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Soil caron (C) i a major driver of oil health, et little i known regarding how enitive meaure of oil C hift temporall within

a ingle growing eaon in repone to hort-term weather perturation. Our tud aimed to i) xamine how long-term

management impact oil C ccling and tailit acro a management intenit and plant iodiverit gradient and ii) Ae

how enitive oil health indicator change temporall over the coure of a ingle growing eaon in repone to recent weather

pattern. Here we quantif a variet of enitive oil C meaure at four time point acro the 2021 growing eaon at the W.K.

Kellogg iological Station’ Long Term cological Reearch Trial (LTR) located in outhwet Michigan, USA. The eight tem

ampled included four annual oean (Glcine max) tem that ranged in management intenit (conventional, no-till,

reduced input, and iologicall-aed), two perennial iofuel cropping tem (witchgra (Panicum virgatum) and hrid

poplar (Populu nigra x P.maximowiczii)), and two unmanaged tem (earl ucceional tem and a mown ut never tilled

graland). We found that unmanaged tem with increaed perennialit enhanced mineralizale C (Min C) and permanganate

oxidizale C (POXC) value. Additionall, all oil health indicator were found to e enitive to change in hort-term weather

perturation over the coure of the growing eaon. The implication of thi tud are threefold. Firt, thi tud ae

indicator of laile and tale C pool over the coure of the growing eaon and reflect the tailit of oil C in different

tem. Second, POXC, Min C, and ß-glucoidae (GLU) activit are enitive oil health indicator that fluctuate temporall,

which mean that thee oil health indicator could help elucidate the impact that weather pattern have on oil C dnamic.

Latl, for effective monitoring of oil C, ampling time and frequenc hould e conidered for a comprehenive undertanding

of oil C ccling within a tem.

Introduction

A primar motivation for enhanced oil caron (C) i improved oil health, which i intimatel connected with hort-term outcome like increaed
crop productivit and long-term outcome uch a oil fertilit and C equetration (1, 2). Soil health i the ailit of the oil to provide eential
ervice uch a plant and animal health, water and air qualit, and plant productivit (3). Soil C i the mot important underling propert of oil
health ecaue it drive iological, chemical, and phical procee in the oil. For intance, greater oil C pool are aociated with a greater
aundance of acteria and fungi (4–6). Soil C i alo aociated with aggregate tailit and improved oil tructure, which allow oil to retain
more nutrient (7). Soil C accumulation i alo vital for climate mitigation (8, 9). In order to reach hort and long-term oil health outcome,
aeing the trajector of oil C in a given tem i eential.

Soil C i a large and dnamic pool with everal moving component. To etter undertand the mechanim that drive oil C deca and
accumulation, it’ imperative to eparate out pool that are functionall different from one another. The oil health framework i a conceptual
model that i aed on the collection of an arra of iological, chemical, and phical oil health indicator that are then ued to inform
management deciion (10). The oil health framework provide everal oil health indicator that reflect functionall different pool of C. For
intance, mineralizale C (Min C) trongl reflect a more laile or active pool of C and i critical for nutrient mineralization and crop productivit
(1, 11, 12). Additionall, ß-glucoidae (GLU) enzme reak down celluloe into glucoe which can then e utilized  the microial communit
(13). Therefore, GLU activit can indicate the rate of deca of organic material and the availale C for microial ue. In contrat, permanganate
oxidizale C (POXC) reflect a more proceed pool of C and i more cloel correlated with the total oil organic C pool (12, 14). Several tudie
have demontrated that Min C and POXC reflect different pool of C (11, 15, 16). For intance, (17) report that Min C i ale to detect larger
difference etween perennial polculture and annual row crop relative to POXC. Thi demontrate that Min C ma erve a an indicator of a
more laile pool of C that repreent C mineralization procee, wherea POXC ma reflect a lower pool of C that take a longer period of time
to repond to management and reflect C tailization procee. Reidual from a linear regreion model of Min C and POXC can e ued to
viualize if a tem trend more o toward C tailization procee (POXC) or C mineralization procee (Min C) (11, 18).

Soil health indictor that reflect functionall different pool have een meaured acro a wide range of managed and unmanaged tem (15, 19,
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20), et we have a limited undertanding of how Min C, POXC, and GLU repond to hort-term change in temperature and precipitation at the
field cale. Previou laorator-aed experiment have widel demontrated that laile and protected pool of C repond differentl to change
in moiture and temperature (21–23). For intance, Cate etal. (23) found that low molecular weight C torage wa impacted  temperature and
moiture, while more protected pool of C were olel altered  moiture. Similarl, eni and Khoa (21) found that laile C pool were more
enitive to temperature relative to mineral aociated organic matter. Currentl, little i known regarding how thee oil C pool function in
relation to precipitation and temperature within a field etting, a mot experiment have een conducted within a laorator etting. xploring
how POXC, Min C, and GLU repond to eaonal temperature and precipitation change, could provide further inight into their functionalit and
ailit to reflect oil C tailit.

Seaonal trend in POXC, Min C, and GLU have een reported in row-crop agriculture and generall demontrate that thee indicator are heavil
influenced  plant growth and nutrient demand (1). For intance, Martin etal. (24) demontrated that fine root production and deca in corn-aed
tem influence laile pool of C and N more o than proceed pool of C. However, oil C ccling under contrating management juxtapoed
with intene climatic condition i largel unknown at the field cale. Numerou tudie have demontrated that increae in oil organic matter
contriute to ield tailit in drought condition (25–28). Additionall, Acota-Martínez etal. (29) reported increaed enzme activit in
agricultural oil when under drought condition. However, man of the tudie that report impact of drought on oil C have een conducted in
laorator condition or imulated within the field. Thu, more information i needed regarding how drought ma naturall impact oil C pool and
which mechanim and kinetic lead to thi tailit in oil C over hort and long-term time frame. Can oil health indicator help to uncover
within eaon oil C dnamic that contriute to ecotem reilience and long-term oil C accumulation?

Here we explore oil C dnamic over the coure of a ingle growing eaon in tem that have undergone long-term management. The aim of
thi tud i to i) xamine how long-term management impact oil C ccling and tailit acro a management intenit and plant iodiverit
gradient and ii) Ae how enitive oil health indicator of oil C change temporall over the coure of a ingle growing eaon in repone to
recent weather pattern. We hpotheize that tem with high diverit and reduced management intenit will have greater oil C tailit over
the coure of a ingle growing eaon and exhiit greater C accumulation relative to tem dominated  annual row crop. Second, we
hpotheize that oil health indicator reflecting laile C pool (i.e. Min C and GLU) will e more reponive to within eaon weather pattern
relative to POXC, which will remain more tale throughout the growing eaon ecaue it reflect a more proceed pool of C.

Method

Site Decription

Thi tud wa conducted at the W.K. Kellogg iological Station’ (KS) Long-term cological Reearch ite (LTR), located at 85° 24’W, 42° 24’ N.
The LTR lie on the Kalamzoo and Ohtemo oil erie. oth oil tpe are a mixed meic Tpic Hapludalf. The main difference etween the two
oil erie i the thickne of the /t horizon. Dail precipitation and temperature value were otained from the KS National Weather Service
Station, located at 85° 23’W, 42° 24’ N at an elevation of 277.4 meter. The average annual temperature for month Januar-Decemer i 9.74°C
and the average annual precipitation for month Januar-Decemer i 1005 mm a ear (30).

xperimental Deign

The KS LTR Main Cropping Stem xperiment (MCS) conit of four annual cropping tem, two perennial tem, and two unmanaged
tem. The four annual cropping tem were etalihed in 1989 and range in management, including a conventional, no-till, reduced-input,
and iologicall aed tem. The two perennial tem are witchgra (Pancium virgatum) and poplar (Populu nigra x P.maximowiczii) which
were etalihed and ampled in 1989. The two unmanaged communitie are an earl ucceional communit, which wa aandoned from row-
crop agriculture in 1989 and a mown graland (never tilled) which wa etalihed on a cleared woodlot in 1959. The four annual cropping
tem, two perennial tem, and the earl ucceional communit comprie the LTR Main Cropping Stem xperiment (MCS). Stem
are ituated in a randomized complete lock deign, with 1 ha (90 x 110 m) plot that are each replicated in ix lock. The mown graland i
located 200 m to the outh of the LTR main ite with 15 x 30 m plot, replicated four time.

Management varied within each tem and detailed information on timing can e found in Figure 1. The four annual tem move through a corn
(Zea ma)-oean (Glcine max)-wheat (Triticum aetivum) rotation. In 2021, the tem were in the oean phae of the rotation and were
planted with Roundup Read oean at 67 kg ha . The conventional tem wa chiel plowed and received tandard chemical input. The no-
till tem received the ame tandard chemical input a the conventional tem ut ha een under permanent no-till condition ince trial
etalihment. In 2021, conventional tem were fertilized with 228 kg ha  of 28% UAN, 4 kg ha  of ammonium ulfate, 135 kg ha  of 0-46-0
phophoru, and 168 kg ha  of 0-0-60 potaium. No-till tem were fertilized with 3.5 kg ha  of ammonium ulfate, 112.5 kg ha  of 0-46-0
phophoru, and 168 kg ha  of potaium. Conventional tem had 3.51 kg ha  of Warrant and 4.5 kg ha  of Roundup Power Max (48%
glphoate) applied. No-till tem had 7.5 kg ha  of Roundup Power Max (48% glphoate), 4.68 kg ha  of 2,4-D nlit One, and 1.17 kg ha  of
Fierce MTZ applied. The reduced input tem are managed to reduce nthetic chemical input through the ue of a cover crop and nitrogen
fertilizer reduction. Specificall, the reduced input tem receive 33% of the nitrogen fertilizer and chemical input that the conventional
tem and no-till tem receive. In 2021, the reduced in-put tem wa fertilized with 4 kg ha  of ammonium ulfate, 113 kg ha  of 0-46-0
phophoru, and 147 kg ha  of 0-0-60 potaium. The reduced input tem alo had 2.25 kg ha  of Roundup Power Max (48% glphoate).
Additionall, the reduced input tem i chiel plowed and ha a winter cover crop of red clover (Trifolium pratene) or annual regra (Lolium
multiflorum) that i plowed under prior to planting during corn and o ear. The crop rotation ccle in the reduced input tem i a corn-
regra-oean-winter wheat-red clover rotation. The iologicall aed tem i managed without the application of nthetic chemical
input, thi tem i chiel plowed, under mechanical weed control, and ha a corn-regra-oean-winter wheat-red clover rotation.
Additionall, there i no manure or compot applied. For conventional, no-till, reduced input, and iologicall aed tem the average 2021
oean ield wa 4226, 4180, 4094, and 2005 kg ha .
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The witchgra tem i in a 5-ear rotation with winter wheat a a 1-ear reak crop. Thi perennial tem wa planted with alfalfa from 1989-
2019 and ha ince een moved to a witchgra perennial tem tarting in 2019. Switchgra wa planted at 10 kg ha . In 2021, witchgra wa
in it third ear. Switchgra wa fertilized with 4 kg ha  28% UAN. The average aoveground ioma wa 7367 kg ha  in 2021. The poplar
tem wa etalihed in 1989 and i planted with hrid poplar tree that are harveted on a 10-ear harvet ccle. The poplar tem wa lat
harveted in 2018, and a new crop wa planted in 2019. Poplar ield in were 46543 kg ha in 2018.

The earl ucceional communit wa hitoricall tilled and aandoned in 1988, thi tem i unmanaged however the tem i urned ever
pring to control for wood pecie. The mown graland i predominantl unmanaged except for annual fall mowing to control for wood
pecie.

Field Sampling

Soil ampling occurred four time over the coure of the growing eaon within each tem (Figure 1). Sampling time i defined a the point of
the growing eaon in which ample are collected (i.e., Ma, June Jul, or Augut). Stem i defined a the management tem that ample
were taken from (i.e., Conventional o, no-till o, reduced input o, iologicall aed o, poplar, witchgra, earl ucceional, or mid-
ucceional). During each ampling, oil core were taken uing a 1.9 cm diameter puh proe down to a 10 cm depth. Soil core were taken
from five randoml choen ampling tation within each tem plot. Five oil core were taken at each tation. Ultimatel, 25 core were taken
per each 1 ha plot and compoited. Soil were then immediatel proceed for gravimetric oil moiture content (Tale S1; 31).

Soil Health Indicator

Permanganate oxidizale C reflect a more proceed C pool and wa analzed uing method adapted  Weil etal. (32) and Culman etal. (14).
Soil were dried at 40°C, ground, and ieved to 2 mm prior to anali. Potaium permanganate (0.02 M) (KMnO ) wa added to oil (2.5 g),
haken (2 min), and then ettled (10 min). Supernatant wa removed and diluted to a 99:1 deionized water to upernatant ratio. Aorance wa
meaured in 96-well plate reader pectrophotometer at 550 nm.

Mineralizale C repreent the oil C pool that i availale to the microial communit within the oil. Mineralizale C wa meaured uing
method adapted from Franzlueer etal. (33) and Hurio etal. (34). Prior to anali oil wa dried at 40°C, ground, and ieved to 2 mm. Soil
(10 g) wa rewetted to 50% water-holding capacit with deionized water and incuated (25°C) for 24 hr. To meaure the concentration of caron
dioxide headpace air (1 mL) wa injected into a LI-820 infrared ga analzer (LI-COR, iocience, Lincoln, N).

The enzme activit, ß-glucoidae (GLU), wa determined uing the fluorecence microplate enzme aa (35). Soil wa prepared  lending
2.75 g of oil and 91 mL of 50 mM acetate uffer. Soil wa then poured into a gla owl and placed on a tir plate where the oil wa mixed on
low. Standard of 0, 0.0005, 0.001, 0.002, 0.005, 0.01, and 0.02 µmol were prepared for each ample  comining 4-methlumelliferone
(MU) (200 µL) and prepared oil (800 µL) in a well of 96-well plate. Soil (800 µL) and 4-MU- ß-D-glucopranoide utrate (200 µL) wa
comined in a eparate 96-well plate. Standard and GLU enzme aa plate were ealed, inverted ten time, and incuated at 35°C for 1.5 hr.
Plate were centrifuged for 2 min at 1500 rpm and 250 µL of olution from each well wa pipetted into a lack 96-well plate. Sodium hdroxide
(0.5 M NaOH) wa then added to each ample. Fluorecence wa meaured on an H1 nerg iotek microplate reader at an excitation
wavelength of 365 and emiion wavelength of 450.

Statitical Anali

An anali of variance (ANOVA) wa performed uing the lme function from the {lem4} package (36) in R verion 4.1.0, where tem, ampling
time, and the interaction etween time and tem were fixed effect and replicate wa a random effect. Sampling time point wa treated a a
repeated meaure to control for the variailit of meaurement within each timepoint. Normalit of the data wa determined via tudentized
reidual plot with {MASS} in R (37). Mineralizale C wa log tranformed to otain greater normalit of the data. Tuke’ pairwie comparion
mean eparation wa otained through the emmean function uing the {multcomp} package in R (38). Significant difference were determined
at α=0.05.

To ae oil C tailit in thi tud, we ued a linear regreion model adapted from Hurio etal. (11). Thi model utilized Min C a a predictor
variale and POXC a a repone variale. Reidual were then extracted from the model output. Poitive reidual depict tem trending
toward POXC or C tailization, wherea negative reidual indicate tem trending toward Min C or mineralization procee.

Multiple linear regreion were performed etween independent variale of average temperature and precipitation and dependent variale of
POXC, Min C, and GLU. For all model, tem were comined to olel tet for effect of weather. For each ampling timepoint the average
monthl precipitation and temperature wa ued a the independent variale. Multiple linear regreion were executed uing the lm function in R
(Supplemental Material). Graphing wa conducted uing {ggplot2} in R (39).
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Reult

Weather

Dail average temperature and dail precipitation meaurement reading were otained from the KS LTR weather tation located at 42.408537,
-85.373637. The 2021 cumulative precipitation and the 32-ear average wa calculated for, March 1-Augut 30, to encapulate the ampling time
point and ke month during the growing eaon. Cumulative growing degree da (GDD) were calculated from the average dail temperature
uing a ae of 10°C (40). The growing eaon in 2021 wa characterized a anormal compared to the 32-ear average. From April through the
end of June, cumulative precipitation wa 57% lower in 2021 than the 32-ear average (Figure 2A). Large rain event in Jul caued precipitation to
e 8% greater from Jul to Augut in 2021 compared to the 32-ear average (Figure 2A). Additionall, throughout the entire growing eaon
average temperature were 22% higher than the 32-ear average, which reulted in a greater numer of GDD over the coure of the growing
eaon (Figure 2).

Figure 2
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Mineralizale Caron

Stem ignificantl affected Min C (p<0.05; Tale 1), where difference in management intenit and perennialit had a trong influence. When
averaged over the growing eaon Min C wa 68% greater in unmanaged tem that conited of a mown graland and earl ucceional
communit, compared to all other tem (Tale S2; Figure 3). Additionall, perennial tem had 41% greater mineralizale C than conventional
and no-till tem (Tale S2; Figure 3). iologicall-aed and reduced input o tem were found to have comparale level of Min C to
thoe of perennial tem (Tale S2; Figure 3).
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Figure 3

Mineralizale C ignificantl changed over the coure of a ingle growing eaon (p<0.05; Tale 1). Overall, unmanaged and perennial tem
appeared to experience more dratic hift in Min C level compared to annual tem (Figure 3). From Ma to June, Min C decreaed two-fold,
within the perennial and unmanaged tem (Figure 3). Likewie, Min C decreaed in mot annual tem etween Ma and June ut to a leer
extent (Figure3). After the harp decline in Min C that occurred in June, meaurement proceeded to increae in Jul and Augut within all tem
except the conventional tem (Figure 3).

β-Glucoidae

Sampling time point ut not tem wa found to have a ignificant effect on GLU activit (p<0.05; Tale 1; Tale S2). Generall, GLU activit
decreaed two-fold over the growing eaon in unmanaged tem, wherea GLU activit in perennial and annual tem till decreaed ut to a
leer extent (Figure 4).
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Figure 4

Permanganate Oxidizale Caron

Stem had a ignificant effect on POXC (p<0.05; Tale 1). When averaged acro timepoint the unmanaged tem had 37% greater POXC than
compared to all other tem, when averaged (Tale S2). When averaged acro timepoint, oth perennial tem had 31% greater POXC
compared to no-till and conventional tem, when averaged (Tale S2). The reduced input and iologicall aed tem had imilar level of
POXC compared to the perennial tem ut ignificantl greater POXC level relative to the conventional tem.

Time had a ignificant effect on POXC (p<0.05; Tale 1), with POXC level fluctuating over the coure of a ingle growing eaon (Figure 5).
Permanganate oxidizale C decreaed  two-fold  Jul within unmanaged, perennial, and reduced input tem (Figure 5). In addition, POXC
level alo decreaed over the growing eaon in iologicall, no-till, and conventional tem ut to a leer degree (Figure 5).

Figure 5
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Reidual

In general, tem with greater perennialit and reduced management intenit were found to trend toward C torage, wherea the annual
dominated tem trended toward C mineralization (Figure 6). When averaged over the growing eaon mown graland, witchgra, poplar,
and iologicall aed tem had poitive reidual that indicated C torage (Tale S2). In contrat, the conventional, no-till, earl ucceional,
and reduced input tem had negative reidual indicating that thee tem trended toward C mineralization. However, average over the
growing eaon ma have een iaed given the road range of fluctuation of the reidual within a ingle growing eaon.

Figure 6

Additionall, the extent to which tem mineralized veru tailized C, hifted over the coure of the growing eaon. All unmanaged and
perennial tem were found to trend toward C tailization in Ma and June (Figure 6). In the econd half of the growing eaon however, oth
perennial tem a well a the earl ucceional tem trended toward C mineralization (Figure 6). The mown graland tem wa the onl
tem that trended toward C tailization over the entire growing eaon (Figure 6). The annual cropping tem all trended toward C
tailization in Ma, except for the conventional tem (Figure 6). However, over the ret of the growing eaon, mot annual tem trended
toward C mineralization (Fig 6).

ffect of Climate on Caron Ccling

A erie of multiple linear regreion were conducted to invetigate the effect that precipitation and temperature had on the variou oil health
indicator. Through taking the monthl average of precipitation and temperature that correponded to each ampling period we were ale to
account for change in precipitation and temperature over the growing eaon. The Min C model found that precipitation had a ignificant effect
on Min C, while temperature did not. In general, we found that increaed precipitation decreaed Min C (ß= -0.12; Tale 2). The GLU model
indicated that oth temperature and precipitation had a ignificant effect on GLU activit (Tale 2). Specificall, increaed temperature wa found
to decreae GLU activit (ß= -1.39) and increaed precipitation wa found to increae GLU activit (ß=0.27). Moreover, temperature appeared to
have a greater effect on GLU activit. The POXC model found that oth temperature (ß=0.27) and precipitation (ß=-22.17) had a ignificant effect
on POXC, where precipitation had a greater effect on POXC relative to temperature (Tale 2).

Tale 2
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Dicuion

Reduced Management Intenit Foter C Stailization Acro Stem

Our reult indicate that tem with greater perennialit and diverit can enhance C ccling and C tailit. Overall, unmanaged tem had
conitentl greater Min C and POXC, which upported our firt hpothei that tem under reduced management intenit would have greater
C tailit and ccling. Mot noteworth, i that the monoculture perennial tem had imilar Min C and POXC value to thoe of the annual row
crop tem. Thee reult are like other who have reported that it i plant perennial diverit that ma caue greater accumulation of laile and
taile C pool rather than jut perennialit (41–43). It i alo important to note that the aoveground ioma of all annual and perennial
witchgra tem were harveted, thi removal of ioma ma have alo contriuted to reduced oil C pool in thee tem a le organic
matter wa availale for aimilation into C pool. The addition of nitrogen (N) fertilizer to the oil within conventional and witchgra tem
ma have alo contriuted to reduced oil C pool due to potentiall increaing oil organic mineralization (44, 45). However, it i more likel that
the contriution of elowground ioma from extenive and divere root tem had the larget effect on enhancing oil C accumulation acro
thee tem (46–51). For intance, Rae etal. (47) report that the mean reidence time of C derived from root i 2.4 time greater than C
derived from hoot, due to increaed recalcitrance and the protection of C  root hair and mcorrhizae in aggregate. Divere perennial
tem have alo een found to have increaed aggregate tailit due to lack of mechanical diturance (52). nhanced aggregate tailit can
lead to greater macroaggregate and phicall protect proceed pool of oil C, which can reult in increaed C tailization and accumulation
(53, 54).

Difference in root production etween varing tem ma have had a ignificant impact on oil C pool. For example, witchgra tem have
een found to increae oil C tock when compared to oean tem ecaue of their deep root tem that have higher C/N ratio (55).
Soean tem have hallow root with low C/N ratio and low ioma, which add le organic matter to oil tem (56). Additionall, the
low C/N ratio ma caue increaed C mineralization rather than C tailization (55). Moreover, within earl ucceional and mid-ucceional
tem root ioma comprie a majorit of plant tanding ioma (57), where the decompoition of root ioma ha een hown to
increaed microial activit and the aimilation of organic matter into oil C pool (58). Moreover, plant diverit can alo accelerate root
production due to plant complementarit from legume (59). To our knowledge, root production ha never een meaured within thi
experiment. That aid, multiple tudie have demontrated that perennial cropping tem produce ignificantl more root ioma compared to
annual crop (60, 61) and thi often lead to greater C pool within perennial tem (12, 43, 62, 63).

Soil C trend acro the management intenit gradient were aeed through the calculation of reidual, where poitive trend indicate C
tailization and negative trend indicate C mineralization (11, 18). The conventional tem had the larget negative reidual acro all tem,
which indicate that thee tem trend toward C mineralization. Mown graland tem had the greatet poitive reidual when compared to
all other tem. Surpriingl, earl ucceional communitie utantiall differed from mown graland a earl ucceional tem trended
toward C mineralization. Our reult indicate that earl ucceional tem ma foter a greater laile C pool, ut more proceed C pool ma
e uppreed. Likewie, Sprunger and Roerton (43) alo indicate that earl ucceional tem have imilar low C pool to thoe of annual
tem. Moreover, the mown graland ha never een ditured and foter a divere perennial communit wherea the earl ucceional
tem i dominated  annual plant pecie, which likel reduce fine root productivit and ultimatel C accumulation (59). Additionall the earl
ucceional tem wa managed intenel until 1989. Ward etal. (64) reported that legac effect of previou management intenit can have a
utantial effect on oil C inventorie. Our reult indicate that oth plant communit compoition a well a pat management diturance likel
influence long-term C tailization.

Our reult alo indicate that long-term management rather than within eaon management perturation influenced laile and more proceed
C pool, given that oil C indicator were not altered after planting and tillage event took place. For intance, all three oil C indicator within the
iologicall aed tem remained relativel tatic over the coure of the growing eaon and did not decreae, even following frequent
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mechanical diturance (Figure 1). Thee reult are conitent with other that have found larger C pool in the iologicall aed tem relative
to the conventional tem (62, 65, 66). The greater C level depite frequent diturance ma e due to continuou C input from the cover
crop included in the rotation (62). Like our tud, Culman etal. (1) report that long-term rotational diverit and cover cropping rather than within
eaon management perturation had a utantial effect on oil C pool over the coure of a growing eaon. It wa alo urpriing that GLU wa
not reponive to tem. The lack of difference etween GLU in tem varing in management intenit ma have een caued  the effect of
weather perturation from drought confounding tem effect (67). Additionall, GLU activit i highl variale ecaue it reflect the microial
communit decompoition of celluloe in a pecific moment in time. Thi variailit ring into quetion whether GLU activit i reflecting C
deca aed on long-term management or on the rapid change of the microial communit that are conitentl taking place within all tem.

Short-Term Weather Alter Soil C Pool and Stailit Over a Single Growing Seaon

The enitive oil health indicator meaured in thi tud were clearl influenced  weather pattern over the coure of the growing eaon. Our
reult indicate that meaure of laile and more proceed C pool were ignificantl impacted  oth precipitation and temperature partiall
diproving our hpothei that onl Min C would demontrate temporal variailit. Our reult indicated that meaure of the laile C pool were
enitive to precipitation ut not temperature, wherea meaure of C deca and proceed pool of C were impacted  oth precipitation and
temperature. Given that moiture and a minimum temperature i eential for aggregate formation, it i not urpriing that oth precipitation and
temperature would affect proceed C pool, a increaed aggregation can lead to the protection of proceed C pool (23, 68–70). Precipitation
ha een found to alter laile C pool, reduced precipitation hrink oil water film and increae the oil ionic trength to C, which reult in a
decreae of laile C (71, 72). Temperature ma have affected POXC and GLU a increaed temperature ha een found to enhance microial
activit and the decompoition of complex C (73, 74). Thee reult differ from other who report that laile C pool are impacted  temperature
and moiture, and tale C pool are affected  onl moiture (21, 23, 75). Our reult ma differ from other impl ecaue precipitation wing
during the 2021 growing eaon ma have overwhelmed temperature effect (23, 75). That eing aid, within eaon fluctuation in oil C pool
ma have alo een impacted  hort-term management perturation and not jut weather event. Our finding demontrate that more
reearch i needed to undertand how laile and tale C pool function in repone to temperature, precipitation, and hort-term management
perturation at the field cale.

Seaonal temperature and precipitation change were alo found to alter oil C tailit. Drought period within a growing eaon were found to
utantiall decreae oth laile and more proceed C pool. However, re-wetting period after drought were found to increae Min C pool,
while POXC remained reduced. Thu, it wa not urpriing that tem trended toward mineralization procee at the end of the growing
eaon. Thee reult are like other that have found that wetting event that follow drought reult in rapid repiration due to the rewetting of
detailized C from drought event (76–78). Thee rewetting event then tranport olule C via oil water, which change the ioavailailit of
the C and potential for decompoition (71, 79). Increaed temperature ma have alo plaed a role in prompting mineralization procee within
mot tem, a warmer temperature have een reported to increae the microial repiration cot aociated with maintaining enzme
production and ioma (80). In addition to change in weather, plant nutrient demand (81) a well a increaed root turnover (59) ma have
caued increae in the laile C pool at the end of the growing eaon.

The extent to which oil C ccling fluctuated over the coure of a growing eaon in repone to weather event differed acro the eight tem.
While all tem were impacted  weather perturation, unmanaged tem alwa maintained greater POXC and Min C level over the
coure of the growing eaon than compared to perennial and annual tem. Moreover, the mown graland tem alwa trended toward C
tailization, even when experiencing large precipitation wing. Thee reult indicate that increaed plant diverit and reduced diturance are
ke in enhancing mechanim that foter oil C tailit, including elowground C tranfer etween functionall different plant and aggregation
(82, 83). Such rhizophere interaction are critical to tailizing C and could explain wh more divere tem are reilient to weather
perturation. Surpriingl, perennial monoculture tem had imilar Min C and POXC value a annual tem over the growing eaon and
trended toward C mineralization. Thi finding i like Swerda etal. (62) and indicate that although perennial tem ma have greater C input
through root ioma (46), mot of thi C i in a laile form that i uceptile to lo (61). Change in weather over the growing eaon appeared
to have a minimal effect on oil C pool in the conventional tem. One ma peculate that ecaue the conventional tem i conitentl
loing oil C over time (Cordova et al., under review), weather diturance have minimal effect on oil C pool within a ingle growing eaon.

Given that oil health indicator were onl meaured over the coure of a ingle growing eaon our tud i limited in the extent to which we can
infer how oil health indicator ma hift in the aence of root and dormant perennial root. The meaurement of oil health indicator etween
growing eaon i important a the preence of cover crop or dormant perennial root can timulate the microial communit and enhance
nutrient ccling (43). Additionall, the crop that i currentl growing in rotation ma have influenced the oil health indicator, more tudie that
meaure oil C indicator over the coure of an entire crop rotation could e ueful to comprehenivel undertand how oil C pool are hifting.
Concluion on the extent in which weather can alter oil C indicator are limited in thi tud, given that onl one long-term field ite in
outhwet Michigan wa ued. A tud that ue multiple field ite in region that var ditinctl in weather hift could e compared to determine
ae weather pattern effect on oil C more concretel. In addition, our model wa limited in it ailit to account for the effect of management
in comination with weather on oil C meaure within a ingle growing eaon.

Implication for Future Soil Health Sampling

The oil health communit ha made ignificant advancement in recent ear  identifing indicator that are enitive to recent change in
management (84). Thee enitive indicator are critical for informing agronomic performance and aeing C equetration potential (1, 18).
Furthermore, a C market continue to expand, it will e critical to find indicator that accuratel reflect C tailization within agroecotem
(85). Thi tud demontrate that oil health indicator are not onl enitive to long-term management ut clearl repond to weather
perturation a well. Thi enitivit to extended period of drought and large precipitation event ha practical implication for oil health
ampling and interpretation. While it ha een noted that oil iological health indicator are uceptile to temporal variation over a ingle
growing eaon (86, 87), the converation i rarel extended to how thi variailit might impact oil health teting, interpretation, and
recommendation to farmer. aed on our reult, we recommend that oil health teting hould occur at the ame time ever ear. Moreover,
given that weather pattern can trongl dictate thee enitive meaure of oil C, it ma e eneficial to increae the frequenc of oil ampling
and take multiple ample within a growing eaon to comprehenivel undertand how within eaon perturation ma e impacting C
tailization, nutrient availailit, and overall oil health.

Concluion

Our tud found that divere perennial tem under long-term management can enhance oth laile and more proceed C pool. Moreover,

 



tem with greater perennial diverit were ale to conitentl trend toward C tailization over the coure of a ingle growing eaon. In
addition, POXC and Min C were oth found to fluctuate over the coure of the growing eaon and were affected  major precipitation event
and temperature. Our tud indicate that 1) long-term management can utantiall affect C ccling and tailit 2) Increaed perennialit
comined with greater plant diverit can foter oil C pool that are reilient to extreme variailit in temperature and precipitation and 3) Soil
health teting hould take place at the ame time ever ear given that enitive indicator can heavil var over the coure of a growing eaon.
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