
Identifying Reliable Machines for Distributed
Matrix-Vector Multiplication

Sarthak Jain, Martina Cardone, Soheil Mohajer
University of Minnesota, Minneapolis, MN 55455, USA, Email: {jain0122, mcardone, soheil}@umn.edu

Abstract—This paper considers a distributed computing frame-
work, where the task of T matrix-vector products is distributed
among n worker machines. External adversaries have access to
a subset L (the cardinality of which is |L|) of these machines,
and can maliciously perturb the result of each of their compu-
tations with probability α. To correctly recover each matrix-
vector product, the master has to identify a set (of a fixed
cardinality) of ‘unattacked’ worker machines. Towards this end,
this work proposes four schemes that aim at performing such an
identification. These schemes are analyzed and compared under
different regimes of (|L|, α) for the two cases when |L| is (1)
known or (2) unknown at the master.

I. INTRODUCTION

Matrix-vector multiplication is one of the most common
operations employed on large datasets and it is the driving
machinery behind most of the popular deep learning architec-
tures [1]. In this work, we consider a distributed computing
setting for performing a batch of T matrix-vector multiplica-
tions, where a subset of the worker machines can be attacked
by adversaries. We assume that these attackers are non-
communicating/non-colluding1. This assumption is reasonable
when the worker machines are geographically distributed. For
example, in online crowd-sourcing [3], [4], out of a potentially
large pool of internet users, the results from some of the
users might not be reliable. For such a distributed computing
setting, [5] derived a condition under which a matrix-vector
product can be correctly recovered by the master with a very
high probability. The condition is n − |L| > k, where n
is the total number of worker machines, L is the subset of
worker machines that the adversaries have access to, and k is
the factor by which matrices are split across the machines.
In this work, we extend this algorithm for the case when
T > 1 matrix-vector multiplications need to be computed.
In particular, during the t-th matrix-vector multiplication for
t ∈ {1, 2, . . . , T} := [T], each worker machine in the set L is
attacked with probability α, i.e., even though the adversaries
have access to all the machines in L, they can decide to
attack (i.e., perturb the result of their computation) only some
of them. During each t-th matrix-vector multiplication, the
master requires results from k+1 unattacked worker machines
for decoding purposes. We propose four schemes that can be
used by the master to find such a set of k + 1 machines: (1)
Not-Identify-Restart (NIR), (2) Not-Identify-Continue (NIC),

This research was supported in part by the U.S. National Science
Foundation under Grants CCF-1907785 and CCF-1849757.

1This is different from the setting considered in [2] where the attackers
can collaborate with each other.

(3) Identify-Restart (IR) and (4) Identify-Continue (IC), and
analyze/compare them under different regimes of (|L|, α). We
consider two cases depending on whether |L| is known or not
at the master and compare the schemes for both cases using
Monte-Carlo simulations. Furthermore, We also theoretically
analyze the IR scheme when |L| is known at the master.
Related Work. The algorithm proposed in [5] (for distributed
matrix-vector multiplication with non-colluding attackers) em-
ploys a coding scheme for distributing the sub-tasks among
worker machines. Coding has been extensively used in dis-
tributed computing settings to: (i) deal with stragglers or slow
worker machines [6]–[12]; (ii) reduce communication cost and
bandwidth usage [8], [13], [14]; (iii) ensure data privacy from
worker machines [2], [12], [14], [15]; and (iv) ensure resiliency
against collaborative attackers [2], [12], [15], [16]. Identifying
attacked worker machines is an important aspect of distributed
computing, especially when a large number of matrix-vector
multiplications have to be computed. If identified, the attacked
machines can indeed be removed from the system for future
computations. The authors in [5] proposed a strategy based on
group testing [17]–[19] for the identification of the attacked
machines. However, as we will show, since we consider
the case where multiple matrix-vector products need to be
computed and not all the machines in L may be attacked
during a particular matrix-vector multiplication, identifying
and removing all the attacked machines in every time-slot
might not be efficient for the run-time of the algorithm.
Paper Organization. Section II illustrates the framework pro-
posed in [5] and formulates the problem. Section III describes
our proposed schemes for identifying a set of unattacked
worker machines. Section IV and Section V analyze and
compare the performance of these schemes for the two cases
when |L| is known and unknown, respectively, at the master.

II. PROBLEM STATEMENT

We consider the problem of distributed matrix-vector prod-
uct computation2. The master node has to compute T matrix-
vector products B · xt for t ∈ [T], where B ∈ Fr×cq and
xt ∈ Fc×1q . The duration of time needed to compute B · xt is
called time-slot t. In order to improve the run-time of these
matrix-vector products, the task is divided among n worker
machines, which form the set N = [n]. In particular, the xt’s
are first stored in the n machines, and each machine is required
to compute matrix-vector products for smaller matrices with

2Operations take place over a finite field of dimension q.

Fig. 1: Four main phases in distributed matrix-vector product computation.
.

s = r/k rows (assuming k divides r) and then send the
result back to the master. To this end, the master first divides
the matrix B into smaller sub-matrices by using a set of
encoding functions f (i) : Fr×cq −→ Fs×cq , i ∈ [n]. The master
then distributes these smaller matrices among the n machines,
and the ith worker machine receives

W(i) = f (i)(B). (1)

For each t ∈ [T], the ith worker machine then computes
the matrix-vector product a

(i)
t = W(i) · xt, and sends

the result back to the master [8]. The master is able to
recover the original matrix-product from the output of any
group U ⊆ N of k machines. Let P(n, k) denote the
collection of all k-subsets of [n]. Then, there exists a de-
coding function g : P(n, k)×

(
Fs×1q

)k → Fr×1q that satisfies

g
(
U ,
{
a
(i)
t : i ∈ U

})
= B · xt.

A subset L ⊆ N of fixed but unknown unreliable machines,
with |L| = L, is accessed by a set of non-colluding/non-
communicating attackers, that may change the result of the
local computation at the corresponding machine with proba-
bility α in each time-slot t ∈ [T]. Hence, if i ∈ L, then

a
(i)
t =

{
W(i) · xt with probability 1− α,
Z

(i)
t with probability α,

where Z
(i)
t is a random noise, independent of Z(j)

t for j 6= i,
since the attackers are non-colluding. We let At ⊆ L be the set
of unreliable machines that are attacked at time slot t ∈ [T].

The coding scheme proposed in [5] guarantees (with very
high probability) a correct recovery of each matrix-vector
multiplication whenever n − k > L. In particular, in the
presence of unreliable machines, the master needs to first
identify a subset of k unattacked machines in each time slot,
and then apply the corresponding decoding function on their
output to retrieve the desired product. To this end, as pointed
out in [5], the master can perform a parity-check on the
output of a set of k + 1 machines to check if there is an
attacked machine in that set or not. More precisely, there exists
a parity-check function d : P(n, k + 1)× Fs(k+1)×1

q −→ Fs×1q ,
such that for each group U ⊆ N with |U| = k + 1 we
have d

(
U ,
{
a
(i)
t : i ∈ U

})
= 0 if and only if3 U ∩ At =

∅. Once an attacked machine is identified, the master can
mark it as unreliable and never use it in the future. With
this, we can denote by Nt the set of machines which are
not marked as unreliable by time-slot t ∈ [T]. Hence,
we have Nt⊆Nt−1⊆· · ·⊆N1=[n]. It is worth noting that

3This parity check is accurate when q � 1, which is our assumption
in this work. For finite q, a probability of error proportional to 1

q
has to be

accounted for in the analysis.

d
(
U ,
{
a
(i)
t : i ∈ U

})
depends on the set U , as well as on

the behavior of each individual machine in U at time-slot t.
For the sake of simplicity, we denote the parity-check function
by d(U ; t) in the rest of the paper.

Remark 1. From a time-complexity point of view, the al-
gorithm above can be divided into the four major phases
shown in Fig. 1. (i) In Phase 1, the total time complexity of
computing W(i) in (1) for all i ∈ [n] is O(nrc). However,
this computation is done only once, and we assume that T
is large enough to almost nullify this one-time overhead cost.
(ii) Phase 2 is carried out in parallel among the n machines
and costs O(rc/k). (iii) In Phase 3, each parity-check costs
O(r) [5]. The focus of this work is on finding algorithms to
reduce the number of parity-checks. Although this cost might
be lower than the cost of Phase 2, the parity-checks have to be
performed at the master (and not at the worker machines). This
can cause a bottleneck at the master if not efficiently handled,
depending on the master’s computing capabilities. (iv) Finally,
the decoding step in Phase 4 costs O(rk) computations.

III. UNATTACKED MACHINES IDENTIFICATION SCHEMES

In Phase 3 of time-slot t ∈ [T], the master aims to find a
set Gt ⊆ Nt of k + 1 unattacked worker machines, i.e., for
which d (Gt; t) = 0. Towards this end, the master could use
one of the following two strategies.
• Restart: In time-slot t ∈ [T − 1], the master randomly
samples (with replacement) sets of size k+1 from the setNt of
machines, until it finds an unattacked set Gt with d (Gt; t) = 0.
• Continue: In time-slot t ≥ 2, the master first uses the
unattacked group of the previous time-slot (i.e., Gt−1), and
checks d (Gt−1; t). If d (Gt−1; t) = 0, then it continues with
this group and sets Gt = Gt−1. Otherwise, it starts randomly
sampling sets of size k + 1 again to find an unattacked set.

Once the master has found an unattacked set Gt, it has the
option of identifying the attacked machines and marking them
as unreliable for future time-slots. Assume that the master
tries Ut,1,Ut,2, . . . ,Ut,m for which it gets d (Ut,i; t) 6= 0 for
i ∈ [m], until finding Ut,m+1 satisfying d (Ut,m+1; t) = 0.
Then, it could choose one of the two following strategies.
• Identify: The master identifies all the attacked machines
in the set Umt \ Ut,m+1 and removes them from future time-
slots, where Umt ,

⋃m
j=1 Ut,j . In order to check if a ma-

chine i ∈ Umt \ Ut,m+1 is attacked or not, the master computes
d(U ; t) for U = {i} ∪ U ′, where U ′ is an arbitrary subset of
Ut,m+1 of size k. Since the k machines in the set U ′ are
unattacked, then d(U ; t) = 0 if and only if i is unattacked.
• Not-Identify: The master never tries to identify or remove
the attacked worker machines in any time-slot.

Based on these options, we study four schemes, namely,
Not-Identify-Restart (NIR), Not-Identify-Continue (NIC),
Identify-Restart (IR), and Identify-Continue (IC). These
schemes are analyzed for the cases of known and unknown
L at the master, which are significantly different. To see this,
assume L is known at the master and all L unreliable machines
are identified by time-slot t. Then, it can safely use any set of
the remaining machines for future time-slots, with no further
parity-checks. However, this is not possible if L is unknown.

Remark 2. In our schemes, we verify a set of k+1 machines
at a time, which costs O(r). Differently, in [15], one machine
is verified at a time, which costs O(c+r/k) and hence, it takes
at least O(ck+r) computations to find k unattacked machines.
This becomes very expensive when c is either comparable to r
or greater than r. Moreover, when L is small, our schemes will
require very few parity-checks, whereas the scheme in [15] will
still need at least k parity-checks. Also, when L is unknown
at the master, once our schemes IR, NIC and IC converge,
the master needs to perform exactly one parity-check in all
the future time-slots. Differently, with the scheme in [15], the
master will need at least k parity-checks in every time-slot.

IV. L KNOWN AT THE MASTER

Let Fsch (n,L, α, T) be the expected value of the total
number of parity-check evaluations (see Phase 3 in Fig. 1) in T
time-slots for scheme sch ∈ {NIR,NIC, IR, IC}. Moreover,
we define F̃sch (n,L, α) = limT→∞ Fsch (n,L, α, T).

Remark 3. For every scheme sch ∈ {NIR,NIC, IC}, we have
F̃sch (n,L, α) → ∞ for 0 < α < 1. This is clear for NIR
and NIC since the master does not identify the unreliable
machines and hence, it has to evaluate one parity-check
function per time-slot. This leads to infinitely many parity-
checks as T →∞. For IC, there is a chance that the master
identifies all the L unreliable machines up to some time-slot
t and hence, it can trust all the remaining machines in future
time-slots without further checking. However, assume that the
master randomly selects a group of reliable machines G at
time t0 before identifying all the L unreliable ones. Then, it
will continue with G for which it will need to evaluate d (G; t)
for all t ≥ t0, which leads to infinitely many parity-checks.

IR is the only scheme for which F̃IR (n,L, α) converges to
a finite value. We next analyze this scheme theoretically. In
IR, the master repeatedly keeps sampling sets of size k + 1
from Nt until it finds a set Gt of k + 1 machines satisfying
d (Gt; t) = 0. Let m be the number of sets sampled before
such a set is found, that is, d (Ut,j ; t) 6= 0 for all j ∈ [m]
and Gt = Ut,m+1. The master already knows that the k + 1
machines in Gt are unattacked at time slot t. To check if a
given machine in Um+1

t \ Gt is attacked or not, the master
combines it with any k (out of the k + 1) machines of the
unattacked set Gt and computes the parity of this set4. Then,

4One can propose more efficient schemes, such as group-testing based
approaches to identify the attacked machines [5]. However, in this paper, we
consider a simple and naive scheme for the sake of brevity.

the given machine is attacked if and only if the parity is not
0. Hence, the total number of parity checks in time-slot t
is m+ 1 + |Um+1

t | − (k + 1). The following theorem (proof
in Appendix A) and corollary provide recursive closed-form
expressions for FIR (n,L, α, T) and F̃IR (n,L, α).

Theorem 1. Assume that L is known at the master, and
consider IR. Then, FIR (n,L, α, T) is given in (2), at the
top of the next page, where: (i) pn,` =

(
n−`
k+1

)
/
(
n
k+1

)
;

(ii) pn,L,α =
∑L
`=0

(
L
`

)
α`(1− α)L−`pn,`; and (iii) H (n, `, k)

and J(`, b, n, k) are defined in (9) and (11), respectively.

Corollary 1. As T grows unboundedly, FIR (n,L, α, T) con-
verges to F̃IR (n,L, α), which is defined recursively in (3) at
the top of the next page, where

E (n, `, k, α) = H (n, `, k) +
1

1− pn,L,α
− (k + 1) +

1

pn,`
.

Remark 4. In Fig. 2, we compare our schemes for finite T .
Each scheme is run for T = 100 time-slots for parameters
(n, k, α) = (24, 3, 0.5), where the average (over 5000 random
executions) numbers of parity-checks are plotted versus L.
Fig. 2 shows that, even for finite (but large enough) values
of T , IR outperforms the others. However, as L increases to
n− k− 1, IR and IC perform similarly. Fig. 3 compares (3)
against Monte Carlo numerical results from 5000 executions
of IR for n = 10, k = 3, L = 4, and T = 100. The 5th and
95th percentiles of the number of parity-check evaluations are
plotted for different values of α. From Fig. 3, we observe that
F̃IR (n,L, α) in (3), which is the exact expression for T →∞,
well approximates FIR (n,L, α, T) for finite values of T .

V. L UNKNOWN AT THE MASTER

When the master does not know L, it needs to perform at
least one parity-check for each t ∈ [T]. This implies that the
expected total number of parity-checks in T time-slots, de-
noted as Gsch (n,L, α, T), never converges as T →∞. How-
ever, as we argue next, δGsch (n,L, α, T) = Gsch (n,L, α, T)−
T converges as T →∞ for sch ∈ {NIC, IR, IC}.
• NIC: There always exists a finite time-slot t in which
the master samples a set Gt with Gt ∩ L = ∅. After this, in
each time-slot, the master continues with Gt forever. However,
since the master does not know that Gt is reliable, it has to
check the parity for Gt for each time-slot after t. Therefore,
δGNIC (n,L, α, T) converges to a finite value as T →∞.
• IR: There always exists a finite time-slot t by the end of
which the master will identify and remove all the machines
in L. After this, in each time-slot, the master performs only
one parity-check as any sampled set will be reliable. Thus,
δGIR (n,L, α, T) converges to a finite value as T →∞.
• IC: A finite time-slot t always exists in which the master
either finds a set Gt such that Gt∩L=∅, or identifies (and
removes) all the machines in L by the end of it. In both cases,
the master will continue with a group of reliable machines,
and has to perform only one parity-check in each slot after t.
Hence, as T→∞, δGIC (n,L, α, T) converges to a finite value.

FIR (n,L, α, T) =

L∑
`=1

(
L

`

)
α`(1− α)L−`

[
T∑
t=1

(
pt−1n,L,α(1− pn,`)

(
H (n, `, k) + t− (k + 1) +

1

pn,`

))

+
∑̀
b=1

pn,`J(`, b, n, k)

(
T∑
t=1

pt−1n,L,αFIR (n− b, L− b, α, T − t)

)]
,

(2)

F̃IR (n,L, α) =

L∑
`=1

(
L

`

)
α`(1− α)L−` (1− pn,`)

(1− pn,L,α)

(
E (n, `, k, α) +

∑̀
b=1

F̃IR (n− b, L− b, α) pn,`J(`, b, n, k)
1− pn,`

)
. (3)

5 10 15 20
101

102

103

L

A
ve

ra
ge

pa
ri

ty
ch

ec
ks

d
(·) NIR

NIC
IR
IC

Fig. 2: n = 24, k = 3, α = 0.5,
T = 100, L known.

0 0.2 0.4 0.6 0.8 1
0

200

400

α

N
um

be
r

of
pa

ri
ty

ch
ec

ks
d
(·) 5th and 95th

percentile

F̃IR(n,L, α)

Fig. 3: n = 10, k = 3, L = 4 known
at the master.

5 10 15 20
10−1

100

101

102

103

104

L

A
ve

ra
ge

ex
tr

a
pa

ri
ty

ch
ec

ks
d
(·)

NIR
NIC
IR
IC

Fig. 4: n = 24, k = 3, α = 0.5, T =
100, L unknown.

FIR (n,L, α, T) =

T∑
t=1

L∑
`=1

P
(
TB = t, At = `

){ ∞∑
m=1

P
(
Mt = m

∣∣TB = t, At = `
)[∑

c

P
(
Ct = c

∣∣Mt = m,At = `, TB = t
)

×

(
t+m+ (c− k − 1)+

∑̀
b=1

P
(
Bt = b

∣∣Mt = m,At = `, Ct = c
)
FIR (n− b, L− b, α, T − t)

)]}
. (4)

In Fig. 4, we compare the average (over 1000 executions
of the algorithm) of δGsch (n,L, α, T) in T = 100 time-
slots, for the four schemes as a function of L, for a system
with parameters (n, k, α) = (24, 3, 0.5). We observe that IC
performs the best when L is close to n − k − 1, whereas
NIC performs the best for small values of L. Note that
when L is small, it is very likely that the master selects a
reliable group in an early time-slot t� T , and continues with
that, rather than “wasting” parity-check evaluations to identify
the unreliable machines in IR or IC schemes. As L grows,
however, the chance of selecting a reliable group decreases and
hence, identifying and removing unreliable machines would
be a better strategy. Moreover, from Fig. 4 we note that
IR (which was the best scheme when L was known) is
generally no better than IC for the case of unknown L. This
is due to the infeasibility of identifying and removing “all”
the unreliable machines. Finally, we observe that NIR has
the worst performance, since it keeps sampling a random set
without removing the unreliable machines and hence, has a
positive probability of getting a non-zero parity (which leads
to additional parity-checks) for every time-slot.

APPENDIX A

We start by defining the following random variables.

1) TB : Time-slot in which the first set with an attacked
machine is sampled. If TB = t, then d(Uτ ; τ) = 0 for all
τ ∈ [t− 1], and d(U t; t) 6= 0.
2) At: Number of attacked machines in time-slot t. Hence, for
` ∈ [L], we have P(At = `) =

(
L
`

)
α`(1− α)L−`.

3) Mt: Number of sets sampled in time-slot t before sampling
an unattacked set. Ut,1, . . . ,Ut,Mt+1 are all the sampled sets
at time-slot t for which d (Ut,j ; t) 6= 0 for all j ∈ [Mt], and
d (Ut,Mt+1; t) = 0 and hence, Gt = Ut,Mt+1.
4) Ct (respectively, Bt): Number of distinct (respec-
tively, attacked) machines in the set

⋃Mt+1
j=1 Ut,j . Note that

Ct ≤ |Nt| ≤ |N |= n, and Bt ≤ At.

The recursive relation for FIR (n,L, α, T) is given in terms
of the above random variables in (4), at the top of this page.
There, we first condition the quantity of interest on the values
of TB and At. When TB = t, the first sets selected in time-
slots τ ∈ [t− 1] are unattacked and lead to d = 0; hence, we
have a total of t−1 parity-checks before time-slot t. At time t
with ` attacked machines, we may check m sets until we select
an unattacked set, leading to m + 1 additional checks. Next,
we identify the attacked machines in different sets in time-slot
t. To this end, we have to evaluate one parity-check for each
machine in Um+1

t \Ut,m+1. This leads to
∣∣ Um+1

t |−|Ut,m+1| =

c−k−1 parity-checks, since we know that the k+1 machines
in Ut,m+1 are unattacked. This allows to identify and remove
b unreliable machines from the pool. We will then continue
with n−b machines, out of which L−b are unreliable for the
remaining T − t time-slots.

We now compute the various probabilities in (4). To this
end, we define pn,` ,

(
n−`
k+1

)
/
(
n
k+1

)
to be the probability of

sampling an unattacked set from n machines when there are
` attacked machines. We then have,

P (TB = t, At = `) = P (At = `)P
(
TB = t

∣∣ At = `
)

=P(At=`)

(
t−1∏
τ=1

P(d (Uτ,1; τ)=0)

)
P(d (Ut,1; t) 6=0|At=`) .

We note that P(d (Ut,1; τ)=0|Aτ =j) = pn,j , and thus,

P(d (Uτ,1; τ)=0)=

L∑
j=0

P(Aτ =j)P(d (Uτ,1; τ)=0|Aτ =j)

=

L∑
j=0

P(Aτ =j) pn,j , pn,L,α,

which leads to evaluating P (TB = t, At = `). We also have

P(Mt = m
∣∣ TB = t, At = `)

=
P (d (Ut,m+1; t)=0|At=`)

∏m
j=1 P (d (Ut,j ; t) 6=0|At=`)

P (d (Ut,1; t) 6= 0|At=`)
= (1− pn,`)m−1 pn,`. (5)

This implies
∑∞
m=1mP

(
Mt=m

∣∣TB = t, At=`
)
= 1/pn,`.

Next, note that given Mt = m and At = `, the size of⋃m+1
j=1 Ut,j is independent of TB = t. Thus,∑
c

cP
(
Ct = c

∣∣Mt = m,At = `, TB = t
)

=
∑
c

cP
(
Ct=c

∣∣Mt=m,At = `
)
=E

[
Ct
∣∣Mt=m,At=`

]
=

∑
v∈(N\At)∪At

P
(
Iv=1

∣∣Mt=m,At=`
)
, (6)

where Iv = 1 if v ∈
⋃m+1
j=1 Ut,j and Iv = 0 otherwise, and

At with |At|=At is the set of attacked machines at t. For
v ∈ N \ At, we can evaluate P

(
Iv=0

∣∣Mt=m,At=`
)

as(
m∏
j=1

P
(
v /∈Ut,j

∣∣d (Ut,j ; t) 6= 0, At = `
))

× P
(
v /∈ Ut,m+1

∣∣ d (Ut,m+1; t) = 0, At = `
)

=

((
n−1
k+1

)
−
(
n−1−`
k+1

)(
n
k+1

)
−
(
n−`
k+1

))m (n−`−1k+1

)(
n−`
k+1

) , sm1 s0, (7)

where
(
n−`
k+1

)
and

(
n−`−1
k+1

)
are the numbers of ways to get an

unattacked set, and to get an unattacked set without machine
v, respectively. Thus,

(
n
k+1

)
−
(
n−`
k+1

)
and

(
n−1
k+1

)
−
(
n−`−1
k+1

)
are the numbers of ways to get an attacked set, and to get

an attacked set without machine v, respectively. For v ∈ At,
P
(
Iv = 0

∣∣Mt = m,At = `
)

is given by(
m∏
j=1

P
(
v /∈Ut,j

∣∣ d (Ut,j ; t) 6= 0, At = `
))

× P
(
v /∈ Ut,m+1

∣∣ d (Ut,m+1; t) = 0, At = `
)

=

((
n
k+1

)
−
(
n−`
k+1

)
−
(
n−1
k

)(
n
k+1

)
−
(
n−`
k+1

))m
, sm2 , (8)

where the second probability term is 1 because an attacked
machine v ∈ At can not be in an unattacked set Ut,m+1. More-
over,

(
n
k+1

)
−
(
n−`
k+1

)
and

(
n
k+1

)
−
(
n−`
k+1

)
−
(
n−1
k

)
are the numbers

of ways to get an attacked set, and to get an attacked set
without machine v ∈ At, respectively. Using (7) and (8), the
right-hand side of (6) becomes (n−`) (1− sm1 s0)+` (1− sm2).
Moreover, from (5) and (6) we have
∞∑
m=1

∑
c

cP(Mt = m,Ct = c|TB = t,At = `)

=

∞∑
m=1

(1−pn,`)m−1 pn,` E
[
Ct
∣∣Mt = m,At = `

]
= n− s0s1(n− `)pn,`

1−s1(1−pn,`)
− s2 ` pn,`
1−s2(1− pn,`)

, H (n, `, k). (9)

Finally, for Umt =
⋃m
j=1 Ut,j , we have∑

c

P
(
Ct = c,Bt = b

∣∣Mt = m,At = `
)

= P
(
Bt = b

∣∣Mt = m,At = `
)

=P
(∣∣Umt ∩ At∣∣=b∣∣∣{Ut,j ∩ At 6=∅, j ∈ [m]}, At=`

)
=

∑
B⊆At,|B|=b

P
(
Umt ∩ At=B

∣∣∣{Ut,j ∩ At 6=∅, j ∈ [m]}, At=`
)

(a)
=
∑
B⊆At

|B|=b

∑
S⊆B

(−1)b−|S|
m∏
j=1

P (Ut,j∩At ⊆S|Ut,j∩At 6=∅,At=`)

(b)
=

(
`

b

) b∑
i=1

(
b

i

)
(−1)b−i

((
n−`+i
k+1

)
−
(
n−`
k+1

)(
n
k+1

)
−
(
n−`
k+1

))m , (10)

where in (a) we used the inclusion-exclusion principle, and
in (b)

(
n−`+i
k+1

)
−
(
n−`
k+1

)
is the number of ways in which the

attacked set Ut,j for j ∈ [m] can have at most i specific
attacked machines. Furthermore, it is not difficult to see that,

∞∑
m=1

(1− pn,`)m P
(
Bt = b|Mt = m,TB = t

)
=

(
`

b

) b∑
i=1

(
b

i

)
(−1)b−i

((
n−`+i
k+1

)
−
(
n−`
k+1

)(
n
k+1

)
−
(
n−`+i
k+1

)
+
(
n−`
k+1

))
, J(`, b, n, k). (11)

Now that we have computed the various probability terms
of (4), after substituting them and simplifying we get the
recursive expression for FIR (n,L, α, T) given in (2), which
reduces to (3) when T →∞.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[2] Q. Yu, N. Raviv, J. So, and A. S. Avestimehr, “Lagrange coded
computing: Optimal design for resiliency, security and privacy,”
arXiv:1806.00939, 2018.

[3] “IBM World Community Grid,” https://www.worldcommunitygrid.org.
[4] “Folding@Home,” https://foldingathome.org.
[5] A. Solanki, M. Cardone, and S. Mohajer, “Non-colluding attacks iden-

tification in distributed computing,” in 2019 IEEE Information Theory
Workshop (ITW), 2019, pp. 1–5.

[6] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proceedings of
the 34th International Conference on Machine Learning (ICML), vol. 70,
2017, pp. 3368–3376.

[7] Q. Yu, M. A. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Inf. Processing Systems, 2017, pp. 4406–4416.

[8] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, 2018.

[9] A. B. Das and A. Ramamoorthy, “A unified treatment of partial
stragglers and sparse matrices in coded matrix computation,” 2021.
[Online]. Available: https://arxiv.org/abs/2109.12070

[10] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” in 2018 IEEE International Symposium on Information Theory
(ISIT), 2018, pp. 2022–2026.

[11] A. Behrouzi-Far and E. Soljanin, “Efficient replication for straggler
mitigation in distributed computing,” 2020. [Online]. Available:
https://arxiv.org/abs/2006.02318

[12] C. Hofmeister, R. Bitar, M. Xhemrishi, and A. Wachter-Zeh, “Secure
private and adaptive matrix multiplication beyond the singleton bound,”
2021. [Online]. Available: https://arxiv.org/abs/2108.05742

[13] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, 2018.

[14] S. Dutta, V. Cadambe, and P. Grover, “”short-dot”: Computing large
linear transforms distributedly using coded short dot products,” in
Proceedings of the 30th International Conference on Neural Information
Processing Systems, ser. NIPS’16, 2016, pp. 2100–2108.

[15] T. Tang, R. E. Ali, H. Hashemi, T. Gangwani, S. Avestimehr, and
M. Annavaram, “Adaptive verifiable coded computing: Towards fast,
secure and private distributed machine learning,” 2022. [Online].
Available: https://arxiv.org/abs/2107.12958

[16] S. Sahraei and A. S. Avestimehr, “Interpol: Information theoretically
verifiable polynomial evaluation,” 2019. [Online]. Available:
https://arxiv.org/abs/1901.03379

[17] R. Dorfman, “The detection of defective members of large populations,”
Ann. Math. Statist., vol. 14, no. 4, pp. 436–440, 12 1943.

[18] D.-Z. Du and H. FK, Combinatorial Group Testing And Its Applications,
2000, vol. 2nd ed. World Scientific Publishing Company.

[19] M. Cheraghchi, A. Hormati, A. Karbasi, and M. Vetterli, “Group testing
with probabilistic tests: Theory, design and application,” IEEE Trans. on
Inf. Theory, vol. 57, no. 10, pp. 7057–7067, 2011.

