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Abstract—Edge computing has enabled a large set of emerging
edge applications by exploiting data proximity and offloading
computation-intensive workloads to nearby edge servers. How-
ever, supporting edge application users at scale poses challenges
due to limited point-of-presence edge sites and constrained
elasticity. In this paper, we introduce a densely-distributed edge
resource model that leverages capacity-constrained volunteer
edge nodes to support elastic computation offloading. Our model
also enables the use of geo-distributed edge nodes to further
support elasticity. Collectively, these features raise the issue of
edge selection. We present a distributed edge selection approach
that relies on client-centric views of available edge nodes to
optimize average end-to-end latency, with considerations of
system heterogeneity, resource contention and node churn. Elas-
ticity is achieved by fine-grained performance probing, dynamic
load balancing, and proactive multi-edge node connections per
client. Evaluations are conducted in both real-world volunteer
environments and emulated platforms to show how a common
edge application, namely AR-based cognitive assistance, can
benefit from our approach and deliver low-latency responses to
distributed users at scale.

Index Terms—edge computing, edge elasticity, heterogeneity,
volunteer computing

I. INTRODUCTION

Edge computing, a computing paradigm that brings com-
putation closer to data sources and end-users, has enabled the
deployment of emerging edge applications such as AR/VR,
cognitive assistance, and autonomous vehicles. Offloading
workload from devices to powerful edge servers that can run
complex machine learning algorithms is necessary to resolve
the device-side limitation. The demand for these latency-
sensitive and compute-intensive applications is starting to
increase rapidly and requires the edge to be highly available
and scalable.

However, elasticity is a well-known limitation of edge
resources. Edge applications are typically pinned to a single
pre-deployed edge site. A burst of incoming workload can
easily overwhelm an edge site causing service performance
degradation. While resource allocation optimizations [1], [2]
and workload adaptation strategies [3], [4], [5] can mitigate the
contention and improve utilization, edge resource capacity is
still a bottleneck without hardware scaling. Furthermore, geo-
distributed users require wide edge availability to provide low-
latency edge access. Existing public edge infrastructures [6],
[7], [8] only serve major metropolitan areas, and on-premise
edge deployment solutions [9], [10], [11] rely on costly/private
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Fig. 1: Network measurements from 15 participants in

Minneapolis-Saint Paul metropolitan area using home wifi
network to (1) five volunteer-based edge nodes we configured
with heterogeneous network access, (2) AWS Local Zone/us-
east-1-msp, (3) Closest cloud/AWS us-east-2.
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resources to only serve certain users at specific geo-locations.
Today’s edge presence density [12] is far from delivering the
expected geographical coverage.

With the prevalanence of powerful personal PCs/laptops, we
argue that sufficient compute power with low latency is already
in the vicinity of end users. Volunteer resources are widely
distributed with unlimited potential to scale cost-efficiently
under appropriate incentive models. They tend to reside in
the same local ISP networks with nearby end users, which
minimizes the number of routing hops and network jitter.
Figure 1 shows that nearby volunteer edge nodes can deliver
lower RTT propagation delay compared to the latest AWS
Local Zone infrastructure in the specified area.

In this paper, we propose using volunteer resources and
geo-distributed edge resources as an enabler of elastic edge
computing, and introduce the concept of a fine-grained edge
resource model, namely geo-distributed heterogeneous edge-
dense environments. This model relies on heterogeneous, un-
reliable yet densely-distributed commodity machines on the
edge to provision latency-sensitive services. We then formulate
a latency optimization problem, and present a distributed
edge selection approach that leverages client-centric views
to locate the best-performing edge node for each user and
optimize average end-to-end latency. Specifically, we answer
the following questions:

o How to identify both networking proximity and process-
ing performance of volunteer edge nodes, considering
heterogeneity, geo-location, hardware capacity and re-
source contention?

« How to achieve low end-to-end latency for end users in



the presence of system dynamics?
o How to guarantee continuous service in the presence of
high node churn and failure rate?

Our contributions are as follows: First, we present the notion
of geo-distributed heterogeneous edge-dense environments, a
novel edge resource model, using (but not limited to) volun-
teer resources and non-local resources (as appropriate) as an
enabler. Second, we design and implement a 2-step distributed
edge selection approach that optimizes global average end-to-
end latency through a simple local selection heuristic. We use
a user-side performance probing strategy as a key mechanism
to accurately evaluate edge candidates, with a focus on the
environment heterogeneity and workload interference. Further,
our approach proactively establishes multiple client-to-edge
connections to provide: (i) fault tolerance by enabling an
immediate connection switch to alternate edge nodes upon
failure, and (ii) improved performance by switching to a better
performing edge node in the presence of system dynamics.

The evaluation is conducted using an AR-based edge ap-
plication in both real-world environments with 9 volunteer
edge nodes, and emulation environments with 18 AWS EC2
instances in controlled node churn. The real-world results
show that our approach can deliver near-optimal average end-
to-end latency in a dynamic environment, and achieve 18%-
46% latency reduction compared to resource-aware, locality-
based and dedicated-edge-only approaches under high user
demand.

II. BACKGROUND AND RELATED WORK
A. Edge Computing Infrastructure

To cater to geo-proximity, strong QoS, and privacy require-
ments of targeting users/customers at specific areas, enter-
prises and organizations tend to deploy their own on-premise
hardware on the edge. The logical proximity, defined as
low-latency high-bandwidth communication channels between
users and edge servers, is usually provided by a LAN or
dedicated networking infrastructure. This category of special-
purpose deployments can deliver stable latency performance,
but is extremely expensive to maintain and lacks scaling
capacity.

Today, major cloud providers are aggressively rolling out
their public edge infrastructures [6], [7], [8]. Smaller-scale
data centers are directly deployed in major metropolitan areas,
providing generic VM-based computing capacity and general
access to the public. The point-of-presence (PoP) of this
category of edge resources is largely limited to metro areas
with their numbers being only one order of magnitude higher
than those for a traditional cloud. Our observations on AWS
Local Zone (Figure 1) also show that its deliverable latency
is much higher than the claimed single-digit millisecond level
to end users due to the networking overhead within the local
ISP network.

We categorize today’s on-premise and public edge infras-
tructures into a coarse-grained edge resource model such that
they are sparsely-distributed geographically with hundreds of

PoPs worldwide. These edge data centers are smaller footprint
extensions of the cloud relying on the same technology stack,
and users at specific locations only have one (sometimes zero)
or very few nearby options of edge access points to satisfy
their QoS requirements.

B. Edge Elasticity and User Allocation

Edge elasticity has been improved by efficient resource
allocation and service scheduling [1], [2] using workload
prediction, fine-grained provisioning and proactive service de-
ployment as common strategies. Application-specific adaptive
streaming [3], [4], [5] is another technique to reduce resource
contention while satisfying performance requirements by dy-
namically adjusting requesting rate and QoS level. However,
these works cannot enable the hardware scaling capacity on
the edge which is the fundamental problem constraining the
edge elasticity.

In mobile edge cloud (MEC) environments with densely
distributed edge nodes, studies [13], [14] have converted the
elasticity problem to a user allocation problem optimizing
user-to-edge assignments towards resource utilization and la-
tency performance. However, these works take server-centric
views without examining the deliverable latency performance
on the user side. A distributed iterative algorithm [15] is
proposed to optimize user allocations by examining user-side
QoE, however, environment heterogeneity is not taken into
consideration. A resource allocation scheme is applied in these
works to strictly avoid workload interference and performance
degradation, however, an overloaded but well-connected edge
node can still provide better performance if an idle edge node
suffers from the networking overhead.

We are unaware of any edge system that combines both
edge-dense volunteer and dedicated nodes and geo-distributed
resources simultaneously.

C. Volunteer Computing

While volunteer computing has mostly been applied to
scientific computation [16], [17], it has also been proposed
to enable low-latency services on the edge [18]. There have
been several works [19], [20], [21] bringing conceptual designs
of volunteer-based or volunteer-assist systems for latency-
sensitive workloads over emulation environments. However,
they lack quantitative analysis for volunteer resource charac-
teristics, addressing networking/capacity heterogeneity, avail-
ability and reliability in real-world environments.

Multi-provider edge clouds have been proposed in both
industry and academia [22], [23], [24], as a similar paradigm
related to volunteer resources. It is based on a coarse-grained
resource model with edge data centers as contributors, in
contrast to individual devices in the volunteer computing land-
scape. Nebula [25] leverages geo-proximate volunteer workers
to optimize MapReduce workloads, considering data locality,
resource availability and bandwidth heterogeneity. It targets
data-intensive batch jobs where client latency is not a concern.



D. Performance Prediction on the Edge

Edge-native applications [26] have been proposed to take
advantage of edge servers, and [3] uses static profiling to ob-
tain their processing performance before optimizing resource
allocation. Proactive profiling, however, introduces significant
overhead before edge nodes join the system acting as workers.
Wagner and Gedeon et. al introduce a learning-based assess-
ment framework [27] to estimate the workload performance
on heterogeneous resources, and reduce profiling overhead by
only performing a few runs before the prediction. However,
a separate profiling process still exists with compromised
accuracy. Several studies [28], [29] propose methods based on
live workloads instead of test workloads to profile applications
on heterogeneous hardware. However, these studies focused
more on the data flow and streaming applications and are
limited to data centers.

III. PROBLEM DEFINITION

A. Geo-distributed Heterogeneous Edge-Dense Environment

We present a fine-grained edge resource model called geo-
distributed heterogeneous edge-dense environments that sup-
plements deployed edge infrastructure with volunteer edge
computing resources. The main benefit of this model is to
substantially scale the availability of edge resources, both
in terms of their geographic spread (e.g., in rural areas),
as well as proximity to users (to reduce network latency).
Compared to hundreds of edge data centers inherited from
cloud technologies, the number of volunteer edge nodes can
be orders of magnitude greater than cloud PoPs. Potentially
millions of volunteer-based commodity machines are densely
distributed around users contributing computing power and
providing low-latency edge access, as greener complements
of existing edge infrastructures discussed in Section II-A. This
edge resource model has the following characteristics:

o Heterogeneous client-to-edge networks: Without dedi-
cated communication channels between users and edge
nodes, the number of routing hops and forward-
ing/propagation delays can be diverse. They are affected
by distance, underlying networking infrastructures of
local ISPs, protocol configurations, and real-time network
condition.

o Heterogeneous edge nodes: Edge nodes have heteroge-
neous underlying hardware presenting diverse processing
performance for the same workload. Compared to data
centers with clusters of tightly-coupled homogeneous
workers, edge nodes can be highly compute-constrained
and sensitive to performance degradation due to resource
contention.

o Dense and geo-distributed resource distribution: Mas-
sive number of edge nodes are loosely coupled yet
densely distributed around users. The coverage areas of
adjacent edge nodes are heavily overlapped, and users
at specific areas have many nearby options towards edge
access point to satisfy QoS requirements.

o Unreliable edge node: Volunteer edge nodes are assumed
to be unreliable and unpredictable with high node churn.
They can join and leave the system anytime without
notifications. In addition, edge nodes can run unexpected
higher priority host workloads competing with existing
edge services.

We believe our model is richer and more elastic than emerg-
ing edge-dense environments such as in MEC models, where
edge compute capacity co-locates with densely distributed 5G
base stations. In MEC environments, dedicated edge servers,
fully managed by telecom companies, tend to be highly
reliable and homogeneous. The user-to-edge connectivity is
mainly affected by first wireless hop characteristics [30],
while the user-to-edge connectivity in our proposed model
is determined by local ISP infrastructures and unpredictable
networking conditions. Our model has more flexibility in
deployment as it does not require resource co-location with
5G base stations.

B. Edge Application Model

We adopt a widely used edge application model consisting
of the pre-deployment of application servers (e.g. image pro-
cessing) to a set of edge nodes. The user selects an edge node
for their requests to be out-sourced. For simplicity, we consider
a single application server type in this paper, but our model can
be extended to support any number of application server types.
An application manager manages each application service type
in the system.

C. Problem Formulation

Based on the environment definition above, we formulate
a latency optimization problem. We first define the problem
in a static manner without the churn of application users and
edge nodes, and then discuss its generalization in a dynamic
system.

Consider a geo-distributed heterogeneous edge-dense envi-
ronment with n users and m edge nodes in a specified area,
an Edge Assignment (EA) refers to a users-to-edge match that
assigns each user u; (1 <43 < n)anedgenode e; (1 < j <m)
to offload computation. An EA contains n pairs as shown
below:

EA= {< Uy, €51 >, < U2,€52 >, ..., < Up, Ejn >}

We can also express the EA above from the view of edge
nodes. For an edge node e;, we use S; to denote the set of
users attached to it, namely S; = {w;1,uso,. .., Ui, } where
0<kj <nand ki + ks + ...+ kyp = n. Note that each
user only offloads computation to one edge node while one
edge node can serve multiple users concurrently. Therefore,
it’s equivalent to express the EA as follows:

EA=1{S1,5,...,5.}

Assuming the user u; selects the edge node e; under
the given EA, then its performance, namely the end-to-end
latency, is expressed as the sum of D_prop!, D_trans],
and D_proc(e;, S;). D_prop is the RTT propogation delay,
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Fig. 2: Client-centric Distributed Edge Selection Architecture

D_trans stands for the data transfer delay of each request,
and D_proc stands for the queuing delay and processing time
within the edge node. Specifically, D_proc is determined by
the heterogeneous hardware/capacity of node e; and its current
workload denoted by S;. The resource contention caused
by overloading and capacity limitation can easily become
bottleneck and dominate the latency performance, leaving edge
proximity not effective. We use the following expression to
describe the average end-to-end latency under the given EA:

n
. Z (D_prop) +D_trans) +D_proc(e;,, S;,))
i=1

P(EA) = %

In a system with n users and m edge nodes, there are totally
® = m" possible EAs since each user has potentially m op-
tions towards the edge selection in an edge-dense environment.
The objective is to find such an EA that minimizes the average
end-to-end latency of n users:

min P(FA)
EA€®

This is a NP-hard problem without a simple solution.
Furthermore, knowledge of D_prop, D_trans and D_proc
are unknown information from a central view to make global
decisions. D_prop and D_trans are only subject to client-
centric views. And D_proc is determined by current workload
and server hardware/platform. It requires a costly profiling
process to obtain the processing time under specific config-
urations, which is impractical to execute on every single edge
node in volunteer environments.

The problem becomes more complicated when both appli-
cation users and volunteer edge nodes are highly dynamic with
unpredictable node churn. How to construct an efficient local
search solution with effective heuristics becomes critical to
reach the new optimal state faster from the current state in the
presence of system dynamics.

IV. PROPOSED APPROACH
A. Architecture Overview

Given an edge-dense environment, each user may have a
choice of multiple edge nodes. A key question is how to
select resources for individual clients so as to meet desired
performance goals such as minimizing latency. We present a
distributed edge selection approach applied in a geo-distributed
volunteer-based edge cloud system [31]. Figure 2 shows a
simplified version of this edge cloud architecture to emphasize
the edge selection process. Central Manager collects real-time
node status/resource utilization information from edge nodes
to serve edge discovery queries discussed below.

We use a 2-step approach: global edge selection on the
manager or server side followed by local edge selection on
the user side, to accurately locate the best edge candidate for
each user and at the same time reduce profiling overhead.
Our approach leverages client-centric views to closely monitor
edge environments, predict heterogeneous edge performance,
and make local edge selection decisions by using a heuristic
that is geared toward optimizing average end-to-end latency.
Our approach contains four critical client-centric modules (in
grey boxes) as shown on the left side of Figure 2:

o Edge discovery: Application users send initial edge dis-
covery queries to the Central Manager where the first step
global edge selection is triggered. By examining present
edge nodes on geo-proximity, resource utilization, and
network affiliation, Central Manager generates a coarse-
grained but narrow-ranged candidate edge list for the
user.

o Performance probing: Application user probes each
edge candidate on the list to address the environment
heterogeneity. It collects networking metrics, information
related to node processing capacity/speed and existing
workload to identify overall latency performance in real
time.

o Local edge selection: Based on accurate evaluations from
the probing step, users make local decisions selecting the



best-performing candidate for computation offloading. To
reduce the global average latency and preserve fairness,
we use a simple heuristic to guarantee that newly ac-
cepted users should not dramatically diminish the QoS
of existing users.

« Failure monitor: Upon node failure/leaving, failure mon-
itor can immediately detect the connection interruption
and switch upcoming compute requests to alternate edge
nodes whose connections are proactively established.
Failure monitor provides the robustness for unreliable
volunteer resources.

B. Edge Discovery and Global Edge Selection

Edge discovery happens when new users join the system
or existing users periodically query environment updates. A
manager-side global edge selection process is then triggered
to locate nearby edge access points for requesting users.
However, manager views alone cannot entirely identify the
environment heterogeneity and edge status without end-to-
end network probing and real-time performance prediction.
We therefore employ a 2-step approach that first generates an
approximate candidate edge list on the manager side, followed
by a local selection process in client-centric views.

The candidate edge list is a small subset of edge nodes
that are expected to provide low latency responses for spe-
cific users. Global edge selection policies incorporate mul-
tiple factors that affect user end-to-end latency, including
geo-proximity, node capacity/load, resource utilization, and
optionally-provided network affiliation information between
users and edge (indicating existing LAN or preferred network-
ing channels).

We first apply a geo-proximity filter to rule out unqualified
nodes, and then prioritize the local candidates based on
resource availability, network affiliation and user preferences.
Specifically in geo-proximity search, we use GeoHash [32]
to identify a wider-range geographical area to include remote
nodes which may be useful as a last resort (if all local nodes
are performing poorly). Selection filters and sorting policies
can be flexibly combined/modified to prioritize available edge
nodes towards different application requirements. Since final
decisions are eventually made on the user side, the global edge
selection of our 2-step approach is coarse-grained with high
tolerance to edge selection inaccuracy and mismatch.

We use the concept TopN to indicate the size of candidate
edge list, referring to the top N edge nodes in the sorted
list of the global edge selection results. Multiple choices
can deal with both node churn and other system dynamics.
This is an important configuration parameter in our approach.
Larger TopN value brings higher accuracy and flexibility to
the edge selection process by providing more edge options to
end users at the local selection step. It also improves the fault
tolerance by enabling users to proactively establish redundant
connections to multiple edge nodes in preparation for potential
node failures. However, larger TopN value can also bring
higher probing and synchronization overhead as discussed in
the following sections. In our evaluation, we examine the

Probing API Description

RTT_probe() User probes RTT propagation delay to edge
nodes.

Process_probe() User probes "what-if" processing delay in edge
nodes.

Join() User requests to attach an edge node for compu-
tation. This request can be rejected if the node
state has changed.

Unexpected_join()  Upon failures, user notifies a backup edge node
for joining. This request cannot be rejected.

Leave() User notifies the current attached node of leav-

ing. This can be caused by node switch or task
finish.

TABLE I: Probing APIs exposed by edge nodes

influences of different 7opN values on fault tolerance, latency
performance, system overhead and fairness across users.

C. Performance Probing

To accurately address the heterogeneity of real-world edge
environments and avoid costly profiling overhead on various
edge devices, we use a real-time probing approach to pre-
dict edge performance during runtime. Performance probing
requests are initiated by application users to collect (1) end-to-
end networking metrics to each edge candidate, and (2) “what-
if” processing performance on these candidates if they are
selected for computation offloading. Furthermore, information
related to existing workloads on each edge node is also
reported in probing results to optimize global average latency
(discussed in section IV-D). Table I describes APIs exposed
by edge nodes to interact with probing users.

1) Probe networking delay: Networking delay for an of-
floading request comprises RTT propagation delay (D_prop)
and data transfer overhead (D_trans) introduced by con-
strained bandwidth. While probing D_prop is fairly easy,
probing D_trans consumes available bandwidth and com-
petes with existing networking traffic. Therefore, we only
conduct D_prop probing to avoid interfering with concurrent
workload. Our observations show that D_prop alone is suffi-
cient to evaluate end-to-end connectivity for typical latency-
sensitive offloading workloads such as AR-based wearable
assistance. The reasons are twofold as follows.

First, edge resources can only provide low/modest improve-
ments to bandwidth-hungry applications like video streaming
[12], since edge proximity improves propagation but not neces-
sarily transmission unless multiple single hop network options
are available. We target interactive and compute-intensive
workload where bandwidth is not the bottleneck compared to
processing time and propagation delay. Second, for AR-based
wearable assistance applications, requests carry video frames
for image processing and responses are lightweight instruc-
tions related to detected objects. User outbound bandwidth
usually becomes the data transfer bottleneck, which is de-
termined by network access method/ISP configurations/traffic
plans. Edge selection has limited effect on first-hop data
transfer performance.

2) Probe processing delay: A user offloads requests to the
selected edge node for real-time processing, and we take the
compute time of single requests as the value of D_proc. To



avoid time-consuming profiling and to improve the accuracy of
performance prediction, we invoke a test synthetic workload
to simulate “new-user-join” scenarios. The test workload is
based on the same application logic and compute requirements
as the real offloading task. Its invocation generates the “what-
if” performance upon new user/request arrivals, which reflects
specific hardware/platform configurations and resource con-
tention due to existing workload. Taking the AR application
as an example, the test workload is image processing for a
single synthetic video frame with standard image size.

To minimize the overhead, "what-if" performance is cached
in the node memory responding to probing queries, and we
only invoke the test workload to update the “what-if” perfor-
mance upon node state changes. There are three scenarios for
which a test workload is invoked: (1) A new user is attached
to an edge node - workload increase. (2) An existing user
stops offloading requests or switches to another edge node -
workload decrease. (3) Performance monitor in edge nodes
reports noticeable change of processing time under the same
number of attached users. This can be caused by adaptive
request rate (e.g. varying FPS for AR applications) or higher
priority host workloads running on volunteer resources that
are out of our control.

Offloading request rates for different users can dynami-
cally change according to networking conditions, processing
speed and user preferences, which leads to varying amount
of workload under the same number of attached users. The
performance monitor trigger enables the system to deal with
workload dynamics in a fine-grained manner. The more ag-
gressively test workload is triggered, the more accurately the
performance is predicted along with higher overhead.

When one of the above scenarios occurs, new “what-if”
performance is measured and updated in the cache. Upon
receiving Process_probe() requests, edge node only reads the
cache to fetch the “what-if” performance instead of invoking
a new test workload. Therefore, a large number of probing
requests do not necessarily lead to more test workload invo-
cations and higher overhead.

3) Join selected edge node: We add up RTT propagation
delay from RTT_probe() and “what-if” processing time from
Process_probe() as the predicted performance of edge can-
didates. Based on the performance prediction and selection
policies, each user selects a candidate to start offloading work-
load. Since probing requests are conducted asynchronously, a
selection conflict happens when multiple users simultaneously
select the same edge node. Probing predictions are inaccurate
in this case since the "what-if" performance only reflects the
one-additional-user scenario. Therefore, we use the Join()
interface to synchronize edge selection procedures, and users
only start offloading workloads after their Join() requests are
accepted by selected edge nodes.

Join synchronization is implemented using seq/Num which
incrementally identifies the node state change. seqNum is
updated along with test workload invocation in critical sec-
tions. They share the same three triggers discussed in IV-C2.
Algorithm 1 shows the Join() interface which corresponds to

Algorithm 1 Join() API exposed by edge nodes (Critical
section locks are hidden for simplicity)

1: function JOIN(U ser_seqNum,)

2: seqNum < Current sequence number maintained by
this edge node

3 if seqNum = User_seqNum then

4 seqNum += 1

5 New_Thread(InvoketestWorkload())

6: return True

7 else > State has changed since last probing request

8 return False

9: end if

10: end function

Algorithm 2 Client-centric performance probing procedure

1: C < Edge candidate list (size > 1)
2: Current <— Currently attached edge node for processing
3: Backups < Current backup edge node list
4: for c € C' do

5: start < time.Now()
6 c.RTT_probe()

7 D_prop < time.Now() - start

8 (D_proc, c.seqgNum, c.state) < c.Process_probe()
9: c.probing_result < D_prop + D_proc

10: end for

11: SortLocalSelectionPolicy(C)

12: if Current # C[0] then > A better performing edge is

found
13: success < C[0].Join(C[0].segNum)
14: if not success then > This join request is rejected
15: Repeat probing process from edge discovery step
16: end if
17: Current.Leave()
18: Current < C[0].address
19: end if

20: Backups < C[1:].addresses

the first trigger type - user join. Note that the test workload is
invoked asynchronously in a separate thread with some delay
(line 5), since it should reflect the “what-if” performance after
this new accepted user is officially attached. This delay is set
to be two times the common user RTT propagation to make
sure the test workload is invoked after the arrival of the new
user offloading requests.

Algorithm 2 shows the user-side edge selection procedure
with join synchronization. After collecting the probing results
(line 4 - 10), local edge selection policies are applied to
sort edge candidates. We discuss local selection policies in
Section IV-D. The first edge node in the sorted list is the best-
performing candidate. If it is the same node as the currently-
used node for offloading, no action is required besides updat-
ing the backup edge list (used by failure monitor in section
IV-E). If a better candidate is found, then Join() request is
sent to this selected node. Upon join acceptance, users call



Leave() to notify the previous edge node of leaving, which
triggers the test workload invocation and seq/Num update.

D. Local Edge Selection

In this section, we discuss local edge selection policies
applied in SortLocalSelectionPolicy() (Algorithm 2 line
11). We use LO; to represent the probing result or the Local-
view Overhead of edge candidate j. The edge node with
smallest LO is the Best Local Candidate (BLC") which can
deliver the lowest latency performance:

LOj = D_propprobing + D_procprobing

TopN
BLC = IJn_l{l LO]‘

However, this selection scheme neglects the interference to
existing workloads on each candidate. Assume D_procey,rrent
is the processing delay for existing attached users on an edge
node, and D_proc,,oping is the “what-if” processing delay
on this edge node, then D_procp,oping — D_proceurrent 1s
the performance degradation that can be experienced by all
existing users if one additional user is accepted to join. To
optimize the average performance, we should consider both
the local and global views to minimize the end-to-end latency
for all users. We use GO; to denote the Global Overhead
of edge candidate j (n is the number of existing users on
candidate j):

GOj =nX (D_procprobing - D_proccurrent) + LOj

Note that the information of existing workloads on each
candidate is shared with the requesting user at line 8 in
Algorithm 2. Therefore, we have the following expression to
optimize the global average performance:

TopN

In common scenarios, LO and GO are positively correlated
towards affecting both individual performance and global
average performance, since an edge candidate with multiple
existing users tends to have high LO value (performance
degradation caused by overloading) and high GO value (larger
n in GO equation) at the same time.

Our framework based on LO and GO can be easily modified
to optimize edge applications with specific QoS requirements.
Users can first filter out edge candidates whose LO violates
QoS requirements and then select the node with lowest GO to
optimize global performance. In this case, new users can be
rejected to join the system if (1) no available edge nodes can
satisfy the QoS requirements, or (2) new joins lead to QoS
violations of existing users.

E. Failure Monitor

Static user-to-edge assignment is susceptible to failures,
since volunteer edge resources are unreliable with high node
churn. Failure monitor detects the connection failures and
immediately replaces the edge node by looking up the backup

edge list to guarantee continuous service. Backup edge list
is comprised of unselected edge nodes from the candidate
edge list. It is pre-sorted based on the local selection policies
discussed in section IV-D, therefore the first backup node used
is always the second best option. The backup edge list is
periodically updated by the performance probing step as shown
in Algorithm 2, and connections to backup edge nodes are
proactively established to make the service downtime during
connection switch negligible.

Specifically, the probability of users still experiencing node
failures in our approach is determined by the following two
parameters:

o TopN value: TopN is the size of candidate edge list
generated by the global edge selection process. T'opN —
1 is the size of backup edge list after each update of
probing requests. Larger T'opN value adds more backup
edge nodes maintained on the user side, and therefore
enables users to be more fault tolerant to simultaneous
edge failures.

e Probing period T}, oving: Tproving 1S the time period
between two consecutive edge discovery/performance
probing requests. It indicates the frequency with which
users query the Application Manager for environment
changes. The smaller T},,.0ping, the more frequent the
backup edge list gets updated, during which failed edge
nodes get replaced with alive ones. Therefore, smaller
Tprobing brings higher robustness.

As a tradeoff, higher TopN and smaller T}, 544 also bring
higher overhead to the system by increasing the number of
asynchronous operations (detecting, probing and updating).
Based on the level of node churn and reliability of volunteer
resources [33], TopN and T,;0ping can be modified accord-
ingly.

V. EVALUATION

We evaluate our approach using an AR-based cognitive
assistance application, in both real-world and emulated en-
vironments, to show its validity in achieving elastic edge
computing with volunteer resources.

A. Application: AR-based Cognitive Assistance

AR-based cognitive assistance is one promising category
of edge-native applications [26] that can fully exploit the
potential of edge resources. Its core building block, real-time
object detection, is highly compute-intensive with strict latency
requirements to deliver a satisfying user experience.

We integrate the proposed distributed edge selection ap-
proach into a cognitive assistance application that helps vi-
sually impaired people to identify objects. Users constantly
send video frames to edge servers at a max rate of 20 FPS
(which can adaptively decrease based on the network and
processing performance). All video frames have the standard
size of 0.02 MB after encoding, with the same compute
requirements. After queuing, decoding and processing of the
frame, lightweight cognitive assistance instructions (negligible
size) are returned back to users based on the detected objects



and application-specific assistance logic. The test workload in
our approach is configured to process one pre-loaded synthetic
video frame on edge nodes.

B. Evaluation Baselines

We use the global average end-to-end latency collected on
the user side as the evaluation metric to determine the overall
elasticity performance in geo-distributed volunteer environ-
ments.

We contrast the proposed distributed edge selection ap-
proach with the following performance baselines:

« Geo-proximity: Locality-based edge selection policy is
widely applied in coarse-grained edge data center en-
vironments. Users are assigned to their closest edge
nodes geographically to offload the computation. The
latency between users and edge nodes is assumed to be
proportional to the distance, and resource capacity is not
considered to be the bottleneck.

o Resource-aware Weighted Round Robin: This is a
common edge selection and load balancing policy used
in fine-grained multi-edge environments. Multiple edge
servers are present in the local area, and incoming user
requests are forwarded to the most available edge nodes
in a weighted round robin fashion. The weight applied for
each edge node is determined by the resource availability
and utilization.

o Dedicated-only Edge Infrastructure: Dedicated-only
edge refers to the existing edge infrastructure with lim-
ited PoP and resource capacity. In our experiments, we
use AWS Local Zone with a static number of EC2
instances to emulate this category of resources. We add
this performance baseline in our real-world experiments
to illustrate the utility of leveraging volunteer resources
as a complement to existing dedicated edge infrastructure.

o Closest Cloud: The offloading performance on the clos-
est AWS cloud is used as a baseline reference in our real-
world experiments to show the latency reduction achieved
by various edge policies/infrastructures.

C. Real-world Experiments

We first show the adaptability and overall effectiveness of
our approach in real-world volunteer environments.

1) Experimental Setup: We recruit 20 participants with het-
erogeneous access network. They are all within 10 miles away
from each other in Minneapolis-Saint Paul metropolitan area,
with 15 participants being users and 5 participants using their
laptops registered as volunteer edge nodes. We also register
4 additional AWS Local Zone instances into our volunteer
platform to illustrate that our approach can also be applied

Node Processor Processing
Vi Intel® Core™ i7-9700, 8 cores 24ms
V2 Intel® Core™ i7-2720, 6 cores 32ms
V3 Intel® Core™ i9-8950HK, 6 cores 31ms
V4 Intel® Core™ i5-8250U, 4 cores 45ms
V5 Intel® Core™ i5-5250U, 2 cores 49ms
D6 - D9 AWS Local Zone t3.xlarge 30ms
Cloud AWS ec2 t3.xlarge 30ms

TABLE II: Real-world experiments setup

to form a hybrid edge cloud consisting of both volunteer
and dedicated resources. We use these 4 instances alone to
demonstrate the dedicated-only scenario for comparisons.

Table II shows the hardware details of all participants
in the system, along with their heterogeneous processing
performance for a single application video frame.

2) Single-user View: Figure 3 shows the end-to-end latency
perceived by a random user to 3 volunteer nodes and 1 AWS
Local Zone instance. We can see that volunteer nodes (V1
and V2) can deliver better performance compared to dedicated
nodes (D6) in real-world environments. This is because V1 and
V2 have lower network latency to the user as compared to D6,
thus reducing the overall latency.
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Fig. 3: CDF of end-to-end latency (ms) from a user to 4

different edge servers in real-world environments.

Client V1 V2 V3 V4 V5 D6 Cloud
Ul 38 47 49 65 72 42 107
U2 43 35 56 58 61 45 102
U3 49 50 45 59 71 42 112

TABLE III: Pairwise end-to-end latency (ms) between 3 ran-
dom users and edge nodes in real-world environments (T'op/N
= 6). The underlined numbers indicate the selected nodes
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Fig. 4: Re-connect approach vs. Immediate connection switch

performance trace over timeline (ms).

Table III shows the pairwise latency performance between
3 random users and edge nodes, along with selection results
using the proposed distributed edge selection approach. The
experiment is conducted separately for 3 users to avoid inter-
ference. We configure T'opN = 6 on each user to guarantee that
all volunteer edge nodes are selected in the candidate edge list.
Therefore, the performance probing approach probes all edge
nodes in the system to collect probing results. Best-performing
nodes are accurately selected for 3 users, addressing the
networking and processing heterogeneity.

Figure 4 shows the end-to-end latency performance trace
for consecutive video frames upon node failure. While a re-
connection approach experiences a large service downtime to
re-discover an alternative edge node upon failure, our approach
can immediately switch to a backup edge node maintaining the
continuous service.

3) Edge Elasticity: To explore the elasticity performance of
the proposed approach, we incrementally let all 15 application
users join the system to evaluate the global average end-to-
end latency. Figure 5 shows the average performance for our
approach (Client-centric) vs. 4 baselines in V-B.
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Fig. 5: Latency performance with increasing number of users
in real-world environments (T'opN = 3)

As we can see in the figure, our approach can better
balance the load with increasing number of attached users.
Locality-based approach selects the closest nodes without
examining the actual networking connectivity and process-
ing capacity. Resource-aware approach checks the resource
utilization, however, the heterogeneous hardware/networking
environments lead to unexpected performance. Dedicated-only
scenario lacks hardware scaling flexibility upon increasing
workload, which results in a worse-than-cloud performance at
#user = 15 due to significant performance degradation caused
by overloading.

D. Emulation Experiments

We conduct emulation experiments in AWS cloud to simu-
late a wider geographical distribution of users/nodes, with flex-
ibly controlled users/nodes numbers, networking performance
and more importantly node churn in a dynamic environments.
We discuss two experiment configurations in the following
sections.

1) Static edge nodes with increasing number of users:
In the first emulation experiment, we incrementally add
randomly-distributed users into the system one by one, as a
way to examine each user’s behavior towards the edge selec-
tion and performance degradation due to resource contention.
We keep the number of edge nodes and distribution static for
simplicity.

Experimental setup: We set up 9 volunteer edge nodes (4
x t2.medium, 4 x t2.xlarge, 1 x t2.2xlarge) and 15 application
users (15 X t2.micro), such that they are simulated to be
within 50 miles away from each other. We configure the
pairwise networking performance (latency/bandwidth) using
tc with real-world measurement data. Specifically, the RTT
propagation delay is between the range of 8 to 55ms in the
corresponding geo-distribution.

Performance trace: Figure 6 shows the latency perfor-
mance trace of each individual user using three edge selection
methods. 15 users join the system one after another every 10
seconds, indicated by vertical lines in the figure.

While locality-based method (a) should have performed
better in a wider range geo-distribution, it lacks the flexibility
upon resource contention. A few users in (a) exceed 150ms
latency due to the overload of local nodes, when an idle and
relatively far-away node can deliver better end-to-end latency.
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Fig. 6: Performance trace for 15 users using different edge
selection methods. 10 edge nodes are static with users incre-

mentally joining the system (every 10 seconds)
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Fig. 7: Average end-to-end latency perceived by all users using
different edge selection approaches

(b) performs better than (a) since resource contention is fairly
balanced to all edge nodes. However, resource-aware selection
cannot identify the network heterogeneity between users and
nodes to tradeoff resource availability and faster networking
channel. Our approach (c) can assign all users a low-latency
edge node by combining networking and processing perfor-
mance probing. And we can see that dynamic load balancing
happens due to the proactive multi-node (TopN) connections,
where some of the users switch their selected edge nodes
during the processing when a better option is found upon
varying workloads.

Comparison to optimal selection: We next compare the
different edge selection approaches to optimal selection. Fig-
ure 7 shows the average performance after all users join the
system (after 150 seconds in Figure 6). We calculate the
optimal edge assignment for this specific configuration based
on the application profile on three types of EC2 instance we
use and the emulated network setup. The figure shows that
our approach has about 12% higher latency than the optimal,
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Fig. 9: Influences of varying T'opN values from 1 to 5 over the node churn experiment. (a) is the total number of probing
requests sent by all users. (b) is the number of test workload invocations by all users. (c) is the average latency calculated
between 60 -120 seconds. (d) is the latency standard deviation across all users indicating system fairness

as compared to 102% and 51% higher respectively for the
locality-based and resource-aware selection approaches.

2) Static users with high edge node churn: In the second
emulation experiment, we apply a high node churn to edge
nodes (along with distribution changes) to examine dynamic
load balancing behavior of our approach. We configure differ-
ent TopN values to explore its influence on the fault tolerance,
system overhead, user-side latency and fairness performance.
The number of users is static for simplicity.

Experimental setup: To model the node churn of volunteer
edge nodes, we assume that the probability of nodes joining
the system every 30 seconds follows the Poisson distribution
(k = 4 edge nodes). Arriving nodes are randomly assigned
a timestamp (second) in each 30 seconds period. And the
lifetime of edge nodes is modeled using Weibull distribu-
tion (average lifetime = 50 seconds). We randomly select
a configuration from multiple runs of this process, which
results in a total of 18 edge nodes over a 3-minute timeline
as shown in Figure 8 (grey stair line). Then we randomly
match 18 simulated edge nodes with 18 AWS ec2 instances
(8 x t2.medium, 8 x t2.xlarge, 2 x t2.2xlarge) which are
configured in the same way as section V-D1 with 10 static
users (10 x t2.micro).

Performance trace: Figure 8 shows the average perfor-
mance of 10 static users (TopN = 3) at each timestamp,
along with the number of alive nodes over time based on
our node churn model. It gives us the correlation between
average performance and edge resource availability. Whenever
new edge nodes join the system (upward steps), the average la-
tency correspondingly decreases within seconds. This implies
effective dynamic load balancing since users can immediately
discover and switch to newly joined edge nodes, benefiting
from the periodic performance probing approach. When edge
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Fig. 10: Fault tolerance. (a) shows latency difference between
proactive and reactive connections upon failure. (b) shows the
number of edge failures with varying TopN value.

nodes leave the system (downward steps), the average latency
does increase but there is no service disruption, since a second
best backup edge node can immediately take over the workload
without any service downtime to users.

Effect of TopN: Based on the same node churn model,
we run the experiment multiple times using different T'op/N
values to explore its influences on the following factors:

System overhead: The system overhead of probing is
primarily due to the number of test workload runs on the edge
nodes. Figure 9 (a) shows that the number of probing requests
increases linearly with T'op/N value, however, the increase in
number of test workload invocation is much smaller (Figure 9
(b)). This is because test workload is invoked upon 3 scenarios
referring to node state changes, while probing requests only
access the cache to fetch the historical data.

Overall performance: Figure 9 (c) shows that the overall
end-to-end latency for different Top N values are fairly close
with TopN = 3 slightly better than the others. They have
similar performance since they can all benefit from the peri-
odic performance probing mechanism. Even TopN = 1 can



obtain a fresh edge node every period of time and compare
its performance with the current node to decide if a better-
performing option is available. Higher T'opN can enhance
this benefit by probing more options to locate the best choice.
However, there is a point of diminishing returns as overhead
begins to outpace any benefit beyond TopN = 3. In our
experiments, T'opN = 3 has worked well.

Fairness: Figure 9 (d) shows the standard derivation of av-
erage performance. Higher values refers to higher performance
variation and lower fairness across all the users. While all 5
TopN values can deliver similar latency performance, lower
TopN values lead to weak system fairness due to less probing
options during the selection process.

Fault tolerance: Figure 10 (a) shows the latency differ-
ence between reactive connection (re-connect) and proactive
connection (our approach) upon node failure. We regard the
re-connect situation as a failure since it leads to an unac-
ceptable delay gap for latency-critical applications. It only
happens when all backup edge nodes fail simultaneously in
our approach.

Figure 10 (b) shows the number of failures experienced by
all users under different T'opN values. TopN = 1 stands for
0 backup edge nodes on the user side, which corresponds to
common user-to-edge policies. We can see that T'opN = 2
can dramatically reduce the number of failures with 1 backup
edge node in our node churn model. Starting at TopN = 3,
the number of failures can be reduced to 0.

VI. CONCLUSION

In this paper, we gave a detailed discussion of volunteer
resource characteristics in the edge computing landscape, and
proposed the use of geo-distributed heterogeneous edge-dense
environments. We used this new edge resource model to
formulate a latency optimization problem. We then presented
a distributed edge selection solution that leverages client-
centric views to identify the environment heterogeneity and
optimize global average end-to-end latency. We validated the
effectiveness of the proposed approach in both real-world and
emulation environments, and showed that our approach can
deliver near-optimal performance in a dynamic environment.
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