẊẊ + (λ−1ζeαt − α̇t) Ẋ + e2αt+βtgradf(X) = 0,460

Proof. Consider a path on the manifold Q described in coordinates by461

(x(t), ẋ(t)) = (q1(t), . . . , qn(t), v1(t), . . . , vn(t)) .462

Then, with ⟨⋅, ⋅⟩ = ∑n
i,j=1 gijdx

idxj , the Bregman Lagrangian Lα,β,γ can be written as463

Lα,β,γ (x(t), ẋ(t), t) =
1

2
eλ
−1ζγt−αt

n

∑
i,j=1

gij(x(t))vi(t)vj(t) − eαt+βt+λ−1ζγtf(x(t)).464
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For k = 1, . . . n,465

d

dt
(
∂Lα,β,γ

∂vk
(x(t), ẋ(t), t)) = eλ

−1ζγt−αt

n

∑
i=1

gik(x(t))
dvi

dt
(t) + eλ

−1ζγt−αt

n

∑
i,j=1

∂gkj

∂qi
(x(t))vi(t)vj(t)466

+ (λ−1ζγ̇t − α̇t)eλ
−1ζγt−αt

n

∑
i=1

gik(x(t))vi(t),467

468

∂Lα,β,γ

∂qk
(x(t), ẋ(t), t) = 1

2
eλ
−1ζγt−αt

n

∑
i,j=1

∂gij

∂qk
(x(t))vi(t)vj(t) − eαt+βt+λ−1ζγt ∂f

∂qk
(x(t)).469

Multiplying both terms by eαt−λ−1ζγt , the Euler–Lagrange equations (2.3) for the Bregman La-470

grangian Lα,β,γ are given, for k = 1, . . . , n, by471

0 =
n

∑
i=1

gik(x(t))
dvi

dt
(t) +

n

∑
i,j=1

∂gkj

∂qi
(x(t))vi(t)vj(t) + (λ−1ζγ̇t − α̇t)

n

∑
i=1

gik(x(t))vi(t)472

− 1
2

n

∑
i,j=1

∂gij

∂qk
(x(t))vi(t)vj(t) + e2αt+βt ∂f

∂qk
(x(t)).473

Rearranging terms, and multiplying by the matrix (gij) which is the inverse of (gij), we get, for474

k = 1, . . . n, the equation475

⎛
⎝
dvk

dt
(t) +

n

∑
i,j=1

Γkij(x(t))vi(t)vj(t)
⎞
⎠
+ (λ−1ζγ̇t − α̇t) vk(t) + e2αt+βt (gradf(x(t)))k = 0,476

where Γkij are the Christoffel symbols given by Γkij = 1
2 ∑

n
l=1 g

kl [∂gjl
∂xi

+ ∂gli
∂xj
− ∂gij

∂xl
], which gives the477

desired Euler–Lagrange equation once we use the ideal scaling equation γ̇t = eαt . □478

479

A.2. Strongly Convex Case.480

Theorem A.2. The Euler–Lagrange equation corresponding to the Lagrangian LSC is given by481

∇ẊẊ + ηẊ + gradf(X) = 0.482

Proof. Consider a path on the manifold Q described in coordinates by483

(x(t), ẋ(t)) = (q1(t), . . . , qn(t), v1(t), . . . , vn(t)) .484

Then, with ⟨⋅, ⋅⟩ = ∑n
i,j=1 gijdx

idxj , the Lagrangian LSC can be written as485

LSC (x(t), ẋ(t), t) = eηt

2

n

∑
i,j=1

gij(x(t))vi(t)vj(t) − eηtf(x(t)).486

For k = 1, . . . n,487

d

dt
(∂L

SC

∂vk
(x(t), ẋ(t), t)) = eηt

n

∑
i=1

gik(x(t))
dvi

dt
(t) + eηt

n

∑
i,j=1

∂gkj

∂qi
(x(t))vi(t)vj(t)488

+ ηeηt
n

∑
i=1

gik(x(t))vi(t),489

490

∂LSC

∂qk
(x(t), ẋ(t), t) = eηt

n

∑
i,j=1

∂gij

∂qk
(x(t))vi(t)vj(t) − eηt ∂f

∂qk
(x(t)).491
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If we multiply both terms by e−ηt, the Euler–Lagrange equations (2.3) for the Lagrangian LSC are492

given, for k = 1, . . . , n, by493

0 =
n

∑
i=1

gik(x(t))
dvi

dt
(t) +

n

∑
i,j=1

∂gkj

∂qi
(x(t))vi(t)vj(t) + η

n

∑
i=1

gik(x(t))vi(t)494

− 1
2

n

∑
i,j=1

∂gij

∂qk
(x(t))vi(t)vj(t) + ∂f

∂qk
(x(t)).495

Rearranging terms, and multiplying by the matrix (gij) which is the inverse of (gij), we get, for496

k = 1, . . . n, the equation497

⎛
⎝
dvk

dt
(t) +

n

∑
i,j=1

Γkij(x(t))vi(t)vj(t)
⎞
⎠
+ ηvk(t) + (gradf(x(t)))k = 0,498

where Γkij are the Christoffel symbols given by Γkij = 1
2 ∑

n
l=1 g

kl [∂gjl
∂xi

+ ∂gli
∂xj
− ∂gij

∂xl
], which gives the499

desired Euler–Lagrange equation. □500

501

Appendix B. Proof of the Convergence Rates502

The proofs of the convergence rates of solutions to the Bregman Euler–Lagrange equations are503

inspired by those of Theorems 5 and 6 from [3], and make use of Lemmas 2 and 12 therein:504

Lemma B.1. Given a Riemannian manifold Q with sectional curvature bounded above by Kmax505

and below by Kmin, with ζ given by equation (2.1), and such that506

diam(Q) <
⎧⎪⎪⎨⎪⎪⎩

π√
Kmax

if Kmax > 0
∞ if Kmax ≤ 0

,507

we have that508

⟨∇ẊLogX(p),−Ẋ⟩ ≤ ζ∥Ẋ∥
2.509

Lemma B.2. Given a point q and a smooth curve X(t) on a Riemannian manifold Q,510

d

dt
∥LogX(t)(q)∥2 = 2⟨LogX(t)(q),∇ẊLogX(t)(q)⟩ = 2⟨LogX(t)(q),−Ẋ(t)⟩.511

512

Theorem B.1. Suppose f ∶ Q→ R is a λ-weakly-quasi-convex function, and suppose that Assump-513

tion 1 is satisfied. Then, any solution X(t) of the Bregman Euler–Lagrange equation514

∇ẊẊ + (λ−1ζeαt − α̇t) Ẋ + e2αt+βtgradf(X) = 0,515

with X(0) = x0 and Ẋ(0) = 0, converges to a minimizer x∗ of f with rate516

f(X(t)) − f(x∗) ≤
2λ2eβ0 (f(x0) − f(x∗)) + ζ∥Logx0(x

∗)∥2

2λ2eβt
.517

Proof. Let518

E(t) = λ2eβt (f(X) − f(x∗)) + 1

2
(ζ − 1)∥LogX(x∗)∥2 +

1

2
∥λe−αtẊ − LogX(x∗)∥

2

.519

Then, using Lemma B.2,520

Ė(t) = λ2β̇te
βt (f(X) − f(x∗)) + λ2eβt⟨gradf(X), Ẋ⟩ + (ζ − 1)⟨LogX(x∗),−Ẋ⟩521

+ ⟨λe−αtẊ − LogX(x∗),−α̇tλe−αẊ + λe−αt∇ẊẊ −∇ẊLogX(x
∗)⟩522

= λ2β̇te
βt (f(X) − f(x∗)) + λ2eβt⟨gradf(X), Ẋ⟩ + (ζ − 1)⟨LogX(x∗),−Ẋ⟩523
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+ ⟨λe−αtẊ − LogX(x∗),λe−αt (−α̇tẊ +∇ẊẊ) − ∇ẊLogX(x
∗)⟩.524

Now, from the Bregman Euler–Lagrange equation,525

−α̇tẊ +∇ẊẊ = −λ−1ζeαtẊ − e2αt+βtgradf(X).526

Thus,527

Ė(t) = λ2β̇te
βt (f(X) − f(x∗)) + λ2eβt⟨gradf(X), Ẋ⟩ + (ζ − 1)⟨LogX(x∗),−Ẋ⟩528

+ ⟨λe−αtẊ − LogX(x∗),−ζẊ − λeαt+βtgradf(X) −∇ẊLogX(x
∗)⟩529

= λ2β̇te
βt (f(X) − f(x∗)) + λ2eβt⟨gradf(X), Ẋ⟩ + (ζ − 1)⟨LogX(x∗),−Ẋ⟩ − λζe−αt⟨Ẋ, Ẋ⟩530

− λ2eβt⟨Ẋ,gradf(X)⟩ − λe−αt⟨Ẋ,∇ẊLogX(x
∗)⟩ + ζ⟨LogX(x∗), Ẋ⟩531

+ λeαt+βt⟨LogX(x∗),gradf(X)⟩ + ⟨LogX(x∗),∇ẊLogX(x
∗)⟩.532

Canceling the ⟨gradf(X), Ẋ⟩ and ⟨LogX(x∗),−Ẋ⟩ terms out using Lemma B.2, we get533

Ė(t) = λ2β̇te
βt (f(X) − f(x∗)) + λeαt+βt⟨LogX(x∗),gradf(X)⟩534

− λζe−αt⟨Ẋ, Ẋ⟩ − λe−αt⟨Ẋ,∇ẊLogX(x
∗)⟩535

= λeβt [β̇tλ (f(X) − f(x∗)) + eαt⟨LogX(x∗),gradf(X)⟩]536

− λe−αt [ζ⟨Ẋ, Ẋ⟩ + ⟨Ẋ,∇ẊLogX(x
∗)⟩] .537

Now, since f is geodesically λ-weakly-quasi-convex, we have that538

λ (f(X) − f(x∗)) + ⟨LogX(x∗),gradf(X)⟩ ≤ 0,539

so the ideal scaling equation β̇t ≤ eαt implies that540

λeβt [β̇tλ (f(X) − f(x∗)) + eαt⟨LogX(x∗),gradf(X)⟩] ≤ 0.541

Moreover, Lemma B.1 yields [ζ⟨Ẋ, Ẋ⟩ + ⟨Ẋ,∇ẊLogX(x
∗)⟩] ≥ 0, so542

−λe−αt [ζ⟨Ẋ, Ẋ⟩ + ⟨Ẋ,∇ẊLogX(x
∗)⟩] ≤ 0.543

Therefore, Ė(t) ≤ 0, and so544

λ2eβt (f(X) − f(x∗)) ≤ λ2eβt (f(X) − f(x∗)) + 1

2
(ζ − 1)∥LogX(x∗)∥2 +

1

2
∥λe−αtẊ − LogX(x∗)∥

2

545

= E(t) ≤ E(0) = λ2eβ0 (f(x0) − f(x∗)) +
1

2
ζ∥Logx0(x

∗)∥2,546

which gives the desired rate of convergence547

f(X(t)) − f(x∗) ≤
2λ2eβ0 (f(x0) − f(x∗)) + ζ∥Logx0(x

∗)∥2

2λ2eβt
.548

□549

Appendix C. Proof of Existence Theorems550

C.1. Convex and Weakly-Quasi-Convex Cases.551

Theorem C.1. Suppose Assumption 1 is satisfied, and let C,p > 0 and v > 1 be given constants.552

Then the differential equation553

∇ẊẊ + v

t
Ẋ +Ctp−2gradf(X) = 0,554

has a global solution X ∶ [0,∞)→ Q under the initial conditions X(0) = x0 ∈ Q and Ẋ(0) = 0.555
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Proof. The proof is similar to that of Lemma 3 in [3], which extended Theorem 1 in [23] to the Rie-556

mannian setting. We first define a family of smoothed equations for which we then show existence557

of a solution for all time. After choosing an equicontinuous and uniformly bounded subfamily of558

smoothed solutions, we use the Arzela–Ascoli Theorem on the complete Riemannian manifold Q559

to obtain a subsequence converging uniformly, and argue that the limit of this subsequence solves560

the original problem. When p = 2, we recover the simpler case considered in Lemma 3 of [3], so we561

assume p ≠ 2 in this proof. Consider the following families of smoothed equations for δ > 0:562

∇ẊẊ + v

max (δ, t)
Ẋ +C(max (δ, t))p−2gradf(X) = 0 if p < 2,563

∇ẊẊ + v

max (δ, t)
Ẋ +Ctp−2gradf(X) = 0 if p > 2.564

Exp and Log are defined globally on Q by Assumption 1, so we can choose geodesically normal565

coordinates φ = ψ−1 around x0 defined globally on Q and put c = φ ○X. Using the smoothness of566

f and letting u = ċ gives a system of first-order ODEs defining a local representation for a vector567

field in TQ, and Section IV.3 of [12] guarantees that the smoothed ODE has a unique solution Xδ568

locally around 0. Actually, Xδ exists on [0,∞). Indeed, by contradiction, let [0, T ) be the maximal569

interval of existence of Xδ, for some finite T > 0. Using d
dtf(Xδ(t)) = ⟨gradf(Xδ), Ẋδ⟩ gives570

d

dt
f(Xδ) = −

δ2−p

C
⟨∇Ẋδ

Ẋδ, Ẋδ⟩ −
vδ1−p

C
⟨Ẋδ, Ẋδ⟩ = −

δ2−p

2C

d

dt
∥Ẋδ∥2 −

vδ1−p

C
∥Ẋδ∥2 if δ > t, p < 2,571

d

dt
f(Xδ) = −

t2−p

C
⟨∇Ẋδ

Ẋδ, Ẋδ⟩ −
vt2−p

Cδ
⟨Ẋδ, Ẋδ⟩ = −

t2−p

2C

d

dt
∥Ẋδ∥2 −

vt2−p

Cδ
∥Ẋδ∥2 if δ > t, p > 2,572

d

dt
f(Xδ) = −

t2−p

C
⟨∇Ẋδ

Ẋδ, Ẋδ⟩ −
vt1−p

C
⟨Ẋδ, Ẋδ⟩ = −

1

2C

d

dt
(t2−p∥Ẋδ∥2) −

2v(2 − p) − 1
2C(2 − p)

t1−p∥Ẋδ∥2 if δ < t.573

Let θ = 2v(2−p)−1
2C(2−p) . Integrating and using the Cauchy-Schwarz inequality for the p < 2 case gives574

∫
T

0

√
(max (δ, t))1−p∥Ẋδ∥dt = ∫

δ

0

√
δ1−p∥Ẋδ∥dt +∫

T

δ

√
t1−p∥Ẋδ∥dt575

≤

,
--.Cδ

v
(f(x0) − inf

u
f(u)) + δ2−p

2v
(∥Ẋδ(0)∥2 − inf

t∈[0,T )
∥Ẋδ(t)∥2)576

+

,
--.T − δ

θ
(f(Xδ(δ)) − inf

u
f(u)) + T − δ

2Cθ
(δ2−p∥Ẋδ(δ)∥2 − inf

t∈[0,T )
t2−p∥Ẋδ(t)∥2) <∞,577

since f is bounded below by Assumption 1. If δ ≥ T , then
√
δ1−pẊδ is integrable on [0, T ).578

If δ < T , then the integrals on [0, T ) and [0, δ) are finite, so the integral on [δ, T ) must also579

be finite, and thus
√
t1−pẊδ is integrable on [δ, T ). Now, ∥ ∫

T
a Ẋδdt∥ ≤ ∫

T
a ∥Ẋδ∥dt < ∞ for a =580

0, δ implies that limt→T Xδ(t) exists. Since Q is complete by Assumption 1, the limit is in Q,581

contradicting the maximality of [0, T ). The p > 2 case is similar: the integrand is replaced by582 √
t2−p(max (δ, t))−1∥Ẋδ∥, and the integral on [δ, T ) remains unchanged while the integral on [0, δ)583

can be bounded by the same expression using t < δ. Thus, in both cases, we can find a solution584

Xδ ∶ [0,∞) → Q to the smooth initial-value ODE, and its corresponding solution Xδ ∶ [0,∞) → Rn
585

in local coordinates.586

Now let587

Mδ(t) = sup
u∈(0,t]

∥Ẋδ(u)∥
u

.588

When 0 < t ≤ δ, the smoothed ODE can be written as589

∇Ẋδ
(Ẋδe

v
δ ) = −Cδp−2gradf(Xδ)e

v
δ if p < 2, ∇Ẋδ

(Ẋδe
v
δ ) = −Ctp−2gradf(Xδ)e

v
δ if p > 2.590
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Thus, we can use Lemma 4 in [3] to get for p > 2 that591

Γx0
Xδ(t)

Ẋδ(t) = −e−
v
δ
t∫

t

0
(Γx0

Xδ(u)
gradf(Xδ(u)) − Γx0Xδ(u)

Γ(Xδ)Xδ(u)
x0 gradf(x0))Cup−2e

v
δ
udu592

− e−
v
δ
t∫

t

0
Cup−2Γx0

Xδ(u)
Γ(Xδ)Xδ(u)

x0 gradf(x0)e
v
δ
udu.593

From the Lipschitz assumption on f , we have that594

∥gradf(Xδ(u)) − ΓXδ(u)
x0 gradf(x0)∥ ≤ L∫

u

0
∥Ẋδ(s)∥ds = L∫

u

0
s
∥Ẋδ(s)∥

s
ds ≤ 1

2
LMδ(u)u2.595

Thus, since parallel transport preserves inner products,596

∥Ẋδ(t)∥
t

≤ (1
2
CLMδ(δ)δp +Cδp∥gradf(x0)∥)

e−
v
δ
t

t
∫

t

0
e
v
δ
udu597

≤ (1
2
CLMδ(δ)δp +Cδp∥gradf(x0)∥)

δ

vt
(1 − e−

v
δ
t) ≤ 1

2
CLMδ(δ)δp +Cδp∥gradf(x0)∥.598

Taking the supremum over 0 < t ≤ δ and rearranging gives for δ < δM = ( 2
CL
)
1
p that599

Mδ(δ) ≤
2Cδp∥gradf(x0)∥

2 −CLδp
.600

The case p < 2 is done exactly in the same way except that we do not need to bound up−2 by δp−2601

in the integrals since the tp−2 term in the differential equation is already replaced by δp−2.602

Note that when δ < δM and δ < t < tM = (2(v+p+1)CL )
1
p
, the smoothed ODE can be rewritten as603

d

dt
(tvẊδ(t)) = −Ctv+p−2gradf(Xδ).604

Therefore, we can use Lemma 4 in [3] once again to obtain605

Γ
Xδ(δ)
Xδ(t)

tvẊδ(t) − δvẊδ(δ) = ∫
t

0
(ΓXδ(δ)

Xδ(u)
gradf(Xδ(u)) − ΓXδ(δ)

Xδ(u)
Γ(Xδ)Xδ(u)

x0 gradf(x0))Cuv+p−2du606

− ∫
t

0
Cuv+p−2Γ

Xδ(δ)
Xδ(u)

Γ(Xδ)Xδ(u)
x0 gradf(x0)du.607

Using the fact that parallel transport preserves inner products, and dividing by tv+1 gives608

∥Ẋδ(t)∥
t

≤ δv+1

tv+1
∥Ẋδ(δ)∥

δ
+ CL

2tv+1 ∫
t

δ
Mδ(u)uv+pdu +

C

tv+1
∥gradf(x0)∥∫

t

δ
uv+p−2du609

≤ δv+1

tv+1
2Cδp∥gradf(x0)∥

2 −CLδp
+ CL

2(v + p + 1)
Mδ(t)tp +

C(tv+p−1 − δv+p−1)
(v + p − 1)tv+1

∥gradf(x0)∥,610

and since this upper bound is an increasing function of t, we have for any t′ ∈ (δ, t) that611

∥Ẋδ(t′)∥
t′

≤ 2Cδp∥gradf(x0)∥
2 −CLδp

+ CL

2(v + p + 1)
Mδ(t)tp +

Ctp−2

v + p − 1
∥gradf(x0)∥.612

Taking the supremum over all t′ ∈ (0, t) gives for δ < δM and δ < t < tM ,613

Mδ(t) ≤
1

1 − CL
2(v+p+1)t

p
( 2Cδp

2 −CLδp
+ Ctp−2

v + p − 1
)∥gradf(x0)∥.614

Now consider the family of functions615

F = {Xδ ∶ [0, T ]→ R∣δ = 2−nδ̃, n = 0,1, . . .},616
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where T = (v+p+1CL
)
1
p and δ̃ = ( 1

CL
)
1
p . By definition of Mδ, we have for t ∈ [0, T ] and δ ∈ (0, δ̃) that617

∥Ẋδ∥ ≤ TMδ(T ) ≤ 2CT (δ̃ +
CT p−2

v + p − 1
) and d(Xδ(t),Xδ(0)) ≤ ∫

t

0
∥Ẋδ(u)∥du ≤ t∥Ẋδ∥ ≤ T ∥Ẋδ∥.618

Thus, F is equicontinuous and uniformly bounded, and the Riemannian manifold Q is complete by619

Assumption 1, so by the Arzela–Ascoli Theorem (Theorem 17 in [11]), F contains a subsequence620

that converges uniformly on [0, T ] to some function X∗. The same argument as in part 5 of the621

proof of Lemma 3 of [3] shows that X∗ is a solution to the original initial-value ODE on [0, T ]622

which can then be extended to get a global solution on [0,∞). □623

624

C.2. Strongly Convex Case.625

Theorem C.2. Suppose that Assumption 1 is satisfied, and that η > 0 is a given constant. Then,626

the differential equation627

∇ẊẊ + ηẊ + gradf(X) = 0,628

has a global solution X ∶ [0,∞)→ Q under the initial conditions X(0) = x0 ∈ Q and Ẋ(0) = 0.629

Proof. Exp and Log are defined globally on Q by Assumption 1, so we can choose geodesically630

normal coordinates φ = ψ−1 around x0 defined globally on Q and put c = φ ○X. As in [3], using631

the smoothness of f and letting u = ċ gives a system of first-order ODEs which defines a local632

representation for a vector field in TQ, and results from Section IV.3 of [12] guarantee that the633

initial-value differential equation has a unique solution locally around 0. It remains to show that this634

solution actually exists on [0,∞). Towards contradiction, suppose [0, T ) is the maximal interval of635

existence of the solution X, for some finite T > 0. Then,636

d

dt
f(X(t)) = ⟨gradf(X), Ẋ⟩ = −⟨∇ẊẊ, Ẋ⟩ −C⟨Ẋ, Ẋ⟩ = −1

2

d

dt
∥Ẋ∥2 −C∥Ẋ∥2.637

Rearranging, integrating both sides and using the Cauchy-Schwarz inequality gives638

∫
T

0
∥Ẋ∥dt =

Z
[[\T (f(x0) − inf

u
f(u)) + T

2
(∥Ẋ(0)∥2 − inf

t∈[0,T )
∥Ẋ(t)∥2) <∞,639

since f is bounded from below by Assumption 1. Thus, limt→T X(t) exists, and since Q is complete,640

the limit is in Q, contradicting the maximality of [0, T ), thereby concluding the proof. □641

642

Appendix D. Proof of Invariance Theorem643

Theorem D.1. Suppose that Assumption 1 is satisfied and that the curve X(t) satisfies the Rie-644

mannian Bregman Euler–Lagrange equation (3.7) corresponding to Lα,β,γ. Then the reparametrized645

curve X(τ(t)) satisfies the Bregman Euler–Lagrange equation (3.7) corresponding to the modified646

Riemannian Bregman Lagrangian Lα̃,β̃,γ̃ where α̃t = ατ(t) + log τ̇(t), β̃t = βτ(t), and γ̃t = γτ(t).647

Furthermore α,β,γ satisfy the ideal scaling conditions (3.3) if and only if α̃, β̃, γ̃ do.648

Proof. Let Y (t) =X(τ(t)). Then649

Ẏ (t) = τ̇(t)Ẋ(τ(t)), and ∇Ẏ (t)Ẏ (t) = τ̈(t)Ẋ(τ(t)) + τ̇2(t)∇Ẋ(τ(t))Ẋ(τ(t)).650

Inverting these relations gives651

Ẋ(τ(t)) = 1

τ̇(t)
Ẏ (t), and ∇Ẋ(τ(t))Ẋ(τ(t)) = 1

τ̇2(t)
∇Ẏ (t)Ẏ (t) −

τ̈(t)
τ̇3(t)

Ẏ (t).652
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The Bregman Euler–Lagrange equation (3.7) at time τ(t) is given by653

∇Ẋ(τ(t))Ẋ(τ(t)) + (λ−1ζeατ(t) − α̇τ(t)) Ẋ(τ(t)) + e2ατ(t)+βτ(t)gradf(X(τ(t))) = 0.654

Substituting the expressions for X(τ(t)), Ẋ(τ(t)) and ∇Ẋ(τ(t))Ẋ(τ(t)) in terms of Y (t) and its655

derivatives, and multiplying by τ̇2(t), we get656

∇Ẏ (t)Ẏ (t) −
τ̈(t)
τ̇(t)

Ẏ (t) + (λ−1ζeατ(t) − α̇τ(t)) τ̇(t)Ẏ (t) + τ̇2(t)e2ατ(t)+βτ(t)gradf(Y (t)) = 0.657

Substituting the expressions for α,β,γ in terms of α̃, β̃, γ̃ yields658

∇Ẏ (t)Ẏ (t) −
τ̈(t)
τ̇(t)

Ẏ (t) + (λ−1ζ 1

τ̇(t)
eα̃t − 1

τ̇(t)
[ ˙̃α(t) + τ̈(t)

τ̇(t)
]) τ̇(t)Ẏ (t) + e2α̃t+β̃tgradf(Y (t)) = 0,659

which gives the Bregman Euler–Lagrange equation (3.7) corresponding to Lα̃,β̃,γ̃ ,660

∇Ẏ (t)Ẏ (t) + (λ
−1ζeα̃t − 1

τ̇(t)
˙̃α(t)) Ẏ (t) + e2α̃t+β̃tgradf(Y (t)) = 0.661

The fact that α,β,γ satisfy the ideal scaling conditions (3.3) if and only if α̃, β̃, γ̃ do is established662

in the proof of Theorem 1.2 of [25]. □663
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