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Abstract—This work considers a random sample
X1, X2, ..., Xn drawn independently and identically
distributed from some known parent distribution PX with
X(1) ≤ X(2) ≤ . . . ≤ X(n) being the order statistics of the
sample. Under the assumption of an invertible cumulative
distribution function associated with the parent distribution
PX , a distribution-free property is established showing that
the f -divergence between the joint distribution of order
statistics and the product distribution of order statistics does
not depend on PX . Moreover, it is shown that the mutual
information between two subsets of order statistics also satisfies
a distribution-free property; that is, it does not depend on PX .
Furthermore, the decoupling rates between X(r) and X(m)

(i.e., rates at which the mutual information approaches zero)
are characterized for various choices of (r,m). The work
also considers discrete distributions, which do not satisfy the
previously-stated invertibility assumption, and it is shown that
no such distribution-free property holds: the mutual information
between order statistics does depend on the parent distribution
PX . Upper bounds on the decoupling rates in the discrete
setting are also established.

I. INTRODUCTION

Consider a random sample X1, X2, . . . , Xn drawn indepen-
dently and identically distributed (i.i.d.) from some known
parent distribution PX . Let the random variables X(1) ≤
X(2) ≤ . . . ≤ X(n) represent the order statistics of the sample.
In this work, we are interested in studying the dependence
between X(I1) and X(I2) where I1 and I2 are two arbitrary
subsets of {1, . . . , n} and X(Ik) = {X(i)}i∈Ik , for k ∈ {1, 2}.
In particular, we choose to use the f -divergence and mutual
information as measures of such dependence.

Our contributions and paper outline are as follows. In
Section II, we consider the f -divergence and the mutual
information of order statistics when the sample is drawn
from a large family of parent distributions, namely, the set of
all distributions having an invertible cumulative distribution
function (cdf). Under this assumption, we show that the f -
divergence between the joint distribution and the product
distribution, as well as the mutual information between X(I1)

and X(I2) do not depend on the parent distribution, for
every finite n. We compute the exact value of the mutual
information for the case I1 = {r} and I2 = {m}, for
integers 1 ≤ r < m ≤ n. Furthermore, we characterize
the rates of decoupling between X(r) and X(m) (i.e., rates
at which the mutual information approaches zero) for various
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choices of (r,m). For example, we show that the minimum
and maximum (i.e., (r,m) = (1, n)) decouple at a rate of
1
n2 while the median and maximum decouple at a rate of
1
n . In Section III, we consider discrete distributions, which
do not satisfy the invertibility assumption of Section II. In
comparison to the results in Section II, we show that in the
discrete setting, the mutual information between X(r) and
X(m) does depend on the parent distribution. Nonetheless,
we prove that the results in Section II can still be used as
upper bounds on the decoupling rates in the discrete setting.
Finally, to provide some comparisons, we compute the mutual
information between X(r) and X(m) for the case when the
parent distribution comes from the Bernoulli distribution.

Related Work. Order statistics have a broad range of appli-
cations including survival and reliability analysis, life testing,
statistical quality control, filtering theory, signal processing,
robustness and classification studies, radar target detection,
and wireless communication. A comprehensive survey of
applications of order statistics can be found in [1].

The distributional aspects of order statistics are well-studied
in probability theory, and there exist several books on this
theory [2]. Information measures of the distribution of or-
der statistics have also received some attention. For exam-
ple, the authors of [3] showed conditions under which the
differential entropy of the order statistics characterizes the
parent distribution. Other information measures that have been
considered on the distribution of order statistics include the
Rényi entropy [4], [5], the cumulative entropies [6], the Fisher
information [7].

Distribution-free properties for information measures on or-
der statistics have also been observed in the past. For instance,
the authors of [5], for continuous distributions, have shown
that the Rényi divergence between order statistics and their
parent distribution does not depend on the underlying parent
distribution. The authors of [8], for continuous distributions,
have shown that the average entropy of the individual order
statistics and the entropy of the parent distribution do not
depend on the underlying parent distribution. The authors of
[9], for continuous distributions, have shown that the mutual
information between consecutive order statistics is indepen-
dent of the parent distribution provided.

Notation. We use [n] to denote the collection {1, 2, . . . , n}.
Logarithms are assumed to be in base e. The notation D

= de-
notes equality in distribution. The harmonic number, denoted



as Hr, is defined as follows. For r ∈ N,

Hr =

r∑
k=1

1

k
. (1)

We also define, for r ∈ N,

Tr = log(r!)− rHr. (2)

The Euler-Mascheroni constant is denoted by γ ≈ 0.5772.
Let f : (0,∞)→ R be a convex function such that f(0) = 1.
Then, for two probability distributions P and Q over a space
Ω such that P � Q (i.e., P is absolutely continuous with
respect to Q), the f -divergence is defined as

Df (P‖Q) =

∫
Ω

f

(
dP

dQ

)
dQ. (3)

II. THE CASE OF DISTRIBUTIONS WITH INVERTIBLE CDFS

In this section, we consider a setting in which the cdf of
a parent distribution is an invertible function (i.e., bijective
function). Several classes of probability distributions satisfy
this property. For example, all absolutely continuous distri-
butions with a non-zero probability density function (pdf) –
which are also those studied the most in conjunction with
order statistics [10] – satisfy this property since the cdfs are
strictly increasing and, hence, have an inverse. A non-example,
however, is the set of discrete distributions with step functions
for their cdfs, which do not have a proper inverse.

A. Distribution-Free Property for the f -divergence

We begin our study on the dependence structure of order
statistics by showing that a large class of divergences, namely
the f -divergence, have the following distribution-free property:
if the cdf of the parent distribution is invertible, then the f -
divergence between the joint distribution of order statistics and
the product distribution of order statistics does not depend on
the parent distribution.

Theorem 1. Fix a subset I ⊆ [n] and assume that
X1, . . . , Xn i.i.d. ∼ PX , with PX having an invertible cdf.
Then,

Df

(
P{X(i)}i∈I

∥∥∥∏
i∈I

PX(i)

)
=Df

(
P{U(i)}i∈I

∥∥∥∏
i∈I

PU(i)

)
,

(4)
where P{X(i)}i∈I and

∏
i∈I PX(i)

are the joint distribution
and the product distribution of the sequence {X(i)}i∈I , re-
spectively; (U(1), . . . , U(n)) are the order statistics associated
with the sample (U1, . . . , Un) i.i.d. ∼ U(0, 1), where U(0, 1)
denotes the uniform distribution over (0, 1); and P{U(i)}i∈I
and

∏
i∈I PU(i)

are the joint distribution and the product
distribution of the sequence {U(i)}i∈I , respectively.

Proof: Let F−1
X be the inverse cdf of the parent distri-

bution PX . Recall that for (U1, . . . , Un) i.i.d. ∼ U(0, 1), we
have (X1, . . . , Xn)

D
= (F−1

X (U1), . . . , F−1
X (Un)). Then, since

F−1
X (·) is order preserving (see [2, eq.(2.4.2)]), we have

X(I) = {X(i)}i∈I
D
= {F−1

X (U(i))}i∈I . (5)

Since FX is a one-to-one mapping and the f -divergence is
invariant under invertible transformations [11, Thm.14], we get

Df

(
P{X(i)}i∈I

∥∥∥ ∏
i∈I

PX(i)

)
= Df

(
P{F−1

X (U(i))}i∈I

∥∥∥ ∏
i∈I

PF−1
X (U(i))

)
= Df

(
P{U(i)}i∈I

∥∥∥ ∏
i∈I

PU(i)

)
. (6)

This concludes the proof of Theorem 1.
We note that computing the f -divergence in (4) requires

the knowledge of the joint distribution of {U(i)}i∈I for any
subset I. The joint pdf of this sequence can be readily
computed and is given by the following expression [2]: let
I = {(i1, i2, . . . , ik) : 1 ≤ i1, i2, . . . , ik ≤ n} where |I| = k,
then, P{U(i)}i∈I is non-zero only if −∞ < x(i1) < x(i2) <
. . . < x(ik) <∞, and, when this is true, its expression is

P{U(i)}i∈I = cI

k+1∏
t=1

[
x(it) − x(it−1)

]it−it−1−1
, (7)

where x(i0) = x(ik+1) = 0, and, with i0 = 0 and ik+1 = n+1,

cI =
n!∏k+1

t=1 (it − it−1 − 1)!
.

The next result, the proof of which is in the Appendix,
evaluates the Kullback-Leibler (KL) divergence, which is a
special case of the f -divergence with f(x) = x log(x).

Proposition 1. Under the assumptions of Theorem 1, where
I ⊆ [n] with |I| = k, we have that

DKL

(
P{U(i)}i∈I

∥∥∥ ∏
i∈I

PU(i)

)
=

k∑
t=2

(Tit−1 − Tit−it−1−1) +

k−1∑
t=1

Tn−it − (k − 1)Tn. (8)

In particular,
(Whole Sequence). For I = [n], we have that

DKL

(
P{U(1),...,U(n)}

∥∥∥ n∏
i=1

PU(i)

)
= 2

n∑
t=2

Tt−1 − (n− 1)Tn.

(Min and Max). For I = {1, n}, we have that

DKL

(
P{U(1), U(n)}

∥∥∥PU(1)
PU(n)

)
= log

(
n− 1

n

)
+

1

n− 1
.

Using the result of Proposition 1, we can study convergence
rates of the KL divergence when n→∞. For example, when
I={1, n}, we have that

lim
n→∞

n2DKL

(
P{U(1), U(n)}

∥∥∥PU(1)
PU(n)

)
= lim
n→∞

n2

[
log

(
n− 1

n

)
+

1

n− 1

]
=

1

2
,

where the last equality follows by using the Maclaurin series
for the natural logarithm. Thus, when the KL divergence is
considered, the joint and product distributions of the minimum
and maximum converge at a rate equal to 1/n2.



B. Distribution-Free Property for the Mutual Information

Here we consider the mutual information measure, which
we have recently shown to be a suitable base measure to
quantify the level of informativeness that a subset of order
statistics contains on the random sample X1, X2, . . . , Xn [12].
In particular, as a special case of the approach used for the
proof of Theorem 1, we have the following result.

Corollary 1. Assume that X1, . . . , Xn i.i.d. ∼ PX , with PX
having an invertible cdf and fix two sets I1, I2 ⊆ [n]. Then,

I(X(I1);X(I2)) = I(U(I1);U(I2)), (9)

where X(Ik) = {X(i)}i∈Ik and U(Ik) = {U(i)}i∈Ik both for
k ∈ {1, 2}. Consequently, I(X(I1);X(I2)) is not a function of
PX , the parent distribution of X . Moreover, for r < m,

I(X(r);X(m)) = Tm−1 + Tn−r − Tm−r−1 − Tn. (10)

Proof: The proof of (9) follows along the same lines as
the proof of Theorem 1 and relies on the invariance of the
mutual information to one-to-one transformations.

To compute (10), recall that the mutual information can be
written as a KL divergence, and then using the result in (8)
of Proposition 1, we obtain

I(U(r);U(m)) = DKL(PU(r),U(m)
‖PU(r)

PU(m)
)

= Tm−1 + Tn−r − Tm−r−1 − Tn.

This concludes the proof of Corollary 1.
We notice that if I1 ∩ I2 6= ∅ then I(X(I1);X(I2)) =

I(U(I1);U(I2)) =∞. Moreover, since the mutual information
is symmetric, the result also holds for r > m.

Remark 1. For other measures of dependence of random
variables, the distribution independence property of Corol-
lary 1 does not necessarily hold. For example, as demonstrated
in [13, Appendix B], the covariance of a pair of order statistics
from a sample drawn according to an exponential distribution
with rate λ is

Cov(X(1), X(2)) = 1/(λ2n2). (11)

The result in (10) in Corollary 1 is stated in terms of
factorials and harmonic numbers, as captured by the T ’s
defined in (2). In the following lemma (see [13, Appendix C]
for the proof), we provide an alternative formulation for these
T ’s that will be helpful for the large sample size analysis.

Lemma 1. For k > 0,

Tk = klog

(
2k

2k + 1

)
+

1

2
log(2πk)− (1 + γ)k − e(k), (12)

Tk+1 − Tk = log

(
2k + 2

2k + 3

)
− (1 + γ) +

1

k + 1
− c(k), (13)

where
k

24(k + 1)2
− 1

12k
≤ e(k) ≤ 1

24k
− 1

12k + 1
, (14)

1

24(k + 2)2
≤ c(k) ≤ 1

24(k + 1)2
. (15)

C. Large Sample Size Asymptotics of Mutual Information

Using Corollary 1 and the approximations in Lemma 1, we
now study the rates of decoupling of the order statistics as the
sample size grows. In particular, we have the next theorem,
which is proved in [13, Appendix D].

Theorem 2. Under the assumptions of Corollary 1:
1) (rth vs. Max). Fix some r ≥ 1 independent of n. Then,

lim
n→∞

n2I(X(r);X(n)) = r/2. (16)

2) (rth vs. mth). Fix some 1 ≤ r < m independent of n.
Then,

lim
n→∞

I(X(r);X(m)) = Tm−1 − Tm−r−1 + (1 + γ)r. (17)

3) (k-Step). Fix some k ≥ 1. Then,

lim
n→∞

I(X(n−k);X(n)) = log(k)−Hk−1 + γ

= log

(
k

k + 1
2

)
+

1

k
− c(k).

(18)

4) (bαnc vs. dβne). Fix 0 < α < β < 1, with (α, β)
independent of n. Then,

lim
n→∞

I(X(bαnc);X(dβne)) =
1

2
log

(
β(1− α)

β − α

)
. (19)

5) (bαnc vs. Max). Fix some 0 < α < 1 with α independent
of n. Then,

lim
n→∞

nI(X(bαnc);X(n)) =
α

2(1− α)
. (20)

Some interesting special cases of the above results include
the following:

1 step: lim
n→∞

I(X(n−1);X(n)) = γ, (21)

Q3 vs. Max: lim
n→∞

nI(X(b 3n4 c)
;X(n)) =

3

2
, (22)

Median vs. Max: lim
n→∞

nI(X(bn2 c);X(n)) =
1

2
, (23)

Q1 vs. Max: lim
n→∞

nI(X(bn4 c);X(n)) =
1

6
. (24)

For comparison, Fig. 1 demonstrates how the median decou-
ples from the maximum for finite values of n.

Remark 2. We compare the rate of decoupling of the mutual
information I(U(r);U(m)) for integers r < m to that of the
covariance between U(r) and U(m) given by [2],

Cov(U(r), U(m)) =
r(n−m+ 1)

(n+ 1)2(n+ 2)
. (25)

Note that, although this comparison is somewhat unfair as
the covariance only captures correlation, it can still be used
as a proxy for measuring independence. From Table I, we
observe that the rates of decoupling of the mutual information
and covariance are always different. Moreover, we also note
a surprising behavior for Cases 2-4: although the mutual
information does not decouple, the covariance goes to zero
either at a rate 1/n2 (Cases 2-3) or at a rate 1/n (Case 4).
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Fig. 1. Convergence of nI(X(bn
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c);X(n)) (Median vs. Max) to (23).

Finally, by comparing Case 4 and Case 5, we observe that
there is a phase transition at β = 1, i.e., in Case 4 (0 < β < 1)
the mutual information does not decouple, whereas in Case 5
(β = 1) it decouples at a rate 1/n.

Cov(U(r), U(m)) I(U(r);U(m))

Case 1: m = n 1/n3 1/n2

Case 2: (m, r) fixed 1/n2 No decoupling
Case 3: r = n− k and m = n 1/n2 No decoupling
Case 4: r = bαnc and m = dβne 1/n No decoupling
Case 5: r = bαnc and m = n 1/n2 1/n

TABLE I
RATES OF DECOUPLING FOR Cov(U(r), U(m)) AND I(U(r);U(m)).

III. THE CASE OF DISCRETE DISTRIBUTIONS

In this section, we consider the case when the parent distri-
bution is discrete. Historically, order statistics with a discrete
distribution have received far less attention than those with
a continuous distribution. However, recently, since discrete
distributions naturally occur in several practical situations
(e.g., image processing), discrete order statistics have started
to receive more attention in the literature [14], [15].

The mutual information of discrete order statistics often
behaves differently from that of continuous order statistics.
For example, while order statistics X(1) ≤ X(2) ≤ . . . ≤ X(n)

from a continuous distribution form a Markov chain [2], for
the case of discrete distributions, the order statistics form a
Markov chain if and only if the parent distribution has at most
two points in its support [10].

The next theorem (see [13, Appendix E] for the proof)
shows that, unlike in the case of continuous order statistics,
when the parent distribution is discrete, the mutual information
between X(r) and X(m) can indeed depend on the parent
distribution.

Theorem 3. Suppose that the parent distribution is Bernoulli
with parameter p ∈ (0, 1). Then, for r ≤ m, we have that

I(X(r);X(m)) = −P (B ≥ m) log (P (B ≥ r))

+(P (B ≥ r)−P (B ≥ m))log

(
P (B ≥ r)−P (B ≥ m)

P (B ≥ r)(1−P (B ≥ m))

)
− (1− P (B ≥ r)) log (1− P (B ≥ m)) , (26)
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n = 11

Fig. 2. I(X(1);X(n)) in (27) versus p ∈ (0, 1).

where B is Binomial(n, 1− p). Consequently,

I(X(1);X(n))

= −(1− p)n log (1− pn)− pn log (1− (1− p)n)

+ (1−pn−(1− p)n) log

(
1− pn − (1− p)n

(1− pn)(1− (1− p)n)

)
. (27)

Theorem 3 provides an example of a discrete parent distribu-
tion (i.e., Bernoulli with parameter p ∈ (0, 1)) for which the
mutual information does depend on the parent distribution (i.e.,
parameter p). For illustration, Fig. 2 shows the dependence of
I(X(1);X(n)) in (27) over p ∈ (0, 1).

The fact that the mutual information does depend on the
parent distribution prevents us from having universal results
similar to those derived in Section II. However, the results in
Section II can still be used as upper bounds as we show next.

Theorem 4. Assume that X1, . . . , Xn i.i.d. ∼ PX , with PX
having an arbitrary parent distribution. Then,
• (f-divergence). For I ⊂ [n],

Df

(
P{X(i)}i∈I

∥∥∥ ∏
i∈I

PX(i)

)
≤Df

(
P{U(i)}i∈I

∥∥∥ ∏
i∈I

PU(i)

)
,

(28)
• (Mutual Information). For I1, I2 ⊂ [n],

I(X(I1);X(I2)) ≤ I(U(I1);U(I2)). (29)

Proof: The proof relies on the data processing inequality.
Due to space constraints we only show it for I(X(r);X(m)).

We start by defining the quantile function as F−1
X (y) =

sup{x : FX(x) ≤ y}. As discussed in the proof of Theorem 1,
for an arbitrary parent distribution [2, eq.(1.1.3)],

(X(r), X(m))
D
= (F−1

X (U(r)), F
−1
X (U(m))), (30)

thus I(F−1
X (U(r));F

−1
X (U(m))) = I(X(r);X(m)). Moreover,

I(U(r);U(m)) ≥ I(F−1
X (U(r));F

−1
X (U(m))) = I(X(r);X(m)),

where the inequality uses the data processing inequality for
the mutual information since U(r) → U(m) → F−1

X (U(m))
and F−1(U(r))→ U(r) → F−1

X (U(m)) are Markov chains.
The bound in (29) is appealing since all the results de-

rived in Section II (e.g., Theorem 2) can be used to ob-
tain upper bounds on I(X(r);X(m)) for any arbitrary par-
ent distribution. However, the bound in (29) can be very
suboptimal. For example, as shown in Fig. 3, we have that



limn→∞ I(X(n−1);X(n)) = 0 for the Bernoulli case, while
limn→∞ I(U(n−1);U(n)) = γ, computed in (21).

Remark 3. Theorem 4 can be generalized to arbitrary non-
overlapping subset of order statistics. Moreover, it can be
generalized to f -divergences.

0 10 20 30 40 50
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I(X(n−1);X(n)) in (26)
I(U(n−1);U(n)) in (10)

Fig. 3. I(X(n−1);X(n)) in (26) and I(U(n−1);U(n)) in (10) versus n.

APPENDIX

The computation for an arbitrary I ⊆ [n] with |I| = k
proceeds as follows. First, notice

DKL

(
P{U(i)}i∈I

∥∥∥ ∏
i∈I

PU(i)

)
(a)
= E

[
log

(
cI
∏k+1
t=1

[
U(it) − U(it−1)

]it−it−1−1∏k
t=1 cit U

it−1
(it)

(1− U(it))
n−it

)]
,

where (a) follows by using the expression of the joint dis-
tribution in (7) and PU(r)

(x) = cr x
r−1 (1 − x)n−r, where

cr = n!
(r−1)!(n−r)! . Then, we simplify further as follows,

DKL

(
P{U(i)}i∈I

∥∥∥ ∏
i∈I

PU(i)

)
= log

(
cI

k∏
t=1

c−1
it

)
−

k∑
t=1

(it − 1)E[log(U(it))]

−
k∑
t=1

(n− it)E[log(1− U(it))]

+
k+1∑
t=1

(it − it−1 − 1)E[log(U(it) − U(it−1))]

= log
(
cI

k∏
t=1

c−1
it

)
−

k∑
t=1

(it − 1)(ψ(it)− ψ(n+ 1))

−
k∑
t=1

(n− it)(ψ(n+ 1− it)− ψ(n+ 1))

+

k+1∑
t=1

(it − it−1 − 1)(ψ(it − it−1)− ψ(n+ 1)), (31)

where we have used the fact that U(m) ∼ Beta(m,n+1−m)
and 1−U(r) ∼ Beta(n+ 1− r, r) with the difference U(m)−
U(r) ∼ Beta(m− r, n− (m− r) + 1). Then, (see, e.g., [2]),

E
[
log(U(m))

]
= ψ(m)− ψ(n+ 1),

E
[
log(1− U(r))

]
= ψ(n+ 1− r)− ψ(n+ 1),

E
[
log(U(m) − U(r))

]
= ψ(m− r)− ψ(n+ 1),

where ψ(·) is the digamma function and where we use the
convention that U(0) = 0 and U(n+1) = 1. Finally, collecting
terms and using the result of (31), we have

DKL

(
P{U(i)}i∈I

∥∥∥ ∏
i∈I

PU(i)

)
(a)
= log

(
cI

k∏
t=1

c−1
it

)
+

k+1∑
t=1

(it − it−1 − 1)ψ(it − it−1)

−
k∑
t=1

(it − 1)ψ(it)−
k∑
t=1

(n− it)ψ(n+ 1− it)

+ ψ(n+ 1) (k(n− 1)− (n− k))

(b)
= −

k+1∑
t=1

Tit−it−1−1+

k∑
t=1

Tit−1+

k∑
t=1

Tn−it−(k−1)Tn, (32)

where the labeled equalities follow from: (a) the fact that∑k+1
t=1 (it − it−1 − 1) = ik+1 − i0 − (k + 1) = n − k,

where we recall that i0 = 0 and ik+1 = n + 1; and (b)
using the identity ψ(n) = Hn−1 − γ, with γ being the Euler-
Mascheroni constant, noting that the terms that multiply γ
cancel out, and using the definition of Tn from (2). The result
in (8) comes from canceling the terms Ti1−i0−1 = Ti1−1 and
Tik+1−ik−1 = Tn−ik from (32). The special cases of I = [n]
and I = {1, n} can be found in [13, Appendix A].
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