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Abstract—This paper considers the problem of recovering the
permutation of an n-dimensional random vector X observed in
Gaussian noise. First, a general expression for the probability
of error is derived when a linear decoder (i.e., linear estimator
followed by a sorting operation) is used. The derived expression
holds with minimal assumptions on the distribution of X and
when the noise has memory. Second, for the case of isotropic
noise (i.e., noise with a diagonal scalar covariance matrix), the
rates of convergence of the probability of error are characterized
in the high and low noise regimes. In the low noise regime, for
every dimension n, the probability of error is shown to behave
proportionally to σ, where σ is the noise standard deviation.
Moreover, the slope is computed exactly for several distributions
and it is shown to behave quadratically in n. In the high noise
regime, for every dimension n, the probability of correctness is
shown to behave as 1/σ, and the exact expression for the rate
of convergence is also provided.

I. INTRODUCTION

The problem of recovering data permutations from noisy
observations is becoming a common task of modern commu-
nication and computing systems. For example, systems based
on data sorting operations, such as a recommender system or
a data analysis system, make use of the data permutations
and leverage the information that can be obtained from the
data ordering. In particular, recommender systems clearly
utilize the sorting information in order to optimize their next
recommendation. As for the case of a recommender system,
data analysis systems are also often interested in rankings of
massive data sets rather than in the exact values of the data. In
such systems, users may desire to enclose their data when it
contains sensitive information. A common solution to privatize
individual data is to add a sufficient amount of random noise
to guarantee the desired privacy level [1]. However, adding too
much noise can render the task of recovering a permutation
impossible as the data will be too noisy. Therefore, for a given
noise level, it is important to understand the fundamental limits
of the recovering data permutations problem.

In this work, following preliminary works in [2] and [3], we
study the problem of permutation recovery in the framework
of an M -ary hypothesis testing. The specific goal of this paper
is to study fundamental limits of such problem under the
constraint that a linear decoder (i.e., linear estimator followed
by a sorting operation) is employed. Studying linear decoders
is interesting for several reasons. First, as it was shown in [2]
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linear decoders are optimal (i.e., they lead to the smallest
probability of error) when the noise is isotropic, and the
distribution of the input data is exchangeable. Second, the
optimal decoder can be linear even if the noise is colored;
see [3] for the exact conditions. Third, linear decoders have at
most polynomial complexity in the data dimension and hence,
they are suitable for practical implementations.

The structure of the paper is as follows. In Section II, we
introduce the notation and we formally define the problem. In
Section III, we characterize the probability of error when linear
decoders are used. The derived expression holds with minimal
assumptions on the distribution of the data and holds when the
noise has memory. In Section IV, we utilize the expression for
the error probability derived in Section III and we characterize
the asymptotic behavior of the probability of error for the
isotropic noise case (i.e., when the noise covariance matrix is
a diagonal scalar matrix) in the low and high noise regimes.
For example, we show that the probability of error linearly
increases in σ (i.e., the standard deviation of the noise) in the
low noise regime (i.e., when σ → 0). We derive the exact
slope and we show it to be at most a quadratic function of the
data dimension for a general class of distributions. In addition,
we show that the behavior of the probability of correctness in
the high noise regime (i.e., when σ → ∞) is proportional to
1
σ , and we characterize the exact slope.

A. Related work

Permutation associated estimation problems have recently
gained significant importance and are studied in various
fields [4]–[18]. The ranking (e.g., data permutation) estimation
problem under a joint Gaussian distribution was investigated
in [4]–[7]. In particular, in [4] the author considered a pairwise
ordering for the bivariate case; the extended version to the
n-dimension was considered in [5]. The generalization of
the assumption of a Gaussian distribution to an elliptically
contoured distribution can be found in [6], [7]. The authors
in [4]–[7] analyzed the structure of the covariance matrix that
maximizes the probability of correctness of such estimation
problems using the minimum mean square error (MMSE)
estimator. In [3], the MMSE estimator was shown to be the
only linear estimator that achieves the minimum probability
of error for the ranking estimation problem. Most of recent
works study a problem based on a linear regression frame-
work premultiplied by an unknown permutation matrix, which
suitably models the problem with unknown labels. In [8], the



feature matching problem in computer vision was formulated
as a permutation recovery problem. The multivariate linear
regression model with an unknown permutation was studied
in [9], [10]. The authors provided necessary and sufficient
conditions on the signal-to-noise ratio for an exact permutation
recovery and characterized the minimax prediction error. The
isotonic regression without data labels, namely the uncoupled
isotonic regression, was discussed in [11]. Data estimation
given randomly selected measurements – referred to as unla-
beled sensing – was studied in [12]–[14]. In [12], the authors
characterized a necessary condition on the dimension of the
observation vector for uniquely recovering the original data
in the noiseless case. A generalized framework of unlabeled
sensing was presented in [15]–[17]. The estimation of a sorted
vector based on noisy observations was proposed in [18],
where the MMSE estimator on sorted data was characterized
as a linear combination of estimators on the unsorted data.

II. NOTATION AND FRAMEWORK

Notation. Boldface upper case letters X denote vector random
variables; the boldface lower case letter x indicates a specific
realization of X; Xi:n denotes the i-th order statistics of X;
‖X‖ is the norm of X; [n1 : n2] is the set of integers from
n1 to n2 ≥ n1; In is the identity matrix of dimension n; 0n
is the column vector of dimension n of all zeros; calligraphic
letters indicate sets; |A| is the cardinality of A; for A and B,
A \ B is the set of elements that belong to A but not to B,
A∩B is the set of elements that belong both to A and B, and
A∪B is the set of elements which are in either set. For a set
S ⊆ Rn, Vol(S) denotes the volume, i.e., the n-dimensional
Lebesgue measure. For two n-dimensional vectors x and y,
if for all i ∈ [1 : n], the i-th element of x is larger than or
equal to the i-th element of y, then we use x ≥ y. Finally,
the multiplication of a matrix A by a set B is denoted and
defined as AB = {Ax : x ∈ B}.

We consider the framework in Fig. 1, where an n-
dimensional random vector X ∈ Rn is first generated accord-
ing to a certain distribution and then passed through an additive
noisy channel with Gaussian transition probability, the output
of which is denoted as Y. Thus, we have Y = X + N, with
N ∼ N (0n,KN) where KN is the covariance matrix of the
additive noise N, and where X and N are independent.

In this work, we are interested in studying the probability of
error of the “data permutation recovery” problem formulated
in [2], [3] that, given the observation of Y, seeks to retrieve
the permutation (among the n! possible ones) according to
which the vector X is sorted. Specifically, this problem can
be formulated within a hypothesis testing framework with
n! hypotheses Hπ, π ∈ P , where P is the collection of all
permutations of the elements of [1 : n], and where Hπ is the
hypothesis that X is an n-dimensional vector sorted according
to the permutation π ∈ P , that is

Hπ = {x ∈ Rn : xπ1
≤ xπ2

≤ · · · ≤ xπn}, (1)

Data
Generator +

N ∼ N (0n,KN)

Decoder
Hπ̂,
π̂ ∈ P

Hπ? , π? ∈ P
Ground Truth

X

Fig. 1. Graphical representation of the considered framework.

with xπi , i ∈ [1 : n] being the πi-th element of x, and πi, i ∈
[1 : n] being the i-th element of π. Given this, the optimal
decoder in Fig. 1 will output Hπ̂, π̂ ∈ P such that

Hπ̂ : π̂ = argmin
π∈P

{Pr (Hπ 6= Hπ?)}, (2)

where π? denotes the permutation according to which the
random vector X is sorted. In particular, the decoder will
declare that the input vector x ∈ Hπ if and only if the
observation vector y ∈ Rπ,KN

, where Rπ,KN
, π ∈ P are

the so-called optimal decision regions1, which can be derived
by leveraging the maximum a posterior probability (MAP)
criterion [19, Appendix 3C] and are given by [2], [3]

Rπ,KN
=

y ∈ Rn : fY(y,Hπ) > max
τ∈P
τ 6=π

fY(y,Hτ )

 , (3)

where fY(y,Hπ) = fY(y|Hπ) Pr(Hπ) with fY(y|Hπ) de-
noting the conditional probability density function of Y given
that X ∈ Hπ . In order to guarantee that the collection
{Rπ,KN

, π ∈ P} is a partition of the n-dimensional space,
we assume that if y ∈ {Rπ,KN

, π ∈ S,S ⊆ P, |S| > 1}, then
one of the hypotheses Hπ, π ∈ S is arbitrarily selected.

III. PROBABILITY OF ERROR WITH LINEAR DECODER

In this section, we focus on characterizing the probability of
error of the data permutation recovery problem introduced in
Section II. Given the hypothesis and decision regions defined
in (1) and (3), we have that the error probability Pe is given by

Pe = 1− Pc, (4a)

Pc =
∑
π∈P

Pr ({Y ∈ Rπ,KN
} ∩ {X ∈ Hπ}) , (4b)

where Pc is the probability of correctness.
In particular, we assess the probability of error when a

linear decoder is employed. This decoder first computes a
permutation-independent linear transformation y` of y, i.e.,
y` = Ay+b, where A ∈ Rn×n and b ∈ Rn are the same for
all permutations, and then it outputs the permutation according

1The notation Rπ,KN
indicates that, in general, the decision regions might

be functions of the noise covariance matrix KN.



to which y` is sorted. The decision regions in (3) when a linear
decoder is used become

Rπ,KN
= AHπ + b, ∀π ∈ P. (5)

Our choice of assessing the probability of error performance
of a linear decoder stems primarily from its low complexity (at
most polynomial in n) compared to a brute force evaluation
of the optimal test (3), which has a practically prohibitive
complexity of n!. Moreover, for the case X ∼ N (0n, In) it has
been shown in [3] that a linear decoder is indeed optimal, i.e.,
it minimizes the probability of error, under certain conditions
on the noise covariance matrix KN.

We next derive an expression for the probability of error
when a linear decoder is used. Towards this end, for each
π ∈ P , we define a matrix Tπ ∈ R(n−1)×n such that

(Tπ)i,j = 1{j=πi+1} − 1{j=πi}, (6)

where 1{x=y} = 1 if and only if x = y and is equal
to zero otherwise. For instance, let n = 4 and consider
π = {4, 2, 1, 3}; then, we have that

T{4,2,1,3} =

 0 1 0 −1
1 −1 0 0
−1 0 1 0

 .
The theorem below provides an expression for the error
probability of the data permutation recovery problem when
a linear decoder is used.

Theorem 1. Let X be an exchangeable random vector2. Then,
for any invertible A and b defined in (5) and any noise
covariance matrix KN, the probability of error is given by

Pe=1− 1

n!

∑
π∈P

E
[
QK̃π

(
−TπA−1(X−b)

) ∣∣ X ∈ Hπ] , (7)

where K̃π = TπA
−1KNA

−TTTπ ∈ R(n−1)×(n−1) with
Tπ, π ∈ P given by (6), and where QK̃π(·) is the multivariate
Gaussian Q-function with covariance K̃π .

Proof: By substituting the decision regions in (5) in-
side (4) and by using the Bayes’ theorem, we obtain

Pc =
∑
π∈P

Pr (Y ∈ AHπ + b | X ∈ Hπ) Pr (X ∈ Hπ)

(a)
=

1

n!

∑
π∈P

Pr
(
X +K

1
2

NZ− b ∈ AHπ
∣∣∣X ∈ Hπ)

(b)
=

1

n!

∑
π∈P

E
[
Pr
(
X+K

1
2

NZ− b ∈AHπ
∣∣∣X)∣∣∣X∈Hπ] , (8)

where (a) follows from the fact that X is exchangeable
and hence, Pr(X ∈ Hπ) = 1

n! , ∀π ∈ P and letting
Z ∼ N (0n, In), and (b) is due to the law of total expectation.

2A sequence of random variables U1, . . . , Un is said to be exchangeable
if, for any permutation (π1, . . . , πn) of the indices [1 : n], we have that
(U1, . . . , Un) is equal in distribution to (Uπ1 , . . . , Uπn ).

We now focus on the conditional probability inside the
conditional expectation in (8). For each Hπ, ∀π ∈ P we have

Pr
(
X +K

1
2

NZ− b ∈ AHπ
∣∣∣ X)

= Pr
(
A−1(X− b) +A−1K

1
2

NZ ∈ Hπ
∣∣∣ X)

= Pr
(
A−1(X− b) + U ∈ Hπ

∣∣ X) , (9)

where the last equality follows by letting U = A−1K
1
2

NZ.
Note that U ∼ N (0n, A

−1KNA
−T ).

Then, given X, the event inside the conditional probability
in (9) can be expressed as{
A−1(X− b) + U ∈ Hπ

}
=

n−1⋂
k=1

{(
A−1(X−b)

)
πk
−
(
A−1(X−b)

)
πk+1
≤ Uπk+1

−Uπk
}

=
{
−TπA−1(X− b) ≤ TπU

}
, (10)

where the last equality follows by using the defini-
tion of Tπ, π ∈ P in (6). By introducing a ran-
dom vector Vπ = TπU ∼ N (0n−1, K̃π), where
K̃π = TπA

−1KNA
−TTTπ , we have an equivalent ex-

pression for (9) as Pr
(
X +K

1
2

NZ− b ∈ AHπ
∣∣∣ X) =

Pr
(
−TπA−1(X− b) ≤ Vπ

∣∣ X). By substituting this in-
side (8), we obtain

Pc =
1

n!

∑
π∈P

E
[
Pr
(
−TπA−1(X− b) ≤ Vπ

∣∣ X) ∣∣ X ∈ Hπ]
=

1

n!

∑
π∈P

E
[
QK̃π

(
−TπA−1(X− b)

) ∣∣ X ∈ Hπ] , (11)

where the last equality follows by letting QK̃π (·) be the
multivariate Gaussian Q-function with covariance QK̃π . We
conclude the proof of Theorem 1 by using Pe = 1− Pc.

We highlight that (7) holds with minimal assumption on the
distribution of X (i.e., exchangeability) and hence, it can be
used to study the error probability of the data permutation
recovery problem in various noise settings, e.g., noise has
memory, noise is isotropic. In the remaining of this paper,
we will focus on the isotropic noise scenario, i.e., we assume
that KN is a diagonal scalar matrix.

IV. ISOTROPIC NOISE

We here study the error probability of the data permutation
recovery problem when the noise is isotropic, i.e., KN =
σ2In. Under this assumption, the regions Rπ,KN

, π ∈ P in (5)
depends on KN only through the parameter σ and hence, we
let Rπ,KN

= Rπ,σ . Moreover, when X is exchangeable, it
has been shown in [2] that Rπ,σ = Hπ, π ∈ P , i.e., for the
isotropic noise setting the optimal decoder is indeed linear and
hence, the probability of error in Theorem 1 is the minimum.

In Section IV-A, we will evaluate the probability of error
Pe in (7) when KN = σ2In and then in Section IV-B and
Section IV-C, we will use this expression to derive the rates
of convergence of Pe in the low noise regime (i.e., σ → 0)
and high noise regime (i.e., σ →∞), respectively.



A. Probability of Error

Under the assumption KN = σ2In we have that Rπ,σ =
Hπ, π ∈ P [2] and hence, with reference to (5), we have that
A = In and b = 0n. Moreover, by substituting these values
inside K̃π ∈ R(n−1)×(n−1) in Theorem 1, we obtain

K̃π = TπA
−1KNA

−TTTπ = σ2TπT
T
π = σ2K̃,

(K̃)i,j =

 2 i = j,
−1 i = j + 1 and j = i+ 1,
0 otherwise,

(12)

that is K̃ ∈ R(n−1)×(n−1) is a tridiagonal Toeplitz matrix.
The probability of error in the isotropic noise scenario is

then given by the next corollary.

Corollary 1. Let X be an exchangeable random vector and
let KN = σ2In. Then, for an arbitrary π ∈ P , the probability
of error is given by

Pe = 1− E [Qσ2K̃(−TπX) | X ∈ Hπ] , (13)

where K̃ is defined in (12) and where Qσ2K̃(·) is the multi-
variate Gaussian Q-function with covariance σ2K̃.

Proof: By substituting the expression of K̃π in (12)
inside (7), we obtain

Pe = 1− 1

n!

∑
π∈P

E [Qσ2K̃ (−TπX) | X ∈ Hπ] . (14)

We note that σ2K̃ and the distribution of TπX | X ∈ Hπ are
independent of π ∈ P and hence, the conditional expectation
in (14) is constant in π ∈ P . Since |P| = n!, we obtain

Pe = 1− E [Qσ2K̃(−TτX) | X ∈ Hτ ] , (15)

where τ ∈ P can be arbitrary.
We note that (14) is a function of σ and hence, in what

follows we will use Pe(σ) to highlight this dependence.

B. Low Noise Asymptotic

We here focus on the asymptotic behavior of the probability
of error in the low noise regime (i.e., σ → 0). In particular,
the next result, proved in [20, Appendix A], shows that the
probability of error in this regime is approximately linear in σ.

Theorem 2. Let X consist of n i.i.d. random variables
generated according to X . Let X ′ be an independent copy
of X and assume that

fX−X′(x) <∞, ∀x ∈ R. (16)

Then,

lim
σ→0

Pe(σ)

σ
=

n−1∑
i=1

fWi
(0+)√
π

, (17)

where Wi = Xi+1:n −Xi:n, i ∈ [1 : n− 1].

Remark 1. The i.i.d. assumption on X in Theorem 2 can
be relaxed to the case of exchangeable X, provided that the
following holds: for 1 ≤ i < j ≤ n− 1,

fWi
(u) <∞, ∀u ∈ R+, (18a)

fWi,Wj
(u, v) <∞, ∀(u, v) ∈ R2

+. (18b)

Then, under these conditions, for the case of an exchangeable
X we have the same result as in Theorem 2.

Remark 2. The quantity fWi
(0+) in (17) can be computed

as follows [21]

fWi
(0+) =

n!
∫∞
−∞ F (x)i−1(1−F (x))

n−i−1
f2(x) dx

(i− 1)!(n− i− 1)!

=
n!E

[
U i−1 (1− U)

n−i−1
f(F−1(U))

]
(i− 1)!(n− i− 1)!

, (19)

where the last step uses the probability integral transformation
theorem and the quantile function theorem [22] with U ∼
Unif(0, 1).

We now show that, under the condition supx∈R fX(x) = c,
the asymptotic behavior of the probability of error in the low
noise regime for an i.i.d. X is upper bounded by O(n2). In
particular, we have the following lemma.

Lemma 1. Assume that supx∈R fX(x) = c, where c ∈ R is a
constant. Then,

lim
σ→0

Pe(σ)

σ
≤ cn(n− 1)√

π
. (20)

Proof: By using the expression in (19), we have that

fWi(0
+) =

n!E
[
U i−1 (1− U)

n−i−1
f(F−1(U))

]
(i− 1)!(n− i− 1)!

≤ c
n!E

[
U i−1 (1− U)

n−i−1
]

(i− 1)!(n− i− 1)!

= c
n!
∫ 1

0
xi−1 (1− x)

n−i−1
dx

(i− 1)!(n− i− 1)!

= c
n!

(i− 1)!(n− i− 1)!

Γ(n− i)Γ(i)

Γ(n)
= cn,

where Γ(·) is the gamma function and where the inequality
follows by using the bound f(F−1(U)) ≤ c = supx∈R f(x).
Hence, (17) can be upper bounded as

lim
σ→0

Pe(σ)

σ
=

n−1∑
i=1

fWi(0
+)√
π

≤ c (n− 1)n√
π

. (21)

This concludes the proof of Lemma 1.
We conclude this section by providing some examples

of (17) for a few distributions.
Example 1. Consider X ∼ Unif(a, b), 0 ≤ a < b <∞. Then,

lim
σ→0

Pe(σ)

σ
=

n(n− 1)

(b− a)
√
π
. (22)

The proof of (22) can be found in [20, Appendix D-A]. �



Example 2. Consider X ∼ Exp(λ), λ > 0. Then,

lim
σ→0

Pe(σ)

σ
=
λn(n− 1)

2
√
π

. (23)

The proof of (23) can be found in [20, Appendix D-B]. �
Example 3. Consider X ∼ N (0, 1). Then,

√
2n(n− 1)

6π
≤ lim
σ→0

Pe(σ)

σ
≤ n(n− 1)√

2π
. (24)

Note that the upper bound in (24) follows from Lemma 1,
where we used the fact that c = supx∈R f(x) = 1√

2π
.

For the lower bound we use the following inequality [23,
Lemma 10.1]:

f(F−1(u)) ≥
√

2

π
min{u, 1− u} ≥

√
2

π
u(1− u), (25)

where the last step follows since min{a, b} ≥ ab
a+b for all

a > 0, b > 0. Combining the expression in (19) and the bound
in (25), we arrive at the following lower bound,

fWi
(0+) ≥

√
2

π

n!E
[
U i (1− U)

n−i
]

(i− 1)!(n− i− 1)!
=

√
2

π

i(n− i)
(n+ 1)

, (26)

which implies the lower bound in (24). �

C. High Noise Asymptotic

We now focus on the asymptotic behavior of the probability
of error in the high noise regime (i.e., σ → ∞). It is not
difficult to argue that if X is exchangeable, then we have that

lim
σ→∞

Pe(σ) = 1− 1

n!
= Pe(∞). (27)

The interpretation is that if σ is large, then the output Y carries
no information of X, and the decoder can only rely on the prior
knowledge; hence, the best thing that the decoder can do is to
guess one of the n! hypotheses.

The next result, proved in [20, Appendix B], sharpens the
limit in (27) by finding the rate of convergence.

Theorem 3. Let X be an exchangeable random vector such
that E[‖X‖] <∞. Then,

lim
σ→∞

Pe(∞)− Pe(σ)
1
σ

=
1√
2π

n−1∑
i=1

αiE [Wi] , (28)

where Wi = Xi+1:n −Xi:n, i ∈ [1 : n− 1] and

αi =
Vol

(
E(0n−1, i) ∩H[1:n−1]

)
Vol (B(0n−1, 1))

, (29)

where H[1:n−1] is defined in (1), B(0n−1, 1) is the (n − 1)-
dimensional ball centered at the origin with unitary radius,
and E(0n−1, i) is the (n − 1)-dimensional ellipsoid centered
at the origin with unit radii along standard axes except a 1√

2
radius along the i-th axis.

Finding a closed-form expression for the αi’s in (29) does
not appear to be an easy task. In the next lemma, we provide
upper and lower bounds on the αi’s, which lead to expressions
that are amenable to computations.

Lemma 2. In the high noise regime, the convergence rate of
the probability of correctness can be bounded as

E [Rn]√
π(n− 1)!2

n
2
≤ lim
σ→∞

Pe(∞)− Pe(σ)
1
σ

≤ E [Rn]√
2π(n− 1)!

,

where Rn = Xn:n −X1:n.

Proof: We start by observing that

B(0n−1, 2
− 1

2 ) ⊂ E(0n−1, i) ⊂ B(0n−1, 1), (30)

that is, the ellipsoid E(0n−1, i): (i) contains the ball
B(0n−1, 2

− 1
2 ) since E(0n−1, i) has minimum radius equal to

2−
1
2 ; and (ii) is contained inside the ball B(0n−1, 1) since

E(0n−1, i) has maximum radius equal to 1.
Thus, from (30) we obtain

αi ≤
Vol

(
B (0n−1, 1) ∩H[1:n−1]

)
Vol (B(0n−1, 1))

=
1

(n− 1)!
, (31)

where the last equality follows since H[1:n−1] is a cone
that occupies a 1

(n−1)! portion of the space and hence,
Vol

(
B (0n−1, 1) ∩H[1:n−1]

)
= 1

(n−1)!Vol (B (0n−1, 1)).
Similarly, from (30) we obtain

αi ≥
Vol

(
B(0n−1, 2

− 1
2 ) ∩H[1:n−1]

)
Vol (B(0n−1, 1))

=
∣∣∣det

(
2−

1
2 In−1

)∣∣∣ Vol
(
B(0n−1, 1) ∩H[1:n−1]

)
Vol (B(0n−1, 1))

=
1

2
n−1
2 (n− 1)!

, (32)

where in the first equality we have used the facts that: (i)
2

1
2 In−1B(0n−1, 2

− 1
2 ) = B(0n−1, 1), (ii) 2

1
2 In−1H[1:n−1] =

H[1:n−1], and (iii) Vol(AS) = |det(A)|Vol(S) for any invert-
ible matrix A and any set S.

The proof of Lemma 2 is concluded by substituting 31
and (32) into (28) and by using the fact that

n−1∑
i=1

E[Wi] = E[Rn], (33)

where Rn = Xn:n −X1:n denotes the range [24] of X.
We conclude this section by providing some examples

of the range Rn for a few common distributions (see [20,
Appendix E] for the detailed computations). In particular,
these examples show that the term 1

(n−1)! dominates in the
expression of the rate for several distribution of interest.
Example 1. Consider X ∼ Unif(a, b), 0 ≤ a < b <∞. Then,

E[Rn] = (b− a)(n− 1)(n+ 1)−1.

Example 2. Consider X ∼ Exp(λ), λ > 0. Then,

E[Rn] =
1

λ

n−1∑
k=1

1

k
= O

(
1

λ
log(n)

)
. (34)

Example 3. Let X be γ2-sub-Gaussian3. Then [23],

E[Rn] ≤ 2
√

2γ2 log(n).

3A random variable X is γ2-sub-Gaussian if E[eλ(X−E[X])] ≤ eλγ2 for
all λ ∈ R.
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