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A VARIATIONAL FORMULATION OF
ACCELERATED OPTIMIZATION ON RIEMANNIAN MANIFOLDS

VALENTIN DURUISSEAUX AND MELVIN LEOK

ABSTRACT. It was shown recently by [23] that Nesterov’s accelerated gradient method for minimiz-
ing a smooth convex function f can be thought of as the time discretization of a second-order ODE,
and that f(x(t)) converges to its optimal value at a rate of O(1/t?) along any trajectory z(t) of this
ODE. A variational formulation was introduced in [25] which allowed for accelerated convergence
at a rate of O(1/t?), for arbitrary p > 0, in normed vector spaces. This framework was exploited in
[8] using time-adaptive geometric integrators to design efficient explicit algorithms for symplectic
accelerated optimization. In [3], a second-order ODE was proposed as the continuous-time limit
of a Riemannian accelerated algorithm, and it was shown that the objective function f(z(t)) con-
verges to its optimal value at a rate of O(1/t?) along solutions of this ODE, thereby generalizing
the earlier Euclidean result to the Riemannian manifold setting. In this paper, we show that on
Riemannian manifolds, the convergence rate of f(z(t)) to its optimal value can also be accelerated
to an arbitrary convergence rate O(1/t?), by considering a family of time-dependent Bregman La-
grangian and Hamiltonian systems on Riemannian manifolds. This generalizes the results of [25]
to Riemannian manifolds and also provides a variational framework for accelerated optimization
on Riemannian manifolds. In particular, we will establish results for objective functions on Rie-
mannian manifolds that are geodesically convex, weakly-quasi-convex, and strongly convex. An
approach based on the time-invariance property of the family of Bregman Lagrangians and Hamil-
tonians was used to construct very efficient optimization algorithms in [8], and we establish a similar
time-invariance property in the Riemannian setting. This lays the foundation for constructing sim-
ilarly efficient optimization algorithms on Riemannian manifolds, once the Riemannian analogue
of time-adaptive Hamiltonian variational integrators has been developed. The experience with the
numerical discretization of variational accelerated optimization flows on vector spaces suggests that
the combination of time-adaptivity and symplecticity is important for the efficient, robust, and
stable discretization of these variational flows describing accelerated optimization. One expects
that a geometric numerical integrator that is time-adaptive, symplectic, and Riemannian manifold
preserving will yield a class of similarly promising optimization algorithms on manifolds.

1. INTRODUCTION

Efficient optimization has become one of the major concerns in data analysis. Many machine
learning algorithms are designed around the minimization of a loss function or the maximization
of a likelihood function. Due to the ever-growing scale of the data sets and size of the problems,
there has been a lot of focus on first-order optimization algorithms because of their low cost per
iteration. The first gradient descent algorithm was proposed in [5] by Cauchy to deal with the very
large systems of equations he was facing when trying to simulate orbits of celestial bodies, and
many gradient-based optimization methods have been proposed since Cauchy’s work in 1847.

In 1983, Nesterov’s accelerated gradient method was introduced in [19], and was shown to con-
verge in O(1/k?) to the minimum of the convex objective function f, improving on the O(1/k)
convergence rate exhibited by the standard gradient descent methods. This O(1/k?) convergence
rate was shown in [20] to be optimal among first-order methods using only information about V f
at consecutive iterates. This phenomenon in which an algorithm displays this improved rate of
convergence is referred to as acceleration, and other accelerated algorithms have been derived since
Nesterov’s algorithm, such as accelerated mirror descent [18] and accelerated cubic-regularized
Newton’s method [21]. More recently, it was shown in [23] that Nesterov’s accelerated gradient

method limits to a second-order ODE, as the timestep goes to 0, and that the objective function
1
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2 VALENTIN DURUISSEAUX AND MELVIN LEOK

f(x(t)) converges to its optimal value at a rate of O(1/t?) along the trajectories of this ODE. It
was then shown in [25] that in continuous time, the convergence rate of f(xz(t)) can be accelerated
to an arbitrary convergence rate O(1/t?) in normed spaces, by considering flow maps generated
by a family of time-dependent Bregman Lagrangian and Hamiltonian systems which is closed un-
der time rescaling. This variational framework and the time-invariance property of the family of
Bregman Lagrangians was then exploited in [8] using time-adaptive geometric integrators to design
efficient explicit algorithms for symplectic accelerated optimization. It was observed that a careful
use of adaptivity and symplecticity could result in a significant gain in computational efficiency.

In the past few years, there has been some effort to derive accelerated optimization algorithms in
the Riemannian manifold setting [2—4; 15; 26; 27]. In [3], a second-order ODE was proposed as the
continuous-time limit of a Riemannian accelerated algorithm, and it was shown that the objective
function f(x(t)) converges to its optimal value at a rate of O(1/t?) along solutions of this ODE,
generalizing the Euclidean result obtained in [23] to the Riemannian manifold setting.

In this paper, we show that in continuous time, the convergence rate of f(x(t)) to its opti-
mal value can be accelerated to an arbitrary convergence rate O(1/tP) on Riemannian manifolds,
thereby generalizing the results of [25] to the Riemannian setting. This is achieved by consid-
ering a family of time-dependent Bregman Lagrangian and Hamiltonian systems on Riemannian
manifolds. This also provides a variational framework for accelerated optimization on Riemannian
manifolds, generalizing the normed vector space variational formulation of accelerated optimization
introduced in [25]. We will then illustrate the derived theoretical convergence rates by integrating
the Bregman Euler-Lagrange equations using a simple numerical scheme to solve eigenvalue and
distance minimization problems on Riemannian manifolds. Finally, we will show that the family
of Bregman dynamics on Riemannian manifolds is closed under time rescaling, and we will draw
inspiration from the approach introduced in [8] to take advantage of this invariance property via a
carefully chosen Poincaré transformation that will allow for the integration of higher-order Bregman
dynamics while benefiting from the computational efficiency of integrating lower-order Bregman
dynamics on Riemannian manifolds.

2. DEFINITIONS AND PRELIMINARIES
We first introduce the main notions from Riemannian geometry and Lagrangian and Hamiltonian

mechanics that will be used throughout this paper (see [3; 9; 10; 12; 13; 16] for more details).

2.1. Riemannian Geometry.

Definition 2.1. Given a manifold Q, the tangent bundle TQ and cotangent bundle T*Q are
defined by

TQ={(¢;v)lge QueTyQ}  and  T7Q={(q,p)lge Q,peT;Q}.

Definition 2.2. Suppose we have a Riemannian manifold Q with Riemannian metric g(-,-) = (-,-),
represented by the positive-definite symmetric matriz (gi;) in local coordinates. Then, we define the
mausical isomorphism ¢* : TQ — T*Q by

9" (u)(v) = gp(u,v)  Vpe Q and Yu,veT,Q,

and its inverse musical isomorphism gt : T*Q - TQ. The Riemannian metric g(-,-) = (-,-)
induces a fiber metric g*(-,-) = (-,-) on T*Q by

{u,v) = (g"(w), g'(v)) Vu,veT*Q,

represented by the positive definite symmetric matriz (g”) in local coordinates, which is the inverse
of the Riemannian metric matriz (gi;).
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A VARIATIONAL FORMULATION OF ACCELERATED OPTIMIZATION ON RIEMANNIAN MANIFOLDS 3

Definition 2.3. The Riemannian gradient gradf(q) € T,Q at a point g € Q of a smooth function
f:Q — R is the tangent vector at q such that

(gradf(q),u) = df (q)u VueT,Q,
where df is the differential of f.

Definition 2.4. A vector field on a Riemannian manifold Q@ is a map X : Q@ — T'Q such that
X(q) € T4Q for all g € Q. The set of all vector fields on Q is denoted X(Q). The integral curve
at ¢ of X € X(Q) is the smooth curve ¢ on Q such that ¢(0) =q and ¢/ (t) = X (c(t)).

Definition 2.5. A geodesic in a Riemannian manifold Q is a parametrized curve v : [0,1] - Q
which is of minimal local length. It can be thought of as a curve having zero “acceleration” or
constant “speed”, that is as a generalization of the notion of straight line from Fuclidean spaces
to Riemannian manifolds. Given two points q,q € Q, a vector in T4 Q can be transported to T5Q

along a geodesic v by an operation F('y)g~ : T,Q — T5Q called parallel transport along v. We

will simply write I’g to denote the parallel transport along some geodesic connecting the two points
q,q € Q, and given A € X(Q), we will denote by T'(A) the parallel transport along integral curves
of A. Note that parallel transport preserves inner products: given a geodesic vy from qe Q to §e€ Q,

9q(u,0) = g5 (PN, T(7)iv)  Vu,veT,Q.
Definition 2.6. Given X,Y € X(Q), the covariant derivative VxY € X(Q) of Y along X is
D7 Y (1) - Y (0)
h )
where v is the unique integral curve of X such that v(0) = q, for any q € Q.

VxY(q) = }Li_l)%

Definition 2.7. A function f : Q — R is called L-smooth if for any two points q,§ € Q and
geodesic vy connecting them,

|gradf(q) - T'(7)lgradf(q)| < L length(y).
Definition 2.8. The Riemannian FExponential map Equ :T,Q — Q at ge Q is defined by

Exp,(v) =7,(1),
where 7y, is the unique geodesic in Q such that v,(0) = ¢ and v,(0) = v, for any v e T, Q.
Exp, is a diffeomorphism in some neighborhood U c T, Q containing 0, so we can define its inverse
map, the Riemannian Logarithm map Log, : Exp,(U) - T, Q.

Definition 2.9. Given a Riemannian manifold Q with sectional curvature bounded below by Ky,
and an upper bound D for the diameter of the considered domain, define

C B V -KninD COth(\/—KminD) Zf Kinin <0 (2 1)
1 if Konin 20 '

Note that ¢ > 1 since xcothx > 1 for all real values of x.
2.2. Convexity in Riemannian Manifolds.

Definition 2.10. A subset A of a Riemannian manifold Q is called geodesically uniquely convex
if every two points of A are connected by a unique geodesic in A. A function f: Q — R is called
geodesically convex if for any two points q,§ € @ and geodesic v connecting them,

fO@)<@-6)f(q) +tf(q)  Vte[0,1].
Note that if f is a smooth geodesically convex function on a geodesically uniquely convexr subset A
of a Riemannian manifold, then

f(@) = f(@) > (gradf(q), Logz(q)) Vg, qeA.
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4 VALENTIN DURUISSEAUX AND MELVIN LEOK

A function f: A - R is called geodesically \-weakly-quasi-convex with respect to q € Q for
some X € (0,1] if
A(f(q) - f(9)) 2 (gradf(q), Logz(q))  VGe A.
A function f: A — R is called geodesically p-strongly-convex for some j >0 if
£(2) = £(@) > {gradf(q). Logz(0)) + & [ Logs (@)[*  Va.qe 4.

A local minimum of a geodesically convex or A-weakly-quasi-convex function is also a global mini-
mum, and a geodesically strongly convex function either has no minimum or a unique global mini-
mum. Also note that a geodesically convex function is \-weakly-quasi-convexr with A = 1.

2.3. Lagrangian and Hamiltonian Mechanics. Given a n-dimensional Riemannian manifold Q

with local coordinates (¢',...,q"), a Lagrangian is a function L : TQxR — R. The corresponding
action integral S is defined to be the functional
T

S(@)= [ La.d.t)dt, (22)

over the space of smooth curves ¢ : [0,7] - Q. Hamilton’s Variational Principle states that
0S = 0 where the variation §S is induced by an infinitesimal variation dq of the trajectory ¢ that
vanishes at the endpoints. Hamilton’s Variational Principle can be shown to be equivalent to the
Euler—Lagrange equations

d (0L oL

(=) == fork=1,...,n. 2.3

ilog) o frkoben 23
The Legendre transform FL : TQ — T*Q of L is defined fiberwise by FL : (¢%,¢") = (¢*,p;)
where p; = g—q.Li € T*Q is the conjugate momentum of ¢*. We can then define the associated

Hamiltonian H : T*Q — R by

H(q,p,t) = ipﬂj - L(q,4,t) : (2.4)

_O0L
J pi_a_qi

We can also define a Hamiltonian Variational Principle on the Hamiltonian side in momentum
phase space

5f0Tj§1 [p;d - H(q,p,t)]dt =0, (2.5)

where the variation is induced by an infinitesimal variation dq of the trajectory ¢ that vanishes at
the endpoints. This is equivalent to Hamilton’s equations, given by

OH 5w OH

_k(paq)v qk=_(p7Q) fOI'k'=1,...,7’I,, (26)
dq Opk

which can also be shown to be equivalent to the Euler-Lagrange equations (2.3).

Dk =—

3. VARIATIONAL FORMULATION AND CONVERGENCE RATES

3.1. Inspiration. A variational framework was introduced in [25] for accelerated optimization on
normed vector spaces. Given a convex, continuously differentiable function A : X - R on a normed
vector space X such that |[Vh(z)| — oo as |z| — oo, its corresponding Bregman divergence is
defined by

Dy(z,y) = h(y) - h(z) - (Vh(z),y - z). (3.1)
The Bregman Lagrangian and Hamiltonian are then defined to be
Lop(x,0,t) =" [Dh (x+e v,x) - eBtf(:U)] ,

3.2
Ha g (2, t) =M [Dh* (Vh(z) + e r,Vh(z)) + eﬂff(x)] , (32)
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A VARIATIONAL FORMULATION OF ACCELERATED OPTIMIZATION ON RIEMANNIAN MANIFOLDS 5

which are scalar-valued functions of position z € X, velocity v € R¢ or momentum r € R%, and of
time t. Here, h* : X* — R denotes the Legendre transform (or convex dual function) of h, defined by
h*(w) =sup,cy [(w, z) = h(2)]. The Bregman Lagrangian and Hamiltonian family is parametrized
by smooth functions of time, a; = a(t), B = B(t), v = v(t), which are said to satisfy the ideal scaling
conditions if

B < e and A = €. (3.3)
If the ideal scaling conditions are satisfied, then by Theorem 1.1 in [25],
fla(t) - f(z") <O(e™). (3.4)

Another very important property of this family of Bregman Lagrangians is its closure under time
dilation, proven in Theorem 1.2 of [25]:

Theorem 3.1. If z(t) satisfies the Euler-Lagrange equations corresponding to the Bregman La-
grangian L, g, then the reparametrized curve y(t) = x(7(t)) satisfies the Euler-Lagrange equations

corresponding to the modified Bregman Lagrangian L G5 where & = oy +1og 7(1), By = Br(t), and

Yt = Vr(t)- Furthermore «, 3, satisfy the ideal scaling conditions (5.3) if and only if &, 3,7 do.

We will now extend these results to the Riemannian manifold setting. Throughout this paper, we
will make the following assumptions on the function f : @ — R to be minimized and on the ambient
Riemannian manifold Q, which are standard assumptions in Riemannian optimization [3; 4; 26; 27]:

Assumption 1. Solutions of the differential equations derived in this paper remain inside a geodesi-
cally uniquely convex subset A of a complete Riemannian manifold Q (i.e. any two points in Q
can be connected by a geodesic), such that diam(A) is bounded above by some constant D, that
the sectional curvature is bounded from below by Kmin on A, and that Exp, is well-defined for any
q € A, and its inverse Log, is well-defined and differentiable on A for any q € A. Furthermore, f is
bounded below, geodesically L-smooth and all its minima are inside A.

3.2. Convex and Weakly-Quasi-Convex Cases. Suppose that f: Q — R is a given geodesically
A-weakly-quasi-convex function, and that Assumption 1 holds true. Since a geodesically convex
function is A-weakly-quasi-convex with A = 1, the following treatment also applies to the case
where f is geodesically convex. We define a family of Bregman Lagrangians L, 5, : TQ xR - R
parametrized by smooth functions of time «, 3, by

1 - _
Lop(X,V,t) = §e>\ 1C'Yt—at<‘/’ V) - Ot +BEHA 1C%f(X), (3.5)

and the corresponding Bregman Hamiltonians H, g, : TQ xR - R are given by

1 - -
oo (X,Ryt) = SR R) + 2T f(X), (3.6)

where X € Q denotes position on the manifold Q, V' is the velocity vector field, R is the momentum
covector field, ¢ is the time variable, and ( is given by equation (2.1). This family of functions is
a generalization of the Bregman Lagrangians and Hamiltonians introduced in [25] for the convex
continuously differentiable function h(x) = %(.’L’,SC) Throughout this paper, we will assume that
the parameter functions «, (3,7 satisfy the ideal scaling conditions (3.3).

Theorem 3.2. The Bregman Euler—Lagrange equation corresponding to the Bregman Lagrangian
Lo g~ 18 given by

VXX + (/\_1460“ — ) X + ®@ Prgradf(X) = 0. (3.7)

Proof. See Appendix A.1.
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6 VALENTIN DURUISSEAUX AND MELVIN LEOK

Theorem 3.3. Suppose that f: Q — R is a geodesically \-weakly-quasi-conver function, and that
Assumption 1 is satisfied. Then, any solution X (t) to the Bregman Euler—Lagrange equation (3.7)
converges to a minimizer x* of f with rate

22260 (f(x0) - f(2*)) + (| Logy, (z*)|?
2\2eBt

F(X(@)) - f(a7) < =0(e ). (3.8)

Proof. See Appendix B.

A p> 0 parametrized subfamily of Bregman Lagrangians and Hamiltonians, that is of particular
practical interest, is given by the choice of parameter functions

‘ ay =logp —logt, By =plogt +logC, v =plogt, (3.9)

where C > 0 is a constant. This yields the p-Bregman Lagrangian and Hamiltonian given by

A1¢p+l 1
Lp(X. V1) = (V.V) = Cpt? P p (X0, (3.10)
p -1 -
Hp(X, Bot) = e (R R) + Cpt® COPL(X), (3.11)

and the corresponding p-Bregman Euler-Lagrange equations are given by

. .
VX + Cp/\—;X + Cp*tP2gradf(X) = 0. (3.12)

Theorem 3.4. Suppose that f: Q@ — R is a geodesically weakly-quasi-conver function, and that
Assumption 1 is satisfied. Then, the p-Bregman Euler—Lagrange equation (3.12) has a solution,

and any solution X (t) converges to a minimizer x* of f with rate | f(X(t)) - f(z™) < O(1/t*) |

Proof. See Appendix C.1 for the existence of a solution to the p-Bregman FEuler-Lagrange equations.
The O(1/tP) convergence rate follows directly from Theorem 3.3.

Note that this theorem reduces to Theorem 5 from [3] when p=2 and C = 1/4.

Remark. To construct this variational framework for accelerated optimization, we first constructed
candidate p-equations with the desired O(1/tP) convergence rates, and then designed Lagrangians
whose p-Bregman Fuler—Lagrange equations matched the candidate p-equations, by inspection. We
then used a similar approach to extend these results to the general a, 8,7 case presented here.

Remark. In our generalization of the Bregman Lagrangian and Hamiltonian to Riemannian mani-
folds, we have specialized to the case where h(x) = %”:L‘”Z, because its Hessian V*h(x) is the identity
matriz, which significantly simplifies the Euler—Lagrange equations and the analysis. In addition,
it avoids the complication of making intrinsic sense of terms like X + e “V in the vector space
Bregman Lagrangians and Hamiltonians, which require the use of Riemannian geodesics and erpo-
nentials since X € Q while V € Tx Q.

3.3. Strongly Convex Case. Suppose f : Q — R is a geodesically u-strongly-convex function,
and that Assumption 1 is satisfied. With ¢ given by equation (2.1), let

n=(%+\/f)\/ﬁ. (3.13)

We define the corresponding Lagrangian £°¢: TQ xR - R by

L£(X,V,t) = %W(V,V) —e"f(X), (3.14)
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and the corresponding Hamiltonian H°¢ : T*Q x R — R is given by

—nt

HIC(X,R.1) = 5 (R.R) + " f(X). (3.15)
Theorem 3.5. The Euler-Lagrange equation corresponding to the Lagrangian £ is given by
Vi X +1X +gradf(X) = 0. (3.16)

Proof. The derivation of the Euler—Lagrange equation is presented in Appendix A.2.

Theorem 3.6. Suppose f: Q - R is a geodesically p-strongly-convex function, and suppose that
Assumption 1 is satisfied. Then, the Euler—Lagrange equation (3.16) has a solution, and any
solution X (t) converges to a minimizer x* of f with rate

plLogy, ()] +2 (f (xo) - F=)

26\/¥t

Proof. See Appendix C.2 for the existence of a solution to the Euler-Lagrange equation (3.16), and
Theorem 7 from [3] for the convergence rate.

FX(@) - f(z7) <

(3.17)

4. NUMERICAL EXPERIMENTS

The p-Bregman Euler-Lagrange equation (3.12) can be rewritten as the first-order system

. A
X=V, VvV = —Cp)\—ZV — Cp?tP 2gradf(X), (4.1)

for the geodesically A-weakly-quasi-convex case, and the Euler-Lagrange equation (3.16) corre-
sponding to the Lagrangian £5¢ can be rewritten as the first-order system

X=V, VvV =- (% + ﬁ) VIV - gradf(X), (4.2)

for the p-strongly convex case. As in [3], we can adapt a semi-implicit Euler scheme (explicit Euler
update for the velocity V followed by an update for position X based on the updated value of V')
to the Riemannian setting to obtain the following algorithm:

Algorithm 1: Semi-Implicit Euler Integration of the p-Bregman Euler-Lagrange Equations
Input: A function f:Q — R. Constants C,h,p>0. Xge Q. VpeTx,Q.

1 while convergence criterion is not met do

if f is p-geodesically strongly convexr then

‘ bkel—h(\/iz+\/g_“)\/ﬁ, cp < 1
else if f is A-weakly-quasi-conver then

| bp1-L2 0 ¢« Op?(kh)P~2
Version I: a; < b, Vj — heggradf( Xy)
Version II: a; < bV}, - hckgradf(EXpXk (hkak))

X
B Xk+1 < EXpXk(hak)a Vir1 < FXI;HCL]C

ok W N

o N O

Version I of Algorithm 1 corresponds to the usual update for the Semi-Implicit Euler scheme,
while Version II is inspired by the reformulation of Nesterov’s method from [24] that uses a cor-
rected gradient V f( Xy +hbi V) instead of the traditional gradient V f(X%). Note that the SIRNAG
algorithm presented in [3] corresponds to the special case where p =2 and C = 1/4.
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The first problem we have investigated is the problem presented in [3] of minimizing the (strongly
convex) distance function f(x) = %d(m, q)? for a given point g, on a subset of chosen finite diameter
of the hyperbolic plane H?, which is a manifold with constant negative curvature K = —1.

The second problem we have investigated is Rayleigh quotient optimization. Eigenvectors corre-
sponding to the largest eigenvalue of a symmetric n x n matrix A maximize the Rayleigh quotient
”;é}” over R™. Thus, a unit eigenvector v* corresponding to the largest eigenvalue of the matrix A
is a minimizer of the function f(v) = —v" Av, over the unit sphere Q = S*"1, which can be thought
of as a Riemannian submanifold with constant positive curvature K = 1 of R” endowed with the
Riemannian metric inherited from the Euclidean inner product g,(u,w) = u"w. More information
concerning the geometry of S*!, such as its tangent bundle, its orthogonal projection and expo-
nential map can be found in [1]. Solving the Rayleigh quotient optimization problem efficiently
is challenging when the given symmetric matrix A is ill-conditioned and high-dimensional. Note
that an efficient algorithm that solves the above minimization problem can also be used to find
eigenvectors corresponding to the smallest eigenvalue of A by using the fact that the eigenvalues of
A are the negative of the eigenvalues of —A.

Experiments carried out in [3] showed that SIRNAG (the convex p = 2 Algorithm 1) and the
strongly convex Algorithm 1 were of comparable efficiency or more efficient than the standard Rie-
mannian Gradient Descent (RGD) method, depending on the properties of the objective function
and on the geometry of the Riemannian manifold. We have conducted further numerical experi-
ments to investigate how the simple discretization of higher-order p = 6 Bregman dynamics com-
pared to its p = 2 counterpart, and to see whether it matches the theoretical O(¢t™?) convergence
rate. The numerical results obtained for the distance minimization and Rayleigh minimization
problems are illustrated in Figure 1, where all the algorithms were implemented with the same
fixed timestep. We can see that the p = 6 algorithms outperform their p = 2 counterparts, and that
the efficiency improvement is very important. Furthermore, both versions of the p = 6 Algorithm 1
exhibit a faster convergence rate than the theoretical O(t™%) rate. While Version I of Algorithm 1
exhibits polynomial rates of O(t~1%%) and O(t™%) on the objective functions considered, Version II
of Algorithm 1 exhibits a much faster exponential rate of convergence on both examples.

10° Rayleigh Minimization| 3

10710

—SC (Version II)

p = 2 (Version II)
—p =6 (Version I)
—p = 6 (Version II)

(Version II)
(Version I)
(Version II)

1015 - 0 . . .
250 500 1000 2500 500 1000 2000 5000

k k

FIGURE 1. Comparison of the rates of convergence of the u-strongly convex (SC)
Algorithm 1 and convex Algorithms 1 with different values of p and with the two
versions of the update corresponding to the traditional and corrected gradients.
Note that all the algorithms were implemented with the same timestep h.
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Figure 2 displays the evolution of the rates of convergence of Version 1 of the convex Algorithm
1 as the value of the parameter p is increased from p = 4 to p = 16 for the distance minimization and
Rayleigh minimization problems. We can clearly see an improvement in the convergence rates as
the value of p increases, and for each value of p the algorithm achieves a faster rate of convergence
than the theoretical O(t7?) rates.

= T T T T T T T T

IDistance Minimization I

N 104 A‘ O(k
“~ 10 ” -
T | ‘
=
B 10t m
S~ F ——p=4
Fl—p=6
10
El—p=8
|—p=10
10“2? —p =12
c |—p=16
10.14:. ! ! L I.J |
10* 105
k
10% T T ——
10'2é—
:: E
|
§/ 100 & —;
~ E
108 —%
O~10_ —;

FI1GURE 2. Evolution of the rates of convergence of Version 1 of the convex Algo-
rithm 1 with different values of p. Note that all the algorithms were implemented
with the same timestep h.

Note however that an increase in the value of p in Algorithm 1, which corresponds to an increase
in the order of the Bregman dynamics integrated, requires a decrease in the timestep, in agreement
with intuitive expectations. This timestep decrease requirement is especially important due to
the polynomially growing h(kh)P~2 coefficient multiplying the gradient of f in the updates of
the algorithm. Such a decrease in the timestep does not really affect the convergence rate, but
the transition between the initialization and convergence phases takes longer. As a consequence,
by using larger timesteps, the algorithm corresponding to a smaller value of p might achieve a
desired convergence criterion with fewer iterations than the algorithm corresponding to a larger
value of p, despite having a slower convergence rate. Similar issues arise when discretizing the
continuous Euler-Lagrange flow associated with accelerated optimization on vector spaces, and in
that situation, it was observed that time-adaptive symplectic integrators based on Hamiltonian
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10 VALENTIN DURUISSEAUX AND MELVIN LEOK

variational integrators resulted in dramatically improved robustness and stability. As such, it will
be natural to explore generalizations of time-adaptive symplectic integrators based on Hamiltonian
variational integrators applied to Poincaré transformed Hamiltonians, that respect the Riemannian
manifold structure in order to yield more robust and stable numerical discretizations of the flows we
have studied in this paper in order to construct accelerated optimization algorithms on Riemannian
manifolds. We will lay the foundation for such time-adaptive symplectic integrators in Section 5.

Finally, Figure 3 shows that the discretization empirically converges to the solution of the ODE
as the timestep h goes to 0. Note that although all the discretizations follow the ODE trajectory
closely, smaller timesteps result in a larger number of iterations, especially to transition from the
initialization plateau to the convergence phase (around time t = 4 in the example presented in
Figure 3). A theoretical shadowing result bounding the error between the discrete-time RGD and
its continuous-time limiting ODE was obtained in [3]. It would be desirable to obtain similar
shadowing results in the future for discretizations of the class of ODEs considered here, perhaps
drawing inspiration from [28]. However, such a result might be very difficult to obtain because
momentum methods lack contraction, are nondescending, and are highly oscillatory [3; 22]. While
it is hoped that the continuous analysis in this paper will eventually guide the convergence analysis
of discrete-time algorithms, this does not appear to be a straightforward exercise, as one would first
need to reconcile the arbitrarily fast O(1/tP) rate of convergence of the continuous-time trajectories
with Nesterov’s barrier theorem of O(1/k?) for discrete-time algorithms.

%10
:

1005 —

14 =01 g ol —}Sloiu‘(c)ljn
ol —h=005 | - \m —h=0.05
= 0

—h = 0.005 104k

d(zy, X (kh))

F1GURE 3. Discretization errors (top graph) and convergence rates (bottom graphs)
of Version I of the p = 5 convex Algorithm 1 with different values of h for the
distance minimization problem. The true solution of the differential equation was
approximated by the same algorithm with a very small timestep h = 107°.

5. TIME INVARIANCE AND POINCARE TRANSFORMATION

Let f: Q — R be a given A\-weakly-quasi-convex function, and suppose Assumption 1 is satis-
fied. In Section 3, we formulated a variational framework for the minimization of f, via Bregman
Lagrangians and Hamiltonians. We now extend Theorem 3.1 to Riemannian manifolds.

Theorem 5.1. Suppose that Assumption 1 is satisfied and that the curve X (t) satisfies the Rie-
mannian Bregman Euler-Lagrange equation (3.7) corresponding to L 3. Then the reparametrized
curve X (7(t)) satisfies the Bregman Euler—Lagrange equation (3.7) corresponding to the modified
Riemannian Bregman Lagrangian Ed,ﬁ,ﬁ where &y = a iy +1og7(t), Br = Brry, and i = V@)
Furthermore «, 3,7 satisfy the ideal scaling conditions (3.3) if and only if &, 3,7 do.

Proof. See Appendix D.
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As a special case, we have the following theorem:

Theorem 5.2. Suppose that f: Q — R is a geodesically \-weakly-quasi-convex function, and that
Assumption 1 is satisfied. Suppose X (t) satisfies the p-Bregman Euler—Lagrange equation (3.12).
Then, the reparametrized curve X(tﬁ/p) satisfies the p-Bregman Euler—Lagrange equation (3.12).

Thus, the entire subfamily of Bregman trajectories indexed by the parameter p can be obtained
by speeding up or slowing down along the Bregman curve in spacetime corresponding to any specific
value of p. Inspired by the computational efficiency of the approach introduced in [8], it is natural
to attempt to exploit the time-rescaling property of the Bregman dynamics together with a care-
fully chosen Poincaré transformation to transform the p-Bregman Hamiltonian into an autonomous
version of the p-Bregman Hamiltonian in extended phase-space, where p < p. This would allow us to
integrate the higher-order p-Bregman dynamics while benefiting from the computational efficiency
of integrating the lower-order p-Bregman dynamics. Explicitly, the time rescaling 7(t) = tP/P is
associated to the monitor function

dt D,1-p
= g,5(t) = St PP 5.1
dr 9p p( ) ]5 ( )

and generates a Poincaré transformed Hamiltonian

Hpop (X, R) = g (X*) (M, (X, R) + R'), (5.2)

[))gt and R = [ R
choice X' = ¢, with conjugate momentum R’, and R*(0) = —H,(X(0), R(0),0) = —Hy, which is
chosen so that #H,;5(X, R) = 0 along all integral curves through (X (0), R(0)). The time ¢ shall be
referred to as the physical time, while 7 will be referred to as the fictive time. The corresponding
Hamiltonian equations of motion in the extended phase space are then given by

in the extended space Q = Q x R where X = +|. We will make the conventional

= OHpop = OHpop
x - Zob R=-Tpb 5.3
OR 0X (5:3)
Now, suppose (X (7), R(7)) are solutions to these extended equations of motion, and let (x(t),r(t))
solve Hamilton’s equations for the original Hamiltonian H,. Then

Hypop (X (1), R(T)) = Hpp(X (0), R(0)) = 0.

Thus, the components (X (7), R(7)) in the original phase space of (X (7), R(7)) satisfy
HP(X(T)a R(T)u 7—) = _Rt(T)’ 7{117(‘)((0)7 R(O)7 0) = _Rt(o) = Hp(:c(O), T(O)’ O)
Therefore, (X (7), R(7)) and (z(t),r(t)) both satisfy Hamilton’s equations for the original Hamil-

tonian H, with the same initial values, so they must be the same.
As a consequence, instead of integrating the p-Bregman Hamiltonian system (3.11), we can focus

on the Poincaré transformed Hamiltonian H,_,; in extended phase-space given by equation (5.2),
with H, and g, given by equations (3.11) and (5.1), that is

Fyi K B) = b () + T2 ()07 6Dl () L B (xR | (5.)
L 2p(X )N Cp+pfp N7 D D ’ '

The resulting integrator has constant timestep in fictive time 7 but variable timestep in physical
time . In our prior work on discretizations of variational formulations of accelerated optimization
on normed spaces [8], we performed a very careful computational study of how time-adaptivity and
symplecticity of the numerical scheme improve the performance of the resulting numerical optimiza-
tion algorithm. In particular, we observed that time-adaptive Hamiltonian variational discretiza-
tions, which are automatically symplectic, with adaptive timesteps informed by the time invariance
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of the family of p-Bregman Lagrangians and Hamiltonians yielded the most robust and computa-
tionally efficient numerical optimization algorithms, outperforming fixed-timestep symplectic dis-
cretizations, adaptive-timestep non-symplectic discretizations, and Nesterov’s accelerated gradient
algorithm which is neither time-adaptive nor symplectic. As such, it would be desirable to general-
ize the time-adaptive Hamiltonian variational integrator framework to Riemannian manifolds, and
apply it to the variational formulation of accelerated optimization on Riemannian manifolds.

6. CONCLUSION

We have shown that on Riemannian manifolds, the convergence rate in continuous time of a
geodesically convex or weakly-quasi-convex function f(z(t)) to its optimal value can be accelerated
to an arbitrary convergence rate, which extended the results of [25] from normed vector spaces to
Riemannian manifolds. This rate of convergence is achieved along solutions of the Euler-Lagrange
and Hamilton’s equations corresponding to a family of time-dependent Bregman Lagrangian and
Hamiltonian systems on Riemannian manifolds. As was demonstrated in the normed vector space
setting, such families of Bregman Lagrangians and Hamiltonians can be used to construct practical,
robust, and computationally efficient numerical optimization algorithms that outperform Nesterov’s
accelerated gradient method by considering geometric structure-preserving discretizations of the
continuous-time flows.

Numerical experiments implementing a simple discretization of the p-Bregman Euler—Lagrange
equations applied to a distance minimization and Rayleigh minimization problems confirmed that
the higher-order algorithms outperform significantly their lower-order counterparts and their the-
oretical O(1/t?) convergence rates. Numerical results also showed that using a corrected gradient
in the update instead of the traditional gradient, as was done in [24], improved the theoretically
predicted polynomial convergence rate to an exponential rate of convergence in practice. While
higher values of p result in faster rates of convergence, they usually require smaller timesteps and
also appear to be more prone to stability issues under numerical discretization, which can cause
the numerical optimization algorithm to diverge, but we anticipate that symplectic discretizations
will address these stability issues.

Finally, in analogy to what was done in [25] for normed vector spaces, we proved that the family
of time-dependent Bregman Lagrangian and Hamiltonians on Riemannian manifolds is closed under
time rescaling. Inspired by the computational efficiency of the approach introduced in [8], we can
then exploit this invariance property via a carefully chosen Poincaré transformation that will allow
us to integrate higher-order p-Bregman dynamics while benefiting from the computational efficiency
of integrating a lower-order p-Bregman Hamiltonian system.

It was observed in our prior computational experiments in the normed vector space case [8]
that geometric discretizations which respect the time-rescaling invariance and symplecticity of the
Bregman Lagrangian and Hamiltonian flows were substantially less prone to stability issues, and
were therefore more robust, reliable, and computationally efficient. As such, it is natural to develop
time-adaptive Hamiltonian variational integrators for the Bregman Hamiltonian introduced in this
paper describing accelerated optimization on Riemannian manifolds.

Developing an intrinsic extension of Hamiltonian variational integrators to manifolds will require
some additional work, since the current approach involves Type II/Type III generating functions
H;(qi-pr+1), H (Pk,qr+1), which depend on the position at one boundary point, and the momen-
tum at the other boundary point. However, this does not make intrinsic sense on a manifold, since
one needs the base point in order to specify the corresponding cotangent space, and one should
ideally consider a Hamiltonian variational integrator construction based on discrete Dirac mechan-
ics [14], which would yield a generating function Ej(qk,qr+1:Pk+1)s £ (qk,Pks qr+1), that depends
on the position at both boundary points and the momentum at one of the boundary points. This
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approach can be viewed as a discretization of the generalized energy E(q,v,p) = (p,v) — L(q,v), in
contrast to the Hamiltonian H(q, p) = exty(p,v) - L(q,v) = (p,v) = L(q, )] ,_o.
ov

However, a more practical method relies on the fact that we have a Riemannian manifold, which
is endowed with a Riemannian exponential and Riemannian logarithm that can be used to construct
an extension of Hamiltonian variational integrators using geodesic normal coordinates. For many
important matrix manifolds, one can replace the Riemannian exponential in the geodesic normal
coordinates by a retraction [1], which is often constructed using matrix factorizations.

Another important case involves Riemannian submanifolds that are embedded in a Riemannian
linear manifold and are realized as the level set of a submersion. The characterization of the sub-
manifold as the level set of a submersion, together with the linear space structure of the embedding
space, and the variational characterization of the dynamics naturally lends itself to the use of the
Lagrange multiplier theorem, which allows one to use Hamiltonian variational integrators defined
on the embedding space by including a Lagrange multiplier term involving the submersion in the
Lagrangian or Hamiltonian [6]. This is analogous to the derivation of the SHAKE and RATTLE
methods as a variational integrator for constrained systems (see, for example, §3.5 of [17]). Another
practical method can be obtained by projecting the updates of Hamiltonian variational integrators
defined on the embedding space onto the constraint manifold [7].

We anticipate that applying an appropriate generalization of Hamiltonian variational integrators
to the Bregman Hamiltonians introduced in this paper will yield a novel class of robust and effi-
cient accelerated optimization algorithms on Riemannian manifolds. It would also be desirable to
analyze the resulting discrete-time algorithms and rigorously establish their rates of convergence.
In addition, we would like to better understand how to reconcile the arbitrarily high rate of conver-
gence one expects from the continuous-time analysis, with Nesterov’s barrier theorem on the rate
of convergence of discrete-time algorithms.
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APPENDIX A. DERIVATION OF THE EULER-LAGRANGE EQUATIONS

A.1. Convex and Weakly-Quasi-Convex Cases.
Theorem A.l1. The Fuler—Lagrange equation corresponding to the Lagrangian
1 - _
Ea,ﬁ,’y(Xa V’t) = 56)‘ 1<'Yt—at<‘/’ V) _ eat+ﬁt+)\ 1C’th(X),

s given by
VX + (A1¢Ce™ = ay) X + 2 Prgradf(X) = 0,

Proof. Consider a path on the manifold Q described in coordinates by
(2(),2(1)) = (g ()5, " (1), 01 (£), ..., 0" (1))

Then, with (-,-) = szzl gijda:idxj, the Bregman Lagrangian L, 3~ can be written as

Ea,ﬁ,v (m(t),i“(t),t) _ %ex’lC%—at 'anl gij(w(t))vi(t)vj(t) _ eat+6t+)\’1C%f(m(t))‘
1,]=
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465 For k=1,...n,

w0 (Tt G0, 50.0) = O S g al) o)+ S T ()
+ (NG = ag)et ;g@-m(t))v"(t),
w0600 = 5 3 S (et (0! () - B 2 o),

2,j=1

470 Multiplying both terms by eo‘f_’\71<7f, the Euler-Lagrange equations (2.3) for the Bregman La-
a1 grangian L, g~ are given, for k =1,...,n, by

472 0= Zn;gzk(x(t))dd_i(t) Zl agk] - (x(t)v ()07 (1) + (AT - ) Zgzk(x(t))v (t)
agz i Qt+Pt
o _ 5 ]Zl aqj( 2 ()0 (£)v (£) + 24P qk(:c(t))-

s12 Rearranging terms, and multiplying by the matrix (¢*) which is the inverse of (g;;), we get, for
415 k=1,...n, the equation

476 (E(t) + Z F x(t))vi(t)vj(t)) + ()\_1C"yt - dt) vk(t) + 2outbe (graudf(x(t)))’C =

2,j=1
477 where Ffj are the Christoffel symbols given by I‘fj = %Zf‘:l gt [% + % - %i{ ], which gives the
478 desired Euler-Lagrange equation once we use the ideal scaling equation ~; = e® O
479

a80 A.2. Strongly Convex Case.

w1 Theorem A.2. The Euler-Lagrange equation corresponding to the Lagrangian £ is given by
482 VXX +1X +gradf(X) = 0.
483 Proof. Consider a path on the manifold @ described in coordinates by
484 (2 (), &(t)) = (¢" (); -+, q" (1), 0" (£), ..., 0" (1)) -
a5 Then, with (-,-) = 37" gijdx'da? | the Lagrangian £5¢ can be written as
t n . .
486 L5 (x(t),2(t),t) = 7 2 9ij (x(8))0" ()07 (t) - ™ f((t)).
487 For k=1,...n,
oLsc Ogr;
(%o @600 = S antal) )+ 35 2 a0
2,7=1
489 + Uent Zgik(x(t))vi(t),
i=1
490
oLsc 09ij of
491 o (z(t),2(t),1) = e Z J( (1) ()7 (1) - k(w(t))-

,Jl
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If we multiply both terms by ™, the Euler-Lagrange equations (2.3) for the Lagrangian £5¢ are
given, for k=1,...,n, by

n

0= 0@ 1)+ 3 2 (a(ey i (107 (1) + 0’3, g (2 (1)) (1)
i=1 dt i1 0q i=1
_ 1§ 99y

257 0d*

(2 (8))o ()0 (1) + (f—qﬁ(ac(t)).

Rearranging terms, and multiplying by the matrix (¢g*/) which is the inverse of (g;;), we get, for
k=1,...n, the equation

dvk n . .

(mw ) F?j(:c(t))w(t)vﬂ(o) #ap (1) + (gradi(z(1)))" = 0,
ij=1

% % - %], which gives the

desired Euler-Lagrange equation. O

where Ffj are the Christoffel symbols given by I‘fj = %Zl”:l gt [

APPENDIX B. PROOF OF THE CONVERGENCE RATES

The proofs of the convergence rates of solutions to the Bregman Euler-Lagrange equations are
inspired by those of Theorems 5 and 6 from [3], and make use of Lemmas 2 and 12 therein:

Lemma B.1. Given a Riemannian manifold Q with sectional curvature bounded above by Kpax
and below by Kpin, with ¢ given by equation (2.1), and such that

= if Kipax >0
diam(Q) < { VHmax ' ,
00 if Kipax <0

we have that ' ‘
(V xLogx (p), -X) < ¢ X|?.

Lemma B.2. Given a point ¢ and a smooth curve X (t) on a Riemannian manifold Q,

%HLOgX(t)(Q)HQ = 2(Logy (1) (q), V¢ Logx (1) (9)) = 2(Logx 1y (), X ().

Theorem B.1. Suppose f: Q — R is a A-weakly-quasi-convex function, and suppose that Assump-
tion 1 is satisfied. Then, any solution X (t) of the Bregman Euler—Lagrange equation

VX + (A¢e™ —ay) X + 2 Prgradf(X) = 0,
with X (0) = 29 and X (0) =0, converges to a minimizer x* of f with rate

oy o 2V (f(20) - f(*)) + ¢ Log,, ()|
FX(®) - fa") s v .

Proof. Let
2

£(1) = N2 (F(X) = £(2)) + 5(C~ ) Logx (2) 2 + 5 [Ae X - Logy (2”)

Then, using Lemma B.2,
E(t) = N2Be™ (f(X) - f(2™)) + Ne™ (gradf(X), X) + (¢ - 1){Logy (z*), - X)
+{Xe X —Logx(z%), ~cude X + e ™V x X - V yLogx (z*))
= N2Gie™ (f(X) = f(2)) + Ne™ (gradf(X), X) + (¢ - 1){Logx (), - X)
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+(Ae™ X —Logy(z*), Ae™™ (—th + VXX) -V Logy(z")).
Now, from the Bregman Euler—Lagrange equation,
~uX + VX = A1 e X - 2 Prgradf( X).
Thus,
E(t) = NBee” (F(X) - f(2)) + N (gradf(X), X) + (¢ - 1)(Logx (z*), - X)
+{Xe™™ X - Logx (2*),~¢X - e Prgradf(X) - v y Logy (z*))
=2 (F(X) - f(a7)) + A2 {gradf(X), X) + (C - 1) (Logy (2°), ~X) = A¢e™ (X, X)
- 22ePH( X gradf(X)) - Ae (X, V yLogx (™)) + ¢(Logy (z*), X)
+ AP (Logy (%), gradf(X)) + (Logx (z*), V i Logx (z")).
Canceling the (gradf(X), X) and (Logy (z*),-X) terms out using Lemma B.2, we get
E(t) = NBee’ (F(X) - f(z)) + AP (Logy (), gradf( X))
- X (X, X) - Ae™™(X,V yLogy ("))
P [BA(F(X) - f(2)) + e (Log (27), gradf(X))]
- de [C(X,X) +(X, VXLogX(:c*))] .
Now, since f is geodesically A\-weakly-quasi-convex, we have that
A(F(X) - F(2")) + (Logy (+°), gradf(X)) <0,
so the ideal scaling equation /Bt < et implies that
AP BN (F(X) = f(a*)) + e (Logx ("), gradf( X))] < 0.
Moreover, Lemma B.1 yields [C(X,X) +(X, V¢ Logx (z*))] > 0, so
e M [C(X,X) + (X, VXLogX(x*))] <0.
Therefore, £(t) <0, and so

2
N (F(X) = (")) X2 () = (")) + (¢~ D) Logx (2) P+ 5 [Ae X - Logy (o)
= £(1) <£(0) = X26® (f(w0) - f(a*)) + 5l Log (2P,
which gives the desired rate of convergence
22260 (f(xo) - f(z* L z*)|?
Oy - a7 « 20 G )+ Lo I
O

APPENDIX C. PROOF OF EXISTENCE THEOREMS
C.1. Convex and Weakly-Quasi-Convex Cases.

Theorem C.1. Suppose Assumption 1 is satisfied, and let C;p >0 and v > 1 be given constants.
Then the differential equation

VX + %X + CP2gradf(X) =0,

has a global solution X : [0, 00) - Q under the initial conditions X (0) = 29 € Q and X (0) = 0.
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Proof. The proof is similar to that of Lemma 3 in [3], which extended Theorem 1 in [23] to the Rie-
mannian setting. We first define a family of smoothed equations for which we then show existence
of a solution for all time. After choosing an equicontinuous and uniformly bounded subfamily of
smoothed solutions, we use the Arzela—Ascoli Theorem on the complete Riemannian manifold Q
to obtain a subsequence converging uniformly, and argue that the limit of this subsequence solves
the original problem. When p = 2, we recover the simpler case considered in Lemma 3 of [3], so we

assume p # 2 in this proof. Consider the following families of smoothed equations for § > 0:
VXX - (5 t)X + C(max (6,))P 2gradf(X) = 0 ifp<2,

max (5 t)

Exp and Log are defined globally on @ by Assumption 1, so we can choose geodesically normal
coordinates ¢ = 1~! around zg defined globally on Q and put ¢ = ¢ o X. Using the smoothness of
f and letting u = ¢ gives a system of first-order ODEs defining a local representation for a vector
field in T'Q, and Section IV.3 of [12] guarantees that the smoothed ODE has a unique solution X
locally around 0. Actually, X5 exists on [0, 00). Indeed, by contradiction, let [0,7") be the maximal

interval of existence of X, for some finite 7> 0. Using %f(Xg(t)) = (gradf(X5), X5) gives

VXX + X + CtP%gradf(X) = 0 if p>2.

2—p U(Sl_p . . 62 )
—f(X(;)_— (Vx(;Xé’Xé) o (Xe, Xs) = - fall sl? - ifo>t, p<2,
t2 T N R P AL N if 6 2
—f( Xs) =- (sz 5, Xs) = 05< 5 6)—-%5” sl” = ito>t, p>2,
t2p vt P 1 d . 2v(2-p)-1 .
—f(Xs) =- X5, X, X5, X5) = ——— (t*77 B P X2 if 6 <t
f( $) = = AV X, Xo) = =5 (X Xo) = =5 5 (F7IXGI17) - S5 =TI i d

Let 0 = % Integrating and using the Cauchy-Schwarz inequality for the p < 2 case gives

. 5 . T .
f Vmax @ 0) | Xsldt = [ Ve Xslde+ [ VIR Xs]at
0 0

S\J%(f(xo) 1nff(u))+2(||X5(O)“2 1nf IXa(t)IIZ)

J 20 -t ) + 57 (#1502 - ut, e %01 <o
since f is bounded below by Assumption 1. If § > T, then V/0!PX; is integrable on [0,T).
If 6 < T, then the integrals on [0,7) and [0,d) are finite, so the integral on [4,7") must also
be finite, and thus Vt!-PX; is integrable on [4,T). Now, | faT Xsdt| < faT | Xs|dt < oo for a =
0,0 implies that lim;,7 Xs5(¢) exists. Since Q is complete by Assumption 1, the limit is in Q,
contradicting the maximality of [0,7"). The p > 2 case is similar: the integrand is replaced by
/1P (max (3,)) 1| Xs|, and the integral on [4,T’) remains unchanged while the integral on [0, §)
can be bounded by the same expression using ¢ < §. Thus, in both cases, we can find a solution
X5 :[0,00) > Q to the smooth initial-value ODE, and its corresponding solution X5 : [0, c0) — R"
in local coordinates.

Now let

M;(t) = sup
ue(0,t]

When 0 < t < 6, the smoothed ODE can be written as

Xs()]

Vs (Xge§) = —CP 2gradf(Xs)es if p < 2, Vi, (X(;eﬁ) = —CtP %gradf(Xs)es if p> 2.
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Thus, we can use Lemma 4 in [3] to get for p > 2 that
P Xs(t) =—€75" /O (rﬂ;(o (y2radf(Xs(w) T3 T Xé)éi)a(u)gradf(xo)) CuP2e 54 gy,

—e5t fo Cup_2F§(°6(u)F(X(;)f(f(“)gradf(xg)e§“du.
From the Lipschitz assumption on f, we have that

Jradf(Xs(u)) - T2 gradt(ao)| < L [ *|Xs(s)lds =1 [ s ”X5(3)H

Thus, since parallel transport preserves inner products,

HXa(t)H

———ds < LM (u)u?.
_Et

5 t Y
f es “du
0

< (§C’LM5(5)5” + C’degradf(xo)H) _t(l —eit) < %CLM(;(é)ép + CoP| gradf(zg)||.
v

( CLM;(8)8" + C”||gradf(zo) ||)

1
Taking the supremum over 0 <t < § and rearranging gives for § < dys = (%)P that
2C0P||gradf(xo) ||

2-CL»

The case p < 2 is done exactly in the same way except that we do not need to bound u?~2 by 6?2
in the integrals since the P2 term in the dlfferentlal equation is already replaced by 672,

Note that when 6 < 6y and d <t <ty = (%)p the smoothed ODE can be rewritten as

M;s(6) <

jt (t"X5(t)) = -Ct"*"2gradf(Xs).

Therefore, we can use Lemma 4 in [3] once again to obtain

§) v v ) 0 u V+p—
e X5(8) - 6" X5(5) = f Do) gradf( Xs(u)) - 130 0O D(X5) 80 gradi(wo) ) Cu?2du

t
_./0 Cu"*P~ 2F§5§6))F(X5)i‘;‘s(“)gradf(xo)du.

Using the fact that parallel transport preserves inner products, and dividing by "+

|Xs()] 0" | X5(0)]

gives

t“+1f Ms(u)u""Pdu + prss) ||gradf(:co)||/ VP20

t tv+1 )
§U+L 2067 | gradf CL C(tvrp-t - gvrp-l
< lgraditao)] | Mty + ¢ ) |gradi(ao)].
o+l 2-CLoP 2(w+p+1) (v+p-1)tv+l
and since this upper bound is an increasing function of ¢, we have for any ¢’ € (§,¢) that
|Xs(t)|  2C67|gradf(zo) | CL Ctr—2
< Ms(t)tP df .
v ST a-crr aueprny O Ty leradi@o)]

Taking the supremum over all ' € (0,t) gives for § < dy; and § <t < tyy,

1 206P CtP—2
M) —— L ( : ) Jgradt(zo)].
1- 2(v+£+1) 2-CLé6» v+p-

Now consider the family of functions

F={X:[0,T] >Rl =27"5,n=0,1,...},
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1 - 1
where T' = (%fl)” and § = (&) By definition of M;, we have for ¢ € [0,7] and & € (0,0) that

cT

~ o . .
| Xs| < TMs(T) < 20T (5 - 1) and d(Xs(t), X5(0)) < [0 | X5 (w)|du < t| Xs| < T) X5
Thus, F is equicontinuous and uniformly bounded, and the Riemannian manifold Q is complete by
Assumption 1, so by the Arzela—Ascoli Theorem (Theorem 17 in [11]), F contains a subsequence
that converges uniformly on [0,7'] to some function X*. The same argument as in part 5 of the
proof of Lemma 3 of [3] shows that X* is a solution to the original initial-value ODE on [0,7]
which can then be extended to get a global solution on [0, c0). g

C.2. Strongly Convex Case.

Theorem C.2. Suppose that Assumption 1 is satisfied, and that >0 is a given constant. Then,
the differential equation

Vi X +1X +gradf(X) =0,
has a global solution X : [0, 00) - Q under the initial conditions X (0) = 29 € Q and X (0) = 0.

Proof. Exp and Log are defined globally on Q by Assumption 1, so we can choose geodesically
normal coordinates ¢ = ¢! around g defined globally on Q and put ¢ = ¢ o X. As in [3], using
the smoothness of f and letting u = ¢ gives a system of first-order ODEs which defines a local
representation for a vector field in 7'Q, and results from Section IV.3 of [12] guarantee that the
initial-value differential equation has a unique solution locally around 0. It remains to show that this
solution actually exists on [0, c0). Towards contradiction, suppose [0,7") is the maximal interval of
existence of the solution X, for some finite 7' > 0. Then,

%f(X(t)) = (gradf(X), X) = (V¢ X, X) - C(X, X) = 1% - cx >

2 dt
Rearranging, integrating both sides and using the Cauchy-Schwarz inequality gives

INECE J T(f (o) - inf f(w) + 5 (||X<o>||2 - nt ||X<t>||2) <oo,

since f is bounded from below by Assumption 1. Thus, lim;_,p X (¢) exists, and since Q is complete,
the limit is in Q, contradicting the maximality of [0,7"), thereby concluding the proof. O

APPENDIX D. PROOF OF INVARIANCE THEOREM

Theorem D.1. Suppose that Assumption 1 is satisfied and that the curve X (t) satisfies the Rie-
mannian Bregman Euler-Lagrange equation (3.7) corresponding to Ly g~. Then the reparametrized
curve X (7(t)) satisfies the Bregman Euler—Lagrange equation (3.7) corresponding to the modified
Riemannian Bregman Lagrangian ﬁd,ﬁ,& where ay = a iy +1og7(t), Bt = Brry, and i = Yy

Furthermore o, B,7 satisfy the ideal scaling conditions (3.3) if and only if &, 3,7 do.
Proof. Let Y(t) = X(7(t)). Then
V(6) = H )X (1), and gV () = FOX(F(0) + POV g X (D).

Inverting these relations gives

X(r(1)) = 1)

3(t)Y( )-

——=Y(®), and Vi) XT() = 5= VY () -

( ) 2(t)



653

655

656

657

658

659

660

664

665
666
667
668
669
670

672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

692
693
694
695
696

20 VALENTIN DURUISSEAUX AND MELVIN LEOK

The Bregman Euler-Lagrange equation (3.7) at time 7(¢) is given by

Ve X (7)) + (X710 = dry) X (7(2)) + €4 OO gradf( X (7(1))) = 0.
Substituting the expressions for X (7(t)), X (7(t)) and VX(T(t))X(T(t)) in terms of Y'(¢) and its
derivatives, and multiplying by 72(t), we get

VY () - E;Y(t)+()\ e — () F(R)Y () + 72 (1) 0 Fr gradf(Y (t)) = 0.

Substituting the expressions for a, 8,7 in terms of &, 3,7 yields

7(t) ¢ 1 & 7(t) L)Y 260+ B g _
0 (Ve - s 80+ T8 ) /0y 0 s e o) <o

which gives the Bregman Euler-Lagrange equation (3.7) corresponding to £ - &fA

Vi Y () -

) _ 1 . ) -

Vy(t)Y(t) + ()\_1@‘” - ﬁd(t)) Y (t) + > Prgradf(Y (t)) = 0.
T

The fact that «, 3,7 satisfy the ideal scaling conditions (3.3) if and only if &, 3,7 do is established

in the proof of Theorem 1.2 of [25]. O
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