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Abstract
3D facial animation synthesis from audio has been a focus in recent years. How-
ever, most existing literature works are designed to map audio and visual con-
tent, providing limited knowledge regarding the relationship between emotion
in audio and expressive facial animation. This work generates audio-matching
facial animations with the specified emotion label. In such a task, we argue that
separating the content from audio is indispensable—the proposed model must
learn to generate facial content from audio content while expressions from the
specified emotion. We achieve it by an adaptive instance normalization mod-
ule that isolates the content in the audio and combines the emotion embedding
from the specified label. The joint content-emotion embedding is then used to
generate 3D facial vertices and texture maps. We compare our method with
state-of-the-art baselines, including the facial segmentation-based and voice
conversion-based disentanglement approaches. We also conduct a user study to
evaluate the performance of emotion conditioning. The results indicate that our
proposed method outperforms the baselines in animation quality and expression
categorization accuracy.

K E Y W O R D S

adaptive instance normalization, audio-driven animation, content-emotion disentanglement,
emotion-conditioning, expressive facial animation synthesis

1 INTRODUCTION

The movement and expression of a human face are tightly interlinked with the phonetic content and underlying emotional
intent. Recent studies1-3 have attempted to generate facial animations from speech. Those speech-driven methods leverage
the correlation between the speech and the talking face and build end-to-end models for the mapping. However, their
assumption that the acoustic emotion can infer the emotional face movement is invalid because the correlation of emotion
in audio and faces could differ from one person to another or from context to context. As a result, a model relying entirely
on audio input to infer the facial movements could only learn the mapping between audio and visual contents.

In this work, we formulate the problem of expressive facial animation synthesis as a trainable model capable of gen-
erating the desired facial animations given an audio and an emotion label. We separate audio and emotion as two input
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modalities, enabling the users to directly control the expression of the facial animation with emotion specification. We
argue that the disentanglement of the content and emotion from audio is indispensable. A model designed for such a task
should be able to learn the content information from the audio input and the expressive facial dynamics from the emotion
input. Suppose the emotion from the audio input and the conditional input are both passed to the model. In that case, the
model is likely to ignore the conditional input and primarily accept the emotion information from the audio modality. In
this case, the model fails to perform “emotion conditioning.”

We approach the expressive 3D facial animation synthesis with a learnable model that takes audio and emotion
as inputs, disentangles the audio content and emotion, entangles the content with the specified emotion, and outputs
the vertex positions and texture maps. To the best of our knowledge, we are the first to generate facial vertices with
textures for expressive facial animation synthesis. We further achieve the emotion-conditioned synthesis by adopting
adaptive instance normalization (AdaIN)4 in our architecture. Our model effectively learns the joint embedding of audio
content and the specified emotion, laying the foundation for controllable stylistic facial animation generation from an
interpretable latent space.

We further conduct a user study to evaluate the performance of content-emotion disentanglement and emotion condi-
tioning. We compare our proposed method with the experiment’s facial segmentation-based and voice conversion-based
disentanglement approaches. The result indicates our model outperforms the baselines.

2 RELATED WORKS

2.1 End-to-end speech-driven facial animation

Over the past few years, deep learning approaches have become dominant for end-to-end facial animation synthesis..1,2,6-8

Karras et al.2 build a convolution-based model that outputs fine-grained facial meshes with head poses and emotions.
Pham et al.6 apply facial action unit detection on a wild video dataset based on FACS and learns to output the facial
AU parameters. Recently, Zhou et al.7 were proposed to disentangle content and speaker channels for speech-driven
animation, but the facial expression is still determined by the input speech and the reference image. Our work is motivated
by the aforementioned papers for end-to-end audio-visual modeling but different in how the model has to learn the
content-emotion disentanglement jointly.

2.2 Controllable talking face generation

Controllable talking face synthesis aims to generate faces that match the audio and a reference. Zhou et al.9 are proposed
to effectively control the pose of the talking face from a referenced pose video. The reference could also be emotion. For
example, Wang et al.5 accept an audio and an emotion label as inputs. It then separates the entire face into audio-related
and emotion-related regions. The two regional faces are then combined and passed to the refinement network for
photo-realistic image generation. Vougioukas et al.10 take as reference the speaker’s identity. It attempts to encode the
identity into their model and applies recurrent neural networks and GAN,11 respectively, for temporal modeling and facial
animation synthesis.

Usually, controllable emotional face generation requires the disentanglement of audio content and emotion. For
instance, Ji et al.12 formulate the disentanglement of audio content and emotion as a separate problem from animation
synthesis. It first aligns audio clips by dynamic time warping and then learns a cross-reconstruction model. Compared
with our method, it requires additional training and a parallel dataset to accomplish.

2.3 Face generation with 3D morphable models

In the field of computer graphics, 3D morphable models (3DMMs)13-15 are widely used in facial representations because
3DMM parameters have the advantage of being easily manipulated by humans or generated by models to create a new
plausible face. Several researches13,16-18 have been conducted using 3DMM as a prior for facial reconstruction from images
or video. Recent studies19-21 also aimed at reconstructing fine-scale facial details from monocular videos. These meth-
ods learn to synthesize several textures along with the 3DMM parameters and map the textures to the face meshes for
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optimization. The reconstructed morphable model parameters can also become the learning target of neural network
models for facial synthesis. For example, the authors in References 22-24 approach audio-driven video portraits by
reconstructing 3DMM parameters from a talking face video and training an audio-to-face network to generate the param-
eters. The coarse-scale 3D faces are passed to a neural rendering network to generate photo-realistic talking faces. Our
method is motivated by the related papers11,18,24 that leverage the reconstructed 3DMM parameters as the learning objec-
tive. We further extend coarse-scale reconstruction to fine-scale to preserve the expression details for expressive facial
synthesis.

3 METHODOLOGY

To generate expressive facial animations with the specified emotions, we build an encoder-decoder-based model that takes
as inputs the speech and a one-hot emotion vector and outputs a sequence of facial vertex positions and texture maps.
The model architecture is illustrated in Figure 1. Our model first encodes the sequential audio input with a bidirectional
LSTM Audio Encoder. The output of the encoder is projected and then passed to the AdaIN module. AdaIN4,25 is applied
in our architecture to remove the emotion information in the audio features and entangle the remaining content features
with the specified emotion embedding. As we obtain the joint representation from the two separate modalities (audio
encoder and emotion embedder), we pass the feature to the bidirectional LSTM face decoder. The bidirectional setting
of both the encoder and decoder helps the model capture the visual coarticulation effect and temporal dependency. The
decoder output is then projected to the latent space of our joint content-emotion embedding. Finally, the embedding is

F I G U R E 1 Our proposed pipeline and model architecture. We first reconstruct facial vertices and texture maps from MEAD dataset5

as the training targets. Audio and its corresponding emotion label are used as inputs during training. The adaptive instance norm (AdaIN)
module removes the emotion feature from audio and entangles the content feature with the specified emotion for vertex and texture
generation. For emotion-conditioned inference (down), the model accepts audio and any specified emotion as inputs and outputs the
expressive facial animation that matches the audio content and the specified emotion. The tSNE visualization of the learned content-emotion
embedding is shown in the upper-right corner.
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used to generate the positions of all facial vertices and used as the input to the deep convolutional texture generator26 for
the albedo and displacement maps.

3.1 Emotion-conditioned synthesis

Disentangling audio content and emotion in the model is necessary for achieving emotion conditioning. If the audio
emotion is not removed, the audio emotion and the specified emotion, which are different during the inference phase,
will both cause changes to the output facial expressions. To prevent the emotion feature in the audio from leaking to
the decoder, we apply AdaIN4 to eliminate the time-invariant information from the audio feature and then combine the
time-varying content feature with the specified emotion embedding. The same technique is also used in voice conversion
that aims to remove speaker information from audio features and then combine the content with the speaker feature
from another modality for the decoder. To formulate the normalization process, let’s consider X = {xi}i=1,… ,T as the input
speech features and he as the one-hot emotion condition. The vertex and texture at the ith time step are denoted as yi

vert
and yi

tex. The audio encoder and the emotion embedder process X and he as follows:

Fa = ReLU(Wa ⋅ Ea(X) + ba), (1)

fe = ReLU(We ⋅ he + be). (2)

Ea is the bidirectional LSTM audio encoder. Fa is the audio embedding with time-varying content and time-invariant emo-
tion information. We denote Fa = {f i

a}i=1,… ,T because it is a sequential vector. fe is the emotion embedding. AdaIN removes
emotion information from f i

a and entangles the resulting content feature, f i
c , with fe to generate the joint representation

of the audio content and specified emotion, f i
ce, as formulated in the following equations:

f i
c =

f i
a −

1
T

∑
j f j

a

𝜎(Fa)
, (3)

f i
ce = f i

c + fe. (4)

Note that the mean and standard deviation are calculated along the time axis in Equation (3) and fe is added to the content
feature at every timestep in Equation (4). Unlike the vanilla instance normalization that has the learnable scale and shift
parameters, Equation (3) only normalizes the audio feature to zero mean and unit variance. In practice, we find this more
effective in our experiments.

3.2 Optimization

As our model generates two outputs, vertices ŷi
vert and texture maps ŷi

tex, we define two loss terms, vert and tex, respec-
tively, for the optimization. The two losses are simply the mean square errors between the ground truth and the prediction,
as shown in Equations (5) and (6). However, we find that if only the vertex error is used in the loss function, the model
tends to predict over-smoothed vertex motions. Therefore, we follow2 to add the vertex velocity constraint in the loss
function. Adding vertex velocity error encourages the model to learn the vertex motions and to be more responsive to
audio contents. The velocity constraint,vel, is defined in Equation (7), where the vertex velocity is the difference between
neighboring vertex positions.

vert =
1
T
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‖
‖
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In practice, we observe that the velocity constraint also speeds up the training process. Finally, the loss of the entire model
is defined as a combination of the three loss components:

 = 𝜆1 ⋅ vert + 𝜆2 ⋅ vel + 𝜆3 ⋅ tex. (8)

In our experiment, we set 𝜆1 as 1, while 𝜆2 and 𝜆3 as 10 and 10,000, respectively.

4 EXPERIMENTS

4.1 Dataset and preprocessing

We leverage Facescape27 for fine-scale facial reconstruction to obtain expressive and emotional talking face data. We
then reconstruct the faces from MEAD dataset.5 It is a parallel audio-visual talking face dataset, captured from multiple
viewpoints with eight emotions (angry, contempt, disgust, fear, happy, neutral, sad, surprise) and three intensity levels
(weak, medium, and strong). We select the subject, M003, and reconstruct the 3D faces with all emotions and intensities
from the frontal view. For audio processing, we carefully tune the window and step sizes so that the resulting MFCC
features are the same fps as the video. The input audio features are 80-dimensional. The dimension of the output vertex
is 12,483 × 3, and the size of the texture is 1024 × 1024. We use 256 for all hidden units for the model architecture and 2
layers for both the encoder and decoder. We use the same parameters as DCGAN26 for the texture generator. We use 80%
of the sentences for training and the other 20% as validation data. The train-validation split is the same as Reference 5 to
make fair comparisons.

4.2 Baselines

We compare our model with three baselines.
AudioE2E2 takes as input a window of audio features and a learnable emotion embedding and outputs the vertex

dynamics. Once the model is trained, we take the average of the embeddings in an emotion category and use it as the
conditional input for emotion-conditioned synthesis. Note that no texture or albedo is generated in this model.

The MEAD baseline disentangles the audio content and emotion by segmenting faces into content-related and
emotion-related regions. Since the baseline is originally designed for emotion-conditioned talking face generation, we
further apply the same reconstruction method on top of the output videos. In this article, we call it MEAD*.

The voice conversion-based disentanglement (VCBD) is our third baseline. We use AutoVC28,29 to extract the content
features from the input audio. Note that the VC-trained audio content extractor was originally proposed in Reference 7 for
talking face synthesis. Here we apply the same concept and train the 3D facial animation synthesis with the same model
architecture without AdaIN.

4.3 Metrics

We will use vertex error, 𝜖v, and texture error, 𝜖t, to evaluate the model performance on our validation set. The two errors,
defined in Equations (5) and (6), only reflect how well the model can generate the facial animation when the audio
emotion and the conditional emotion are of the same category. However, we are more interested in the result of disentan-
glement. In other words, when the conditional emotion is different from the audio emotion, the model should be able to
ignore the audio emotion and output the animation that matches the specified emotion. We further conduct a user study
for the evaluation of emotion conditioning.

User study. We recruit 317 participants. Most of them are undergraduates with no animation or character design back-
ground. The survey was conducted anonymously and adhered to university IRB requirements. The survey was created
via Qualtrics,30 and the link was distributed to the participants by university email.

The survey has two sections, expression categorization and preference for animation quality. For the first section,
each participant was first presented with eight reconstructed face images representing all the emotions. Then they
were given an animation generated by one of the proposed methods and asked to select one of the eight emotions that
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matched the expression of the given animation. Sixty animations were presented in the first section. For the second
section, the participants were first given an instruction asking them to select their preference of animation quality. A
clear message was displayed to clarify that the overall animation quality should account for the quality of the facial
texture and whether or not the animation matches the audio content, regardless of the emotion or facial expression.
Then the participants were presented with two animations, generated from the same inputs but by two different meth-
ods, one from ours and the other from a baseline. The selection of the animations, methods, and the presentation
sequence was randomized. Followed by the presentation of two videos, the question (Overall, which animation has
better quality?) and five options were displayed. The five choices are: definitely the first, probably the first, no pref-
erence, probably the second, and definitely the second. A total of 40 questions were presented to each participant in
this section.

5 RESULTS

First, we present the static expressions generated by our model in Figure 2. Four audio clips with different emotions
are used as input to our model. We then specify all eight expressions to guide the output animation. The result-
ing 32 faces are shown in Figure 2. We can see the emotion encoded in the input audio is eliminated so that the
faces in the same column share the same specified expression. It is also important that the specified emotion changes
the entire facial vertices and textures. For example, a happy face would usually have a wide-open mouth, and a
contemptuous one would have a skewed mouth. This is expected because we allow the conditional emotion to be
encoded in the latent representation in our model and cause changes to the final vertices. The setting is different from
MEAD* that only allows the specified emotion to change the upper face. For animation results, please refer to our
supplementary video.

We also show the result of expression categorization in the user study. Our confusion matrix is shown in Figure 3. We
can tell that users are more confused when the specified emotion is anger, contempt, or disgust. Fear is falsely classified
because it is more difficult to model. When the specification is happy, users predict with the highest accuracy. The neutral
animations, in some cases, are confused with anger, contempt, or disgust. We also observe that the sad expression is easily
confused with disgust, and surprise is easily confused with a happy face.

From the t-SNE31 visualization of the joint content-emotion embedding in Figure 1 (upper right), we can see the
embeddings are clustered according to the specified emotions. We see in the figure that some clusters are closer to others.
For example, the angry cluster is close to disgust, while fear is close to surprise. The observation is in partial accordance
with the categorization result, where disgust is confused with anger, but fear is treated as neutral. Interestingly, the prox-
imity between each emotion is also preserved in the joint representation. We believe this is because the geometrical
differences in facial expressions do not necessarily agree with the perceptual disparities.

Angry Contempt Disgust Fear Happy Neutral Sad Surprise
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F I G U R E 2 Rendered faces with different expressions with our proposed method. The “emotion conditioning” is achieved because the
generated facial expression does not correspond to the audio emotion but the specified emotion.
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F I G U R E 3 Confusion matrix of expression categorization. The Y -axis is the true label, and the X-axis is the prediction. Statistically, we
collected 163–184 answers for each of the eight emotion categories.

5.1 Comparisons

We show the quantitative comparative results with the three baselines in Table 1 and Figure 5. Our method outper-
forms AudioE2E in vertex error because their convolution-based model does not take into consideration the neighboring
frames. On the contrary, our architecture successfully models the temporal relationship between frames and captures the
coarticulation effect. In terms of expression classification, our model has even better accuracy. The facial animation gen-
erated by AudioE2E is textureless, so it is hard for participants to distinguish faces with different expressions. In terms
of animation quality, 57% think ours is better while only 24% vote for AudioE2E.

When compared with MEAD*, our proposed method is better in terms of vertex error, but worse in texture error. We
find that the vertex motion generated by MEAD* is quite unstable—the instability results from the limited generalization
ability of the MEAD approach. However, since MEAD can generate photorealistic face videos, the reconstructed faces of
MEAD* have much better quality (5.62 in 𝜖t). We find that the learning objective of texture maps would encourage our
model to output smooth texture maps, so the texture quality reduces. In terms of expression classification and animation
quality, our model outperforms MEAD*, as shown in Table 1 and Figure 5. Also, the dynamic results can be found in

T A B L E 1 Comparison with other baselines

𝝐v 𝝐t ⋅ 104 Accuracy

AudioE2E 2.64 (0.95) N/A 0.261

MEAD* 3.94 (1.83) 5.62 (1.30) 0.270

VCBD 2.97 (1.20) 16.71 (7.71) 0.222

Ours W/O AdaIN 2.53 (1.06) 16.97 (7.49) 0.307

Ours 2.44 (1.02) 16.02 (7.42) 0.335

Note: The mean and standard deviation of the two errors are presented. Bold-face values mean the best performance.
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Figure 4. The instability of texture maps synthesized by MEAD*, including the rapid change in albedo and wrinkles in
neighboring frames, is the main cause of quality and accuracy decrease.

When compared with the voice conversion-based disentanglement method, our AdaIN approach prevails in
all metrics. The VCBD encoder trained on voice conversion tasks is designed initially to separate voice content
and speaker information in the audio, not the content and emotion. When we transfer the content extractor to
speech-driven facial synthesis, the extracted content feature could probably contain no speaker information but cer-
tain emotion information. The content feature could also be insufficient for the facial synthesis model to learn
and infer the animation. We can see the artifacts of VCBD in Figure 4. When the happy audio is passed to the
model, and a different emotion is specified, VCBD still generates happy expressions and fails to achieve emotion
conditioning. The accuracy of expression classification in Table 1 also reflects that our AdaIN is better in emotion
conditioning.

Ablation study. It is interesting to know to what extent the AdaIN module improves the experimental results. We
see in Table 1 and Figure 5 that both the vertex and texture errors increase if AdaIN is removed from our model.
In terms of expression classification, the one with AdaIN obtains higher accuracy. As for the animation quality,
39% vote for AdaIN while only 28% vote for no AdaIN. It is no surprise because, in the AdaIN module, we sup-
press the time-invariant emotion feature and entangle the content features with the specified emotion embedding.
Instead, without AdaIN, we are allowing two emotion modalities to cause changes to the output, which confuses
the model.
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time time

F I G U R E 4 Dynamic results generated by two baselines (MEAD* and VCBD) and our method. Happy audio and the two specified
emotions, angry and sad, are passed to each model as inputs. We show the artifacts in red boxes.

F I G U R E 5 The preference for animation quality between all comparison pairs. We perform the comparisons of ours versus other
methods. Statistically, 508, 502, 551, and 530 answers were gathered, respectively, for the four comparisons.
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5.2 Blend between expressions and intensity level control

We present the demonstration in the supplementary video that our model takes as conditional input an interpolated or
extrapolated vector between two different emotions and blends faces to generate unseen expressions in the dataset. Addi-
tionally, we train our model with eight different emotions and three intensity levels as the conditions. During inference,
an emotion and a corresponding intensity level are specified. We present the result to show that the idea of AdaIN can
be applied to not only emotion conditioning but also intensity level control. It is because the time-invariant features in
audio are eliminated and then appended with the specified emotion and intensity embeddings.

6 CONCLUSION

In this work, we focus on synthesizing the expressive facial animation from speech and the desired emotion. We generate
facial vertices and textures by a bidirectional encoder-decoder-based model and a convolution-based texture generator.
Most importantly, our AdaIN successfully disentangles content and emotion features from audio and learns the joint
content-emotion embedding. We conduct a user study to evaluate the emotion conditioning and animation quality. The
result indicates that our model is more effective than the three competitive baselines in generating emotion-matching
expressions and high-quality animations.
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