

A VARIATIONAL FORMULATION OF ACCELERATED OPTIMIZATION ON RIEMANNIAN MANIFOLDS

VALENTIN DURUISSEAUX AND MELVIN LEOK

ABSTRACT. It was shown recently by [23] that Nesterov’s accelerated gradient method for minimizing a smooth convex function f can be thought of as the time discretization of a second-order ODE, and that $f(x(t))$ converges to its optimal value at a rate of $\mathcal{O}(1/t^2)$ along any trajectory $x(t)$ of this ODE. A variational formulation was introduced in [25] which allowed for accelerated convergence at a rate of $\mathcal{O}(1/t^p)$, for arbitrary $p > 0$, in normed vector spaces. This framework was exploited in [8] using time-adaptive geometric integrators to design efficient explicit algorithms for symplectic accelerated optimization. In [3], a second-order ODE was proposed as the continuous-time limit of a Riemannian accelerated algorithm, and it was shown that the objective function $f(x(t))$ converges to its optimal value at a rate of $\mathcal{O}(1/t^2)$ along solutions of this ODE, thereby generalizing the earlier Euclidean result to the Riemannian manifold setting. In this paper, we show that on Riemannian manifolds, the convergence rate of $f(x(t))$ to its optimal value can also be accelerated to an arbitrary convergence rate $\mathcal{O}(1/t^p)$, by considering a family of time-dependent Bregman Lagrangian and Hamiltonian systems on Riemannian manifolds. This generalizes the results of [25] to Riemannian manifolds and also provides a variational framework for accelerated optimization on Riemannian manifolds. In particular, we will establish results for objective functions on Riemannian manifolds that are geodesically convex, weakly-quasi-convex, and strongly convex. An approach based on the time-invariance property of the family of Bregman Lagrangians and Hamiltonians was used to construct very efficient optimization algorithms in [8], and we establish a similar time-invariance property in the Riemannian setting. This lays the foundation for constructing similarly efficient optimization algorithms on Riemannian manifolds, once the Riemannian analogue of time-adaptive Hamiltonian variational integrators has been developed. The experience with the numerical discretization of variational accelerated optimization flows on vector spaces suggests that the combination of time-adaptivity and symplecticity is important for the efficient, robust, and stable discretization of these variational flows describing accelerated optimization. One expects that a geometric numerical integrator that is time-adaptive, symplectic, and Riemannian manifold preserving will yield a class of similarly promising optimization algorithms on manifolds.

1. INTRODUCTION

Efficient optimization has become one of the major concerns in data analysis. Many machine learning algorithms are designed around the minimization of a loss function or the maximization of a likelihood function. Due to the ever-growing scale of the data sets and size of the problems, there has been a lot of focus on first-order optimization algorithms because of their low cost per iteration. The first gradient descent algorithm was proposed in [5] by Cauchy to deal with the very large systems of equations he was facing when trying to simulate orbits of celestial bodies, and many gradient-based optimization methods have been proposed since Cauchy's work in 1847.

In 1983, Nesterov’s accelerated gradient method was introduced in [19], and was shown to converge in $\mathcal{O}(1/k^2)$ to the minimum of the convex objective function f , improving on the $\mathcal{O}(1/k)$ convergence rate exhibited by the standard gradient descent methods. This $\mathcal{O}(1/k^2)$ convergence rate was shown in [20] to be optimal among first-order methods using only information about ∇f at consecutive iterates. This phenomenon in which an algorithm displays this improved rate of convergence is referred to as acceleration, and other accelerated algorithms have been derived since Nesterov’s algorithm, such as accelerated mirror descent [18] and accelerated cubic-regularized Newton’s method [21]. More recently, it was shown in [23] that Nesterov’s accelerated gradient method limits to a second-order ODE, as the timestep goes to 0, and that the objective function

47 $f(x(t))$ converges to its optimal value at a rate of $\mathcal{O}(1/t^2)$ along the trajectories of this ODE. It
 48 was then shown in [25] that in continuous time, the convergence rate of $f(x(t))$ can be accelerated
 49 to an arbitrary convergence rate $\mathcal{O}(1/t^p)$ in normed spaces, by considering flow maps generated
 50 by a family of time-dependent Bregman Lagrangian and Hamiltonian systems which is closed un-
 51 der time rescaling. This variational framework and the time-invariance property of the family of
 52 Bregman Lagrangians was then exploited in [8] using time-adaptive geometric integrators to design
 53 efficient explicit algorithms for symplectic accelerated optimization. It was observed that a careful
 54 use of adaptivity and symplecticity could result in a significant gain in computational efficiency.

55 In the past few years, there has been some effort to derive accelerated optimization algorithms in
 56 the Riemannian manifold setting [2–4; 15; 26; 27]. In [3], a second-order ODE was proposed as the
 57 continuous-time limit of a Riemannian accelerated algorithm, and it was shown that the objective
 58 function $f(x(t))$ converges to its optimal value at a rate of $\mathcal{O}(1/t^2)$ along solutions of this ODE,
 59 generalizing the Euclidean result obtained in [23] to the Riemannian manifold setting.

60 In this paper, we show that in continuous time, the convergence rate of $f(x(t))$ to its opti-
 61 mal value can be accelerated to an arbitrary convergence rate $\mathcal{O}(1/t^p)$ on Riemannian manifolds,
 62 thereby generalizing the results of [25] to the Riemannian setting. This is achieved by consid-
 63 ering a family of time-dependent Bregman Lagrangian and Hamiltonian systems on Riemannian
 64 manifolds. This also provides a variational framework for accelerated optimization on Riemannian
 65 manifolds, generalizing the normed vector space variational formulation of accelerated optimization
 66 introduced in [25]. We will then illustrate the derived theoretical convergence rates by integrating
 67 the Bregman Euler–Lagrange equations using a simple numerical scheme to solve eigenvalue and
 68 distance minimization problems on Riemannian manifolds. Finally, we will show that the family
 69 of Bregman dynamics on Riemannian manifolds is closed under time rescaling, and we will draw
 70 inspiration from the approach introduced in [8] to take advantage of this invariance property via a
 71 carefully chosen Poincaré transformation that will allow for the integration of higher-order Bregman
 72 dynamics while benefiting from the computational efficiency of integrating lower-order Bregman
 73 dynamics on Riemannian manifolds.

74 2. DEFINITIONS AND PRELIMINARIES

75 We first introduce the main notions from Riemannian geometry and Lagrangian and Hamiltonian
 76 mechanics that will be used throughout this paper (see [3; 9; 10; 12; 13; 16] for more details).

77 2.1. Riemannian Geometry.

78 **Definition 2.1.** *Given a manifold \mathcal{Q} , the **tangent bundle** $T\mathcal{Q}$ and **cotangent bundle** $T^*\mathcal{Q}$ are
 79 defined by*

$$80 \quad T\mathcal{Q} = \{(q, v) | q \in \mathcal{Q}, v \in T_q\mathcal{Q}\} \quad \text{and} \quad T^*\mathcal{Q} = \{(q, p) | q \in \mathcal{Q}, p \in T_q^*\mathcal{Q}\}.$$

81 **Definition 2.2.** *Suppose we have a Riemannian manifold \mathcal{Q} with Riemannian metric $g(\cdot, \cdot) = \langle \cdot, \cdot \rangle$,
 82 represented by the positive-definite symmetric matrix (g_{ij}) in local coordinates. Then, we define the
 83 **musical isomorphism** $g^\flat : T\mathcal{Q} \rightarrow T^*\mathcal{Q}$ by*

$$84 \quad g^\flat(u)(v) = g_p(u, v) \quad \forall p \in \mathcal{Q} \text{ and } \forall u, v \in T_p\mathcal{Q},$$

85 *and its **inverse musical isomorphism** $g^\sharp : T^*\mathcal{Q} \rightarrow T\mathcal{Q}$. The Riemannian metric $g(\cdot, \cdot) = \langle \cdot, \cdot \rangle$
 86 induces a **fiber metric** $g^*(\cdot, \cdot) = \langle \cdot, \cdot \rangle$ on $T^*\mathcal{Q}$ by*

$$87 \quad \langle u, v \rangle = \langle g^\sharp(u), g^\sharp(v) \rangle \quad \forall u, v \in T^*\mathcal{Q},$$

88 *represented by the positive definite symmetric matrix (g^{ij}) in local coordinates, which is the inverse
 89 of the Riemannian metric matrix (g_{ij}) .*

90 **Definition 2.3.** The **Riemannian gradient** $\text{grad}f(q) \in T_q \mathcal{Q}$ at a point $q \in \mathcal{Q}$ of a smooth function
 91 $f : \mathcal{Q} \rightarrow \mathbb{R}$ is the tangent vector at q such that

$$92 \quad \langle \text{grad}f(q), u \rangle = df(q)u \quad \forall u \in T_q \mathcal{Q},$$

93 where df is the differential of f .

94 **Definition 2.4.** A **vector field** on a Riemannian manifold \mathcal{Q} is a map $X : \mathcal{Q} \rightarrow T\mathcal{Q}$ such that
 95 $X(q) \in T_q \mathcal{Q}$ for all $q \in \mathcal{Q}$. The set of all vector fields on \mathcal{Q} is denoted $\mathcal{X}(\mathcal{Q})$. The **integral curve**
 96 at q of $X \in \mathcal{X}(\mathcal{Q})$ is the smooth curve c on \mathcal{Q} such that $c(0) = q$ and $c'(t) = X(c(t))$.

97 **Definition 2.5.** A **geodesic** in a Riemannian manifold \mathcal{Q} is a parametrized curve $\gamma : [0, 1] \rightarrow \mathcal{Q}$
 98 which is of minimal local length. It can be thought of as a curve having zero “acceleration” or
 99 constant “speed”, that is as a generalization of the notion of straight line from Euclidean spaces
 100 to Riemannian manifolds. Given two points $q, \tilde{q} \in \mathcal{Q}$, a vector in $T_q \mathcal{Q}$ can be transported to $T_{\tilde{q}} \mathcal{Q}$
 101 along a geodesic γ by an operation $\Gamma(\gamma)_{\tilde{q}}^q : T_q \mathcal{Q} \rightarrow T_{\tilde{q}} \mathcal{Q}$ called **parallel transport along** γ . We
 102 will simply write $\Gamma_{\tilde{q}}^q$ to denote the parallel transport along some geodesic connecting the two points
 103 $q, \tilde{q} \in \mathcal{Q}$, and given $A \in \mathcal{X}(\mathcal{Q})$, we will denote by $\Gamma(A)$ the parallel transport along integral curves
 104 of A . Note that parallel transport preserves inner products: given a geodesic γ from $q \in \mathcal{Q}$ to $\tilde{q} \in \mathcal{Q}$,

$$105 \quad g_q(u, v) = g_{\tilde{q}}(\Gamma(\gamma)_{\tilde{q}}^q u, \Gamma(\gamma)_{\tilde{q}}^q v) \quad \forall u, v \in T_q \mathcal{Q}.$$

106 **Definition 2.6.** Given $X, Y \in \mathcal{X}(\mathcal{Q})$, the **covariant derivative** $\nabla_X Y \in \mathcal{X}(\mathcal{Q})$ of Y along X is

$$107 \quad \nabla_X Y(q) = \lim_{h \rightarrow 0} \frac{\Gamma(\gamma)_{\gamma(h)}^q Y(\gamma(h)) - Y(q)}{h},$$

108 where γ is the unique integral curve of X such that $\gamma(0) = q$, for any $q \in \mathcal{Q}$.

109 **Definition 2.7.** A function $f : \mathcal{Q} \rightarrow \mathbb{R}$ is called **L -smooth** if for any two points $q, \tilde{q} \in \mathcal{Q}$ and
 110 geodesic γ connecting them,

$$111 \quad \|\text{grad}f(q) - \Gamma(\gamma)_{\tilde{q}}^q \text{grad}f(\tilde{q})\| \leq L \text{length}(\gamma).$$

112 **Definition 2.8.** The **Riemannian Exponential map** $\text{Exp}_q : T_q \mathcal{Q} \rightarrow \mathcal{Q}$ at $q \in \mathcal{Q}$ is defined by

$$113 \quad \text{Exp}_q(v) = \gamma_v(1),$$

114 where γ_v is the unique geodesic in \mathcal{Q} such that $\gamma_v(0) = q$ and $\gamma'_v(0) = v$, for any $v \in T_q \mathcal{Q}$.
 115 Exp_q is a diffeomorphism in some neighborhood $U \subset T_q \mathcal{Q}$ containing 0, so we can define its inverse
 116 map, the **Riemannian Logarithm map** $\text{Log}_p : \text{Exp}_q(U) \rightarrow T_q \mathcal{Q}$.

117 **Definition 2.9.** Given a Riemannian manifold \mathcal{Q} with sectional curvature bounded below by K_{\min} ,
 118 and an upper bound D for the diameter of the considered domain, define

$$119 \quad \zeta = \begin{cases} \sqrt{-K_{\min}} D \coth(\sqrt{-K_{\min}} D) & \text{if } K_{\min} < 0 \\ 1 & \text{if } K_{\min} \geq 0 \end{cases} \quad (2.1)$$

120 Note that $\zeta \geq 1$ since $x \coth x \geq 1$ for all real values of x .

121 2.2. Convexity in Riemannian Manifolds.

122 **Definition 2.10.** A subset A of a Riemannian manifold \mathcal{Q} is called **geodesically uniquely convex**
 123 if every two points of A are connected by a unique geodesic in A . A function $f : \mathcal{Q} \rightarrow \mathbb{R}$ is called
 124 **geodesically convex** if for any two points $q, \tilde{q} \in \mathcal{Q}$ and geodesic γ connecting them,

$$125 \quad f(\gamma(t)) \leq (1-t)f(q) + tf(\tilde{q}) \quad \forall t \in [0, 1].$$

126 Note that if f is a smooth geodesically convex function on a geodesically uniquely convex subset A
 127 of a Riemannian manifold, then

$$128 \quad f(q) - f(\tilde{q}) \geq \langle \text{grad}f(\tilde{q}), \text{Log}_{\tilde{q}}(q) \rangle \quad \forall q, \tilde{q} \in A.$$

129 A function $f : A \rightarrow \mathbb{R}$ is called **geodesically λ -weakly-quasi-convex** with respect to $q \in \mathcal{Q}$ for
 130 some $\lambda \in (0, 1]$ if

$$131 \quad \lambda(f(q) - f(\tilde{q})) \geq \langle \text{grad}f(\tilde{q}), \text{Log}_{\tilde{q}}(q) \rangle \quad \forall \tilde{q} \in A.$$

132 A function $f : A \rightarrow \mathbb{R}$ is called **geodesically μ -strongly-convex** for some $\mu > 0$ if

$$133 \quad f(q) - f(\tilde{q}) \geq \langle \text{grad}f(\tilde{q}), \text{Log}_{\tilde{q}}(q) \rangle + \frac{\mu}{2} \|\text{Log}_{\tilde{q}}(q)\|^2 \quad \forall q, \tilde{q} \in A.$$

134 A local minimum of a geodesically convex or λ -weakly-quasi-convex function is also a global mini-
 135 mum, and a geodesically strongly convex function either has no minimum or a unique global mini-
 136 mum. Also note that a geodesically convex function is λ -weakly-quasi-convex with $\lambda = 1$.

137 **2.3. Lagrangian and Hamiltonian Mechanics.** Given a n -dimensional Riemannian manifold \mathcal{Q}
 138 with local coordinates (q^1, \dots, q^n) , a **Lagrangian** is a function $L : T\mathcal{Q} \times \mathbb{R} \rightarrow \mathbb{R}$. The corresponding
 139 **action integral** \mathcal{S} is defined to be the functional

$$140 \quad \mathcal{S}(q) = \int_0^T L(q, \dot{q}, t) dt, \quad (2.2)$$

141 over the space of smooth curves $q : [0, T] \rightarrow \mathcal{Q}$. **Hamilton's Variational Principle** states that
 142 $\delta S = 0$ where the variation δS is induced by an infinitesimal variation δq of the trajectory q that
 143 vanishes at the endpoints. Hamilton's Variational Principle can be shown to be equivalent to the
 144 **Euler–Lagrange equations**

$$145 \quad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}^k} \right) = \frac{\partial L}{\partial q^k} \quad \text{for } k = 1, \dots, n. \quad (2.3)$$

146 The **Legendre transform** $\text{FL} : T\mathcal{Q} \rightarrow T^*\mathcal{Q}$ of L is defined fiberwise by $\text{FL} : (q^i, \dot{q}^i) \mapsto (q^i, p_i)$
 147 where $p_i = \frac{\partial L}{\partial \dot{q}^i} \in T^*\mathcal{Q}$ is the **conjugate momentum** of q^i . We can then define the associated
 148 **Hamiltonian** $H : T^*\mathcal{Q} \rightarrow \mathbb{R}$ by

$$149 \quad H(q, p, t) = \sum_{j=1}^n p_j \dot{q}^j - L(q, \dot{q}, t) \Big|_{p_i = \frac{\partial L}{\partial \dot{q}^i}}. \quad (2.4)$$

150 We can also define a Hamiltonian Variational Principle on the Hamiltonian side in momentum
 151 phase space

$$152 \quad \delta \int_0^T \sum_{j=1}^n [p_j \dot{q}^j - H(q, p, t)] dt = 0, \quad (2.5)$$

153 where the variation is induced by an infinitesimal variation δq of the trajectory q that vanishes at
 154 the endpoints. This is equivalent to **Hamilton's equations**, given by

$$155 \quad \dot{p}_k = -\frac{\partial H}{\partial q^k}(p, q), \quad \dot{q}^k = \frac{\partial H}{\partial p_k}(p, q) \quad \text{for } k = 1, \dots, n, \quad (2.6)$$

156 which can also be shown to be equivalent to the Euler–Lagrange equations (2.3).

3. VARIATIONAL FORMULATION AND CONVERGENCE RATES

158 **3.1. Inspiration.** A variational framework was introduced in [25] for accelerated optimization on
 159 normed vector spaces. Given a convex, continuously differentiable function $h : \mathcal{X} \rightarrow \mathbb{R}$ on a normed
 160 vector space \mathcal{X} such that $\|\nabla h(x)\| \rightarrow \infty$ as $\|x\| \rightarrow \infty$, its corresponding Bregman divergence is
 161 defined by

$$162 \quad D_h(x, y) = h(y) - h(x) - \langle \nabla h(x), y - x \rangle. \quad (3.1)$$

163 The Bregman Lagrangian and Hamiltonian are then defined to be

$$164 \quad \begin{aligned} \mathcal{L}_{\alpha, \beta, \gamma}(x, v, t) &= e^{\alpha_t + \gamma_t} [D_h(x + e^{-\alpha_t} v, x) - e^{\beta_t} f(x)], \\ \mathcal{H}_{\alpha, \beta, \gamma}(x, r, t) &= e^{\alpha_t + \gamma_t} [D_{h^*}(\nabla h(x) + e^{-\gamma_t} r, \nabla h(x)) + e^{\beta_t} f(x)], \end{aligned} \quad (3.2)$$

165 which are scalar-valued functions of position $x \in \mathcal{X}$, velocity $v \in \mathbb{R}^d$ or momentum $r \in \mathbb{R}^d$, and of
 166 time t . Here, $h^* : \mathcal{X}^* \rightarrow \mathbb{R}$ denotes the Legendre transform (or convex dual function) of h , defined by
 167 $h^*(w) = \sup_{z \in \mathcal{X}} [\langle w, z \rangle - h(z)]$. The Bregman Lagrangian and Hamiltonian family is parametrized
 168 by smooth functions of time, $\alpha_t = \alpha(t)$, $\beta_t = \beta(t)$, $\gamma_t = \gamma(t)$, which are said to satisfy the ideal scaling
 169 conditions if

$$170 \quad \dot{\beta}_t \leq e^{\alpha_t} \quad \text{and} \quad \dot{\gamma}_t = e^{\alpha_t}. \quad (3.3)$$

171 If the ideal scaling conditions are satisfied, then by Theorem 1.1 in [25],

$$172 \quad f(x(t)) - f(x^*) \leq \mathcal{O}(e^{-\beta_t}). \quad (3.4)$$

173 Another very important property of this family of Bregman Lagrangians is its closure under time
 174 dilation, proven in Theorem 1.2 of [25]:

175 **Theorem 3.1.** *If $x(t)$ satisfies the Euler-Lagrange equations corresponding to the Bregman La-
 176 grangian $\mathcal{L}_{\alpha,\beta,\gamma}$, then the reparametrized curve $y(t) = x(\tau(t))$ satisfies the Euler-Lagrange equations
 177 corresponding to the modified Bregman Lagrangian $\mathcal{L}_{\tilde{\alpha},\tilde{\beta},\tilde{\gamma}}$ where $\tilde{\alpha}_t = \alpha_{\tau(t)} + \log \dot{\tau}(t)$, $\tilde{\beta}_t = \beta_{\tau(t)}$, and
 178 $\tilde{\gamma}_t = \gamma_{\tau(t)}$. Furthermore α, β, γ satisfy the ideal scaling conditions (3.3) if and only if $\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}$ do.*

179 We will now extend these results to the Riemannian manifold setting. Throughout this paper, we
 180 will make the following assumptions on the function $f : \mathcal{Q} \rightarrow \mathbb{R}$ to be minimized and on the ambient
 181 Riemannian manifold \mathcal{Q} , which are standard assumptions in Riemannian optimization [3; 4; 26; 27]:

182 **Assumption 1.** *Solutions of the differential equations derived in this paper remain inside a geodesi-
 183 cally uniquely convex subset A of a complete Riemannian manifold \mathcal{Q} (i.e. any two points in \mathcal{Q}
 184 can be connected by a geodesic), such that $\text{diam}(A)$ is bounded above by some constant D , that
 185 the sectional curvature is bounded from below by K_{\min} on A , and that Exp_q is well-defined for any
 186 $q \in A$, and its inverse Log_q is well-defined and differentiable on A for any $q \in A$. Furthermore, f is
 187 bounded below, geodesically L -smooth and all its minima are inside A .*

188 **3.2. Convex and Weakly-Quasi-Convex Cases.** Suppose that $f : \mathcal{Q} \rightarrow \mathbb{R}$ is a given geodesically
 189 λ -weakly-quasi-convex function, and that Assumption 1 holds true. Since a geodesically convex
 190 function is λ -weakly-quasi-convex with $\lambda = 1$, the following treatment also applies to the case
 191 where f is geodesically convex. We define a family of Bregman Lagrangians $\mathcal{L}_{\alpha,\beta,\gamma} : T\mathcal{Q} \times \mathbb{R} \rightarrow \mathbb{R}$
 192 parametrized by smooth functions of time α, β, γ by

$$193 \quad \boxed{\mathcal{L}_{\alpha,\beta,\gamma}(X, V, t) = \frac{1}{2} e^{\lambda^{-1} \zeta \gamma_t - \alpha_t} \langle V, V \rangle - e^{\alpha_t + \beta_t + \lambda^{-1} \zeta \gamma_t} f(X)}, \quad (3.5)$$

194 and the corresponding Bregman Hamiltonians $\mathcal{H}_{\alpha,\beta,\gamma} : T^*\mathcal{Q} \times \mathbb{R} \rightarrow \mathbb{R}$ are given by

$$195 \quad \boxed{\mathcal{H}_{\alpha,\beta,\gamma}(X, R, t) = \frac{1}{2} e^{\alpha_t - \lambda^{-1} \zeta \gamma_t} \langle R, R \rangle + e^{\alpha_t + \beta_t + \lambda^{-1} \zeta \gamma_t} f(X)}, \quad (3.6)$$

196 where $X \in \mathcal{Q}$ denotes position on the manifold \mathcal{Q} , V is the velocity vector field, R is the momentum
 197 covector field, t is the time variable, and ζ is given by equation (2.1). This family of functions is
 198 a generalization of the Bregman Lagrangians and Hamiltonians introduced in [25] for the convex
 199 continuously differentiable function $h(x) = \frac{1}{2} \langle x, x \rangle$. Throughout this paper, we will assume that
 200 the parameter functions α, β, γ satisfy the ideal scaling conditions (3.3).

201 **Theorem 3.2.** *The Bregman Euler-Lagrange equation corresponding to the Bregman Lagrangian
 202 $\mathcal{L}_{\alpha,\beta,\gamma}$ is given by*

$$203 \quad \boxed{\nabla_{\dot{X}} \dot{X} + (\lambda^{-1} \zeta e^{\alpha_t} - \dot{\alpha}_t) \dot{X} + e^{2\alpha_t + \beta_t} \text{grad}f(X) = 0.} \quad (3.7)$$

204 *Proof.* See Appendix A.1.

205 **Theorem 3.3.** Suppose that $f : \mathcal{Q} \rightarrow \mathbb{R}$ is a geodesically λ -weakly-quasi-convex function, and that
 206 Assumption 1 is satisfied. Then, any solution $X(t)$ to the Bregman Euler–Lagrange equation (3.7)
 207 converges to a minimizer x^* of f with rate

$$208 \quad f(X(t)) - f(x^*) \leq \frac{2\lambda^2 e^{\beta_0} (f(x_0) - f(x^*)) + \zeta \|\text{Log}_{x_0}(x^*)\|^2}{2\lambda^2 e^{\beta_t}} = \mathcal{O}(e^{-\beta_t}). \quad (3.8)$$

209 *Proof.* See Appendix B.

210 A $p > 0$ parametrized subfamily of Bregman Lagrangians and Hamiltonians, that is of particular
 211 practical interest, is given by the choice of parameter functions

$$212 \quad \alpha_t = \log p - \log t, \quad \beta_t = p \log t + \log C, \quad \gamma_t = p \log t, \quad (3.9)$$

213 where $C > 0$ is a constant. This yields the p -Bregman Lagrangian and Hamiltonian given by

$$214 \quad \mathcal{L}_p(X, V, t) = \frac{t^{\lambda^{-1}\zeta p+1}}{2p} \langle V, V \rangle - Cpt^{(\lambda^{-1}\zeta+1)p-1} f(X), \quad (3.10)$$

$$216 \quad \mathcal{H}_p(X, R, t) = \frac{p}{2t^{\lambda^{-1}\zeta p+1}} \langle R, R \rangle + Cpt^{(\lambda^{-1}\zeta+1)p-1} f(X), \quad (3.11)$$

217 and the corresponding p -Bregman Euler–Lagrange equations are given by

$$218 \quad \nabla_{\dot{X}} \dot{X} + \frac{\zeta p + \lambda}{\lambda t} \dot{X} + Cp^2 t^{p-2} \text{grad}f(X) = 0. \quad (3.12)$$

219 **Theorem 3.4.** Suppose that $f : \mathcal{Q} \rightarrow \mathbb{R}$ is a geodesically weakly-quasi-convex function, and that
 220 Assumption 1 is satisfied. Then, the p -Bregman Euler–Lagrange equation (3.12) has a solution,
 221 and any solution $X(t)$ converges to a minimizer x^* of f with rate $f(X(t)) - f(x^*) \leq \mathcal{O}(1/t^p)$.

222 *Proof.* See Appendix C.1 for the existence of a solution to the p -Bregman Euler–Lagrange equations.
 223 The $\mathcal{O}(1/t^p)$ convergence rate follows directly from Theorem 3.3.

224 Note that this theorem reduces to Theorem 5 from [3] when $p = 2$ and $C = 1/4$.

225 **Remark.** To construct this variational framework for accelerated optimization, we first constructed
 226 candidate p -equations with the desired $\mathcal{O}(1/t^p)$ convergence rates, and then designed Lagrangians
 227 whose p -Bregman Euler–Lagrange equations matched the candidate p -equations, by inspection. We
 228 then used a similar approach to extend these results to the general α, β, γ case presented here.

229 **Remark.** In our generalization of the Bregman Lagrangian and Hamiltonian to Riemannian mani-
 230 folds, we have specialized to the case where $h(x) = \frac{1}{2}\|x\|^2$, because its Hessian $\nabla^2 h(x)$ is the identity
 231 matrix, which significantly simplifies the Euler–Lagrange equations and the analysis. In addition,
 232 it avoids the complication of making intrinsic sense of terms like $X + e^{-\alpha}V$ in the vector space
 233 Bregman Lagrangians and Hamiltonians, which require the use of Riemannian geodesics and expo-
 234 nentials since $X \in \mathcal{Q}$ while $V \in T_X \mathcal{Q}$.

235 **3.3. Strongly Convex Case.** Suppose $f : \mathcal{Q} \rightarrow \mathbb{R}$ is a geodesically μ -strongly-convex function,
 236 and that Assumption 1 is satisfied. With ζ given by equation (2.1), let

$$237 \quad \eta = \left(\frac{1}{\sqrt{\zeta}} + \sqrt{\zeta} \right) \sqrt{\mu}. \quad (3.13)$$

238 We define the corresponding Lagrangian $\mathcal{L}^{SC} : T\mathcal{Q} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$239 \quad \mathcal{L}^{SC}(X, V, t) = \frac{e^{\eta t}}{2} \langle V, V \rangle - e^{\eta t} f(X), \quad (3.14)$$

240 and the corresponding Hamiltonian $\mathcal{H}^{SC} : T^* \mathcal{Q} \times \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$241 \quad \mathcal{H}^{SC}(X, R, t) = \frac{e^{-\eta t}}{2} \langle\langle R, R \rangle\rangle + e^{\eta t} f(X). \quad (3.15)$$

242 **Theorem 3.5.** *The Euler–Lagrange equation corresponding to the Lagrangian \mathcal{L}^{SC} is given by*

$$243 \quad \nabla_{\dot{X}} \dot{X} + \eta \dot{X} + \text{grad}f(X) = 0. \quad (3.16)$$

244 *Proof.* The derivation of the Euler–Lagrange equation is presented in Appendix A.2.

245 **Theorem 3.6.** *Suppose $f : \mathcal{Q} \rightarrow \mathbb{R}$ is a geodesically μ -strongly-convex function, and suppose that*
 246 *Assumption 1 is satisfied. Then, the Euler–Lagrange equation (3.16) has a solution, and any*
 247 *solution $X(t)$ converges to a minimizer x^* of f with rate*

$$248 \quad f(X(t)) - f(x^*) \leq \frac{\mu \|\text{Log}_{x_0}(x^*)\|^2 + 2(f(x_0) - f(x^*))}{2e\sqrt{\frac{\mu}{\zeta}}t}. \quad (3.17)$$

249 *Proof.* See Appendix C.2 for the existence of a solution to the Euler–Lagrange equation (3.16), and
 250 Theorem 7 from [3] for the convergence rate.

251

252 4. NUMERICAL EXPERIMENTS

253 The p -Bregman Euler–Lagrange equation (3.12) can be rewritten as the first-order system

$$254 \quad \dot{X} = V, \quad \nabla_V V = -\frac{\zeta p + \lambda}{\lambda t} V - C p^2 t^{p-2} \text{grad}f(X), \quad (4.1)$$

255 for the geodesically λ -weakly-quasi-convex case, and the Euler–Lagrange equation (3.16) corre-
 256 sponding to the Lagrangian \mathcal{L}^{SC} can be rewritten as the first-order system

$$257 \quad \dot{X} = V, \quad \nabla_V V = -\left(\frac{1}{\sqrt{\zeta}} + \sqrt{\zeta}\right) \sqrt{\mu} V - \text{grad}f(X), \quad (4.2)$$

258 for the μ -strongly convex case. As in [3], we can adapt a semi-implicit Euler scheme (explicit Euler
 259 update for the velocity V followed by an update for position X based on the updated value of V)
 260 to the Riemannian setting to obtain the following algorithm:

Algorithm 1: Semi-Implicit Euler Integration of the p -Bregman Euler–Lagrange Equations

Input: A function $f : \mathcal{Q} \rightarrow \mathbb{R}$. Constants $C, h, p > 0$. $X_0 \in \mathcal{Q}$. $V_0 \in T_{X_0} \mathcal{Q}$.

1 **while** convergence criterion is not met **do**

2 **if** f is μ -geodesically strongly convex **then**

3 $b_k \leftarrow 1 - h \left(\frac{1}{\sqrt{\zeta}} + \sqrt{\zeta} \right) \sqrt{\mu}$, $c_k \leftarrow 1$

4 **else if** f is λ -weakly-quasi-convex **then**

5 $b_k \leftarrow 1 - \frac{\zeta p + \lambda}{\lambda k}$, $c_k \leftarrow C p^2 (kh)^{p-2}$

6 **Version I:** $a_k \leftarrow b_k V_k - h c_k \text{grad}f(X_k)$

7 **Version II:** $a_k \leftarrow b_k V_k - h c_k \text{grad}f(\text{Exp}_{X_k}(h b_k V_k))$

8 $X_{k+1} \leftarrow \text{Exp}_{X_k}(h a_k)$, $V_{k+1} \leftarrow \Gamma_{X_k}^{X_{k+1}} a_k$

262 Version I of Algorithm 1 corresponds to the usual update for the Semi-Implicit Euler scheme,
 263 while Version II is inspired by the reformulation of Nesterov’s method from [24] that uses a cor-
 264 rected gradient $\nabla f(X_k + h b_k V_k)$ instead of the traditional gradient $\nabla f(X_k)$. Note that the SIRNAG
 265 algorithm presented in [3] corresponds to the special case where $p = 2$ and $C = 1/4$.

266

267 The first problem we have investigated is the problem presented in [3] of minimizing the (strongly
 268 convex) distance function $f(x) = \frac{1}{2}d(x, q)^2$ for a given point q , on a subset of chosen finite diameter
 269 of the hyperbolic plane \mathbb{H}^2 , which is a manifold with constant negative curvature $K = -1$.

270 The second problem we have investigated is Rayleigh quotient optimization. Eigenvectors corre-
 271 sponding to the largest eigenvalue of a symmetric $n \times n$ matrix A maximize the Rayleigh quotient
 $\frac{v^\top Av}{v^\top v}$ over \mathbb{R}^n . Thus, a unit eigenvector v^* corresponding to the largest eigenvalue of the matrix A
 272 is a minimizer of the function $f(v) = -v^\top Av$, over the unit sphere $\mathcal{Q} = \mathbb{S}^{n-1}$, which can be thought
 273 of as a Riemannian submanifold with constant positive curvature $K = 1$ of \mathbb{R}^n endowed with the
 274 Riemannian metric inherited from the Euclidean inner product $g_v(u, w) = u^\top w$. More information
 275 concerning the geometry of \mathbb{S}^{n-1} , such as its tangent bundle, its orthogonal projection and expo-
 276 nential map can be found in [1]. Solving the Rayleigh quotient optimization problem efficiently
 277 is challenging when the given symmetric matrix A is ill-conditioned and high-dimensional. Note
 278 that an efficient algorithm that solves the above minimization problem can also be used to find
 279 eigenvectors corresponding to the smallest eigenvalue of A by using the fact that the eigenvalues of
 280 A are the negative of the eigenvalues of $-A$.

282 Experiments carried out in [3] showed that SIRNAG (the convex $p = 2$ Algorithm 1) and the
 283 strongly convex Algorithm 1 were of comparable efficiency or more efficient than the standard Rie-
 284 mannian Gradient Descent (RGD) method, depending on the properties of the objective function
 285 and on the geometry of the Riemannian manifold. We have conducted further numerical experi-
 286 ments to investigate how the simple discretization of higher-order $p = 6$ Bregman dynamics com-
 287 pared to its $p = 2$ counterpart, and to see whether it matches the theoretical $\mathcal{O}(t^{-p})$ convergence
 288 rate. The numerical results obtained for the distance minimization and Rayleigh minimization
 289 problems are illustrated in Figure 1, where all the algorithms were implemented with the same
 290 fixed timestep. We can see that the $p = 6$ algorithms outperform their $p = 2$ counterparts, and that
 291 the efficiency improvement is very important. Furthermore, both versions of the $p = 6$ Algorithm 1
 292 exhibit a faster convergence rate than the theoretical $\mathcal{O}(t^{-6})$ rate. While Version I of Algorithm 1
 293 exhibits polynomial rates of $\mathcal{O}(t^{-10.8})$ and $\mathcal{O}(t^{-9})$ on the objective functions considered, Version II
 294 of Algorithm 1 exhibits a much faster exponential rate of convergence on both examples.

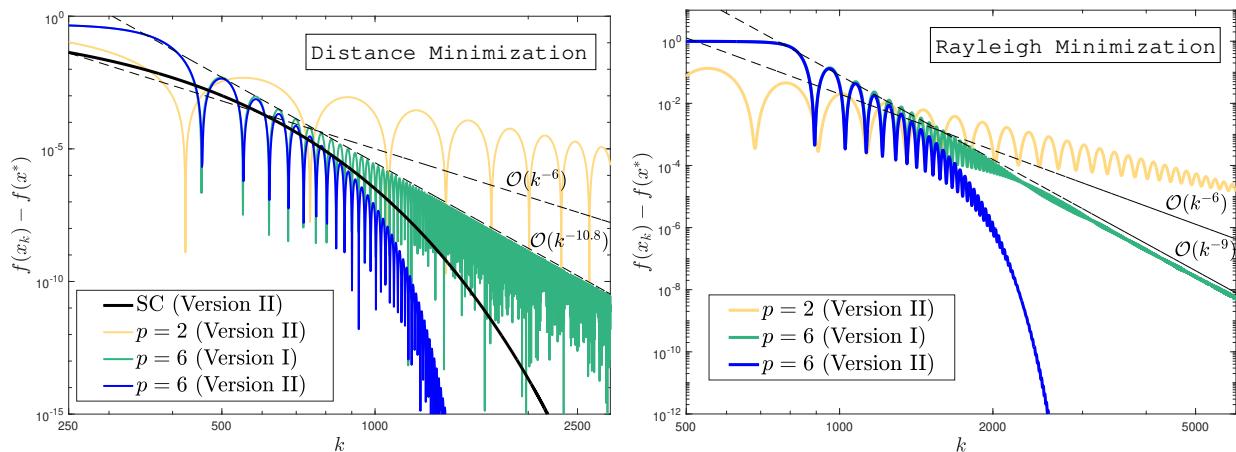


FIGURE 1. Comparison of the rates of convergence of the μ -strongly convex (SC) Algorithm 1 and convex Algorithms 1 with different values of p and with the two versions of the update corresponding to the traditional and corrected gradients. Note that all the algorithms were implemented with the same timestep h .

296 Figure 2 displays the evolution of the rates of convergence of Version 1 of the convex Algorithm
 297 1 as the value of the parameter p is increased from $p = 4$ to $p = 16$ for the distance minimization and
 298 Rayleigh minimization problems. We can clearly see an improvement in the convergence rates as
 299 the value of p increases, and for each value of p the algorithm achieves a faster rate of convergence
 300 than the theoretical $\mathcal{O}(t^{-p})$ rates.

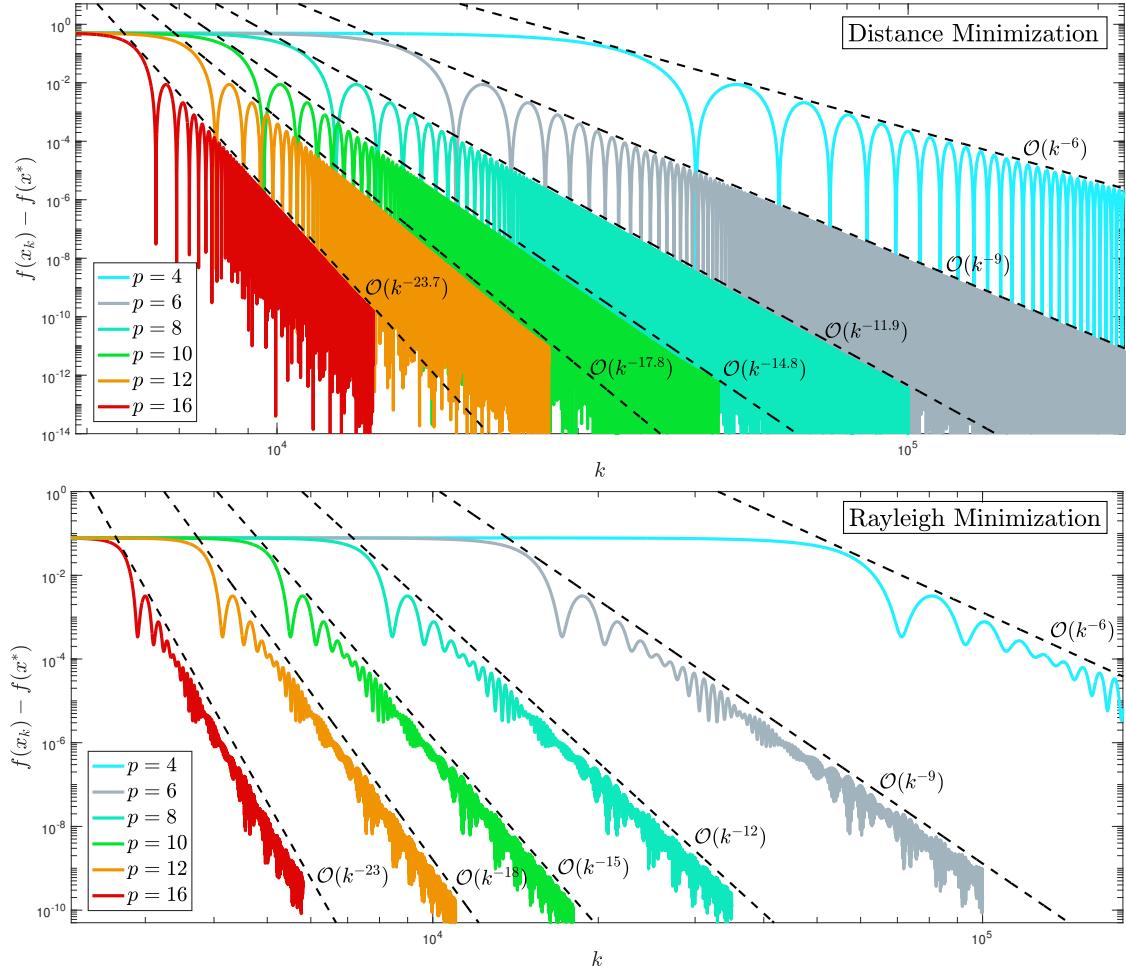


FIGURE 2. Evolution of the rates of convergence of Version 1 of the convex Algorithm 1 with different values of p . Note that all the algorithms were implemented with the same timestep h .

301 Note however that an increase in the value of p in Algorithm 1, which corresponds to an increase
 302 in the order of the Bregman dynamics integrated, requires a decrease in the timestep, in agreement
 303 with intuitive expectations. This timestep decrease requirement is especially important due to
 304 the polynomially growing $h(kh)^{p-2}$ coefficient multiplying the gradient of f in the updates of
 305 the algorithm. Such a decrease in the timestep does not really affect the convergence rate, but
 306 the transition between the initialization and convergence phases takes longer. As a consequence,
 307 by using larger timesteps, the algorithm corresponding to a smaller value of p might achieve a
 308 desired convergence criterion with fewer iterations than the algorithm corresponding to a larger
 309 value of p , despite having a slower convergence rate. Similar issues arise when discretizing the
 310 continuous Euler–Lagrange flow associated with accelerated optimization on vector spaces, and in
 311 that situation, it was observed that time-adaptive symplectic integrators based on Hamiltonian

312 variational integrators resulted in dramatically improved robustness and stability. As such, it will
 313 be natural to explore generalizations of time-adaptive symplectic integrators based on Hamiltonian
 314 variational integrators applied to Poincaré transformed Hamiltonians, that respect the Riemannian
 315 manifold structure in order to yield more robust and stable numerical discretizations of the flows we
 316 have studied in this paper in order to construct accelerated optimization algorithms on Riemannian
 317 manifolds. We will lay the foundation for such time-adaptive symplectic integrators in Section 5.

318 Finally, Figure 3 shows that the discretization empirically converges to the solution of the ODE
 319 as the timestep h goes to 0. Note that although all the discretizations follow the ODE trajectory
 320 closely, smaller timesteps result in a larger number of iterations, especially to transition from the
 321 initialization plateau to the convergence phase (around time $t = 4$ in the example presented in
 322 Figure 3). A theoretical shadowing result bounding the error between the discrete-time RGD and
 323 its continuous-time limiting ODE was obtained in [3]. It would be desirable to obtain similar
 324 shadowing results in the future for discretizations of the class of ODEs considered here, perhaps
 325 drawing inspiration from [28]. However, such a result might be very difficult to obtain because
 326 momentum methods lack contraction, are nondescending, and are highly oscillatory [3; 22]. While
 327 it is hoped that the continuous analysis in this paper will eventually guide the convergence analysis
 328 of discrete-time algorithms, this does not appear to be a straightforward exercise, as one would first
 329 need to reconcile the arbitrarily fast $\mathcal{O}(1/t^p)$ rate of convergence of the continuous-time trajectories
 330 with Nesterov's barrier theorem of $\mathcal{O}(1/k^2)$ for discrete-time algorithms.

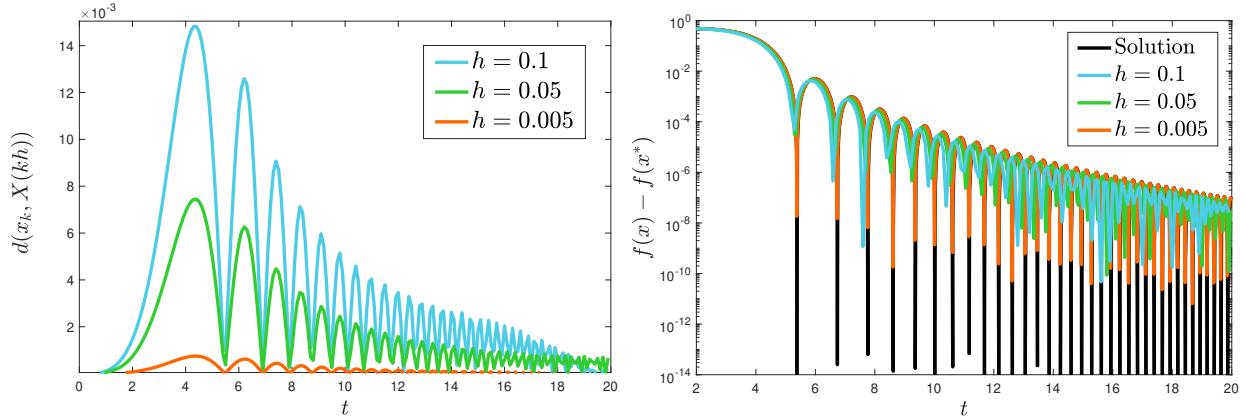


FIGURE 3. Discretization errors (top graph) and convergence rates (bottom graphs) of Version I of the $p = 5$ convex Algorithm 1 with different values of h for the distance minimization problem. The true solution of the differential equation was approximated by the same algorithm with a very small timestep $h = 10^{-5}$.

331

5. TIME INVARIANCE AND POINCARÉ TRANSFORMATION

332 Let $f : \mathcal{Q} \rightarrow \mathbb{R}$ be a given λ -weakly-quasi-convex function, and suppose Assumption 1 is satisfied.
 333 In Section 3, we formulated a variational framework for the minimization of f , via Bregman
 334 Lagrangians and Hamiltonians. We now extend Theorem 3.1 to Riemannian manifolds.

335 **Theorem 5.1.** *Suppose that Assumption 1 is satisfied and that the curve $X(t)$ satisfies the Rie-
 336 mannian Bregman Euler–Lagrange equation (3.7) corresponding to $\mathcal{L}_{\alpha,\beta,\gamma}$. Then the reparametrized
 337 curve $X(\tau(t))$ satisfies the Bregman Euler–Lagrange equation (3.7) corresponding to the modified
 338 Riemannian Bregman Lagrangian $\mathcal{L}_{\tilde{\alpha},\tilde{\beta},\tilde{\gamma}}$ where $\tilde{\alpha}_t = \alpha_{\tau(t)} + \log \dot{\tau}(t)$, $\tilde{\beta}_t = \beta_{\tau(t)}$, and $\tilde{\gamma}_t = \gamma_{\tau(t)}$.
 339 Furthermore α, β, γ satisfy the ideal scaling conditions (3.3) if and only if $\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}$ do.*

340 *Proof.* See Appendix D.

341 As a special case, we have the following theorem:

342 **Theorem 5.2.** *Suppose that $f : \mathcal{Q} \rightarrow \mathbb{R}$ is a geodesically λ -weakly-quasi-convex function, and that*
 343 *Assumption 1 is satisfied. Suppose $X(t)$ satisfies the p -Bregman Euler–Lagrange equation (3.12).*
 344 *Then, the reparametrized curve $X(t^{\dot{p}/p})$ satisfies the \dot{p} -Bregman Euler–Lagrange equation (3.12).*

345 Thus, the entire subfamily of Bregman trajectories indexed by the parameter p can be obtained
 346 by speeding up or slowing down along the Bregman curve in spacetime corresponding to any specific
 347 value of p . Inspired by the computational efficiency of the approach introduced in [8], it is natural
 348 to attempt to exploit the time-rescaling property of the Bregman dynamics together with a care-
 349 fully chosen Poincaré transformation to transform the p -Bregman Hamiltonian into an autonomous
 350 version of the \dot{p} -Bregman Hamiltonian in extended phase-space, where $\dot{p} < p$. This would allow us to
 351 integrate the higher-order p -Bregman dynamics while benefiting from the computational efficiency
 352 of integrating the lower-order \dot{p} -Bregman dynamics. Explicitly, the time rescaling $\tau(t) = t^{\dot{p}/p}$ is
 353 associated to the monitor function

$$354 \quad \frac{dt}{d\tau} = g_{p \rightarrow \dot{p}}(t) = \frac{p}{\dot{p}} t^{1-\dot{p}/p}, \quad (5.1)$$

355 and generates a Poincaré transformed Hamiltonian

$$356 \quad \bar{\mathcal{H}}_{p \rightarrow \dot{p}}(\bar{X}, \bar{R}) = g_{p \rightarrow \dot{p}}(X^t) (\mathcal{H}_p(\bar{X}, R) + R^t), \quad (5.2)$$

357 in the extended space $\bar{\mathcal{Q}} = \mathcal{Q} \times \mathbb{R}$ where $\bar{X} = \begin{bmatrix} X \\ X^t \end{bmatrix}$ and $\bar{R} = \begin{bmatrix} R \\ R^t \end{bmatrix}$. We will make the conventional
 358 choice $X^t = t$, with conjugate momentum R^t , and $R^t(0) = -\mathcal{H}_p(X(0), R(0), 0) = -H_0$, which is
 359 chosen so that $\bar{\mathcal{H}}_{p \rightarrow \dot{p}}(\bar{X}, \bar{R}) = 0$ along all integral curves through $(\bar{X}(0), \bar{R}(0))$. The time t shall be
 360 referred to as the physical time, while τ will be referred to as the fictive time. The corresponding
 361 Hamiltonian equations of motion in the extended phase space are then given by

$$362 \quad \dot{\bar{X}} = \frac{\partial \bar{\mathcal{H}}_{p \rightarrow \dot{p}}}{\partial \bar{R}}, \quad \dot{\bar{R}} = -\frac{\partial \bar{\mathcal{H}}_{p \rightarrow \dot{p}}}{\partial \bar{X}}. \quad (5.3)$$

363 Now, suppose $(\bar{X}(\tau), \bar{R}(\tau))$ are solutions to these extended equations of motion, and let $(x(t), r(t))$
 364 solve Hamilton's equations for the original Hamiltonian \mathcal{H}_p . Then

$$365 \quad \bar{\mathcal{H}}_{p \rightarrow \dot{p}}(\bar{X}(\tau), \bar{R}(\tau)) = \bar{\mathcal{H}}_{p \rightarrow \dot{p}}(\bar{X}(0), \bar{R}(0)) = 0.$$

Thus, the components $(X(\tau), R(\tau))$ in the original phase space of $(\bar{X}(\tau), \bar{R}(\tau))$ satisfy

$$\mathcal{H}_p(X(\tau), R(\tau), \tau) = -R^t(\tau), \quad \mathcal{H}_p(X(0), R(0), 0) = -R^t(0) = \mathcal{H}_p(x(0), r(0), 0).$$

366 Therefore, $(X(\tau), R(\tau))$ and $(x(t), r(t))$ both satisfy Hamilton's equations for the original Hamil-
 367 tonian \mathcal{H}_p with the same initial values, so they must be the same.

368 As a consequence, instead of integrating the p -Bregman Hamiltonian system (3.11), we can focus
 369 on the Poincaré transformed Hamiltonian $\bar{\mathcal{H}}_{p \rightarrow \dot{p}}$ in extended phase-space given by equation (5.2),
 370 with \mathcal{H}_p and $g_{p \rightarrow \dot{p}}$ given by equations (3.11) and (5.1), that is

$$371 \quad \boxed{\bar{\mathcal{H}}_{p \rightarrow \dot{p}}(\bar{X}, \bar{R}) = \frac{p^2}{2\dot{p}(X^t)^{\lambda^{-1}\zeta p + \dot{p}/p}} \langle\langle R, R \rangle\rangle + \frac{Cp^2}{\dot{p}} (X^t)^{(\lambda^{-1}\zeta + 1)p - \dot{p}/p} f(X) + \frac{p}{\dot{p}} (X^t)^{1-\dot{p}/p} R^t}, \quad (5.4)$$

372 The resulting integrator has constant timestep in fictive time τ but variable timestep in physical
 373 time t . In our prior work on discretizations of variational formulations of accelerated optimization
 374 on normed spaces [8], we performed a very careful computational study of how time-adaptivity and
 375 symplecticity of the numerical scheme improve the performance of the resulting numerical optimiza-
 376 tion algorithm. In particular, we observed that time-adaptive Hamiltonian variational discretiza-
 377 tions, which are automatically symplectic, with adaptive timesteps informed by the time invariance

378 of the family of p -Bregman Lagrangians and Hamiltonians yielded the most robust and computa-
 379 tionally efficient numerical optimization algorithms, outperforming fixed-timestep symplectic dis-
 380 cretizations, adaptive-timestep non-symplectic discretizations, and Nesterov's accelerated gradient
 381 algorithm which is neither time-adaptive nor symplectic. As such, it would be desirable to general-
 382 ize the time-adaptive Hamiltonian variational integrator framework to Riemannian manifolds, and
 383 apply it to the variational formulation of accelerated optimization on Riemannian manifolds.

384

6. CONCLUSION

385 We have shown that on Riemannian manifolds, the convergence rate in continuous time of a
 386 geodesically convex or weakly-quasi-convex function $f(x(t))$ to its optimal value can be accelerated
 387 to an arbitrary convergence rate, which extended the results of [25] from normed vector spaces to
 388 Riemannian manifolds. This rate of convergence is achieved along solutions of the Euler–Lagrange
 389 and Hamilton's equations corresponding to a family of time-dependent Bregman Lagrangian and
 390 Hamiltonian systems on Riemannian manifolds. As was demonstrated in the normed vector space
 391 setting, such families of Bregman Lagrangians and Hamiltonians can be used to construct practical,
 392 robust, and computationally efficient numerical optimization algorithms that outperform Nesterov's
 393 accelerated gradient method by considering geometric structure-preserving discretizations of the
 394 continuous-time flows.

395 Numerical experiments implementing a simple discretization of the p -Bregman Euler–Lagrange
 396 equations applied to a distance minimization and Rayleigh minimization problems confirmed that
 397 the higher-order algorithms outperform significantly their lower-order counterparts and their the-
 398 oretical $\mathcal{O}(1/t^p)$ convergence rates. Numerical results also showed that using a corrected gradient
 399 in the update instead of the traditional gradient, as was done in [24], improved the theoretically
 400 predicted polynomial convergence rate to an exponential rate of convergence in practice. While
 401 higher values of p result in faster rates of convergence, they usually require smaller timesteps and
 402 also appear to be more prone to stability issues under numerical discretization, which can cause
 403 the numerical optimization algorithm to diverge, but we anticipate that symplectic discretizations
 404 will address these stability issues.

405 Finally, in analogy to what was done in [25] for normed vector spaces, we proved that the family
 406 of time-dependent Bregman Lagrangian and Hamiltonians on Riemannian manifolds is closed under
 407 time rescaling. Inspired by the computational efficiency of the approach introduced in [8], we can
 408 then exploit this invariance property via a carefully chosen Poincaré transformation that will allow
 409 us to integrate higher-order p -Bregman dynamics while benefiting from the computational efficiency
 410 of integrating a lower-order \dot{p} -Bregman Hamiltonian system.

411 It was observed in our prior computational experiments in the normed vector space case [8]
 412 that geometric discretizations which respect the time-rescaling invariance and symplecticity of the
 413 Bregman Lagrangian and Hamiltonian flows were substantially less prone to stability issues, and
 414 were therefore more robust, reliable, and computationally efficient. As such, it is natural to develop
 415 time-adaptive Hamiltonian variational integrators for the Bregman Hamiltonian introduced in this
 416 paper describing accelerated optimization on Riemannian manifolds.

417 Developing an intrinsic extension of Hamiltonian variational integrators to manifolds will require
 418 some additional work, since the current approach involves Type II/Type III generating functions
 419 $H_d^+(q_k, p_{k+1})$, $H_d^-(p_k, q_{k+1})$, which depend on the position at one boundary point, and the momen-
 420 tum at the other boundary point. However, this does not make intrinsic sense on a manifold, since
 421 one needs the base point in order to specify the corresponding cotangent space, and one should
 422 ideally consider a Hamiltonian variational integrator construction based on discrete Dirac mechan-
 423 ics [14], which would yield a generating function $E_d^+(q_k, q_{k+1}, p_{k+1})$, $E_d^-(q_k, p_k, q_{k+1})$, that depends
 424 on the position at both boundary points and the momentum at one of the boundary points. This

425 approach can be viewed as a discretization of the generalized energy $E(q, v, p) = \langle p, v \rangle - L(q, v)$, in
 426 contrast to the Hamiltonian $H(q, p) = \text{ext}_v \langle p, v \rangle - L(q, v) = \langle p, v \rangle - L(q, v)|_{p=\frac{\partial L}{\partial v}}$.

427 However, a more practical method relies on the fact that we have a Riemannian manifold, which
 428 is endowed with a Riemannian exponential and Riemannian logarithm that can be used to construct
 429 an extension of Hamiltonian variational integrators using geodesic normal coordinates. For many
 430 important matrix manifolds, one can replace the Riemannian exponential in the geodesic normal
 431 coordinates by a retraction [1], which is often constructed using matrix factorizations.

432 Another important case involves Riemannian submanifolds that are embedded in a Riemannian
 433 linear manifold and are realized as the level set of a submersion. The characterization of the sub-
 434 manifold as the level set of a submersion, together with the linear space structure of the embedding
 435 space, and the variational characterization of the dynamics naturally lends itself to the use of the
 436 Lagrange multiplier theorem, which allows one to use Hamiltonian variational integrators defined
 437 on the embedding space by including a Lagrange multiplier term involving the submersion in the
 438 Lagrangian or Hamiltonian [6]. This is analogous to the derivation of the SHAKE and RATTLE
 439 methods as a variational integrator for constrained systems (see, for example, §3.5 of [17]). Another
 440 practical method can be obtained by projecting the updates of Hamiltonian variational integrators
 441 defined on the embedding space onto the constraint manifold [7].

442 We anticipate that applying an appropriate generalization of Hamiltonian variational integrators
 443 to the Bregman Hamiltonians introduced in this paper will yield a novel class of robust and effi-
 444 cient accelerated optimization algorithms on Riemannian manifolds. It would also be desirable to
 445 analyze the resulting discrete-time algorithms and rigorously establish their rates of convergence.
 446 In addition, we would like to better understand how to reconcile the arbitrarily high rate of conver-
 447 gence one expects from the continuous-time analysis, with Nesterov's barrier theorem on the rate
 448 of convergence of discrete-time algorithms.

449

450 ACKNOWLEDGMENTS

451 The authors were supported in part by NSF under grants DMS-1411792, DMS-1345013, DMS-
 452 1813635, by AFOSR under grant FA9550-18-1-0288, and by the DoD under grant 13106725 (Newton
 453 Award for Transformative Ideas during the COVID-19 Pandemic).

454

455 APPENDIX A. DERIVATION OF THE EULER–LAGRANGE EQUATIONS

456 A.1. Convex and Weakly-Quasi-Convex Cases.

457 **Theorem A.1.** *The Euler–Lagrange equation corresponding to the Lagrangian*

$$458 \quad \mathcal{L}_{\alpha, \beta, \gamma}(X, V, t) = \frac{1}{2} e^{\lambda^{-1} \zeta \gamma_t - \alpha_t} \langle V, V \rangle - e^{\alpha_t + \beta_t + \lambda^{-1} \zeta \gamma_t} f(X),$$

459 *is given by*

$$460 \quad \nabla_{\dot{X}} \dot{X} + (\lambda^{-1} \zeta e^{\alpha_t} - \dot{\alpha}_t) \dot{X} + e^{2\alpha_t + \beta_t} \text{grad}f(X) = 0,$$

461 *Proof.* Consider a path on the manifold \mathcal{Q} described in coordinates by

$$462 \quad (x(t), \dot{x}(t)) = (q^1(t), \dots, q^n(t), v^1(t), \dots, v^n(t)).$$

463 Then, with $\langle \cdot, \cdot \rangle = \sum_{i,j=1}^n g_{ij} dx^i dx^j$, the Bregman Lagrangian $\mathcal{L}_{\alpha, \beta, \gamma}$ can be written as

$$464 \quad \mathcal{L}_{\alpha, \beta, \gamma}(x(t), \dot{x}(t), t) = \frac{1}{2} e^{\lambda^{-1} \zeta \gamma_t - \alpha_t} \sum_{i,j=1}^n g_{ij}(x(t)) v^i(t) v^j(t) - e^{\alpha_t + \beta_t + \lambda^{-1} \zeta \gamma_t} f(x(t)).$$

465 For $k = 1, \dots, n$,

$$466 \quad \frac{d}{dt} \left(\frac{\partial \mathcal{L}_{\alpha, \beta, \gamma}}{\partial v^k} (x(t), \dot{x}(t), t) \right) = e^{\lambda^{-1} \zeta \gamma_t - \alpha_t} \sum_{i=1}^n g_{ik}(x(t)) \frac{dv^i}{dt}(t) + e^{\lambda^{-1} \zeta \gamma_t - \alpha_t} \sum_{i,j=1}^n \frac{\partial g_{kj}}{\partial q^i}(x(t)) v^i(t) v^j(t)$$

$$467 \quad + (\lambda^{-1} \zeta \dot{\gamma}_t - \dot{\alpha}_t) e^{\lambda^{-1} \zeta \gamma_t - \alpha_t} \sum_{i=1}^n g_{ik}(x(t)) v^i(t),$$

468

$$469 \quad \frac{\partial \mathcal{L}_{\alpha, \beta, \gamma}}{\partial q^k} (x(t), \dot{x}(t), t) = \frac{1}{2} e^{\lambda^{-1} \zeta \gamma_t - \alpha_t} \sum_{i,j=1}^n \frac{\partial g_{ij}}{\partial q^k}(x(t)) v^i(t) v^j(t) - e^{\alpha_t + \beta_t + \lambda^{-1} \zeta \gamma_t} \frac{\partial f}{\partial q^k}(x(t)).$$

470 Multiplying both terms by $e^{\alpha_t - \lambda^{-1} \zeta \gamma_t}$, the Euler–Lagrange equations (2.3) for the Bregman La-
471 grangian $\mathcal{L}_{\alpha, \beta, \gamma}$ are given, for $k = 1, \dots, n$, by

$$472 \quad 0 = \sum_{i=1}^n g_{ik}(x(t)) \frac{dv^i}{dt}(t) + \sum_{i,j=1}^n \frac{\partial g_{kj}}{\partial q^i}(x(t)) v^i(t) v^j(t) + (\lambda^{-1} \zeta \dot{\gamma}_t - \dot{\alpha}_t) \sum_{i=1}^n g_{ik}(x(t)) v^i(t)$$

$$473 \quad - \frac{1}{2} \sum_{i,j=1}^n \frac{\partial g_{ij}}{\partial q^k}(x(t)) v^i(t) v^j(t) + e^{2\alpha_t + \beta_t} \frac{\partial f}{\partial q^k}(x(t)).$$

474 Rearranging terms, and multiplying by the matrix (g^{ij}) which is the inverse of (g_{ij}) , we get, for
475 $k = 1, \dots, n$, the equation

$$476 \quad \left(\frac{dv^k}{dt}(t) + \sum_{i,j=1}^n \Gamma_{ij}^k(x(t)) v^i(t) v^j(t) \right) + (\lambda^{-1} \zeta \dot{\gamma}_t - \dot{\alpha}_t) v^k(t) + e^{2\alpha_t + \beta_t} (\text{gradf}(x(t)))^k = 0,$$

477 where Γ_{ij}^k are the Christoffel symbols given by $\Gamma_{ij}^k = \frac{1}{2} \sum_{l=1}^n g^{kl} \left[\frac{\partial g_{jl}}{\partial x^i} + \frac{\partial g_{il}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^l} \right]$, which gives the
478 desired Euler–Lagrange equation once we use the ideal scaling equation $\dot{\gamma}_t = e^{\alpha_t}$. \square

479

480 A.2. Strongly Convex Case.

481 **Theorem A.2.** *The Euler–Lagrange equation corresponding to the Lagrangian \mathcal{L}^{SC} is given by*

$$482 \quad \nabla_{\dot{X}} \dot{X} + \eta \dot{X} + \text{gradf}(X) = 0.$$

483 *Proof.* Consider a path on the manifold \mathcal{Q} described in coordinates by

$$484 \quad (x(t), \dot{x}(t)) = (q^1(t), \dots, q^n(t), v^1(t), \dots, v^n(t)).$$

485 Then, with $\langle \cdot, \cdot \rangle = \sum_{i,j=1}^n g_{ij} dx^i dx^j$, the Lagrangian \mathcal{L}^{SC} can be written as

$$486 \quad \mathcal{L}^{SC} (x(t), \dot{x}(t), t) = \frac{e^{\eta t}}{2} \sum_{i,j=1}^n g_{ij}(x(t)) v^i(t) v^j(t) - e^{\eta t} f(x(t)).$$

487 For $k = 1, \dots, n$,

$$488 \quad \frac{d}{dt} \left(\frac{\partial \mathcal{L}^{SC}}{\partial v^k} (x(t), \dot{x}(t), t) \right) = e^{\eta t} \sum_{i=1}^n g_{ik}(x(t)) \frac{dv^i}{dt}(t) + e^{\eta t} \sum_{i,j=1}^n \frac{\partial g_{kj}}{\partial q^i}(x(t)) v^i(t) v^j(t) \\ 489 \quad + \eta e^{\eta t} \sum_{i=1}^n g_{ik}(x(t)) v^i(t),$$

490

$$491 \quad \frac{\partial \mathcal{L}^{SC}}{\partial q^k} (x(t), \dot{x}(t), t) = e^{\eta t} \sum_{i,j=1}^n \frac{\partial g_{ij}}{\partial q^k}(x(t)) v^i(t) v^j(t) - e^{\eta t} \frac{\partial f}{\partial q^k}(x(t)).$$

492 If we multiply both terms by $e^{-\eta t}$, the Euler–Lagrange equations (2.3) for the Lagrangian \mathcal{L}^{SC} are
 493 given, for $k = 1, \dots, n$, by

$$494 \quad 0 = \sum_{i=1}^n g_{ik}(x(t)) \frac{dv^i}{dt}(t) + \sum_{i,j=1}^n \frac{\partial g_{kj}}{\partial q^i}(x(t)) v^i(t) v^j(t) + \eta \sum_{i=1}^n g_{ik}(x(t)) v^i(t)$$

$$495 \quad - \frac{1}{2} \sum_{i,j=1}^n \frac{\partial g_{ij}}{\partial q^k}(x(t)) v^i(t) v^j(t) + \frac{\partial f}{\partial q^k}(x(t)).$$

496 Rearranging terms, and multiplying by the matrix (g^{ij}) which is the inverse of (g_{ij}) , we get, for
 497 $k = 1, \dots, n$, the equation

$$498 \quad \left(\frac{dv^k}{dt}(t) + \sum_{i,j=1}^n \Gamma_{ij}^k(x(t)) v^i(t) v^j(t) \right) + \eta v^k(t) + (\text{gradf}(x(t)))^k = 0,$$

499 where Γ_{ij}^k are the Christoffel symbols given by $\Gamma_{ij}^k = \frac{1}{2} \sum_{l=1}^n g^{kl} \left[\frac{\partial g_{jl}}{\partial x^i} + \frac{\partial g_{il}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^l} \right]$, which gives the
 500 desired Euler–Lagrange equation. \square

501

502 APPENDIX B. PROOF OF THE CONVERGENCE RATES

503 The proofs of the convergence rates of solutions to the Bregman Euler–Lagrange equations are
 504 inspired by those of Theorems 5 and 6 from [3], and make use of Lemmas 2 and 12 therein:

505 **Lemma B.1.** *Given a Riemannian manifold \mathcal{Q} with sectional curvature bounded above by K_{\max}
 506 and below by K_{\min} , with ζ given by equation (2.1), and such that*

$$507 \quad \text{diam}(\mathcal{Q}) < \begin{cases} \frac{\pi}{\sqrt{K_{\max}}} & \text{if } K_{\max} > 0 \\ \infty & \text{if } K_{\max} \leq 0 \end{cases},$$

508 we have that

$$509 \quad \langle \nabla_{\dot{X}} \text{Log}_X(p), -\dot{X} \rangle \leq \zeta \|\dot{X}\|^2.$$

510 **Lemma B.2.** *Given a point q and a smooth curve $X(t)$ on a Riemannian manifold \mathcal{Q} ,*

$$511 \quad \frac{d}{dt} \|\text{Log}_{X(t)}(q)\|^2 = 2 \langle \text{Log}_{X(t)}(q), \nabla_{\dot{X}} \text{Log}_{X(t)}(q) \rangle = 2 \langle \text{Log}_{X(t)}(q), -\dot{X}(t) \rangle.$$

512

513 **Theorem B.1.** *Suppose $f : \mathcal{Q} \rightarrow \mathbb{R}$ is a λ -weakly-quasi-convex function, and suppose that Assumption 1 is satisfied. Then, any solution $X(t)$ of the Bregman Euler–Lagrange equation*

$$515 \quad \nabla_{\dot{X}} \dot{X} + (\lambda^{-1} \zeta e^{\alpha t} - \dot{\alpha}_t) \dot{X} + e^{2\alpha t + \beta_t} \text{gradf}(X) = 0,$$

516 with $X(0) = x_0$ and $\dot{X}(0) = 0$, converges to a minimizer x^* of f with rate

$$517 \quad f(X(t)) - f(x^*) \leq \frac{2\lambda^2 e^{\beta_0} (f(x_0) - f(x^*)) + \zeta \|\text{Log}_{x_0}(x^*)\|^2}{2\lambda^2 e^{\beta_t}}.$$

518 *Proof.* Let

$$519 \quad \mathcal{E}(t) = \lambda^2 e^{\beta_t} (f(X) - f(x^*)) + \frac{1}{2} (\zeta - 1) \|\text{Log}_X(x^*)\|^2 + \frac{1}{2} \left\| \lambda e^{-\alpha t} \dot{X} - \text{Log}_X(x^*) \right\|^2.$$

520 Then, using Lemma B.2,

$$521 \quad \dot{\mathcal{E}}(t) = \lambda^2 \dot{\beta}_t e^{\beta_t} (f(X) - f(x^*)) + \lambda^2 e^{\beta_t} \langle \text{gradf}(X), \dot{X} \rangle + (\zeta - 1) \langle \text{Log}_X(x^*), -\dot{X} \rangle \\ 522 \quad + \langle \lambda e^{-\alpha t} \dot{X} - \text{Log}_X(x^*), -\dot{\alpha}_t \lambda e^{-\alpha} \dot{X} + \lambda e^{-\alpha t} \nabla_{\dot{X}} \dot{X} - \nabla_{\dot{X}} \text{Log}_X(x^*) \rangle \\ 523 \quad = \lambda^2 \dot{\beta}_t e^{\beta_t} (f(X) - f(x^*)) + \lambda^2 e^{\beta_t} \langle \text{gradf}(X), \dot{X} \rangle + (\zeta - 1) \langle \text{Log}_X(x^*), -\dot{X} \rangle$$

$$+ \langle \lambda e^{-\alpha t} \dot{X} - \text{Log}_X(x^*), \lambda e^{-\alpha t} (-\dot{\alpha}_t \dot{X} + \nabla_{\dot{X}} \dot{X}) - \nabla_{\dot{X}} \text{Log}_X(x^*) \rangle.$$

Now, from the Bregman Euler–Lagrange equation,

$$-\dot{\alpha}_t \dot{X} + \nabla_{\dot{X}} \dot{X} = -\lambda^{-1} \zeta e^{\alpha t} \dot{X} - e^{2\alpha t + \beta t} \text{gradf}(X).$$

Thus,

$$\begin{aligned} \dot{\mathcal{E}}(t) &= \lambda^2 \dot{\beta}_t e^{\beta t} (f(X) - f(x^*)) + \lambda^2 e^{\beta t} \langle \text{gradf}(X), \dot{X} \rangle + (\zeta - 1) \langle \text{Log}_X(x^*), -\dot{X} \rangle \\ &\quad + \langle \lambda e^{-\alpha t} \dot{X} - \text{Log}_X(x^*), -\zeta \dot{X} - \lambda e^{\alpha t + \beta t} \text{gradf}(X) - \nabla_{\dot{X}} \text{Log}_X(x^*) \rangle \\ &= \lambda^2 \dot{\beta}_t e^{\beta t} (f(X) - f(x^*)) + \lambda^2 e^{\beta t} \langle \text{gradf}(X), \dot{X} \rangle + (\zeta - 1) \langle \text{Log}_X(x^*), -\dot{X} \rangle - \lambda \zeta e^{-\alpha t} \langle \dot{X}, \dot{X} \rangle \\ &\quad - \lambda^2 e^{\beta t} \langle \dot{X}, \text{gradf}(X) \rangle - \lambda e^{-\alpha t} \langle \dot{X}, \nabla_{\dot{X}} \text{Log}_X(x^*) \rangle + \zeta \langle \text{Log}_X(x^*), \dot{X} \rangle \\ &\quad + \lambda e^{\alpha t + \beta t} \langle \text{Log}_X(x^*), \text{gradf}(X) \rangle + \langle \text{Log}_X(x^*), \nabla_{\dot{X}} \text{Log}_X(x^*) \rangle. \end{aligned}$$

Cancelling the $\langle \text{gradf}(X), \dot{X} \rangle$ and $\langle \text{Log}_X(x^*), -\dot{X} \rangle$ terms out using Lemma B.2, we get

$$\begin{aligned} \dot{\mathcal{E}}(t) &= \lambda^2 \dot{\beta}_t e^{\beta t} (f(X) - f(x^*)) + \lambda e^{\alpha t + \beta t} \langle \text{Log}_X(x^*), \text{gradf}(X) \rangle \\ &\quad - \lambda \zeta e^{-\alpha t} \langle \dot{X}, \dot{X} \rangle - \lambda e^{-\alpha t} \langle \dot{X}, \nabla_{\dot{X}} \text{Log}_X(x^*) \rangle \\ &= \lambda e^{\beta t} [\dot{\beta}_t \lambda (f(X) - f(x^*)) + e^{\alpha t} \langle \text{Log}_X(x^*), \text{gradf}(X) \rangle] \\ &\quad - \lambda e^{-\alpha t} [\zeta \langle \dot{X}, \dot{X} \rangle + \langle \dot{X}, \nabla_{\dot{X}} \text{Log}_X(x^*) \rangle]. \end{aligned}$$

Now, since f is geodesically λ -weakly-quasi-convex, we have that

$$\lambda (f(X) - f(x^*)) + \langle \text{Log}_X(x^*), \text{gradf}(X) \rangle \leq 0,$$

so the ideal scaling equation $\dot{\beta}_t \leq e^{\alpha t}$ implies that

$$\lambda e^{\beta t} [\dot{\beta}_t \lambda (f(X) - f(x^*)) + e^{\alpha t} \langle \text{Log}_X(x^*), \text{gradf}(X) \rangle] \leq 0.$$

Moreover, Lemma B.1 yields $[\zeta \langle \dot{X}, \dot{X} \rangle + \langle \dot{X}, \nabla_{\dot{X}} \text{Log}_X(x^*) \rangle] \geq 0$, so

$$-\lambda e^{-\alpha t} [\zeta \langle \dot{X}, \dot{X} \rangle + \langle \dot{X}, \nabla_{\dot{X}} \text{Log}_X(x^*) \rangle] \leq 0.$$

Therefore, $\dot{\mathcal{E}}(t) \leq 0$, and so

$$\begin{aligned} \lambda^2 e^{\beta t} (f(X) - f(x^*)) &\leq \lambda^2 e^{\beta t} (f(X) - f(x^*)) + \frac{1}{2} (\zeta - 1) \|\text{Log}_X(x^*)\|^2 + \frac{1}{2} \left\| \lambda e^{-\alpha t} \dot{X} - \text{Log}_X(x^*) \right\|^2 \\ &= \mathcal{E}(t) \leq \mathcal{E}(0) = \lambda^2 e^{\beta_0} (f(x_0) - f(x^*)) + \frac{1}{2} \zeta \|\text{Log}_{x_0}(x^*)\|^2, \end{aligned}$$

which gives the desired rate of convergence

$$f(X(t)) - f(x^*) \leq \frac{2\lambda^2 e^{\beta_0} (f(x_0) - f(x^*)) + \zeta \|\text{Log}_{x_0}(x^*)\|^2}{2\lambda^2 e^{\beta_0}}.$$

□

APPENDIX C. PROOF OF EXISTENCE THEOREMS

C.1. Convex and Weakly-Quasi-Convex Cases.

Theorem C.1. *Suppose Assumption 1 is satisfied, and let $C, p > 0$ and $v > 1$ be given constants. Then the differential equation*

$$\nabla_{\dot{X}} \dot{X} + \frac{v}{t} \dot{X} + C t^{p-2} \text{gradf}(X) = 0,$$

has a global solution $X : [0, \infty) \rightarrow \mathcal{Q}$ under the initial conditions $X(0) = x_0 \in \mathcal{Q}$ and $\dot{X}(0) = 0$.

556 *Proof.* The proof is similar to that of Lemma 3 in [3], which extended Theorem 1 in [23] to the Riemannian setting. We first define a family of smoothed equations for which we then show existence of a solution for all time. After choosing an equicontinuous and uniformly bounded subfamily of smoothed solutions, we use the Arzela–Ascoli Theorem on the complete Riemannian manifold \mathcal{Q} to obtain a subsequence converging uniformly, and argue that the limit of this subsequence solves the original problem. When $p = 2$, we recover the simpler case considered in Lemma 3 of [3], so we assume $p \neq 2$ in this proof. Consider the following families of smoothed equations for $\delta > 0$:

$$563 \quad \nabla_{\dot{X}} \dot{X} + \frac{v}{\max(\delta, t)} \dot{X} + C(\max(\delta, t))^{p-2} \text{gradf}(X) = 0 \quad \text{if } p < 2,$$

$$564 \quad \nabla_{\dot{X}} \dot{X} + \frac{v}{\max(\delta, t)} \dot{X} + Ct^{p-2} \text{gradf}(X) = 0 \quad \text{if } p > 2.$$

565 Exp and Log are defined globally on \mathcal{Q} by Assumption 1, so we can choose geodesically normal coordinates $\phi = \psi^{-1}$ around x_0 defined globally on \mathcal{Q} and put $c = \phi \circ X$. Using the smoothness of f and letting $u = \dot{c}$ gives a system of first-order ODEs defining a local representation for a vector field in $T\mathcal{Q}$, and Section IV.3 of [12] guarantees that the smoothed ODE has a unique solution X_δ locally around 0. Actually, X_δ exists on $[0, \infty)$. Indeed, by contradiction, let $[0, T)$ be the maximal interval of existence of X_δ , for some finite $T > 0$. Using $\frac{d}{dt} f(X_\delta(t)) = \langle \text{gradf}(X_\delta), \dot{X}_\delta \rangle$ gives

$$571 \quad \frac{d}{dt} f(X_\delta) = -\frac{\delta^{2-p}}{C} \langle \nabla_{\dot{X}_\delta} \dot{X}_\delta, \dot{X}_\delta \rangle - \frac{v\delta^{1-p}}{C} \langle \dot{X}_\delta, \dot{X}_\delta \rangle = -\frac{\delta^{2-p}}{2C} \frac{d}{dt} \|\dot{X}_\delta\|^2 - \frac{v\delta^{1-p}}{C} \|\dot{X}_\delta\|^2 \quad \text{if } \delta > t, p < 2,$$

$$572 \quad \frac{d}{dt} f(X_\delta) = -\frac{t^{2-p}}{C} \langle \nabla_{\dot{X}_\delta} \dot{X}_\delta, \dot{X}_\delta \rangle - \frac{vt^{2-p}}{C\delta} \langle \dot{X}_\delta, \dot{X}_\delta \rangle = -\frac{t^{2-p}}{2C} \frac{d}{dt} \|\dot{X}_\delta\|^2 - \frac{vt^{2-p}}{C\delta} \|\dot{X}_\delta\|^2 \quad \text{if } \delta > t, p > 2,$$

$$573 \quad \frac{d}{dt} f(X_\delta) = -\frac{t^{2-p}}{C} \langle \nabla_{\dot{X}_\delta} \dot{X}_\delta, \dot{X}_\delta \rangle - \frac{vt^{1-p}}{C} \langle \dot{X}_\delta, \dot{X}_\delta \rangle = -\frac{1}{2C} \frac{d}{dt} (t^{2-p} \|\dot{X}_\delta\|^2) - \frac{2v(2-p)-1}{2C(2-p)} t^{1-p} \|\dot{X}_\delta\|^2 \quad \text{if } \delta < t.$$

574 Let $\theta = \frac{2v(2-p)-1}{2C(2-p)}$. Integrating and using the Cauchy-Schwarz inequality for the $p < 2$ case gives

$$575 \quad \int_0^T \sqrt{(\max(\delta, t))^{1-p}} \|\dot{X}_\delta\| dt = \int_0^\delta \sqrt{\delta^{1-p}} \|\dot{X}_\delta\| dt + \int_\delta^T \sqrt{t^{1-p}} \|\dot{X}_\delta\| dt$$

$$576 \quad \leq \sqrt{\frac{C\delta}{v} (f(x_0) - \inf_u f(u)) + \frac{\delta^{2-p}}{2v} \left(\|\dot{X}_\delta(0)\|^2 - \inf_{t \in [0, T)} \|\dot{X}_\delta(t)\|^2 \right)}$$

$$577 \quad + \sqrt{\frac{T-\delta}{\theta} (f(X_\delta(\delta)) - \inf_u f(u)) + \frac{T-\delta}{2C\theta} \left(\delta^{2-p} \|\dot{X}_\delta(\delta)\|^2 - \inf_{t \in [0, T)} t^{2-p} \|\dot{X}_\delta(t)\|^2 \right)} < \infty,$$

578 since f is bounded below by Assumption 1. If $\delta \geq T$, then $\sqrt{\delta^{1-p}} \dot{X}_\delta$ is integrable on $[0, T)$. If $\delta < T$, then the integrals on $[0, T)$ and $[0, \delta)$ are finite, so the integral on $[\delta, T)$ must also be finite, and thus $\sqrt{t^{1-p}} \dot{X}_\delta$ is integrable on $[\delta, T)$. Now, $\|\int_a^T \dot{X}_\delta dt\| \leq \int_a^T \|\dot{X}_\delta\| dt < \infty$ for $a = 0, \delta$ implies that $\lim_{t \rightarrow T} X_\delta(t)$ exists. Since \mathcal{Q} is complete by Assumption 1, the limit is in \mathcal{Q} , contradicting the maximality of $[0, T)$. The $p > 2$ case is similar: the integrand is replaced by $\sqrt{t^{2-p}(\max(\delta, t))^{-1}} \|\dot{X}_\delta\|$, and the integral on $[\delta, T)$ remains unchanged while the integral on $[0, \delta)$ can be bounded by the same expression using $t < \delta$. Thus, in both cases, we can find a solution $X_\delta : [0, \infty) \rightarrow \mathcal{Q}$ to the smooth initial-value ODE, and its corresponding solution $X_\delta : [0, \infty) \rightarrow \mathbb{R}^n$ in local coordinates.

587 Now let

$$588 \quad M_\delta(t) = \sup_{u \in (0, t]} \frac{\|\dot{X}_\delta(u)\|}{u}.$$

589 When $0 < t \leq \delta$, the smoothed ODE can be written as

$$590 \quad \nabla_{\dot{X}_\delta} \left(\dot{X}_\delta e^{\frac{v}{\delta}} \right) = -C\delta^{p-2} \text{gradf}(X_\delta) e^{\frac{v}{\delta}} \quad \text{if } p < 2, \quad \nabla_{\dot{X}_\delta} \left(\dot{X}_\delta e^{\frac{v}{\delta}} \right) = -Ct^{p-2} \text{gradf}(X_\delta) e^{\frac{v}{\delta}} \quad \text{if } p > 2.$$

591 Thus, we can use Lemma 4 in [3] to get for $p > 2$ that

$$592 \quad \Gamma_{X_\delta(t)}^{x_0} \dot{X}_\delta(t) = -e^{-\frac{v}{\delta}t} \int_0^t \left(\Gamma_{X_\delta(u)}^{x_0} \text{gradf}(X_\delta(u)) - \Gamma_{X_\delta(u)}^{x_0} \Gamma(X_\delta)_{x_0}^{X_\delta(u)} \text{gradf}(x_0) \right) C u^{p-2} e^{\frac{v}{\delta}u} du \\ 593 \quad - e^{-\frac{v}{\delta}t} \int_0^t C u^{p-2} \Gamma_{X_\delta(u)}^{x_0} \Gamma(X_\delta)_{x_0}^{X_\delta(u)} \text{gradf}(x_0) e^{\frac{v}{\delta}u} du.$$

594 From the Lipschitz assumption on f , we have that

$$595 \quad \|\text{gradf}(X_\delta(u)) - \Gamma_{x_0}^{X_\delta(u)} \text{gradf}(x_0)\| \leq L \int_0^u \|\dot{X}_\delta(s)\| ds = L \int_0^u s \frac{\|\dot{X}_\delta(s)\|}{s} ds \leq \frac{1}{2} L M_\delta(u) u^2.$$

596 Thus, since parallel transport preserves inner products,

$$597 \quad \frac{\|\dot{X}_\delta(t)\|}{t} \leq \left(\frac{1}{2} C L M_\delta(\delta) \delta^p + C \delta^p \|\text{gradf}(x_0)\| \right) \frac{e^{-\frac{v}{\delta}t}}{t} \int_0^t e^{\frac{v}{\delta}u} du \\ 598 \quad \leq \left(\frac{1}{2} C L M_\delta(\delta) \delta^p + C \delta^p \|\text{gradf}(x_0)\| \right) \frac{\delta}{vt} (1 - e^{-\frac{v}{\delta}t}) \leq \frac{1}{2} C L M_\delta(\delta) \delta^p + C \delta^p \|\text{gradf}(x_0)\|.$$

599 Taking the supremum over $0 < t \leq \delta$ and rearranging gives for $\delta < \delta_M = \left(\frac{2}{CL}\right)^{\frac{1}{p}}$ that

$$600 \quad M_\delta(\delta) \leq \frac{2C\delta^p \|\text{gradf}(x_0)\|}{2 - CL\delta^p}.$$

601 The case $p < 2$ is done exactly in the same way except that we do not need to bound u^{p-2} by δ^{p-2} in the integrals since the t^{p-2} term in the differential equation is already replaced by δ^{p-2} .

603 Note that when $\delta < \delta_M$ and $\delta < t < t_M = \left(\frac{2(v+p+1)}{CL}\right)^{\frac{1}{p}}$, the smoothed ODE can be rewritten as

$$604 \quad \frac{d}{dt} (t^v \dot{X}_\delta(t)) = -C t^{v+p-2} \text{gradf}(X_\delta).$$

605 Therefore, we can use Lemma 4 in [3] once again to obtain

$$606 \quad \Gamma_{X_\delta(t)}^{X_\delta(\delta)} t^v \dot{X}_\delta(t) - \delta^v \dot{X}_\delta(\delta) = \int_0^t \left(\Gamma_{X_\delta(u)}^{X_\delta(\delta)} \text{gradf}(X_\delta(u)) - \Gamma_{X_\delta(u)}^{X_\delta(\delta)} \Gamma(X_\delta)_{x_0}^{X_\delta(u)} \text{gradf}(x_0) \right) C u^{v+p-2} du \\ 607 \quad - \int_0^t C u^{v+p-2} \Gamma_{X_\delta(u)}^{X_\delta(\delta)} \Gamma(X_\delta)_{x_0}^{X_\delta(u)} \text{gradf}(x_0) du.$$

608 Using the fact that parallel transport preserves inner products, and dividing by t^{v+1} gives

$$609 \quad \frac{\|\dot{X}_\delta(t)\|}{t} \leq \frac{\delta^{v+1}}{t^{v+1}} \frac{\|\dot{X}_\delta(\delta)\|}{\delta} + \frac{CL}{2t^{v+1}} \int_\delta^t M_\delta(u) u^{v+p} du + \frac{C}{t^{v+1}} \|\text{gradf}(x_0)\| \int_\delta^t u^{v+p-2} du \\ 610 \quad \leq \frac{\delta^{v+1}}{t^{v+1}} \frac{2C\delta^p \|\text{gradf}(x_0)\|}{2 - CL\delta^p} + \frac{CL}{2(v+p+1)} M_\delta(t) t^p + \frac{C(t^{v+p-1} - \delta^{v+p-1})}{(v+p-1)t^{v+1}} \|\text{gradf}(x_0)\|,$$

611 and since this upper bound is an increasing function of t , we have for any $t' \in (\delta, t)$ that

$$612 \quad \frac{\|\dot{X}_\delta(t')\|}{t'} \leq \frac{2C\delta^p \|\text{gradf}(x_0)\|}{2 - CL\delta^p} + \frac{CL}{2(v+p+1)} M_\delta(t) t^p + \frac{C t^{p-2}}{v+p-1} \|\text{gradf}(x_0)\|.$$

613 Taking the supremum over all $t' \in (0, t)$ gives for $\delta < \delta_M$ and $\delta < t < t_M$,

$$614 \quad M_\delta(t) \leq \frac{1}{1 - \frac{CL}{2(v+p+1)} t^p} \left(\frac{2C\delta^p}{2 - CL\delta^p} + \frac{C t^{p-2}}{v+p-1} \right) \|\text{gradf}(x_0)\|.$$

615 Now consider the family of functions

$$616 \quad \mathcal{F} = \left\{ X_\delta : [0, T] \rightarrow \mathbb{R} \mid \delta = 2^{-n} \tilde{\delta}, n = 0, 1, \dots \right\},$$

617 where $T = \left(\frac{v+p+1}{CL}\right)^{\frac{1}{p}}$ and $\tilde{\delta} = \left(\frac{1}{CL}\right)^{\frac{1}{p}}$. By definition of M_δ , we have for $t \in [0, T]$ and $\delta \in (0, \tilde{\delta})$ that

618 $\|\dot{X}_\delta\| \leq TM_\delta(T) \leq 2CT\left(\tilde{\delta} + \frac{CT^{p-2}}{v+p-1}\right)$ and $d(X_\delta(t), X_\delta(0)) \leq \int_0^t \|\dot{X}_\delta(u)\| du \leq t\|\dot{X}_\delta\| \leq T\|\dot{X}_\delta\|$.

619 Thus, \mathcal{F} is equicontinuous and uniformly bounded, and the Riemannian manifold \mathcal{Q} is complete by
620 Assumption 1, so by the Arzela–Ascoli Theorem (Theorem 17 in [11]), \mathcal{F} contains a subsequence
621 that converges uniformly on $[0, T]$ to some function X^* . The same argument as in part 5 of the
622 proof of Lemma 3 of [3] shows that X^* is a solution to the original initial-value ODE on $[0, T]$
623 which can then be extended to get a global solution on $[0, \infty)$. \square

624

625 **C.2. Strongly Convex Case.**

626 **Theorem C.2.** *Suppose that Assumption 1 is satisfied, and that $\eta > 0$ is a given constant. Then,
627 the differential equation*

628
$$\nabla_{\dot{X}} \dot{X} + \eta \dot{X} + \text{grad}f(X) = 0,$$

629 *has a global solution $X : [0, \infty) \rightarrow \mathcal{Q}$ under the initial conditions $X(0) = x_0 \in \mathcal{Q}$ and $\dot{X}(0) = 0$.*

630 *Proof.* Exp and Log are defined globally on \mathcal{Q} by Assumption 1, so we can choose geodesically
631 normal coordinates $\phi = \psi^{-1}$ around x_0 defined globally on \mathcal{Q} and put $c = \phi \circ X$. As in [3], using
632 the smoothness of f and letting $u = \dot{c}$ gives a system of first-order ODEs which defines a local
633 representation for a vector field in $T\mathcal{Q}$, and results from Section IV.3 of [12] guarantee that the
634 initial-value differential equation has a unique solution locally around 0. It remains to show that this
635 solution actually exists on $[0, \infty)$. Towards contradiction, suppose $[0, T)$ is the maximal interval of
636 existence of the solution X , for some finite $T > 0$. Then,

637
$$\frac{d}{dt} f(X(t)) = \langle \text{grad}f(X), \dot{X} \rangle = -\langle \nabla_{\dot{X}} \dot{X}, \dot{X} \rangle - C \langle \dot{X}, \dot{X} \rangle = -\frac{1}{2} \frac{d}{dt} \|\dot{X}\|^2 - C \|\dot{X}\|^2.$$

638 Rearranging, integrating both sides and using the Cauchy-Schwarz inequality gives

639
$$\int_0^T \|\dot{X}\| dt = \sqrt{T(f(x_0) - \inf_u f(u)) + \frac{T}{2} \left(\|\dot{X}(0)\|^2 - \inf_{t \in [0, T)} \|\dot{X}(t)\|^2 \right)} < \infty,$$

640 since f is bounded from below by Assumption 1. Thus, $\lim_{t \rightarrow T} X(t)$ exists, and since \mathcal{Q} is complete,
641 the limit is in \mathcal{Q} , contradicting the maximality of $[0, T)$, thereby concluding the proof. \square

642

643 **APPENDIX D. PROOF OF INVARIANCE THEOREM**

644 **Theorem D.1.** *Suppose that Assumption 1 is satisfied and that the curve $X(t)$ satisfies the Rie-
645 mannian Bregman Euler–Lagrange equation (3.7) corresponding to $\mathcal{L}_{\alpha, \beta, \gamma}$. Then the reparametrized
646 curve $X(\tau(t))$ satisfies the Bregman Euler–Lagrange equation (3.7) corresponding to the modified
647 Riemannian Bregman Lagrangian $\mathcal{L}_{\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}}$ where $\tilde{\alpha}_t = \alpha_{\tau(t)} + \log \dot{\tau}(t)$, $\tilde{\beta}_t = \beta_{\tau(t)}$, and $\tilde{\gamma}_t = \gamma_{\tau(t)}$.
648 Furthermore α, β, γ satisfy the ideal scaling conditions (3.3) if and only if $\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}$ do.*

649 *Proof.* Let $Y(t) = X(\tau(t))$. Then

650
$$\dot{Y}(t) = \dot{\tau}(t) \dot{X}(\tau(t)), \quad \text{and} \quad \nabla_{\dot{Y}(t)} \dot{Y}(t) = \ddot{\tau}(t) \dot{X}(\tau(t)) + \dot{\tau}^2(t) \nabla_{\dot{X}(\tau(t))} \dot{X}(\tau(t)).$$

651 Inverting these relations gives

652
$$\dot{X}(\tau(t)) = \frac{1}{\dot{\tau}(t)} \dot{Y}(t), \quad \text{and} \quad \nabla_{\dot{X}(\tau(t))} \dot{X}(\tau(t)) = \frac{1}{\dot{\tau}^2(t)} \nabla_{\dot{Y}(t)} \dot{Y}(t) - \frac{\ddot{\tau}(t)}{\dot{\tau}^3(t)} \dot{Y}(t).$$

653 The Bregman Euler–Lagrange equation (3.7) at time $\tau(t)$ is given by

$$654 \quad \nabla_{\dot{X}(\tau(t))} \dot{X}(\tau(t)) + (\lambda^{-1} \zeta e^{\alpha_{\tau(t)}} - \dot{\alpha}_{\tau(t)}) \dot{X}(\tau(t)) + e^{2\alpha_{\tau(t)} + \beta_{\tau(t)}} \text{gradf}(X(\tau(t))) = 0.$$

655 Substituting the expressions for $X(\tau(t))$, $\dot{X}(\tau(t))$ and $\nabla_{\dot{X}(\tau(t))} \dot{X}(\tau(t))$ in terms of $Y(t)$ and its
656 derivatives, and multiplying by $\dot{\tau}^2(t)$, we get

$$657 \quad \nabla_{\dot{Y}(t)} \dot{Y}(t) - \frac{\ddot{\tau}(t)}{\dot{\tau}(t)} \dot{Y}(t) + (\lambda^{-1} \zeta e^{\alpha_{\tau(t)}} - \dot{\alpha}_{\tau(t)}) \dot{\tau}(t) \dot{Y}(t) + \dot{\tau}^2(t) e^{2\alpha_{\tau(t)} + \beta_{\tau(t)}} \text{gradf}(Y(t)) = 0.$$

658 Substituting the expressions for α, β, γ in terms of $\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}$ yields

$$659 \quad \nabla_{\dot{Y}(t)} \dot{Y}(t) - \frac{\ddot{\tau}(t)}{\dot{\tau}(t)} \dot{Y}(t) + \left(\lambda^{-1} \zeta \frac{1}{\dot{\tau}(t)} e^{\tilde{\alpha}_t} - \frac{1}{\dot{\tau}(t)} \left[\dot{\tilde{\alpha}}(t) + \frac{\ddot{\tau}(t)}{\dot{\tau}(t)} \right] \right) \dot{\tau}(t) \dot{Y}(t) + e^{2\tilde{\alpha}_t + \tilde{\beta}_t} \text{gradf}(Y(t)) = 0,$$

660 which gives the Bregman Euler–Lagrange equation (3.7) corresponding to $\mathcal{L}_{\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}}$,

$$661 \quad \nabla_{\dot{Y}(t)} \dot{Y}(t) + \left(\lambda^{-1} \zeta e^{\tilde{\alpha}_t} - \frac{1}{\dot{\tau}(t)} \dot{\tilde{\alpha}}(t) \right) \dot{Y}(t) + e^{2\tilde{\alpha}_t + \tilde{\beta}_t} \text{gradf}(Y(t)) = 0.$$

662 The fact that α, β, γ satisfy the ideal scaling conditions (3.3) if and only if $\tilde{\alpha}, \tilde{\beta}, \tilde{\gamma}$ do is established
663 in the proof of Theorem 1.2 of [25]. \square

664 REFERENCES

- 665 [1] P.-A. Absil, R. Mahony, and R. Sepulchre. *Optimization Algorithms on Matrix Manifolds*, volume 78. 12 2008.
- 666 [2] K. Ahn and S. Sra. From nesterov’s estimate sequence to riemannian acceleration, 2020.
- 667 [3] F. Alimisis, A. Orvieto, G. Bécigneul, and A. Lucchi. A continuous-time perspective for modeling 668 acceleration in Riemannian optimization. In *Proceedings of the 23rd International AISTATS Conference*, 669 volume 108 of *PMLR*, pages 1297–1307, 2020.
- 670 [4] F. Alimisis, A. Orvieto, G. Bécigneul, and A. Lucchi. Practical accelerated optimization on Riemannian 671 manifolds, 2020.
- 672 [5] A.-L. Cauchy. Méthode générale pour la résolution des systèmes déquations simultanées. *Acad. Sci. 673 Paris*, 25:536–538, 1847.
- 674 [6] V. Duruisseaux and M. Leok. Accelerated optimization on Riemannian manifolds via discrete 675 constrained variational integrators. 2021.
- 676 [7] V. Duruisseaux and M. Leok. Accelerated optimization on Riemannian manifolds via projected 677 variational integrators. 2021.
- 678 [8] V. Duruisseaux, J. Schmitt, and M. Leok. Adaptive Hamiltonian variational integrators and applications 679 to symplectic accelerated optimization, 2020.
- 680 [9] E. Hairer, C. Lubich, and G. Wanner. *Geometric numerical integration*, volume 31 of *Springer Series 681 in Computational Mathematics*. Springer-Verlag, Berlin, second edition, 2006.
- 682 [10] J. Jost. *Riemannian geometry and geometric analysis*. Universitext. Springer, Cham, seventh edition, 683 2017.
- 684 [11] J. L. Kelley. *General Topology*. Graduate Texts in Mathematics. Springer New York, 1975.
- 685 [12] S. Lang. *Fundamentals of Differential Geometry*, volume 191 of *Graduate Texts in Mathematics*. Springer 686 -Verlag, New York, 1999.
- 687 [13] J. M. Lee. *Introduction to Riemannian Manifolds*, volume 176 of *Graduate Texts in Mathematics*. Springer, 688 Cham, second edition, 2018.
- 689 [14] M. Leok and T. Ohsawa. Variational and geometric structures of discrete Dirac mechanics. *Found. 690 Comput. Math.*, 11(5):529–562, 2011.
- 691 [15] Y. Liu, F. Shang, J. Cheng, H. Cheng, and L. Jiao. Accelerated first-order methods for geodesically 692 convex optimization on Riemannian manifolds. In *Advances in Neural Information Processing Systems*, 693 volume 30, pages 4868–4877. Curran Associates, Inc., 2017.
- 694 [16] J. E. Marsden and T. S. Ratiu. *Introduction to mechanics and symmetry*, volume 17 of *Texts in Applied 695 Mathematics*. Springer-Verlag, New York, second edition, 1999.

697 [17] J. E. Marsden and M. West. Discrete mechanics and variational integrators. *Acta Numer.*, 10:357–514,
698 2001.

699 [18] A. S. Nemirovsky and D. B. Yudin. *Problem Complexity and Method Efficiency in Optimization*. Wiley
700 - Interscience series in discrete mathematics. Wiley, 1983.

701 [19] Y. Nesterov. A method of solving a convex programming problem with convergence rate $\mathcal{O}(1/k^2)$. *Soviet
702 Mathematics Doklady*, 27(2):372–376, 1983.

703 [20] Y. Nesterov. *Introductory Lectures on Convex Optimization: A Basic Course*, volume 87 of *Applied
704 Optimization*. Kluwer Academic Publishers, Boston, MA, 2004.

705 [21] Y. Nesterov. Accelerating the cubic regularization of Newton’s method on convex problems. *Math.
706 Program.*, 112:159–181, 2008.

707 [22] A. Orvieto and A. Lucchi. Shadowing properties of optimization algorithms. In *Advances in Neural
708 Information Processing Systems*, volume 32, pages 12692–12703, 2019.

709 [23] W. Su, S. Boyd, and E. Candes. A differential equation for modeling Nesterov’s Accelerated Gradient
710 method: theory and insights. *Journal of Machine Learning Research*, 17(153):1–43, 2016.

711 [24] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum
712 in deep learning. In *Proceedings of the 30th International Conference on International Conference on
713 Machine Learning - Volume 28*, ICML’13, page III1139III1147, 2013.

714 [25] A. Wibisono, A. Wilson, and M. Jordan. A variational perspective on accelerated methods in optimiza-
715 tion. *Proceedings of the National Academy of Sciences*, 113(47):E7351–E7358, 2016.

716 [26] H. Zhang and S. Sra. First-order methods for geodesically convex optimization. In *29th Annual Con-
717 ference on Learning Theory*, pages 1617–1638, 2016.

718 [27] H. Zhang and S. Sra. Towards riemannian accelerated gradient methods. 2018.

719 [28] J. Zhang, A. Mokhtari, S. Sra, and A. Jadbabaie. Direct runge-kutta discretization achieves acceleration.
720 2018.