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Abstract—The Ziv-Zakai bound is a well-known lower bound
on the minimum mean squared error. This letter analyzes the
performance of this bound in the practically relevant high-noise
regime for a broad family of observation models. The goal is to
understand whether this bound is tight, and in which scenarios
it should be used. It is shown that, while the Ziv-Zakai bound is
tight for a certain class of symmetric distributions, in general, it
is not tight in the high-noise regime.

I. INTRODUCTION

A classical Bayesian estimation problem seeks to estimate a
realization of a random variable X from the noisy observation
Y!. In this work, we assume that X is a scalar random vari-
able?, and Y can be an arbitrary random object (i.e., random
vector or random process). The minimum mean squared error
(MMSE) is defined and denoted by

mmse(X|Y) = E [(X — E[X|Y])?], (1)
where E[-] denotes the expected value. The MMSE is by far
the most popular fidelity criterion for assessing the quality of
estimating X from Y. However, the MMSE is often difficult
to compute and one needs to rely on bounds. The focus
usually falls on the lower bounds as these are typically much
more difficult to derive than the upper bounds. The latter are
usually derived by considering suboptimal estimators, e.g.,
linear estimators [3], [4] or stochastic estimators [5].

Several different families of lower bounds are available in
the literature. For example, the Weiss—Weinstein family [6] is
a popular family of bounds, and it includes important bounds
such as the Bayesian Cramér-Rao bound [7] (also known
as the Van Trees bound), the Bobrovsky—Zakai bound [8],
a Barankin-type bound [9], and the Bobrovsky-Mayer-Wolf-
Zakai bound [10]. Due to space limitations, we do not attempt
to survey the literature on this vast subject and refer the reader
to [1], [11], [12], [13] for a comprehensive literature review.

An interesting bound that beautifully connects binary hy-
pothesis testing and estimation is known as the Ziv-Zakai
bound [1], [14], [15], [16], [17], [18]. This bound is believed to
be one of the tightest bounds available in the literature. Before
presenting the bound we need the following two notions.
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'As with any Bayesian setting, we assume that the joint distribution of
(X,Y) is known, at least in principle.

2Qur focus is on analyzing the Ziv-Zakai bound for which, to the best of
our knowledge, a vector version is not known. The version that has been
derived in [1] (and its useful application in bearing estimation [2]), in fact,
does not directly bound the MMSE, but a quadratic expression involving the
MMSE matrix (see [, Property 6]). Thus, we here assume that X is scalar.

Definition 1. The valley-filling function acting on a function
f R — R is defined as

V{f(2)} =sup f(z+2), € R @)
e>0

Definition 2. For a given zg,z1 € R, P.[zo,z1,po,D1]

denotes the minimum probability of error (obtained by using

the optimal likelihood ratio test) for the following binary

hypothesis testing problem,

Ho:Y ~ Py|x(yl|zo),
Hy: Y ~ Py x(y|z1),

where

Pr(Ho) = po, Pr(H1) =1—Pr(Hy) =p1

The general Ziv-Zakai lower bound is stated next [1], [16].

Theorem 1. (Ziv-Zakai Lower Bound.) Consider a pair of
random variables (X,Y) where X has probability density
Sunction (pdf) fx(x) and where the noisy observation model
Y|X = x is governed by the distribution Py |x (y|z). Then,
we have

mmse(X|Y) > LBzz(X|Y), 3)
where
- 1 oo o0
LBzz(X|Y) = §/ V{ Pe [z, 2+ h,po(x, h), p1(z, h)]
0 —o00
(fx(2) + fx(z +h)) d:c} hdh, (4
with
P(J($7h) = fX(x) ) pl(xa h) =1 —P(J($7h)~

fx(z) + fx(z +h)

The valley-filling function in Theorem 1 introduces an extra
layer of optimization which can make the bound difficult to
evaluate. Thus, one often considers a loosened version of the
Ziv-Zakai bound that drops the valley-filling function, that is,

/ / [z, 2 + h,po(z, h),p1(x, h)]
(fx(x) + fx(z +h)) h dz dh. (5)

In this work, our main goal is to understand the behavior of the
Ziv-Zakai bounds in (4) and in (5) in the practically relevant
high-noise regime. Different from the low-noise regime where
several lower bounds are known to perform well [13], [19], in
the high-noise the same is not true in general. Thus, it is of
interest to understand if the Ziv-Zakai bound is tight in high-
noise. The analysis of this regime is an important benchmark

LBzz(X[Y) =



for the performance, especially in wireless scenarios, where
high-noise represents a weak signal scenario, and has received
some attention in various contexts [3], [20], [21], [22].
Notation. Random variables are denoted by upper case letters
and their instances by lower case letters. The expected value
of a random variable X and its variance are denoted by E[X]
and Var(X), respectively.

A. Noise Models Under Consideration

We here describe a family of noise distributions for which
our results hold. First, in order to take limits and quantify the
strength of the noise, we need to be able to parameterize our
model and hence, we make the following assumption,

Al: Py|x can be parameterized in terms of the parameter
n >0, ie., Pyx(ylz) = Pyx(ylz;n) for all (z,y).
We refer to the parameter 7 as the noise level.

Second, we require that the performance of our system de-

grades as the noise level increases. Towards this end, we make

the following assumption,

A2: For the sequence of noisy observation models
{Pyx(-[sn) }n>0, we parameterize P [0, 1, po, p1] =
P, [n; xg,21,p0,p1], and we assume that the following
holds. For every (x, z1, po, p1) Where xg # x1:

A2a: n+— P.[n;x0,x1,p0,p1] is non-decreasing; and
A2b: lim Pe[n; 2o, z1,po, p1] = min{po, p1}. (6)
n—00

All of the assumptions above are rather natural. In particular,
assumption A2a simply states that the probability of error
for binary detection can not decrease as the noise level
increases. Assumption A2b states that when the observation
is completely dominated by the noise, the best strategy is to
guess the z;,47 € {0, 1} with the largest probability.

Most of the observation models encountered in practice
satisfy the above assumptions. We now give a few examples.

o Additive White Gaussian Model: Let
Y =X+ nZ, 7

with X and Z being independent, and Z being a standard
Gaussian random variable. In this case, the noise level
parameter 17 > 0 is known as the noise power [4].

e Poisson Noise Model: For x > 0, y € Ng, let

x4+ n)Ye(@tn)
<”)y,; ®)

in this case, the noise level parameter 17 > 0 is known as
the dark current parameter [23], [24].

e Binary Symmetric Model: For x € {0,1} and y € {0, 1},
let

Py x(ylr) =

1— =
Pyx(ylx)z{ ez ©)

1

where the noise level parameter 7 € (0, 5

the cross over probability [25].

) is known as

See also [26] for an example on how to define the noise level
parameter 77 in the context of the exponential family.

For the models that satisfy all of the above assumptions, we
parameterize mmse(X|Y) as a function of X and . Thus,
in what follows we denote it as mmse(X,n). Similarly, we
use LBzz(X,n) and LBzz(X,n) for LBzz(X]Y) in (4) and
LBzz(X|Y) in (5), respectively.

B. Goals and Contributions

Note that, in general, for every observation model, by using
E[X] as a suboptimal estimator of X, we always have that

mmse(X|Y) < Var(X). (10)

The variance of X is, in fact, the MMSE of estimating X
without any knowledge of Y (i.e., the error is due to the
blind guess). For practically relevant observation models, in
the high-noise regime, we expect that the output Y carries no
information. Thus, it is reasonable to assume that the following
limit holds,

lim mmse(X,n) = Var(X).

n—o0

(1)

The interested reader is referred to [3] and [23] where the
above limit has been formally established for the Gaussian
noise model and the Poisson noise model, respectively.

The upper bound in (10) and the asymptotic in (11) can be
used to assess whether a given lower bound on the MMSE is
tight or not. For example, consider the ubiquitous Bayesian
Cramér-Rao (CR) bound [7], which for the Gaussian noise
case in (7) is given by

LBCR(Xa 77) = ) (12)

J(X)+

, 2
where J(X) =E [(’fti 88) } is the Fisher information. The

CR bound holds provided that the pdf fx(z) is equal to zero
on the boundaries of the support of X [27]. For example, it
does not hold for an exponential distribution, i.e., fx(z) =
e~ 1,50y, since fx(07) = A It is not difficult to see that
. 1

7Ihjélc LBcr(X,n) = Jx)
Consequently, from (11) and (13) we have that the CR bound
is tight for large 7 if ﬁ = Var(X). However, note that
ﬁ is equal to Var(X) only when X is Gaussian [27], [28].
Thus, from (13) we conclude that, in general, the CR bound
is not tight in the high-noise regime.

The goal of this paper is to perform a similar analysis for
both of the Ziv-Zakai bounds in (4) and (5) and find the high-
noise asymptotics for the broad family of observation models
that satisfy assumptions A1l and A2. Specifically (provided
that the limits exist) we are interested in characterizing the
following limits,

13)

lim LBzz(X,n) = V(X), (14a)
n—o00
lim LBzz(X,n) = V(X). (14b)
n—00

From (4), (5) and (10) we have the following inequalities,
V(X) < V(X) < Var(X). (15)



Our goal is to establish whether these inequalities hold with
equality. To this end, in Section II-A we first characterize
V(X) and V(X) in (14). Then, in Section II-B, we provide
examples under which either all or a subset of the inequalities
in (15) hold and/or do not hold. This implies that there are
examples of distributions on X for which the Ziv-Zakai bound
is tight, and there are examples for which it is not tight. Finally,
in Section II-C we compare the Ziv-Zakai and the CR bounds.

II. MAIN RESULTS
A. High-Noise Asymptotics
The next theorem (proof in Appendix A) provides the
behavior of the two Ziv-Zakai lower bounds in (14).

Theorem 2. Under the assumptions Al and A2, we have the
following,

veo =5 [ [ mingic). fx@)} v - o o ay,

V(x) = i/_o;v{ /_Zmin{fx(x),fx(x—i—h)}dx} Ih| dh.

B. Examples

The examples below (detailed computations in Appendix B)
show that, while there are cases for which even the loosened
version of the Ziv-Zakai bound is tight (i.e., V(X) = Var(X)),
in general, neither of the bounds in (14) is tight.

Example 1. Suppose that fx(x) = g(|z|) where g : [0,00) —
[0, 00) is non-increasing. Then,

V(X) = V(X) = Var(X).

Thus, both versions of the Ziv-Zakai bound agree and are tight,
i.e., the valley-filling function is not needed in this case. This
example encompasses a broad range of widely used symmetric
distributions (e.g., Gaussian, Laplace, generalized normal). [
Example 2. Suppose that fx(x) is non-increasing on (a,b)
where —oco < a < b < oo, and zero elsewhere. Then,
_V(X) = Var(X) + (4a - IE[X])Q.

Thus, the two versions of the Ziv-Zakai bound agree, but are
not tight. For instance, assume that X has an exponential pdf
with parameter \; we have that Var(X) = 1/A? and V(X) =
V(X) = 1/(2)2), i.e., the Ziv-Zakai bound is off by a factor
of two and hence, it can be substantially suboptimal. |
Example 3. Suppose that 0 < a < b and

V(X)

1
fx(x) = 0—a) (rect(x; —b, —a) + rect(z;a,b)),
where © — rect(z;a,b) is the unit-height rectangle with
support over the interval (a, b). In other words, the distribution
of X is a mixture of two uniform distributions. Then, for

0 < a < b < 3a, we have that
2 b b2
Var(X) = w7
3
and

V(X) = Var(X) — @

--- V()
— Var(X
3 ,"‘_--~‘~ ...... 1( )
T \\ J(X)
2 [ /,’, ............. \‘\s N
1 .--"‘ | | | | " e,
0 0.2 0.4 0.6 0.8 1
p

Fig. 1: Mixed Gaussian fx = pN(—1,1) + (1 —p)N(2,1)
where p € [0,1].

7a® + 10ab — b*

V(X) = V(X) 3
= Var(X) — La;; g

Thus, the Ziv-Zakai bound with the valley-filling function can
be strictly better than the one without it, yet not optimal. [J

We were not able to identify an example for which V(X)) <
V(X) = Var(X), i.e., a case for which the Ziv-Zakai bound
with a valley-filling function is optimal, but the bound without
the valley-filling function is strictly sub-optimal.

C. Comparison with the CR Bound

An interesting question that arises is: Does the Ziv-Zakai
bound outperform the CR bound*? To show this analytically,
one would need to demonstrate the following inequality (in-
spired by the limit in (13)),

In Fig. 1, this inequality is numerically verified for a mixed
Gaussian distribution.
APPENDIX A
PROOF OF THEOREM 2

Before proceeding with the proof, we will need the follow-
ing facts. First, by using (2), note that if f(z) < g(z) for all
x, then for all x it holds that

V{f(@)} < V{g(x)}-

Second, the valley-filling function is lower semicontinuous,
i.e., for any sequence of functions {f,}52 ;, we have that

(16)

lirr_1>inf V{fn(x)} > V{linl}inf fa(2)} (17)
To see this recall that liminf, . fn(2) =
Sup,,>q infm>n frm(z) and note that
liminf V{f,(z)} = sup inf sup fr,(z +¢)
n—oo n>0 m>n e>0
> supsup inf f,(z+¢)
e>0n>0m2n
= V{hfgmf fa(2)}, (18)

3We note that the Ziv-Zakai bound holds for a larger family of distributions
than the CR bound as the pdf does not need to be differentiable or even
continuous.



where the inequality follows from the max-min inequality.
We now consider the behavior of LBzz(X, 7). We have

2LB7z(X,n)
:/ { P, [p;z, 2 + h,po(x, h), p1(z, h)]

(fx +fX(x+h))dz} h dh

(z)
Al
¥ (x )+fx(x+h))dz} h dh

V{/—oo min { fx (v), fx (v + h)}dx} h dh, (19)

[oo; T, + h, po(z, h),p1(z, h)]

(f

(b) /
0

where (a) follows by using (16) and by noting that
Pe [7’],1‘,$ + hapO;pl] S Pe [OO,JT,JT + h7p07p1] )

which is a consequence of the assumption A2a; and (b)
follows from the assumption A2b.
Next, we note that

liminf 20Bzz(X,7)
n—00

(c) o0
> / liminf V {/
0 n—o0 —o0

(fx(2) + fx(z +h)) d:c} b dh

> / v {liminf/ P, [n; 2,2+ h,po(x, h), p1(x, h)]
0 —00

n—00

(fx(2) + fx(z +h)) dx} b dh

(C) /

where: (c) follows by using Fatou’s lemma; (d) follows
from (17); and (e) follows by using Fatou’s lemma, (16) and
assumption A2b.

Combining the upper bound on the limit in (19) and the
lower bound on the limit in (20) we arrive at

lim 2|_Bzz ()(7 77)
n—o0

. [, 2 4+ hypo(x, h), p1(z, h)]

/ min {fx (), fx(x + )} dz} b dh, 20)

_ /Ooov{/z min { fx (z), fx (z + h)}dx} h dh

_ ;/_ZV{/_O;min{fX(x),fX(x+h)}dx} Ih| dh,

where in the last step we have used that

/_OO min { fx (2), fx(z + h)} do
= [ win (@), fxa =) da,

This concludes the proof of the limit for LBzz (X, 7). To obtain
the limit for LBzz(X,n), we simply drop the valley-filling
function. With this we arrive at

lim QLBZZ (X, ’I])
n—00

1o e
_ 5/_00/_Ocm1n{fx($),fx(x+h)}|h| dz dh
_ %[w[mmin{fx(x)vfx(y)}\yfg;| de dy.

This concludes the proof of Theorem 2.

APPENDIX B
EXAMPLES FOR THE HIGH-NOISE REGIME

A. Example 1

We will show that VLX) = Var(X), which, in view of (15),
will also characterize V(X). By substituting fx(z) = g(|z|)
inside the expression of V(X)) in Theorem 2, we arrive at

4V(X) = / / min{g(jz)), g(ly)} Iy - 2| d dy

f4// (Iyl) Iy — =] dz dy

. / o)) v dy 2 4 Var(X),

where (a) follows since E[X] = 0 from the structure of fx ().

B. Example 2
By using the expression of V(X

b b
/ / min{ fx (z), fx(¥)} v — 2| do dy

=2/:/ayfx(y) ly — o] dz dy

— [ fxw Iy~ a4y
=E[(X — a)?] = Var(X) + (a — E[X])?.

) in Theorem 2, we arrive at

1V(X) =

By using the expression of V(X
27 (x) 2 / / min { fx (z), fX(erh)}dx} h dh
0o max{a,b—h}
®) / v{/ Fx(z+ h)das} h dh
0 a

oo max{a+h,b}
:/ v{/ fx(x)dx} h dh
0 a+h

B

) in Theorem 2, we have

N

OOV{ [Xza+h}} h dh
P

@/ (X >a+h] hdh
(© %E[(X —a)?] = % (Var(X) + (a— ]E[XDQ) 5

where the labeled equalities follow from: (a) using the fact
that X is supported on (a,b); (b) the assumption that fx (z)
is a non-increasing function; (c) the fact that X is supported
on (a,b) and hence, we can drop the upper limit; (d) the fact
that h — P[X > a + h] is a non-increasing function and
hence, the valley-filling function can be dropped; and (e) the
following alternative representation of the second moment of
non-negative random variables: for a random variable U > 0,
we have that E[U?] =2 [[°P[U > h] h dh.
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