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Abstract—This paper considers the problem of recovering
the ranking of a data vector from noisy observations, up to
a distortion. Specifically, the noisy observations consist of the
original data vector corrupted by isotropic additive Gaussian
noise, and the distortion is measured in terms of a distance
function between the estimated ranking and the true ranking
of the original data vector. First, it is shown that an optimal (in
terms of error probability) decision rule for the estimation task
simply outputs the ranking of the noisy observation. Then, the
error probability incurred by such a decision rule is characterized
in the low-noise regime, and shown to grow sublinearly with
the noise standard deviation. This result highlights that the
proposed approximate version of the ranking recovery problem
is significantly less noise-dominated than the exact recovery
considered in [Jeong, ISIT 2021].

I. INTRODUCTION

Today, ranking data is a pervading task in several appli-
cations, such as search engines [1], biomedical [2], recom-
mender systems [3]], feature matching [4]], and communication
systems [S[]. However, the data might be noisy, e.g., because
of privacy considerations [|6], users might desire to privatize
it with the addition of some noise, before sharing it with an
external data collector. Thus, it is paramount to understand the
impact of the noise on the performance of the ranking task.

In this paper, we propose an approximate version of the
ranking recovery problem that we introduced and studied
in [4], [7]. In particular, the problem in [4], [7] consists of
recovering the exact permutation (also ranking) according to
which an input data vector was sorted before being corrupted
by some additive noise. Here, we study a relaxed version of
this problem, namely we allow for some controlled distortion
in the estimation of the ranking (see Section [[I). In particular,
we focus on the case where the noise is isotropic Gaussian,
and we measure the distortion in terms of a distance function
between the estimated ranking and the true ranking of the
original data vector. We first show (see Section that an
optimal (in terms of error probability) decision rule for this
problem is given by the linear decoder proposed in [4], which
consists of simply declaring the ranking of the noisy observa-
tion. This decoder has a low complexity, namely polynomial
in the dimension of the data. Then (see Section , we study
the probability of error incurred in the low-noise regime when
the linear decoder is used. In particular, we show that the
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error probability grows sublinearly with the noise standard
deviation o. This is a notable difference with respect to the
exact version of the ranking recovery problem in [7], where
we showed that the error probability grows linearly with o.
This result highlights that the proposed approximate ranking
recovery problem is significantly less noise-dominated with
respect to exact recovery. All our derived results hold under
mild assumptions on the distance function and are satisfied by
widely used distance functions, such as the Hamming distance
and the Kendall’s tau rank distance.

A. Related Work

Recently, permutation relevant estimation problems have
gained significant importance and are investigated in a large
body of the literature [8]-[23[]. For a joint Gaussian distri-
bution, the ranking estimation problem was studied in [8[]—
[11]. A pairwise ordering estimation for the bivariate case
was considered in [8]], and its extended version to an arbitrary
dimension n was studied in [9]. The results were generalized
from the Gaussian assumption to an elliptically contoured dis-
tribution in [10], [[11]. In particular, the authors characterized
the condition for the covariance matrix that maximizes the
probability of correctness of such estimation problems using
the minimum mean square error (MMSE) estimator. Besides,
the MMSE estimator under the Gaussian noise assumption
was shown to be the only linear estimator that achieves the
minimum probability of error for the exact permutation (also
ranking) recovery problem in [4]. The estimation of a sorted
vector from some noisy observations was proposed in [23]].
In particular, the authors showed that the MMSE estimator on
the sorted data can be decomposed as a linear combination of
estimators on the unsorted data.

II. NOTATION AND PROBLEM FORMULATION
A. Notation and Definitions

Boldface upper case letters X denote vector/matrix random
variables; the boldface lower case letter x indicates a specific
realization of X; [ny : ng] is the set of integers from n; to
ng > ni; I, is the identity matrix of dimension n; 0, is
the column vector of dimension n of all zeros. Calligraphic
letters indicate sets; |.A| is the cardinality of A; 14 is the
indicator function; P,, is the set of all permutations of an n-

. . d e e
dimensional vector; = denotes equality in distribution; fx ()
is the probability density function of a random variable X.



Definition 1. We denote by mx the permutation of x € R"
such that

(Xﬂ'x)l <.. < (wa)na

where X, is the sorted version of x according to T € P, and
(xr); is the i-th element of x,, with i € [1 : n].

We denote by ry the rankin of x € R™ such that (rx);
indicates that x; is the (rx);-th smallest among the entries of
X. The set of all rankings of size n is denoted by R,.

Example 1. If x = (—2,3,—6,1,2), then we have
= = (3,1,4,5,2), and rx = (2,5,1, 3,4).

S (Xﬂ-x)i S

(D

Definition 2. For any two rankings ry € R, and ry € R,
the Hamming distance between v, and r+ is defined as

i (ru,1v) = [{i : (ta)i # (00)i}] = D L{ra)£(r0)i}-
=1

Definition 3. For any two rankings ry € R, and r, € R,
the Kendall’s tau rank distance between ry and r is de-
fined as

dK(ruer) = |{(Z7]) : Z < ja
sgn((ru)i — (ru);) # sgn((rv)i — (rv);)},
where sgn denotes the sign function.

Example 2. Let n = 4 and v = (1,3,2,4). To have

du(rx,ry) = 2 we need

ry € {(1,3,4,2),(1,4,2,3),(1,2,3,4),
(3,1,2,4),(2,3,1,4),(4,3,2,1)},

whereas to have di (rx,ry) = 1, we need
ry € {(2, 3,1, 4), (17 2,3, 4), (17 4,2, 3)}

B. Preliminaries and Known Results

We consider the following model,

Y =X+N, 2)

where X € R" is any exchangeable random vector] and N ~
N(0,,0%I,), with X and N being independent.

In this work, we study the ranking recovery problem where
the goal is to estimate ry given the noisy observation y under
the model in ). In [4], [[7]], we considered this problem under
an exact ranking recovery constrainﬂ i.e., we were interested
in recovering the exact ranking according to which the input
data vector X was sorted. In particular, in [4]], [[7] we showed
that the decision rule, referred to as decoder in the remaining
of the paper, that minimizes the error probability consists of
declaring ry to be equal to the ranking r, of y. Because

I'There exists a one to one mapping between permutation and ranking. In
particular, the mapping is 7.}, and it holds that 7r, = rx and mr, = mx.

2A random vector X € R™ is said to be exchangeable if X 2 pX for
any permutation matrix P of dimension n.

3To be more precise the problem considered in [4], [[7]] is that of permutation
recovery. However, ranking recovery and permutation recovery are equivalent
under the exact recovery constraint.

of this structure, this optimal (in terms of error probability)
decision rule was referred to as linear decoder. More formally,
let ¢ : R* — R, denote the decoder. In [4], [[7], we showed
that, for any value of the noise standard deviation o, for the
exact ranking recovery we have that

¢lin € argmin P, (¢, o) = argmin Pr(¢(Y) #rx), (3)
] [

where ¢iin(y) = ry, and Pe(¢,0) = Pr(¢(Y) # rx) is the
probability of error incurred for o € R, when the decoder
¢ is applied. In [7], we also characterized P.(¢yn,0) in
the low-noise (i.e., ¢ — 0), and high-noise (i.e., 0 — ©0)
regimes. Notably, in the low-noise regime, we showed that the
probability of error is linear in o, i.e., P.(iin, 0) & co with a
coefficient ¢ that can be proportional to n2. This result shows
that the exact ranking recovery problem is noise dominated
and hence, the estimation task can be difficult to implement
in practice. Followed by this observation, a natural question
arises: How does the approximate recovery problem, where a
fixed number of errors are allowed, perform? We next formally
define the approximate ranking recovery problem.

C. Approximate Ranking Recovery

Different from the exact ranking recovery, in the approx-
imate version of the problem, a fixed number of errors is
allowed in the recovery of the ranking ry. To formulate this
problem, we let d : RfL — R, be a distance function,
which measures the distance (e.g., Hamming in Definition [2]
Kendall’s tau in Definition [3) between two rankings. In par-
ticular, in order to consider a proper distance function, d has
to satisfy the following two assumptions:

Al: d(ry,ry)=0 if and only if r,, = ry; and
A2: d(ry,ry)=d(Pry, Pry) for any permutation matrix P.

We then define the ball with respect to d centered at re €

R, with radius ¢, namely

Bd(rcag) = {rx € Rn : d(rC7rx) S €}7 (4)

where ¢ is referred to as distortion threshold and denotes the
maximum number of errors that are allowed.

Example 3. Consider the case n = 4, for which |R4| = 24.
Let d be the Hamming distance in Definition |2| and ¢ = 2.
For re = (1,2,3,4), we have that

BdH (I‘C, 2) - {(]w 2, 3a4)7 (L 2,4, 3)7 (173> 274)v (27 1, 374)a
(3, 2,1, 4)7 (4, 2,3, 1)7 (1,4, 3, 2)} ,

where the first ranking in By, (v, 2) is v (hence, it has zero
Hamming distance), whereas all the other rankings are at
Hamming distance equal to two from re.

The approximate ranking recovery problem is the estimation
task for which we seek to recover ry with a certain distortion,
measured by d, up to a threshold equal to ¢. This problem
can also be seen as estimating x € By(ry, ¢) from the noisy
observation y. Fig. [I] provides a graphical representation of
the approximate ranking recovery problem. We note that due
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¢(Y) —}f‘xEBd(rx,g)

N ~ N(0,,0%1,)

Fig. 1. Graphical representation of the problem framework.

to the assumption setting ¢ = 0 in By(rx, £) recovers the
exact version of the problem studied in [4], [7].

We are here interested in analyzing the error probability of
the approximate ranking recovery problem, which is given by

Pe((rbvdvg) = PI‘(d(I‘X’ ¢(Y)) > E) (5)

In particular, our focus will be on characterizing an optimal
(i.e., that minimizes (B)) decoder (see Section [[I), and on
understanding how (3] varies with respect to the noise standard
deviation o € R, (see Section [[V).

III. OPTIMAL DECODER FOR APPROXIMATE RECOVERY

We here characterize an optimal decoder for the approxi-
mate ranking recovery problem, i.e., a decoder that incurs the
minimum error probability in (B) in the estimation task. With
the definition in (5), an optimal decoder Popt 18 given by

¢opt S argmax Pc(¢v d7£)7 (6)
¢

where P.(¢,d,?) is the probability of correctness defined as
PC(¢7d7€) = Pr(d(l‘x, ¢(Y)) < E)
= Pr(¢(Y) € Ba(rx, (). @)

As a first result, the following lemma presents a sufficient
condition for a decoder ¢ to be optimal.

Lemma 1. If, forally € R", a decoderé : R — R, satisfies

o(y) € Ba(r,0), 7= argmaxpry vy (1ly), @)

NERn

P.(¢,d,0).

Proof: By using the law of total probability, we can write
the probability of correctness in (7) as

then, QZ) € argmax

Pe(¢,d,0)= > Pr(¢(Y) € By(7,0),rx = 7)
TERR
= ZPr Y) € By(7,0) | rx = T) prx (T)
TERR

> > Pr(a(Y

TERn wEBY(T,L)

Y >/

TER, weBqy(r,6) Y YEDe

) =w|rx =7) pex(7)

lerx Y|T) prx( ) dy

USY | vl ©)

TERn weBq(r,8) Y YEDw

where (a) follows by defining D, = {y € R" : ¢(y) = w}
for all w € R, and (b) is due to the Bayes’ theorem.

In order to find an optimal decoder ¢,p¢, according to @,
we need to maximize P.(¢,d,¢) with respect to ¢. Equiva-
lently, with reference to (9), we need to design the decision
regions D,’s so as to maximize P.(¢,d,¢). Towards this
end, we note that, for any w € By(r,¢), if we design D,
such that an observation y € D,,, then the term p,, v (7]y)
contributes to the integral in (9). For an optimal decoder ¢,
we have to guarantee that, for any observation y € R”,
the corresponding max,cr, Pry|y (1|y) contributes to (9. It
therefore follows that a sufficient condition for a decoder ¢
to be optimal is that, for any observation y € R™ such that
T = argmax,cr. Prx|y(n|y), we assign y to D,, where
w € By(7,£). This concludes the proof of Lemma [1] |

By leveraging Lemmal|l] we are now ready to prove our first
main result, which shows that the linear decoder ¢iin(y) = ry
is indeed optimal for the approximate recovery problem.

Theorem 1. Let X € R" be exchangeable and N ~
N(0,,0%I,), and suppose that the assumption holds.
Then, for any ¢ > 0, we have that

¢1n € argmax P.(¢,d, £). (10)
¢
Proof: We consider the Maximum a Posteriori (MAP)
decision rule [24], i.e.

dmap(y) = argmax pry v (7]y)- (1)

NERR
We note that the assumption [Al|implies that w € By(w, ¢) for
all w € R,,. Thus, under this assumption, the sufficient condi-
tions in (8) in Lemma|T]are satisfied and hence, it is guaranteed
that ¢gpap € argmax, P.(¢,d, ), ie., dpap is an optimal
decoder. In [4]], [7] we showed that, for any exchangeable
X € R" and N ~ N(0,,0%1,), we have ¢y, = ¢pap. This
readily implies that ¢y;,, € argmax,, P.(¢,d, £), and concludes
the proof of Theorem [ ]

Remark 1. The assumption [A1] in Theorem [I| for the opti-
mality of the linear decoder is very mild and is known as the
identity of indiscernibles. The assumption[A2]is also mild. We
indeed note that widely adopted distance functions, such as
the Hamming distance in Definition [2| and the Kendall’s tau
rank distance in Definition 3| satisfy these conditions.

IV. P.(¢iin,d, ) VERSUS o

Theorem [I] shows the optimality (in terms of error prob-
ability) of the linear decoder. In this section, we study the
probability of error incurred by such a linear decoder, namely
P.(¢1in,d, ¢), as a function of the noise standard deviation
o € R;. In particular, different from the exact ranking recov-
ery problem (where in the low-noise regime, the probability

4We note that ¢pap(y) in (TI) might not be unique; if this is the case,
then we randomly select one of these possible choices.



of error is linear in o [7]]), we show that for the approximate
version of the problem P.(¢yn,d,¥) exhibits a sublinear
behavior in o in the low-noise regime (see Theorem [2). This
result is also shown in Fig. [2] (which was obtained by using
Monte Carlo simulations with 106 iterations), and it highlights
that relaxing the constraint of exact recovery indeed leads to
a significantly less noise-dominated problem.

We next introduce and define a few quantities that we will
need in the proof of our result. In particular, we borrow the
notation and definitions that we have introduced in [7].

Definition 4. Let X € R™ be a random vector. The i-th order
statistics [25]] of X (i.e., the i-th smallest value of X) satisfies

Then, we say that the i-th spacing of X is [26|]
Wi = Xi—i—l:n - in (13)

We now state the following lemma, the proof of which can
be found in Appendix [A]

Lemma 2. Let X € R" be exchangeable, N ~ N (0,,,021,,),
and 7 = (1,2,--- ,n). Assume that fw,(w) < oo, Yw, where
W; is defined in (13). Then,

. =l py (rY = plitl)y ‘ rx =T
lim

o—0 4 o
=1

= fw, (0F
):Z;fw;/% ),

where P49) s the permutation matrix of dimension n that
permutes the i-th and j-th rankings.

By leveraging Lemma [2] we can now prove the following
theorem, which is the second main result of the paper.

Theorem 2. Let X € R"™ be exchangeable and N ~
N(0,,,0%1,). Assume that fw,(w) < oo, Yw where W; is
defined in (13). Consider a distance function d satisfying the
assumptions [AT] and [A2} and let

d(r, POy = 6, 7= (1,..,n), Vie[l:n—1]. (14)

Then, if £ > B* = max;{;}, it holds that

1
lim — P.(¢in,d, ) = 0. (15)
oc—=0 0
Proof: We start by observing that
Pr(d(rx,ry) =k)
= ) Pr(d(rx,ry) = k,rx = 1)
NERn
S Pr(d(Pyrx. Prary) = ks Prgrx = 1)
NER
DS Pr(d(rx,ry) = kyrx = 7)
NERn
=n!Pr(d(rx,ry) =k,rx =7)
= Pr(d(rx,ry) =k | rx =7), (16)

where the labeled equalities follow from: (a) the fact that
(X,Y) = (X,X +N) £ (PX,PX + PN) = (PX, PY)

0.25
—¢dy,l=0
——dy, L =2
L d, =3
02 -O-dg,£=0
-G dg, =1
di, 0 =2
<°0.15
5
fi
Ay 0.1
0.05+
0e
o %1073
Fig. 2. Pe(¢1in,d,€) in @) versus o with d € {dp,dx} and ¢ €

{07 1,2,3}. We set X ~ N(Ou),]u)) and N ~ ./\/’(01070'2110).

for any permutation matrix P due to the exchangeability of
X and N, and letting P, be the permutation matrix that
permutes 7 into n; and (b) the assumption and the fact
that P, . P., = I, and P, .n = 7. By using (I6) we then
obtain

Po(¢rin,d,0) = > Pr(d(rx,ry) = k)

k>0
=> Pr(drx,ry) =k|rx =7)
k>0
® Z Pr(d(rx,rvy)=k|rx =7)
0<k<B*
+ Z Pr(d(rx,ry) =k |rx =7)
k>p*
= Y Pr(d(r,ry) =k|rx =7) + Pe(¢,d, 8*)
0<k<pB*

(b) "1 .
> > Pr(ry=POHr | rx = ) + P(6,d, %), (17)
i=1

where (a) follows by letting 3* = max;c[1.,—1){/3:}, and (b)

is due to (T4).

From [7, Theorem 2], we know that

n—1
1
ilgb ;Pe(d)nn,dvo) = Zl 7

and from Lemma 2] we have

' 1 n—1 - n—1 f (0+)
lim — Pr (r = plithr |l py = T) = IWil
c—=0 0 ; Y x ; ﬁ
Thus, the two facts above, together with (I7), imply
that limy_o £ Pe(¢n,d, 3*) = 0. We conclude the proof
of Theorem by noting that for any ¢ > fB*, we
have that P.(¢in,d,?) < P.(¢1n,d,*), which implies
limg,_q %Pe(qblin,d,f) =0 for all ¢ > 5*. |




Remark 2. The 1/o0 in Theorem [2| is used to prove the
sublinear behavior of P, in the low-noise regime (i.e., the
limit in (I3) is indeed zero). Theorem [2] implies that in the
low-noise regime, errors occur dominantly by interchanging
the two entries that are neighbors in terms of ranking. This is
because for any 7 € R, the region H, = {x € R" : ryy = 7}
has the n — 1 regions H, with n = P+ § e [1:n—1]
as neighbors.

We conclude this section with two corollaries on the two
practically relevant distances in Definition 2] and Definition [3}

Corollary 1. For any ¢ > 2, we have that

P .
lim e(¢1m7dH7Z)

o—0 o

=0.

Proof: For any i € [1:n— 1] and 7 € R,,, we have that
dp (1, P&+ 1) = 2 = B* Thus, for any £ > B* = 2, we
have that (T3) in Theorem [2] holds. This concludes the proof
of Corollary [1] [ |

Corollary 2. For any ¢ > 1, we have that

lim Pe (¢1in7 dK) ‘e)

o—0 o

=0.

Proof: The Kendall’s tau rank distance satisfies the
assumptions [AT] and [A2] and has S* = 1. Hence, from
Theorem 2] for any ¢ > 1 we have that (T3) in Theorem [2]
holds. This concludes the proof of Corollary [2} ]

APPENDIX A
PROOF OF LEMMA [2]

Weleté’( )—{}/z 1 <Y;+1}H{Y;+1 <Y}ﬂ{Y <
Yiiot,and Z; 2 [1 :n — 1]\ {i — 1,4,7 + 1}. We have,

(Y < Ve } n&(Y) T)
Vi <Wi}n&X+N)
{

<t s
E (

te
gPr(

Z
Z
Z

Pr(ry = PO T |y

i

(Vi < Wi} NE(X +N)

te

)
)

i

(@)

= Pr(V; < -W;)

Pr (ﬂ (Vi < WINEF(V, W)
E€T;

ViS—Wz) , (18)

where the labeled equalities follow from: (a) the fact that 7 =
(1,2,--- ,n), and letting Pr(-|7) = Pr(-|rx = 7) for brevity;
(b) Definition 4| for which W; = X; 1 — X; and letting V; =
Ny — Nyyq; note that, with reference to Definition E| we have
that X;.,, 4 X, given the condition rx = 7; (c) noting that,

since N is exchangeable, the event & (X + N) is equal in
distribution to the event &;(X 4+ N) given as follows,

~ cl

E(X+N) (:){Xifl + N1 < X411+ Ni}
N{Xip1 +N; < X+ Nija }
N{X; + Nit1 < Xipo + Nija}

Dy < Wi Wi n{V < —wi)
NA{Viz1 < W; + Wit}

where (cl) follows by permuting N; and N,ii, and (c2)
follows since rx = 7 and by using Definition [ for W; =
Xty — Xy and V; = Ny — Ngyq; and (d) introducing
ENV, W) E{Viey < Wiy + Wik {Vigs < Wi + Wi},
and using the definition of conditional probability.

We now analyze the two probability terms in (T8)). The first
probability term in (T8) is

(7<)
ov2
-], @Gy et an
= / Q (u) fw, (V20u)V20 du,  (19)
0
where Q(-) is the standard Gaussian Q function, and the last

equality follows by a change of variable. By dividing (T9) by
o and taking 0 — 0, we obtain

Pr(V; < ~W;) =

;LQM 1)/ Q (u hm fw, (\fau)\[ du
- u + w = sz( )
—/O Q (u) fw,(0M)vV2 d RV (20)

where (a) follows from the dominated convergence theorem,
which is verifiable since fyw,(w) < sup fw,(w) < oo, and
J57 Q(u) du is integrable.

For the second probability term in (I8) we have,

;{%Pr (ﬂ Vi < WNEX(V, W) ViS_Wi>
teZ;
@ . % (5 < LW
- }_%Pr<ﬂ{‘7vtﬁwt}ﬁgz (O'V,W) ‘/lS Wz)
teL;
© @1)
where (a) follows by letting V = oV with V; = L(N, —
Ni¢i1), and (b) is due to the fact that W > 0,,_;.
By using (I8), (20) and (ZI)), we obtain
. Pr (ry = plitl) . | rx = T) fw, (0T)
lim = : ,
o—0 o ﬁ
and hence,
n—1 i n—1
P — pliitl) — (0t
fim r(ry T | rx ’7') _ Z fw, (07)
o—0 | g =1 \/E

This concludes the proof of Lemma [2]
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