IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, DEC 2020

1

INTRODUCTION

Network Cost-aware Geo-distributed Data
Analytics System

Kwangsung Oh, Minmin Zhang, Abhishek Chandra, and Jon Weissman

Abstract—Many geo-distributed data analytics (GDA) systems have focused on the network performance-bottleneck: inter-data center
network bandwidth to improve performance. Unfortunately, these systems may encounter a cost-bottleneck ($) because they have not
considered data transfer cost ($), one of the most expensive and heterogeneous resources in a multi-cloud environment. In this paper,
we present Kimchi, a network cost-aware GDA system to meet the cost-performance tradeoff by exploiting data transfer cost
heterogeneity to avoid the cost-bottleneck. Kimchi determines cost-aware task placement decisions for scheduling tasks given inputs
including data transfer cost, network bandwidth, input data size and locations, and desired cost-performance tradeoff preference. In
addition, Kimchi is also mindful of data transfer cost in the presence of dynamics. Kimchi has been applied to two common GDA
MapReduce models: synchronous barrier and asynchronous push-based shuffle. A Kimchi prototype has been implemented on Spark,
and experiments show that it reduces cost by 5% ~ 24% without impacting performance and reduces query execution time by 45% ~
70% without impacting cost compared to other baseline approaches centralized, vanilla Spark, and bandwidth-aware (e.g. Iridium).
More importantly, Kimchi allows applications to explore a much richer cost-performance tradeoff space in a multi-cloud environment.

Index Terms—Geo-distributed Data; Multi-DCs; Multi Cloud Providers; Data Analytics System.
+

TABLE 1

1.1 Motivation

Recently, geo-distributed data analytics (GDA) has become
a popular method for mining valuable information from
globally distributed data generated by users and systems in
a multi-cloud environment!, in areas as diverse as querying
global trend detection on social network data, and log
monitoring of geo-distributed CDN servers [23], [37], [39].

One simple approach is to aggregate all data within a
single data center (DC) and then analyze the data using
a data analytic framework, e.g.,, Hadoop [25] and Spark
[48]. However, this requires a significant amount of time for
migrating large amounts of data into a centralized DC via
a scarce and expensive resource, WAN bandwidth. Another
alternative is to process data in-place, but it is well-known
that Hadoop and Spark perform poorly due to the large
overhead of inter-DC traffic in the shulffle stages [18].

To address this network overhead, numerous ap-
proaches have been proposed [26], [29], [31], [33], [38], [43],
[44] that attempt to minimize network usage and consider
heterogeneous network bandwidth in their scheduling and
data placement decisions. However, much of the existing

e K. Oh and M. Zhang are with the Department of Computer Science,
University of Nebraska Omaha, Omaha, NE, 68182.
E-mail: {kwangsungoh, minminzhang }@unomaha.edu
Homepage: http://faculty.ist.unomaha.edu/kwangsungoh

e A. Chandra and ]. Weissman are with the Department of Computer Sci-
ence and Engineering, University of Minnesota Twin Cities, Minneapolis,
MN, 55455.

E-mail: {chandra, jon}@cs.umn.edu
Homepage: http://dcsg.cs.umn.edu

1. We use the term multi-cloud to refer to both a single cloud provider
that spans multiple DCs as well as multiple DCs that span multiple
cloud providers.

Heterogeneous data transfer cost (per GB) between DCs (as of Dec,
2019) - SA: South America, AP: Asia Pacific.

Destination AWS Azure
‘m‘ US East A Fast | APNE | US Fast A East | APNE
US East $0 $0.02 $0.02 $0.09 $0.09 $0.09
AWS SA East $0.16 $0 $0.16 $0.25 $0.25 $0.25
AP NE $0.09 $0.09 $0 $0.126 $0.126 $0.126
US East $0.087 $0.087 $0.087 $0 $0.087 $0.087
Azure SA East $0.181 $0.181 $0.181 $0.181 $0 $0.181
AP NE $0.138 $0.138 $0.138 $0.138 $0.138 $0

work focuses primarily on how to efficiently use the WAN
for performance but does not address data transfer cost ($)?,
one of the most expensive and heterogeneous resources in
a multi-cloud environment. This cost can be significant for
continuous queries that require large data transfer between
DCs. Recent works [21], [28] confirmed that the WAN band-
width cost makes up a significant fraction of the overall cost.

One may think that minimizing WAN usage results in
minimized cost. Yet, this is not always true due to hetero-
geneous pricing policies, e.g., up to an 8X inter-DC transfer
cost difference even within the same cloud provider (AWS),
and a 12.5X cost difference across cloud providers (AWS
and Azure), as shown in Table 1. Since a large amount of
data transfer in a GDA occurs between DCs [3], [38], [42], a
GDA may encounter the cost-bottleneck due to a cost-agnostic
approach that may significantly inflate operational cost.

In this paper, we argue that data transfer cost must be a
first-class consideration for a GDA running in a multi-cloud
environment to avoid this cost-bottleneck. To consider cost,
we are motivated by the following questions:

e What is the minimal query execution time given a target
cost budget ($)?

2. We use the term cost to refer to monetary cost of data transfer
unless mentioned.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, DEC 2020 2

TABLE 2
Feature comparison with state-of-the-art. A indicates that metric is
considered but with limitations.

\ | Clarinet [ Iridium [ Tetrium [[ Kimchi |

Heterogeneous network B/W v v v v
Cost-performance tradeoff A A v
Handling dynamics A v
Heterogeneous network cost v
Cost-aware push-based shuffle v

e What is the feasible cost range to execute a query?

e How can a GDA achieve the desired cost-performance
tradeoff in a multi-cloud environment?

e How can a GDA handle dynamics for better performance
during query execution without additional cost?

To answer these questions, we have designed and im-
plemented Kimchi, a cost-aware GDA system. The goal of
Kimchi is to explore a richer cost-performance tradeoff space
and to achieve the best performance within a desired cost
budget. To this end, Kimchi solves a constrained MIP (mixed
integer programming) task placement problem that meets a
desired tradeoff preference.

One significant challenge to cost reduction is dynamics
that are common in a multi-cloud environment [28], [32],
[49], e.g., network contention and bandwidth changes, but
most GDA systems [26], [31], [33], [38], [43], [44] ignore
dynamics during query execution. While handling dynam-
ics is important for performance, a large data migration
may occur for handing dynamics that may lead to a cost-
bottleneck. To adapt quickly to dynamics and avoid the
cost-bottleneck, Kimchi uses a heuristic that adjusts task
placement with cost-awareness at run-time. Finally, Kimchi
considers an asynchronous model, ie., push-based shuffle
mechanism [19], [22], [33], that overcomes the barrier syn-
chronization of a MapReduce programming model for cost-
aware performance to avoid a possible cost-bottleneck.

A prototype implementation of Kimchi is built on the
Spark [48] framework. We support new Spark properties
that control Kimchi settings, so that Spark applications can
utilize Kimchi without any modification. We evaluate Kimchi
on both simulated cloud and Amazon AWS using the well-
known benchmarks TPC-DS [9] and TeraSort [8] to show its
benefit. Experimental results show that Kimchi reduces cost
by up to 24% without impacting performance and reduces
query execution time by up to 70% without impacting
cost compared to a centralized approach, the vanilla Spark
scheduler, and a bandwidth-aware approach, e.g., Iridium
[38]. In addition, the results show that Kimchi can handle
dynamics during query execution without additional cost.
More importantly, Kimchi allows applications to explore a
richer tradeoff space between cost and performance given
different data distribution in a multi-cloud environment.

1.2 Research Contributions

The main contributions of this paper are as follows:

e The design and implementation of Kimchi, the first GDA
system (to the best of our knowledge) that optimizes task
placement with a consideration of heterogeneous data trans-
fer cost ($) in a multi-cloud environment.

o The observation that minimizing data transfer size may
not lead to a minimum cost.

¢ Master \/Norker CVorkér
Worker (jg'East EY West AP NE
US West Worker
/H AP South %
h \ (
Worker VAVSrgeEr Worker
SA East AP SE-2

Fig. 1. An example of geo-distributed DCs where a GDA is running to
analyze geo-distributed data.

e Formulation and solution of the cost-aware task place-
ment problem that allows applications to explore this richer
cost-performance tradeoff space.
e Handling dynamics during query execution for cost-
aware performance that avoids expensive re-evaluation of
global task placement.
e Applying our solution to a push-based shuffle mechanism
that maintains low cost and improves query performance.
Table 2 shows the comparison between state-of-the-
art solutions and Kimchi. While all prior approaches con-
sider heterogeneous network bandwidth, they do not con-
sider heterogeneous data transfer cost. This network cost-
agnostic approach can lead to a cost-bottleneck. For the
cost-performance tradeoff, Iridium [38] and Tetrium [29]
offered a knob to explore the tradeoff space by limiting
WAN usage. These systems, however, may not achieve a
desired tradeoff due to heterogeneous data transfer cost, i.e.,
minimizing data transfer size does not necessarily yield minimized
data transfer cost, as we will show. To handle dynamics,
Tetrium [29] re-evaluates the global optimized task place-
ment decision. However, it may encounter a cost-bottleneck
due to a cost-agnostic approach for handling dynamics. In
addition, frequently re-evaluating global task placement can
incur performance overhead. We will show how Kimchi
handles dynamics while avoiding the cost-bottleneck and
performance overhead of re-evaluation in Section 4.2.

2 SYSTEM MODEL AND PROBLEM STATEMENT
2.1 System Model

Data Center (DC) Setting: We consider geo-distributed data
analytics (GDA) running in a multi-cloud environment. Fig-
ure 1 shows the DC locations where a GDA is running, e.g.,
the master is in US East and the workers are in the other re-
gions. Each DC has heterogeneous data transfer cost policies
based on geographical locations and providers as shown
in Table 1. Cloud providers only charge for outbound data
transfer, while inbound data transfer is free of charge. The
network bandwidth between DCs is highly heterogeneous
due to different bandwidth capacities and can fluctuate due
to dynamics, e.g., network contention on shared network
links and bandwidth changes by cloud providers. We could
observe varying WAN bandwidth based on DC locations,
i.e., 36 Mbps ~ 300 Mbps, using a network performance
measurement tool, iPerf3 [5], as shown in [32]. We will
discuss a high-bandwidth WAN (> 1 Gbps) in Section 8.

Compute Resources: While computational resources in each
DC are finite due to a cost constraint and their costs are
also heterogeneous, we attack the WAN bandwidth and
cost, as this can significantly inflate cost as well as degrade



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, DEC 2020 3

E=Z1 Task Placement
§ Input Data
B Intermediate Data

Fig. 2. A DAG (Directed Acyclic Graph) example for a job with 5 stages.

performance for a large class of GDA applications, the latter
as noted in many previous works [28], [38], [43], [44], [49].
We will show potential performance degradation with infi-
nite compute resources, and discuss heterogeneous compute
resource costs in Section 6.1 and Section 7, respectively.
Applications: Applications generate network bandwidth-
intensive MapReduce like queries to a GDA master that
will assign tasks to workers that spawn executors to
execute tasks. While applications have different cost-
performance tradeoff preferences, achieving reduced query
latency within their target budget is desirable for these
applications. We believe that our approach can be applied to
any application that needs to transfer large data frequently
between DCs, where cost and performance are important.
Queries and Data: Figure 2 shows a job (query) example
that has several stages, i.e., three map stages (0, 1, and 3)
and two shuffle stages (2 and 4). Each stage accesses geo-
distributed input data, e.g., stage 0 may access input data
from all DCs in Figure 1. Map tasks access input data locally
and output the results (intermediate data) locally. Shuffle
tasks access intermediate data from all DCs. Intermediate
data can be accessed multiple times for a single query, e.g.,
self-join operation. We make the following assumptions.
e Map tasks are executed in-situ using data locality-aware
scheduling, e.g., Hadoop [25] and Spark [48].
o Intermediate data size is large [3], [38], [42].
e The amount of data drops off quickly in subsequent stages
for queries that have many sequential stages [10], [38].
Given these assumptions, map stages are not a perfor-
mance bottleneck due to data locality [12], [47] and in-
memory caching [13], [48]. In shuffle stages, however, large
intermediate data transfer occurs via all-to-all communica-
tion among DCs using WAN bandwidth, the main perfor-
mance bottleneck in a GDA [26], [31], [33], [38], [43], [44].
For cost, accessing data (input or intermediate) within a DC
does not incur cost. Shuffle stages, however, require large
intermediate data transfer via WAN. This incurs cost, which
can cause a cost-bottleneck. In short, shuffle stages are the
bottleneck for both performance and cost, and we therefore
focus on shuffle stages in this work. While we consider
multiple stages, determining optimal task placement for
multiple shuffle stages results in a non-convex optimization
[29], [31], [38]. Instead, we adopt a greedy approach that
determines task placement independently for each shuffle
stage. This approach may not be optimal for a query but will
work well under our assumption: rapid data size reduction
in subsequent stages, i.e., a few shuffle stages are significant
for overall cost and performance. For data distribution, we
will discuss a richer cost-performance tradeoff space with
varying data distribution in Section 6.4.
Barrier Synchronization: In a MapReduce programming
model, stages cannot start until all their dependencies are

TABLE 3
3 DCs Example.
\ [ DCA [ DCB [ DCC |
Intermediate Data 240MB 120MB 60MB
Uplink BW 10MB/s | 10MB/s | 10MB/s

Downlink BW IMB/s 10MB/s | 10MB/s
o ?gg . ® 300 &
M = Data transfer latency 200
< 100 . 5
i) e-Data size transferred  1qg

T 50 I
L‘}IO

Centralized Even-distribution

0
Bandwidth-aware

Data Size (M

Fig. 3. Data transfer latency and data size transferred.

resolved due to barrier synchronization, e.g., stage 2 cannot
start until stages 0 and 1 are done in Figure 2. To overcome
this limitation, intermediate data can be pushed to target
DCs in the background (asynchronously) in map stages,
i.e., push-based shuffle [19], [22], [33]. We consider these two
common GDA implementation models (barrier and push-
based) and show how they work in our system in Section 4.
Task Placement Problem: The task placement problem con-
sists of determining a set of tuples (tasks and corresponding
DC locations) to satisfy the desired cost-performance trade-
off preference. Task placement is determined for shuffle (or
result) stages that need to shuffle intermediate data. For
example, there are two task placement problems: TP_1 and
TP_2, in Figure 2. For task scheduling, Kimchi determines
task placements before executing shuffle stages, and shuffle
tasks will be scheduled based on these decisions as will
be shown in Section 4.1. Note that input data is computed
in-situ as assumed, thus task placement decisions for map
stages are not considered in this work.

2.2

In this section, we illustrate how data transfer cost can
affect overall operational cost by applying three different
task placement approaches: centralized, even distribution
(scheduling for load balancing), and network bandwidth-
aware (e.g., Iridium [38]) to an example GDA scenario. We
use the example in Iridium for comparison using the intra-
AWS costs as shown in Table 1. As an example, consider
an application sending a MapReduce query to a GDA that
must process data contained in three DCs. The network
environment and intermediate data size for a shuffle stage
are as shown in Table 3 in which DC A’s downlink is a
significant performance bottleneck in terms of bandwidth.
Figure 3 shows the data transfer latency and data size
transferred for each approach. While the centralized ap-
proach minimizes data size transferred (180MB: 120MB from
B and 60MB from C to A), it increases data transfer latency
significantly (180 secs) due to the network bottleneck in
DC A (IMB/s downlink). The bottleneck link is avoided
in the network bandwidth-aware approach in which tasks
are assigned based on given bandwidth, approximately (A:
5% (IMB/s), B: 47.5% (10MB/s), C: 47.5% (10MB/s)) to
minimize data transfer latency (17.1 secs) with more data
transferred (322.5MB: 9MB from B and C to A (9 secs),
142.5MB from A and C to B (14.2 secs), and 171 MB from
A and B to C (17.1 secs)). The even-distribution approach

lllustrative Example



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, DEC 2020 4

O Centralized
400 Even-distribution
00 B Network bandwidth-aware

Og@[@ﬁﬁég

(US, AP, SA)(US, SA, AP)(AP, US, SA)(AP, SA, US)(SA, US, AP)(SA, AP, US)

Cost (%)

Fig. 4. Data transfer cost comparison with varying AWS DC locations,
US East, AP NE, and SA. Costs are normalized to the minimum cost for
each configuration.

offers performance somewhere between other approaches
as shown in Iridium [38].

Heterogeneous data transfer cost: Figure 4 shows the cost
comparison with varying DC locations. Interestingly, the
first two left-most cases, (US, AP, SA) and (US, SA, AP),
show that minimizing data transfer size does not necessarily lead
to minimized data transfer cost. That is, the centralized ap-
proach results in 131% ~ 140% cost compared to the network
bandwidth-aware approach even with less data transferred,
i.e., 180MB (centralized) vs. 322.5MB (bandwidth-aware).
This is because a large portion of data need to be sent
from DCs where data transfer cost is expensive; i.e.,, SA
and AP NE, in the centralized approach. For these cases,
cost can be minimized if the centralized DC is determined
based on both cost and data size rather than just data
size e.g., choosing AP and SA as the centralized DC for
each case respectively can minimize cost, i.e., cost-aware
centralized. Other cases show that the network bandwidth-
aware approach can significantly increase the cost up to
5.2X, showing that a consideration of both heterogeneous
network bandwidth and cost can open up a richer cost-
performance tradeoff space. However, this example also
shows the optimization problem to be complex.

Dynamics during query execution: For dynamics, assume
that DC B’s downlink becomes 1MB/s during query ex-
ecution and the bandwidth-aware approach is used. This
increases data transfer latency significantly (142 seconds:
142.5MB from A and C to B at worst case) if dynamics
are not handled. To avoid this, tasks need to be re-assigned
(A: 8.3% (1IMB/s), B: 8.3% (1MB/s), C: 83% (10MB/s)) to
minimize performance degradation (299.9MB from A and B
to C (30 secs) at worst case). In this case, network cost can be
either increased up by 30% or reduced by 13% based on DC
locations as compared to the original task placement, which
opens additional tradeoffs.

3 COST-AWARE TASK PLACEMENT
3.1 Cost and Performance Tradeoff

In a multi-cloud environment, applications may have differ-
ent cost-performance tradeoff preferences. For applications
that want to have fast query response irrespective of cost,
bandwidth-aware approaches e.g., Iridium [38], would be
preferable. On the other hand, for applications that want
to minimize operational cost, the cost-aware centralized
approach e.g., the four right-most cases in Figure 4, would
be preferable. However, most applications likely want to
achieve cost and performance somewhere between these
two approaches.

Figure 5 shows the extreme possibilities of two ap-
proaches in terms of cost, i.e., cost-aware centralized for Min

Max Cost - Best Performance
(Bandwidth-aware)
| No further performance
1| improvement available

Min Cost - (near) Worst Performance
(Cost-aware Centralized )

No further cost * Tradeoff space

reduction available(l)

C pref (0~ 1)

Fig. 5. Possible tradeoff space between two extremes (centralized and
bandwidth-aware approaches) in terms of cost.

TABLE 4
Inputs for task placement.

[ Input [ Description

C_pref | Desired cost preference (0 ~ 1)
D Set of DCs
Cij Data transfer cost from DC i to DC j
NB;j; Network Bandwidth (MB/s) from DC i to DC j
T Set of Tasks
I;; Intermediate Data size for shuffle task i in DC j

cost and bandwidth-aware for Best performance. Applications
cannot reduce cost below Min cost and cannot improve
performance above Best performance, even by paying more
than the Max cost that is associated with Best performance.
The figure also shows a tradeoff space between the two
extremes. Our goal is to allow applications to explore this
tradeoff space by providing their desired tradeoff preference
(C_pref), on the continuum between the two extreme cases.

To this end, we determine the feasible cost boundaries or
ranges, i.e., Min cost and Max cost, to estimate a target cost
budget that corresponds to the desired cost-performance
tradeoff preference C'_pref. With estimated Min and Max
costs, the target budget can be estimated as follows.

target_budget = Min Cost+
C_pref - (Max Cost — Min Cost)

For example, if Min cost ($100) and Max cost ($500) are
estimated with given inputs, and C'_pref is set to 0.5, $300 is
used as a target budget. The Min cost can be estimated with
a task placement that minimizes cost without considering
network bandwidth (performance), and the Max cost can
be estimated with a task placement that minimizes query
execution time without considering cost.

M

3.2 Task Placement Problem Formulation

Given a target_budget, we formulate the task placement
problem as a budget-constrained optimization problem that
outputs a desired task placement consisting of a list of tuples
{task, DC-location}. We use mixed integer programming
(MIP) to optimally solve this problem.

3.2.1 Inputs and Outputs

Table 4 shows the inputs to our model. Note that the inputs,
NB, T, and I, are continuously updated for each stage.
Tradeoff Preference: Applications need to provide their
cost-performance tradeoff preferences, C'_pref. Applica-
tions can set their preferences to 0 for minimized cost
(cost-aware centralized approach), 1 for minimized latency
(bandwidth-aware approach), or any number between 0 and
1 to specify a cost-performance tradeoff preference. C_pref
will be converted to the target cost budget that is used as a
cost constraint. This is the only input that applications need
to provide for task placement.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, DEC 2020 5

TABLE 5
Output Example.

[ Task Id [ Target DC [ Latency (Secs) | Cost (§) |

0 US East 95 0.0045
1 US West 87 0.0041
2 EU West 122 0.0034
[ 199 | APSEZ | 82 [ 0.0031 ]

Data Transfer Cost: Data transfer cost information is avail-
able from cloud providers” web pages [15], [16] and is rarely
changed (static in this work).

Network Bandwidth Information: The latest information
for inter-DC bandwidth (bytes/s) is estimated by executors
running on each DC when they transfer data between DCs.
Data Size for Shuffle Tasks: Intermediate data size for all
shuffle tasks stored in each DC is required. This information
is available from the MapOutputTracker in a GDA.

Output: Given these inputs, we compute task placement
consisting of a set of pairs ({task, DC}). Output includes
the expected latency and network cost for each task. Table
5 shows an example of task placement. We will show how
these values are used by a scheduler to handle dynamics
during query execution in Section 4.2.

3.2.2 Optimization Problem Formulation

We solve three optimization problems to determine the task
placement.

Determining the Target Budget: As shown in Equation 1,
to determine the target budget, we solve two sub-problems
to get Min cost and Max cost. The following variables and
constraints (Equation 2) are used in this formulation:

ViGT,VjEDIAij

A;; are Dbinary variables (0 or 1) if 1,
task i is assigned to DC j.

VEET,VieD:) Ay =1 2)

This is a constraint with which a task can be assigned only
to a single DC.

Min cost: The first sub-problem is to determine the lowest
data transfer cost (lower cost bound).

Objective: Minimize total data transfer cost.

VteT,Vi,j€D:Y Ay Iy - Cji )
t

We found that all tasks are assigned to a single DC to
minimize cost in the task placement by solving this sub-
problem. The Min cost can be computed by using cost
information and data size of each DC.

Max cost: The second sub-problem is to determine the upper
cost bound for the lowest data transfer latency.
Objective: Minimize maximum data transfer latency.

2o Avi - Ly
NBj;
In Equation 4, we only consider the maximum data transfer

latency between DCs, i.e., the main bottleneck, that determines
overall latency (performance). With the task placement for the

Vt e T,Vi,j € D : Max( ) @)

100 sbcs wapcs =100 e -

3 \\ T 2 60Cs 08DCs 3 P (Aa..»--’g’,‘g7

N 80 kY o N 80 l%_ A= ~

[ ) =

£ 60 X Te., L 7

Z 40 e .. S 40 _*

L>:' o e N ~o =3 20 s

g R PO Y x

@ 0 2 0

-~ 0 025 05 0.75 1 8 0 025 05 0.75 1
C_pref C_pref

(a) Latency comparison. (b) Cost comparison.

Fig. 6. The highest data transfer latency of tasks in a shuffle stage and
data transfer cost for each C'_pref and DC configuration. The values
of Figure 6(a) and Figure 6(b) are normalized to C_pref = 0 case and
C_pref = 1 case, respectively.

minimized network latency (best performance), the upper-
bound data transfer cost (maximum cost) can be computed
with given cost information. Finally, we can determine the
target_budget with Min and Max cost with C'_pref as shown
in Equation 1.

Solving Task Placement with a Target Budget: Once the
target_budget is determined, we solve the minimum data
transfer latency problem (Equation 4) again with a tar-
get_budget as a constraint.

Objective: Minimize maximum latency, Equation 4 with the
following constraint:

VteT,Vi,j € D:Y Ay Iy - Cji <= target_budget (5)
t

By solving Equation 4 with Equation 5 as a constraint, we
minimize the highest data transfer latency, i.e., query execution
time, given target_budget.

3.3

Applications can explore a cost-performance tradeoff space
using C_pref as explained in Section 3.1. For example,
Figure 6 shows the cost-performance tradeoff space for a
simple synthetic workload that has a single shuffle stage
with varying C_pref and 4 different DC configurations: 1)
2 DCs in US East and SA East, 2) 4 DCs in US East, US West,
AP SE-2, and SA East, 3) 6 DCs in US East, US West, EU
West, AP SE, AP SE-2, SA East, and 4) all 8 DCs shown in
Figure 1. Note, we assume that the intermediate data are
evenly distributed and use measured network bandwidth
between DCs.

Figure 6(a) shows that if C_pref is increasing, the high-
est latency is decreasing and thus performance is improv-
ing. While the latency decreases smoothly from C_pref
= 025 to C_pref =1, C_pref = 0 case shows a steep
latency increase as all data are sent to a single DC (or a
few DCs), i.e., network contention. Figure 6(b) shows that
cost is increased as C'_pref is increased, i.e., performance
improvement with additional cost. The figure also shows a
trend where the available cost reduction range decreases as
the number of DCs increases. For example, 2 DCs case has
77.5% cost reduction opportunity but 8 DCs case only has
13.5%. This is because the cost variance is getting smaller
as the number of DCs increases in the DC configurations,
i.e., 2 DCs case for the biggest cost variance and 8 DCs case
for the smallest cost variance, and we consider even data
distribution. We will show how data distribution affects
cost reduction opportunities in Section 6.4. Applications can

lllustrating Cost-performance Tradeoff



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, DEC 2020 6

TABLE 6
DCs to execute tasks and number of tasks for the DCs with 8 DCs.

[ C_pref | DC selections (the number of tasks for the DC) |
! US East (1), US West (1), EU West (1), SA East (1), AP SE (1), AP SE2 (D),
AP NE (1), AP South (1)
075 | US West (1), AP SE (1), AP SE-2 (2), AP NE (2), AP South (1), SA East (I)
05 | SA Fast (2), AP SE (2), AP SE22 (2), AP NE (2)
025 | SA East (3), AP SE (1), AP SE2 (3)
0 SA East (8)

Algorithm 1 Cost-aware Task Scheduling

1: procedure COSTAWARESCHEDULING(taskPlacement tp, dc d, adjustOption o,
dces [] idle)

2: t_id = DequeueTask (tp, d)

3: if t_id >= 0 then

4: if CheckDynamics (tp, d, t_id) == false then
5: ExecuteTask(t_id, d)

6: else

7: AdjustTask(d, t_id, o, idle)

8: else

9: idle +=d

check the approximate cost-performance curves shown in
Figures 6(a) and 6(b) without actual query execution as we
will explain in Section 5.

Table 6 shows which DCs are chosen for tasks for each
C_pref value with an 8 DCs configuration. For example,
tasks are assigned to all DCs if C_pref is set to 1 and all
tasks are assigned to a single DC (SA East) if C'_pref is set
to 0. From the table, we can see that Tasks are assigned to
DCs that have expensive outbound data transfer cost in order to
reduce cost for a small C_pref value by avoiding data transfer
out from those DCs. For example, tasks are mainly assigned
to SA East, AP SE, and AP SE-2 with small C'_pref values.
Overall, task placements are determined to meet desired
cost-performance tradeoffs by adjusting the highest data
transfer latency, i.e.,, minimizing the highest data transfer
latency (best performance) with a cost constraint.

4 COST-AWARE TASK SCHEDULING

In this section, we will present how Kimchi uses cost-aware
task placement to help applications trade off between cost
and performance. We will also show how Kimchi handles
dynamics using a heuristic algorithm for cost-aware per-
formance. Lastly, we will present how Kimchi determines
task placement by a cost-aware push-based mechanism that
utilizes WAN bandwidth efficiently.

4.1 Task Scheduling

When a shuffle stage is ready to be executed, Kimchi es-
timates a task placement for the stage at query execution
time (run-time) by solving a constrained MIP task placement
problem as explained in Section 3. Note, Kimchi can get
the latest inputs, including exact intermediate data size
and locations, due to a barrier synchronization. Once a
task placement is determined, the Kimchi scheduler starts
scheduling tasks as determined by the task placement op-
timization that meets cost-performance preferences. Note,
we only consider shuffle stages for cost-aware scheduling in
this work, and tasks of map stages are scheduled using data
locality-aware scheduling, e.g., Hadoop [25] and Spark [48].

Algorithm 1 outlines how task placement is performed
by the Kimchi scheduler. The task scheduling function will

be called repeatedly whenever the scheduler receives a DC
offer to execute one of the tasks in a stage (line 1). The
scheduler finds a task for the DC from the task placement
list and assigns the task to the DC after checking dynamics
for the DC (line 2 ~ 5). If dynamics are detected, the
scheduler finds another DC among the idle DCs for the task
to avoid performance degradation (line 7). An idle DC is
defined as one for which there are no tasks remaining in the
current stage (line 9). We will show how Kimchi detects and
handles dynamics in the next section.

4.2 Cost-aware Task Adjustment

A static optimal task placement may be sub-optimal due to
mis-estimated bandwidth, or may become sub-optimal due
to dynamics that are common in a multi-cloud environment
[28], [32], [49], e.g., network contention and bandwidth
changes. Since sub-optimal task placement can affect overall
cost and performance, it needs to be handled. While most
GDA systems [26], [31], [38], [43], [44] have ignored dy-
namics during query execution, Tetrium [29] re-evaluated
task placement to handle dynamics at run-time. However,
Tetrium may encounter a cost-bottleneck due to its cost-
agnostic approach for handling dynamics that may require
large data transfer. For performance, re-evaluating an op-
timal task placement can incur additional overhead, espe-
cially for large-scale jobs. In addition, frequent re-evaluation
may occur if dynamics are frequent and/or the sensitivity
trigger for re-evaluation is improperly tuned, leading to
significant performance overhead.

To avoid the cost-bottleneck and performance overhead
of frequent re-evaluation, Kimchi uses a heuristic algorithm
that re-assigns tasks to other idle DCs in the presence
of dynamics if doing so does not incur additional cost.
The intuition behind this heuristic is that dynamics will
lead to congestion at one or more DCs, leaving others to
complete their tasks much more quickly, and then become
idle. Kimchi utilizes these idle DCs with an expectation
that the latency for the task can be amortized by run-
ning other tasks in parallel. That is, Kimchi tries to utilize
bandwidth completely to improve performance. Note, idle
DCs are tracked by Scheduler 1 and treated as idle only
within the current stage. To avoid additional cost by task
adjustment, Kimchi adjusts task placement such that they
do not incur additional cost, i.e., cost-aware task adjustment.
For better performance, Kimchi offers a scheduling option
always_adjust_tasks that allows the scheduler to adjust tasks
without cost awareness, i.e., cost-agnostic task adjustment.

Algorithm 2 outlines how Kimchi detects and handles
sub-optimal task placement due to dynamics. The Kimchi
scheduler estimates a latency for a task using the latest
bandwidth information before it assigns the task to the
designated DC (line 2). The scheduler compares the esti-
mated latency with the expected latency computed by the
optimizer as explained in Section 3.2.1. If the difference is
larger than a threshold (LatThreshold), Kimchi concludes that
dynamics have occurred (lines 3 ~ 5) and tries to assign the
task to another DC if doing so improves performance (line
7). To pick a new DC location that best meets application
preferences, e.g., cost or performance, Kimchi traverses idle
DCs and executes the task on the chosen one. If no DC is



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, DEC 2020 7

Algorithm 2 Checking and Handling Dynamics

Algorithm 3 Cost-aware Push-based Shuffle

1: function CHECKDYNAMICS(taskPlacement tp, dc d, taskld t_id)

2: curLat = GetLatForTask(t_id, d)

3: expectedLat = tp[t_id].expectedLat

4. if cur Lat > expectedLat + LatThreshold then

5: return true

6: return false

7: procedure ADJUSTTASK(dc d, taskld ¢_id, dcs [] idle, adjustOption o)

8: chosen_d=d

9: candidates =[]

10: for each idle_d in idle do

11: if CompareLat(idle_d, d, t_id) <= 0 then

12: if o.always_adjust_tasks == false or
CompareCost(idle_d, d, t_id) <= 0 then

13: candidates += idle_d

14: if candidates.size > 0 then

15: chosen_d = Choose(candidates, t_id, o.pref)

16: ExecuteTask(t_id, chosen_d)

chosen, the task can still be assigned to the designated DC
(lines 10 ~ 16).

A low LatThreshold value will trigger re-scheduling
and additional scheduling overhead to search for idle DCs.
But this heuristic is fast and the overhead is much lower
than re-evaluating global task placement, hence we set the
threshold to a small value (3 seconds by default). We will
show how cost-aware task adjustment helps Kimchi rem-
edy the sub-optimal task placement for better cost-aware
performance in the presence of dynamics in Section 6.2.

4.3 Cost-aware Push-based Shuffle

Previous works [19], [22], [33] showed that a push-based
shuffle mechanism can improve performance by pushing
intermediate data in the background (asynchronously) in
map stages. These systems, however, may encounter a cost-
bottleneck because they did not consider data transfer cost
heterogeneity to determine the target DCs to push interme-
diate data.

To improve performance while avoiding the cost-
bottleneck, Kimchi adapts the push-based shuffle to use
a cost-aware task placement. To push intermediate data,
Kimchi needs to determine the child stages’ task place-
ment in the parent stages (including the map stages) with
imperfect input data information. For example (Figure 2),
TP_1 needs to be evaluated before stages 0 and 1 start. To
estimate intermediate data sizes, Kimchi relies on input data
information from all parent stages, e.g., input information
of stages 0 and 1, with an assumption that intermediate
data size is proportional to input data size at a configurable
rate (R), as done in previous works [22], [26], [33], [38].
While this assumption may not always be accurate, this
simple approach yields cost and performance benefits as
we will show in Section 6.3. With predicted intermediate
data information and other inputs, Kimchi can estimate task
placement for a child stage, e.g., TP_1 for stages 0 and 1.

Algorithm 3 outlines how push-based shuffle works in
Kimchi. Before Kimchi executes a stage, Kimchi determines
task placement for a child stage (line 2). If the stage has
a child stage, Kimchi checks if a task placement for a child
stage is available (lines 10 ~ 12). If there is no task placement
for the child stage, Kimchi collects the MIP inputs, i.e.,
expected intermediate data sizes, tradeoff preference, and
others as before, and runs the optimization (lines 13 and
14). Task placement for the child stage is stored for later use
(lines 6, 15, and 17). The tasks in given stage are scheduled

1: function EXECUTESTAGE(stage s)
2: c_tp = GetChildStageTaskPlacement(s)

3 if s == MapStage then

4 LocalityAwarePushBasedScheduling(c_tp)

5 else

6: tp = GetTaskPlacement(s)

7: CostAwarePushBasedScheduling(tp, c_tp)

8: function GETCHILDSTAGETASKPLACEMENT(stage s)
9: c_tp=1]

10: if hasChildStage(s) then

11: c_s = getChildStage(s)

12: if IsTaskPlacementAvailable(c_s) == false then
13: inputs = Getlnputs(s, c_s)

14: c_tp = Evaluate(inputs)

15: SetTaskPlacement(c_s, c_tp)

16: else

17: c_tp = GetTaskPlacement(c_s)

18: return c_tp

based on stage type, i.e., data locality-aware scheduling for
map stages and cost-aware scheduling for shuffle stages. In
either case, the task placement for a child stage is used for
pushing intermediate data in parent stages (lines 3 ~ 7). The
pushed intermediate data can serve as a cache that prevents
repetitive remote access to the same intermediate data in a
query, e.g., self-join, that results in both cost reduction and
better performance as will be shown in Section 6.3.

Note that activating both the task adjustment (Section
4.2) and the push-based shuffle mechanism can lead to cost
inflation due to duplicated intermediate data transfer, i.e.,
intermediate data pushed may not be accessed if a task is
reassigned. In this work, we adjust tasks only when the
push-based shuffle is not activated to avoid cost inflation.
We plan to explore both options as future work for better
cost-aware performance.

5 KIMCHI ARCHITECTURE AND IMPLEMENTATION

We have implemented a Kimchi prototype on Apache Spark
(2.2.1) [48]. Thus, applications can submit jobs through the
same interfaces provided by Spark to benefit from Kimchi
without modification. Figure 7 shows the Kimchi architecture.
The following components are added and modified:

e The network bandwidth monitor aggregates bandwidth
information from executors.

o The input manager stores the application’s tradeoff pref-
erence and data transfer cost information.

e MapTracker provides the intermediate data size and loca-
tions for shuffle stages.

o The task placement optimizer determines task placement
based on inputs as explained in Section 3.2.1.

e The task scheduler sends inputs to the task placement
optimizer for shuffle stages and assigns shuffle tasks as
determined. Note that map tasks are assigned using the
locality-aware approach, i.e., where input data is stored. The
task scheduler also checks and detects dynamics before it
assigns tasks, as explained in Section 4.2.

In our prototype implementation, the task placement op-
timizer API is implemented with Thrift [14], a remote proce-
dure call framework. The optimizer is written in Python (~
700 lines of code) and receives inputs in a JSON format [6].
Kimchi uses PuLP [34] to model a task placement problem
as a mixed integer programming (MIP) and uses CPLEX [20]
to solve the optimization problem. For network bandwidth



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, DEC 2020 8

MapTracker

Network B/W
(Data size and locations)

Monitor

LI

vy _:
Task Scheduler l
(In shuffle stages)

| Tradeoff Preference | | Data Transfer Cost ($) | |

Kimchi User Interface

It —
Users

—_——

Queries and results Kimchi Inputs Task Placement

Fig. 7. Kimchi Architecture.

TABLE 7
Kimchi (Spark) property examples

Property Name

Description |

spark.kimchi.taskScheduling
spark. kimchi.costPreference
spark.kimchi.adjustTask
spark.kimchi.pushShuffling

spark. kimchi.estimateCurves

Using Kimchi (True or False)

Desired cost preference (0 ~ 1)
Adjusting task placement (True or False)
Using push-based shuffle (True or False)
Estimating curves (True or False)

and cost information, we modified the executor to estimate
the network bandwidth while it fetches data from other DCs
and to track the number of remote bytes read by each execu-
tor for each origin and destination. This aggregated executor
information is sent to the scheduler by piggybacking on
heartbeat messages and used as input to solve the placement
problem. We also modified the executor to use Wiera [36], a
geo-distributed policy driven storage system, to push and
fetch intermediate data, as the Spark API does not fully
support functions for the push-based shuffle.

Table 7 shows the properties that applications can set to
utilize Kimchi easily. To estimate cost-performance curves
(Figures 6(a) and 6(b)), applications can set the ‘estimate-
Curve’ option to True for the target query. Kimchi estimates
the curves using current available inputs including raw
input information and the R (explained in Section 4.3) with
varying C'_pref value without actual query execution. Since
the R can affect the curves significantly, an incorrect R will
result in inaccurate curves that are not useful for decision
making. While the fixed R provides moderate benefits as
will be shown in Section 6.3, determining the R precisely by
predicting query workloads is our future work.

6 EVALUATION

Experimental Setting: We deployed and evaluated Kimchi
across 8 AWS regions (outbound network cost per GB): US
East-Virginia ($0.02), US West-California ($0.02), EU West-
Ireland ($0.02), AP SE-Singapore ($0.09), AP SE-2-Sydney
($0.14), AP North-Tokyo ($0.09), AP South-Mumbai ($0.086),
and SA East-Sao Paulo ($0.16). We used AWS t2.medium
(2 vCPU cores and 4 GB of RAM) for workers and AWS
t2.large (2 vCPU cores and 8 GB of RAM) for both the
Spark master and the Spark driver for job submissions.
For workload, we used TPC-DS [9], a standard decision
support benchmark, and TeraSort [8], a standard sorting
benchmark, to benchmark the performance of GDA systems.
For input data, 40 GB data were evenly distributed and
used for TPC-DS queries that produce large intermediate
data transfers in shuffle stages. We used 10 GB input data
for TeraSort. While 10 GB is relatively small for a GDA,
TeraSort produces large intermediate data that is sufficient
to show the availability of a richer tradeoff space between
cost and performance for different data distributions. We

used the Hadoop Distributed File System (HDEFS) [4] as
an underlying storage system to fetch input data. We used
Wiera [36] to push and fetch intermediate data only when
the push-based shuffle was activated (Section 6.3). While we
mainly used the aforementioned experimental setting for all
experiments, we also deployed and evaluated Kimchi on a
simulated multi-cloud environment using CloudLab [40] to
evaluate Kimchi for a large data set (Section 6.1).

We used different baseline approaches: 1) data locality-
aware (vanilla Spark); 2) centralized (minimized network
usage); and 3) bandwidth-aware, e.g., Iridium. The cen-
tralized approach minimizes network usage for each stage
without considering bandwidth and cost heterogeneity; the
centralized DC has the largest portion of intermediate data.
Note, the centralized approach does not necessarily result in
the overall minimized data transfer size, as the centralized
DC is determined independently for each shuffle stage. The
Iridium approach is equivalent to the C'_pref = 1 without
task adjustment, which does not consider data transfer cost
but only WAN bandwidth for performance reasons. All
experimental results are an average of 10 runs, plotted with
95% confidence intervals. The option to handle dynamics is
deactivated if not mentioned for comparison purposes.
Overhead of Solving The Task Placement Problem:
Though MIP is not efficient, the time for computing task
placement has a negligible impact on the overall perfor-
mance, as Kimchi can get a feasible integer solution to be
within 5% of optimal for each stage in approximately 0.5
seconds with AWS t2.medium for 8 DC locations setting.
We will discuss the scalability of Kimchi in Section 6.5.

6.1 Cost and Performance Comparison

In this experiment, we show the benefit of the cost-aware
task placement for task scheduling in simulated (CloudLab)
and real (AWS) WAN environments. For a simulated en-
vironment, we use 1 node for the master and 8 nodes for
workers. Each node has 20 CPU cores and 60 GB of RAM.
We throttle the network bandwidths between nodes using
TC [7] based on measured bandwidths between 8 AWS DCs
shown in Figure 1 to mimic a WAN environment. We use
100 GB data for the simulated environment and data are
evenly distributed across 8 worker nodes.

We compare the query execution time and data transfer
cost using different baseline approaches and our approach
with varying C_pref (0 ~ 1) for TPC-DS queries (query
25, 29, 64, 94, and 95), consisting of several shuffle stages
with large intermediate data, i.e.,, a bandwidth-intensive
workload. Note, we use only query 95 for experiments on
AWS due to budget constraints. The C'_pref = 0 case can
be considered another centralized approach, as all tasks are
assigned to a single DC, but it considers cost heterogeneity,
i.e., cost-aware centralized.

Figure 8(a) and Figure 8(b) show the query execution
time and the cost comparison respectively for the TPC-DS
queries. For all queries, the results show that the C_pref
= 1 case provides the best performance due to network
bandwidth-aware task placement, and that the C_pref =0
case provides the cheapest cost due to cost-aware task place-
ment. While we observed slightly different performance and
cost based on data distributions, we could see a similar



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, DEC 2020 9

©
o
S
o
[S]

—o-Query 95 - AWS (40 GB input)

[N)
o

800 o ) g
— &-Query 95 - CloudLab (100 GB input) & e
3 ggg -0~ Query 94 - CloudLab (100 GB input) 80 515 St e e © © ¢ ©
3500 - Query 29 - CloudLab (100 GBinput) € g0 o
8400 o R — Query 25 - CloudLab (100 GB input) é’/ " 510 e e
8 300 S ©
5200 S 2 85

100 3

0 O 0 0
Min  C_pref C_pref C_pref C_pref C_pref Vanilla Min  C_pref C_pref C_pref C_pref C_pref Vanilla Min  C_pref C_pref C_pref C_pref C_pref Vanilla

Data =0 =025 =05 =075 =1 Spark Data =0

(a) Query latency comparison.

=025

(b) Cost comparison.

=05 =075 =1 Spark Data =0 =025 =05 =075 =1 Spark

(c) Data transfer size comparison.

Fig. 8. Query latency, cost, and data transfer size comparisons for TPC-DS queries in a real (AWS) cloud and a simulated (CloudLab) cloud. Costs

are normalized to the case that incurs the maximum cost.

pattern of results. We will show how data distribution
affects overall performance and cost in Section 6.4.

The results show that the C'_pref =1 case (the Iridium
approach) does not significantly improve performance com-
pared to the vanilla Spark case. This is because of “multi-
waved” execution caused by finite compute resources [13],
[29] in our experiments, with which a small fraction of tasks
can be executed simultaneously. This allows the vanilla
Spark scheduler to naturally avoid assigning tasks to the
network bottleneck DCs by giving up data locality after
user-specific timeout (3 seconds by default). Infinite com-
pute resources may make the vanilla Spark scheduler assign
a large fraction of tasks to the network bottleneck DCs,
which causes significant performance bottlenecks as shown
in the previous work [38]. Interestingly, the C_pref =1
case can provide cheaper (up to 11%) cost compared to the
vanilla Spark case, except query 95, on the simulated cloud
even with better performance, because Max cost is fixed as a
cost constraint in C'_pref =1, i.e., cost-aware scheduling in
Kimchi. The C_pref = 0.5 and C_pref = 0.75 cases show
5 ~ 22% cost reduction without impacting performance
compared to the vanilla Spark case. For the centralized
approaches, the minimized data transfer and the C_pref =0
case, the query latency increases due to network contention
as a result of data being sent to a single centralized DC.
Lastly, the results show that the query latency decreases as
cost increases.

Figure 8(c) shows the data transfer size for each ap-
proach. Interestingly, we cannot see any clear relationship
with cost. However, the results clearly show that reducing
data transfer size does not necessarily lead to cost reduction. That
is, the centralized approach incurs more cost than C_pref
= 0.25 and C_pref = 0.5 cases even with the smaller data
transfer size. In addition, the data size difference between
the C_pref =0 and centralized approach is -2.5 ~ 7.7 %, but
the cost difference is 12.8 ~ 35.1%. This confirms that the
cost heterogeneity can significantly affect overall cost. The
vanilla Spark case shows a similar data transfer size to the
minimized network usage approach due to its data locality-
awareness but with 2.6 ~ 12.3% more cost. These results
agree with the results in Section 2.2.

Overall, these experimental results shows that Kimchi can
reduce query execution time without impacting cost compared to
other approaches and can allow applications to explore richer cost-
performance tradeoff options.

6.2 Cost-aware Task Adjustment

As explained in Section 4.2, the task placement for a stage
may be sub-optimal due to mis-estimated bandwidth or be-

800 _—0 100
700 —_ B
g &00 /"’ R x 95 ﬁ
£.500 63% .t % g
2400 st 5
< 300 ' 8.8% 13.4% 19.6% 85 Z
® 200 =
| B0 B0 mo e
0 e iy L L iy e 75 8
C_pref C_pref C_pref C_pref C_pref Cost- O

=0 =0.25 =0.5 =0.75 =1 agnostic

E=mlatency [—latency w/ Task Adjustmet --X--Cost (%) =—© -Cost (%) w/ Task Adjustment

Fig. 9. Cost and performance comparison by adjusting task placement.
The percentage numbers show the performance improvement.

come sub-optimal during query execution due to dynamics,
e.g., network contention and bandwidth fluctuation. In this
section, we show the benefits of cost-aware task adjustment.

We use the same AWS setting and query 95 used in
Section 6.1, but we activate the option to adjust task with
cost-awareness to change task placement at query execution
time. With this option, tasks will be re-assigned only if doing
so does not incur additional cost, i.e., cost-aware task ad-
justment. Additionally, we set the always_adjust_tasks option
to be activated to allow the scheduler to re-assign tasks
without a consideration of cost for the C_pref =1 case, i.e.,
cost-agnostic task adjustment. To be responsive to dynamics,
we set LatThreshold explained in Section 4.2 to 1 second.

6.2.1 Task Adjustment at Run-time

Figure 9 shows the cost and performance comparison with
the results of Section 6.1 for each C_pref value. In terms of
performance, adjusting task placement helps reduce query
execution time up to 19.6% compared to not adjusting task
placement. The results show that adjusting task placement
improves performance for large C'_pref values, e.g., 1 and
0.75. But it does not improve performance for small C'_pre f
values, e.g., 0.25 and 0. This is because, tasks are assigned
to a few specific DCs to minimize cost with a small C_pref
value as shown in Section 3.3. Thus, the scheduler has less
opportunity to find DCs that offer the same or cheaper cost
for re-assigning tasks. For example, if C'_pref value is set
to 0, tasks cannot be re-assigned even if there are available
(idle) DCs because none of them can provide a cheaper cost.
For cost, little difference was observed because tasks are
re-assigned only when doing so does not incur additional
cost, i.e., cost-aware task adjustment. However, for the
C_pref =1 case with cost-agnostic task adjustment, the cost
increases by 5% for 6.2% performance improvement. This is
because task re-assignment does not consider cost but only
network bandwidth, i.e., tasks are always re-assigned to idle
DCs as long as performance improvement is expected.
Comparison with baselines: The C_pref = 1 with cost-
agnostic task adjustment case incurs a similar cost to the



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, DEC 2020

350 100 s
gggg RS 95 8
2500 xCost (%) g0 E
i 5 =
2 X
S 50 80 &

0 . { . { { — 75 &
No adjustment | No adjustment [ Cost-aware | Cost-agnostic (&)

No dynamic Dynamic during query exeuction

Fig. 10. Cost and performance comparison when one of DCs becomes
a bottleneck. For all cases, C_pref is setto 1.

vanilla Spark case, but it provides 45% performance im-
provement. The C_pref = 0.75 case provides 70% perfor-
mance improvement without impacting costs compared to
the centralized case. The C'_pref = 1 with cost-aware task
adjustment case improves performance by 13.4% without
additional cost compared to the static approach (Iridium).

6.2.2 Handling Network Bandwidth Change

In this section, we show the benefit provided by Kimchi
in the face of significant dynamics during query execution.
While the same experimental setting is used, we randomly
throttle one of the links between DCs (3 Mbit/s) using
Linux Traffic Control [7] during query execution. Note that
we could observe lower network bandwidth than 3 Mbit/s
during our experiment even between AWS DCs, e.g., from
SA East to AP SE-2.

Figure 10 shows the cost and performance comparison
with a static approach (the two left-most cases in the figure),
e.g., Iridium, and our non-static approach, both cost-aware
and cost-agnostic task adjustments. In terms of perfor-
mance, the figure shows that the injected network throttling
causes 41% additional latency in the static approach as it
does not consider dynamics during query execution. The
cost-aware task adjustment case shows that it can improve
performance by 35% compared to the static approach in the
presence of dynamics. In addition, the cost-agnostic task
adjustment case can further improve performance (40%)
with additional cost. Interestingly, the cost-aware case task
adjustment provides better performance than the static
approach without dynamic. This is because Kimchi uses
the network efficiently by adjusting tasks as shown in the
previous experiment (Section 6.2.1).

For cost, the static approach shows a similar cost regard-
less of dynamics as expected. That is, the tasks are assigned
as specified in task placement even in the presence of dy-
namics. The cost-aware case reduces cost by 2% compared to
the static case. This is because tasks are re-assigned to other
DCs only when doing so improves performance without
additional (or with less) cost in the cost-aware case (read
this again). Cost-agnostic case improves performance by 8%
at 5% additional cost compared to the cost-aware case.

The results show that any single link that becomes a
bottleneck during query execution can significantly affect
overall performance, thus needs to be considered. Kimchi
can adjust task placement to handle dynamics, e.g., network
contention and network fluctuation during query execution
time, to achieve better cost-aware performance.

6.3 Cost-aware Push-based Shuffle

In this section, we show benefits of cost-aware push-based
shuffle in terms of both cost and performance as explained

—_
o

800 X 100 _
700 % e 3
8 600 9 N
8500 90 E
3400 5
£ 300 85 Z
200 80 &

108 75 B

o

E=mlatency [latency w/ cost-aware push --X--Cost (%) =© -Cost (%) w/ cost-aware push

Fig. 11. Cost and performance comparison using push-based shuffle.
The percentage numbers show the performance improvement.

TABLE 8
Data and cost savings by accessing local pushed intermediate data.

[ C_pref [ 1 [ 0.75 [ 0.5 [ 0.25 [ 0 ]
Data Savings | 192MB | 249MB | 257MB | 290MB | 379MB
Cost Savings 8.2% 10.9% 8.3% 6.7% 2.5%

in Section 4.3. In this experiment, we use the same setting
and environment used in Section 6.1, but we set the push-
based shulffle to be activated. We set the R value explained in
Section 4.3 to 0.8, e.g., 8GB intermediate data will be given
with 10GB input data. Kimchi estimates the task placement
of child stages with this expected intermediate data size and
locations before executing the parent stages.

Figure 11 shows the cost and performance comparison
with the results of Section 6.1 for each C'_pref value. In
terms of performance, push-based shuffle reduces query
execution time by 9% ~ 18.1%. The results show that we
could get moderate performance improvement even with
a simple assumption (fixed R). We believe even further
performance improvement is possible with more precise
estimation using historical information and recent machine
learning techniques.

For cost, we would expect to see similar cost regardless
of using push-based or barrier-based shuffle. Yet, the figure
shows that the cost can be reduced by 2.5% ~ 10.9%. This
is because the same intermediate data is accessed several
times within a query, e.g., self-join. By using a pushed-based
mechanism, repetitive remote access can be avoided, lead-
ing to both cost reduction and performance improvement as
presented in Section 4.3.

Table 8 shows data savings by accessing pushed inter-

mediate data locally and their corresponding cost savings.
The table shows a trend in which saved data transfer size
increases as C_pref value approaches 0. This is because a
small number of DCs are chosen for shuffle stages with a
small C_pref value, and this leads to a greater amount of
intermediate data fetched remotely. The table also shows
that more data savings does not necessarily lead to more
cost savings. This is because DCs chosen with a small
C_pref value have greater opportunity to fetch data from
DCs that have cheaper data transfer costs.
Comparison with baselines: The result shows that the
C_pref = 0.5 with the push-based shuffle case reduces cost
by 23.6% without impacting query performance compared
to the vanilla Spark case. The C_pref = 0 case shows a 14%
cost reduction without impacting performance compared to
the centralized approach. The C'_pref = 1 with cost-aware
push case improves performance by 9% compared to the
C_pref =1 without push case with reduced cost (8%).



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, DEC 2020 11

800 BLowest B Cost for Lowest

.05
$ 600 OHighest «04 O Cost for Highest
3400 i
0[] [ 863 [l B
§ Even Skewed in Skewed in en Skewed in  Skewed in
3 Distribution US-East  SA-East Distribution US-East  SA-East

(a) Latency range. (b) Cost range.

Fig. 12. The lowest and highest latencies and cost for each latency with
varying data distribution.

6.4

In this section, we show the tradeoffs between cost and per-
formance based on different data distributions of interme-
diate data. We use the same setting and environment as in
previous sections. For simplicity, we use TeraSort to clearly
show the tradeoffs for a single shuffle stage. For input data,
we use 10GB and distribute data in three different ways: 1)
even distribution, 2) 1/3 data stored in US East and 2/3 data
evenly distributed in the rest of the DCs, and 3) 1/3 data
stored in SA East and 2/3 data evenly distributed in the
rest of the DCs. Note, US East has the cheapest data transfer
cost ($0.02/GB), while SA East has the most expensive data
transfer cost (30.16/GB).

Figure 12(a) shows the lowest latency (C_pref = 1 with
a cost-agnostic task adjustment case) and the highest latency
(C_pref = 0 case), and Figure 12(b) shows correspond-
ing cost for each latency with different data distribution.
Note, we could see similar pattern of results shown in
TPC-DS with different C'_pref values and options in this
experiment, but omitted for space reasons. For the first
case (even distribution), we can see 78.5% performance
improvement (lowest latency /highest latency) and 15% cost
reduction (lowest cost/highest cost) opportunities and this
agrees with our results shown in Section 3.3. For the second
case (1/3 input data in US East), skewed data increases
the highest latency significantly, which opens up a 83.2%
performance improvement opportunity without reducing
the cost reduction opportunity (15%). This is because a large
portion of intermediate data in US-East ($0.02/GB) needs to
be sent to another centralized DC that has a more expensive
network cost, to minimize cost due to data transfer cost
heterogeneity. In this case, applications may be willing to
spend additional cost for greater performance improvement
compared to an even data distribution. For the last case (1/3
input data in SA East), skewed data increases cost reduction
opportunities (50%) with similar performance improvement
opportunities with even distribution. This is because a large
portion of intermediate data in SA East ($0.16/GB) needs to
be migrated to other DCs to improve performance, which
causes a cost increase. In this case, applications may be
willing to bear additional latency for more cost reduction
compared to other cases.

The results show that different data distributions open
up a diverse tradeoff landscape, and thus a GDA should
consider the nature of the data distribution in order to meet
desired tradeoff preferences.

Impact of Varying Data Distribution

6.5 Scalability of Kimchi

We next conduct experiments to evaluate the scalability of
Kimchi using AWS t2.large to show how quickly Kimchi
estimates task placement with a varying number of DCs.

-
(&)

10.93

DOOverhead @Time to solve

-
o

7.81
6.57

2 A f Al

Gurobi ICPLEX Gurobi ICPLEX Gurobi ICPLEX
24 32 40

Seconds

13 165
038 049 13

Gurobi | CPLEX
8

o o

Gurobi ICPLEX
16

Fig. 13. Time for modeling and solving task placement problem with a
varying number of DCs.

We used 8 DC setting inputs naturally generated during
our experiments and synthetic inputs generated by using
8 DC inputs for other numbers of DC cases. In synthetic
inputs, the intermediate data size for each DC is the same,
and thus overall data size is increased as the number of
DCs increases. For performance comparison purposes, we
used two popular MIP solvers, CPLEX [20] and Gurobi [24].
We observed that both solvers result in similar patterns of
results, i.e., similar numbers of tasks for each DC, while task
IDs are varying.

Figure 13 shows time for solving a task placement
problem with a varying number of DCs. Note that the
overhead includes time for solving two sub-problems and
modeling the final problem explained in Section 3.2.2. The
results show that time for solving task placement problems
increases as the number of DCs increases, i.e., problem
inputs become larger, and that the overhead has a negligible
impact on overall execution time, e.g., < 1% of the running
time for the 8 DCs setting. Note that overall execution time
will be increased as the number of DCs is increased due to
additional overhead such as network contention.

Overall, these results show that Kimchi is able to solve
task placement problems with tolerable performance over-
head, and thus not a performance bottleneck. Note, if a
latency for solving MIP becomes a performance bottleneck,
using LP (linear programming) [29] and adjusting diverse
parameter options offered by the solvers can be alternative
approaches to find feasible solutions within a given amount
of time, which we will not discuss in detail in this paper.

7 DiscussIiON FOR COMPUTE RESOURCE COST

While we mainly consider heterogeneous data transfer cost,
compute cost may take up a large portion of overall costs
based on query execution time. Compute costs are also
heterogeneous based on DC locations, e.g., $0.00001288 /sec-
ond in AWS US East and $0.000020667 /second in AWS SA
East for AWS t2.medium. In this section, we discuss how
such heterogeneous compute costs affect overall costs by
applying different compute cost models to our experimental
results using the query 95 (AWS) case shown in Section 6.1.

Many popular data analytics frameworks, e.g., Spark
[48], Hadoop [25], and Flink [17], rely on resource managers
(RMs) such as Mesos [27] and Yarn [41] to share compute
resources across frameworks. In our system models, com-
pute resources can be idle for the lower C_pref values, e.g.,
most VM instances except those running on the centralized
DC will be idle in the C'_pref = 0 case. These idle compute
resources can be shared by RMs for other frameworks and
thus are free of charge for Kimchi. If we apply this compute
cost model to the results, we find that compute costs take
6.1 ~ 9.2% of the overall cost based on C_pref values, which



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, DEC 2020 12

yields similar patterns of results, i.e., data transfer cost is
dominant. Note that we also consider external storage such
as AWS S3 and its cost for sharing intermediate data among
DCs without VM instances to apply this cost model, while
storage cost is negligibly small, e.g., < 1% of overall cost.

If we consider an environment where the compute re-
sources are not shared and idle resources are charged, we
find that only considering heterogeneous data transfer costs
does not result in cost reduction for lower C'_pref values,
e.g., the C_pref=0 case results in 8% more cost compared
to the C'_pref=1 case because idle VM instances’ cost takes
up large potion of overall costs in the environment. This
result shows that exploiting both heterogeneous data trans-
fer cost and compute cost together would open an addi-
tional cost-performance tradeoff when compute resources
are not shared, as our future work. To avoid the cost of idle
resources, a newly emerging compute resource, serverless,
would be appealing as it charges only when the code is
executed, i.e., pure pay-as-you go, while providing other
benefits such as scalability and agility. We plan to exploit
serverless in Kimchi to meet desired cost-performance goals.

8 RELATED WORK

Geo-distributed Data Analytics: Many GDA systems have
been proposed [26], [29], [31], [38], [43], [44] to overcome the
limitations of the WAN. Another set of previous works [19],
[22], [33] introduced the push-based shuffle to reduce query
latency. While recent works [21], [28] showed that the cost
of WAN bandwidth makes up a significant fraction of the
overall cost, no existing GDA has considered heterogeneous
data transfer cost. To the best of our knowledge, Kimchi
is the first GDA that considers heterogeneous data transfer
cost to avoid a cost-bottleneck in a multi-cloud environment.
High-bandwidth WAN: In scientific collaboration environ-
ments, WAN bandwidth may not be a performance bot-
tleneck by using dedicated (reserved) network (up to 100
Gbps) between DCs as shown in [35], [46]. Cloud providers
offer similar dedicated network connection services, e.g.,
AWS Direct Connect [1] and Azure ExpressRoute [2]. These
services, however, are for users who have physical network
links and want to increase WAN bandwidth between their
premises, e.g., a private DC, and one of cloud providers’
DCs. That is, these services are not available to improve
WAN bandwidth between cloud providers” DCs located in
different regions, which is considered in this work.
Tradeoff between Cost and Performance: Recent GDA
systems [29], [38] have offered a knob with which appli-
cations can tradeoff the WAN usage and query latency,
similar to C_pref in Kimchi. These systems, however, may
not achieve the desired tradeoff due to the cost-agnostic
approach, i.e., reduced data transfer size does not necessarily lead
to reduced data transfer cost, as we have shown throughout
this paper. Tetrium [29] considered compute resource het-
erogeneity but not monetary cost. We plan to extend Kimchi
to consider compute capacities and costs for achieving cost-
performance goals.

Handling Dynamics: Most GDA systems [26], [31], [38],
[43], [44] do not handle dynamics during query execution.
While Tetrium [29] considered dynamics, it can encounter
cost- and performance-bottlenecks due to the cost-agnostic

approach and the overhead of re-evaluating global task
placement. While Kimchi adjusts pending tasks to handle
dynamics, tasks running in bottleneck DCs can be detected
and re-assigned to other DCs as done in Lube [45].

Scalable GDA System: Kimchi focuses on exploring the
tradeoff space given VM instances deployed by other re-
source configuration systems [11], [30]. While resource con-
figurations determined by these systems may work well for
recurring workloads, any workload changes may result in
sub-optimal configurations and thus performance degrada-
tion. To avoid both performance- and cost-bottlenecks, we
plan to make Kimchi scalable to handle workload changes.

9 CONCLUSION

In this paper, we show that data transfer cost can signif-
icantly affect overall operational costs for geo-distributed
data analytics (GDA), and thus should be considered. We
present Kimchi, a GDA system that determines task place-
ment with consideration of data transfer costs, network
bandwidth, data size and locations, and applications’” de-
sired cost-performance preference. Kimchi improves query
performance without additional costs by a cost-aware task
placement, a cost-aware task adjustment, and a cost-aware
push-based mechanism. Experimental results on AWS show
that Kimchi enables applications to reduce costs without
impacting performance, improve performance without im-
pacting costs, and enable users to explore a richer cost-
performance tradeoff space given different data distribu-
tions in a multi-cloud environment.

REFERENCES

[1] AWS Direct Connect. https://aws.amazon.com/directconnect.

[2] Azure ExpressRoute. https:/ /bit.ly/3kNOgSh.

[3] facebook Engineering. https://bit.ly/3f66NV8.

[4] Hadoop Distributed File System. http://hadoop.apache.org.

[5] iPerf3. https://iperf.fr.

[6] JSON. https://www.json.org.

[7] Linux Traffic Control. http://lartc.org/manpages/tc.txt.

[8] TeraSort. http://sortbenchmark.org/YahooHadoop.pdf.

[9] TPC-DS. http://www.tpc.org/tpcds.

[10] S. Agarwal et al. Re-optimizing data-parallel computing. In
Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation, NSDI'12, pages 21-21, Berkeley, CA,
USA, 2012. USENIX.

[11] O. Alipourfard et al. Cherrypick: Adaptively unearthing the
best cloud configurations for big data analytics. In Proceedings
of the 14th USENIX Conference on Networked Systems Design and
Implementation, NSDI'17, pages 469-482, Berkeley, CA, USA, 2017.
USENIX.

[12] G. Ananthanarayanan et al. Disk-locality in datacenter computing
considered irrelevant. In Proceedings of the 13th USENIX Conference
on Hot Topics in Operating Systems, HotOS’13, Berkeley, CA, USA,
2011. USENIX.

[13] G. Ananthanarayanan et al. Pacman: Coordinated memory
caching for parallel jobs. In Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI'12,
pages 20-20, Berkeley, CA, USA, 2012. USENIX.

[14] Apache Thrift. https://thrift.apache.org.

[15] AWS Pricing. http://aws.amazon.com/ec2/pricing.

[16] Azure Pricing. https://bit.ly/3kHGV20.

[17] P. Carbone et al. Apache flink™: Stream and batch processing in a
single engine. IEEE Data Eng. Bull., 38:28-38, 2015.

[18] M. Cardosa et al. Exploring mapreduce efficiency with highly-
distributed data. In Proceedings of the Second International Workshop
on MapReduce and Its Applications, MapReduce 11, pages 27-34,
New York, NY, USA, 2011. ACM.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, DEC 2020 13

[19]

[20]
[21]

[22]

(23]

[24]
[25]
[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

(35]

(36]

(37]

[38]

[39]

[40]

(41]

(42]

[43]

[44]

T. Condie et al. Mapreduce online. In Proceedings of the 7th
USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI'10, pages 21-21, Berkeley, CA, USA, 2010. USENIX.
CPLEX Optimizer. https://goo.gl/6BKOZY.

A. Greenberg et al. The cost of a cloud: Research problems in data
center networks. SIGCOMM Comput. Commun. Rev., 39(1):68-73,
Dec. 2008.

Y. Guo et al. ishuffle: Improving hadoop performance with shuffle-
on-write. In Proceedings of the 10th International Conference on
Autonomic Computing, pages 107-117, San Jose, CA, 2013. USENIX.
A. Gupta et al. Mesa: A geo-replicated online data warehouse for
google’s advertising system. Commun. ACM, 59(7):117-125, June
2016.

GUROBI Optimizer. http://www.gurobi.com.

Hadoop. http://hadoop.apache.org.

B. Heintz et al. End-to-end optimization for geo-distributed
mapreduce. IEEE Transactions on Cloud Computing, 4(3):293-306,
7 2016.

B. Hindman et al. Mesos: A platform for fine-grained resource
sharing in the data center. In 8th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 11), Boston, MA, Mar.
2011. USENIX.

K. Hsieh et al. Gaia: Geo-distributed machine learning approach-
ing lan speeds. In Proceedings of the 14th USENIX Conference on
Networked Systems Design and Implementation, NSDI'17, pages 629—
647, Berkeley, CA, USA, 2017. USENIX.

C.-C. Hung et al. Wide-area analytics with multiple resources. In
Proceedings of the Thirteenth EuroSys Conference, EuroSys "18, pages
12:1-12:16, New York, NY, USA, 2018. ACM.

A. Klimovic et al. Selecta: Heterogeneous cloud storage con-
figuration for data analytics. In 2018 USENIX Annual Technical
Conference, pages 759-773, Boston, MA, 2018. USENIX.

K. Kloudas et al. Pixida: Optimizing data parallel jobs in wide-area
data analytics. Proc. VLDB Endow., 9(2):72-83, Oct. 2015.

F. Lai, M. Chowdhury, and H. Madhyastha. To relay or not to relay
for inter-cloud transfers? In 10th USENIX Workshop on Hot Topics
in Cloud Computing, HotCloud 18, Boston, MA, 2018. USENIX.

S. Liu, H. Wang, and B. Li. Optimizing shuffle in wide-area
data analytics. In 37th IEEE International Conference on Distributed
Computing Systems, ICDCS 2017, Atlanta, GA, USA, June 5-8, 2017,
pages 560-571, 2017.

S. Mitchell, othersStuart Mitchell Consulting, and I. Dunning.
Pulp: A linear programming toolkit for python, 2011.

I. Monga et al. SDN for End-to-End Networked Science at the
Exascale (SENSE). In 2018 IEEE/ACM Innovating the Network for
Data-Intensive Science (INDIS), pages 3344, 2018.

K. Oh, A. Chandra, and J. Weissman. Wiera: Towards flexible
multi-tiered geo-distributed cloud storage instances. In Proceed-
ings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing, HPDC "16, pages 165-176, New
York, NY, USA, 2016. ACM.

P. Pietzuch et al. Network-aware operator placement for stream-
processing systems. In Proceedings of the 22Nd International Con-
ference on Data Engineering, ICDE "06, pages 49—, Washington, DC,
USA, 2006. IEEE Computer Society.

Q. Puetal. Low latency geo-distributed data analytics. SIGCOMM
Comput. Commun. Rev., 45(4):421-434, Aug. 2015.

A. Rabkin et al. Aggregation and degradation in jetstream:
Streaming analytics in the wide area. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI'14, pages 275-288, Berkeley, CA, USA, 2014. USENIX.
R. Ricci, E. Eide, and the CloudLab Team. Introducing CloudLab:
Scientific infrastructure for advancing cloud architectures and
applications. ;login:, 39(6):36-38, Dec. 2014.

V. K. Vavilapalli et al. Apache hadoop yarn: Yet another resource
negotiator. In Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC 13, New York, NY, USA, 2013. ACM.

S. Venkataraman et al. The power of choice in data-aware cluster
scheduling. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation, OSDI'14, pages 301-
316, Berkeley, CA, USA, 2014. USENIX.

R. Viswanathan et al. CLARINET: wan-aware optimization for
analytics queries. In 12th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016., pages 435450, 2016.

A. Vulimiri et al. Global analytics in the face of bandwidth and
regulatory constraints. In Proceedings of the 12th USENIX Conference

[45]

[46]

[47]

(48]

[49]

on Networked Systems Design and Implementation, NSDI'15, pages
323-336, Berkeley, CA, USA, 2015. USENIX.

H. Wang and B. Li. Lube: Mitigating bottlenecks in wide area
data analytics. In 9th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 17), Santa Clara, CA, 2017. USENIX.

Q. Xiang et al. Toward fine-grained, privacy-preserving, efficient
multi-domain network resource discovery. IEEE Journal on Selected
Areas in Communications, 37(8):1924-1940, 2019.

M. Zaharia et al. Delay scheduling: A simple technique for
achieving locality and fairness in cluster scheduling. In Proceedings
of the 5th European Conference on Computer Systems, EuroSys '10,
pages 265-278, New York, NY, USA, 2010. ACM.

M. Zaharia et al. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedings of the
9th USENIX Conference on Networked Systems Design and Implemen-
tation, NSDI'12, pages 2-2, Berkeley, CA, USA, 2012. USENIX.

B. Zhang et al. Awstream: Adaptive wide-area streaming analytics.
In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM "18, pages 236252, New
York, NY, USA, 2018. ACM.

Kwangsung Oh is an assistant professor in the
Department of Computer Science at the Uni-
versity of Nebraska at Omaha. His research in-
terests include distributed storage systems and
cloud computing. He received his B.S. degree in
Computer Science and Engineering from Sejong
University, Korea, and his M.S. and Ph.D. de-
grees in Computer Science from the University
of Minnesota-Twin cities.

Minmin Zhang is a graduate student in the De-
partment of Computer Science at the University
of Nebraska at Omaha. His research interests in-
clude distributed systems and cloud computing.
He received his B.S. degree in mechatronic en-
gineering from Nanjing Institute of Technology,
China.

Abhishek Chandra is a professor in the Depart-
ment of Computer Science and Engineering at
the University of Minnesota. His research inter-
ests are in the areas of Operating Systems and
Distributed Systems. He received his B.Tech.
degree in Computer Science and Engineering
from Indian Institute of Technology Kanpur, and
his M.S. and Ph.D. degrees in Computer Science
from the University of Massachusetts Amherst.

Jon Weissman is a professor of computer
science at the University of Minnesota. His
current research interests are in distributed
systems, high-performance computing, and re-
source management. Weissman has a Ph.D. in
computer science from the University of Virginia.



