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Soil carbon (C) is a major driver of soil health, yet little is known regarding how sensitive measures of soil C shift temporally within

a single growing season in response to short-term weather perturbations. Our study aimed to i) Examine how long-term

management impacts soil C cycling and stability across a management intensity and plant biodiversity gradient and ii) Assess Carolyn

how sensitive soil health indicators change temporally over the course of a single growing season in response to recent weather Otson us
patterns. Here we quantify a variety of sensitive soil C measures at four time points across the 2021 growing season at the W K. Sfrc;fygical
Kellogg Biological Station’s Long Term Ecological Research Trial (LTER) located in southwest Michigan, USA. The eight systems ET‘ZZT
sampled included four annual soybean (Glycine max) systems that ranged in management intensity (conventional, no-till, States
reduced input, and biologically-based), two perennial biofuel cropping systems (switchgrass (Panicum virgatum) and hybrid Reviewed

poplars (Populus nigra x P.maximowiczii)), and two unmanaged systems (early successional system and a mown but never tilled by
grassland). We found that unmanaged systems with increased perenniality enhanced mineralizable C (Min C) and permanganate
oxidizable C (POXC) values. Additionally, all soil health indicators were found to be sensitive to changes in short-term weather

perturbations over the course of the growing season. The implications of this study are threefold. First, this study assess ENGRACIA

indicators of labile and stable C pools over the course of the growing season and reflects the stability of soil C in different MADE‘]‘?Q‘MG of

systems. Second, POXC, Min C, and R-glucosidase (GLU) activity are sensitive soil health indicators that fluctuate temporally, g:;it’:ces

which means that these soil health indicators could help elucidate the impact that weather patterns have on soil C dynamics. and

Lastly, for effective monitoring of soil C, sampling time and frequency should be considered for a comprehensive understanding S?rsoekiﬁfg

of soil C cycling within a system. Spanish
National
Research
Council
(CSIC),

Introduction Spain

A primary motivation for enhanced soil carbon (C) is improved soil health, which is intimately connected with short-term outcomes like increased 3

crop productivity and long-term outcomes such as soil fertility and C sequestration (1, 2). Soil health is the ability of the soil to provide essential Gina GaErlTaHnd

services such as plant and animal health, water and air quality, and plant productivity (3). Soil C is the most important underlying property of soil TR,

health because it drives biological, chemical, and physical processes in the soil. For instance, greater soil C pools are associated with a greater Switzerlanc

abundance of bacteria and fungi (4-6). Soil C is also associated with aggregate stability and improved soil structure, which allows soils to retain

more nutrients (7). Soil C accumulation is also vital for climate mitigation (8, 9). In order to reach short and long-term soil health outcomes,

assessing the trajectory of soil C in a given system is essential.

Soil C is a large and dynamic pool with several moving components. To better understand the mechanisms that drive soil C decay and

accumulation, it's imperative to separate out pools that are functionally different from one another. The soil health framework is a conceptual

model that is based on the collection of an array of biological, chemical, and physical soil health indicators that are then used to inform

management decisions (10). The soil health framework provides several soil health indicators that reflect functionally different pools of C. For

instance, mineralizable C (Min C) strongly reflects a more labile or active pool of C and is critical for nutrient mineralization and crop productivity

(1, 11, 12). Additionally, B-glucosidase (GLU) enzymes breaks down cellulose into glucose which can then be utilized by the microbial community

(13). Therefore, GLU activity can indicate the rate of decay of organic material and the available C for microbial use. In contrast, permanganate

oxidizable C (POXC) reflects a more processed pool of C and is more closely correlated with the total soil organic C pool (12, 14). Several studies

have demonstrated that Min C and POXC reflect different pools of C (11, 15, 16). For instance, (17) reports that Min C is able to detect larger

differences between perennial polycultures and annual row crops relative to POXC. This demonstrates that Min C may serve as an indicator of a

more labile pool of C that represents C mineralization processes, whereas POXC may reflect a slower pool of C that takes a longer period of time

to respond to management and reflects C stabilization processes. Residuals from a linear regression model of Min C and POXC can be used to

visualize if a system trends more so towards C stabilization processes (POXC) or C mineralization processes (Min C) (11, 18). TABLE OF

CONTENTS

Soil health indictors that reflect functionally different pools have been measured across a wide range of managed and unmanaged systems (15, 19,
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20), yet we have a limited understanding of how Min C, POXC, and GLU respond to short-term changes in temperature and precipitation at the
field scale. Previous laboratory-based experiments have widely demonstrated that labile and protected pools of C respond differently to changes
in moisture and temperature (21-23). For instance, Cates etal. (23) found that low molecular weight C storage was impacted by temperature and
moisture, while more protected pools of C were solely altered by moisture. Similarly, Benbi and Khosa (21) found that labile C pools were more
sensitive to temperature relative to mineral associated organic matter. Currently, little is known regarding how these soil C pools function in
relation to precipitation and temperature within a field setting, as most experiments have been conducted within a laboratory setting. Exploring
how POXC, Min C, and GLU respond to seasonal temperature and precipitation changes, could provide further insight into their functionality and
ability to reflect soil C stability.

Seasonal trends in POXC, Min C, and GLU have been reported in row-crop agriculture and generally demonstrate that these indicators are heavily
influenced by plant growth and nutrient demand (1). For instance, Martin etal. (24) demonstrated that fine root production and decay in corn-based
systems influence labile pools of C and N more so than processed pools of C. However, soil C cycling under contrasting management juxtaposed
with intense climatic conditions is largely unknown at the field scale. Numerous studies have demonstrated that increases in soil organic matter
contribute to yield stability in drought conditions (25-28). Additionally, Acosta-Martinez etal. (29) reported increased enzyme activity in
agricultural soil when under drought conditions. However, many of the studies that report impacts of drought on soil C have been conducted in
laboratory conditions or simulated within the field. Thus, more information is needed regarding how drought may naturally impact soil C pools and
which mechanisms and kinetics lead to this stability in soil C over short and long-term time frames. Can soil health indicators help to uncover
within season soil C dynamics that contribute to ecosystem resilience and long-term soil C accumulation?

Here we explore soil C dynamics over the course of a single growing season in systems that have undergone long-term management. The aim of
this study is to i) Examine how long-term management impacts soil C cycling and stability across a management intensity and plant biodiversity
gradient and ii) Assess how sensitive soil health indicators of soil C change temporally over the course of a single growing season in response to
recent weather patterns. We hypothesize that systems with high diversity and reduced management intensity will have greater soil C stability over
the course of a single growing season and exhibit greater C accumulation relative to systems dominated by annual row crops. Second, we
hypothesize that soil health indicators reflecting labile C pools (i.e. Min C and GLU) will be more responsive to within season weather patterns
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relative to POXC, which will remain more stable throughout the growing season because it reflects a more processed pool of C.
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Methods

Site Description Check
for

This study was conducted at the W.K. Kellogg Biological Station’s (KBS) Long-term Ecological Research site (LTER), located at 85° 24'W, 42° 24" N. updates

The LTER lies on the Kalamzoo and Oshtemo soil series. Both soil types are a mixed mesic Typic Hapludalf. The main difference between the two
soil series is the thickness of the B/Bt horizon. Daily precipitation and temperature values were obtained from the KBS National Weather Service
Station, located at 85° 23'W, 42° 24’ N at an elevation of 277.4 meters. The average annual temperature for months January-December is 9.74°C
and the average annual precipitation for months January-December is 1005 mm a year (30).

People also

looked at
Experimental Design Mother-
The KBS LTER Main Cropping System Experiment (MCSE) consists of four annual cropping systems, two perennial systems, and two unmanaged to-Child
systems. The four annual cropping systems were established in 1989 and range in management, including a conventional, no-till, reduced-input, L.
. : . . . . ) . . : Transmissi
and biologically based system. The two perennial systems are switchgrass (Pancium virgatum) and poplar (Populus nigra x P.maximowiczii) which
were established and sampled in 1989. The two unmanaged communities are an early successional community, which was abandoned from row- ©N of HIV
crop agriculture in 1989 and a mown grassland (never tilled) which was established on a cleared woodlot in 1959. The four annual cropping Within 24
systems, two perennial systems, and the early successional community comprise the LTER Main Cropping System Experiment (MCSE). Systems Months
are situated in a randomized complete block design, with 1 ha (90 x 110 m) plots that are each replicated in six blocks. The mown grassland is
located 200 m to the south of the LTER main site with 15 x 30 m plots, replicated four times. After
Delivery in
Management varied within each system and detailed information on timing can be found in Figure 1. The four annual systems move through a corn e
(Zea mays)-soybean (Glycine max)-wheat (Triticum aestivum) rotation. In 2021, the systems were in the soybean phase of the rotation and were .
planted with Roundup Ready soybeans at 67 kg ha™t. The conventional system was chisel plowed and received standard chemical inputs. The no- Initiating
till system received the same standard chemical inputs as the conventional system but has been under permanent no-till conditions since trial Lifelong
establishment. In 2021, conventional systems were fertilized with 228 kg ha™! of 28% UAN, 4 kg ha™* of ammonium sulfate, 135 kg ha™! of 0-46-0 Antiretrovi
phosphorus, and 168 kg ha ! of 0-0-60 potassium. No-till systems were fertilized with 3.5 kg ha™t of ammonium sulfate, 112.5 kg ha™! of 0-46-0
phosphorus, and 168 kg ha! of potassium. Conventional system had 3.51 kg ha™ of Warrant and 4.5 kg ha ! of Roundup Power Max (48% 2
glyphosate) applied. No-till systems had 7.5 kg ha ! of Roundup Power Max (48% glyphosate), 4.68 kg ha ! of 2,4-D Enlist One, and 1.17 kg hal of ~ Therapy
Fierce MTZ applied. The reduced input systems are managed to reduce synthetic chemical inputs through the use of a cover crop and nitrogen Pre/Post-
fertilizer reductions. Specifically, the reduced input system receives 33% of the nitrogen fertilizer and chemical inputs that the conventional Conceptio
system and no-till systems receive. In 2021, the reduced in-put system was fertilized with 4 kg ha™* of ammonium sulfate, 113 kg ha™! of 0-46-0
phosphorus, and 147 kg ha™ of 0-0-60 potassium. The reduced input system also had 2.25 kg ha™! of Roundup Power Max (48% glyphosate). ner
Additionally, the reduced input system is chisel plowed and has a winter cover crop of red clover (Trifolium pratense) or annual ryegrass (Lolium Postnatally
multiflorum) that is plowed under prior to planting during corn and soy years. The crop rotation cycle in the reduced input system is a corn- : Effects of
ryegrass-soybean-winter wheat-red clover rotation. The biologically based system is managed without the application of synthetic chemical e
inputs, this system is chisel plowed, under mechanical weed control, and has a corn-ryegrass-soybean-winter wheat-red clover rotation. )
Additionally, there is no manure or compost applied. For conventional, no-till, reduced input, and biologically based systems the average 2021 t Girl and
soybean yield was 4226, 4180, 4094, and 2005 kg ha™. Young
Woman
Status and
Figure 1
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the 2021
growing
season across
eight systems
at the KBS
LTER.

B Conventional Soy
May 2021 August 2021

Thegvit@k?drta!ys%)?s¥em is in a 5-year rotation with winter wheat as a 1-year break crop. This perennial system was planted with alfalfa from 1989-

201%&5 ince been moved to a switchgrass perennial system starting in 2019. Switchgrass was plant&ugl.’lﬂlkgﬂfl. In 2021, switchgrass was
in its third year. Switch was fertilized with 4 kg ha™! 28% UAN. The average aboveground biomass was 7367 kg ha ! in 2021. The poplar
system was established 89 and is planted with hybrid poplar trees that are harvested on a 10-year harvest cycle. The poplar system was last

harvested in 2018, and a hew crop was planted in 2019. Poplar yields in were 46543 kg ha™lin 2018.

The earl¥ successional coh gnunity was historically tilled and abandoned in 1988, this system is unmanaged however the system is burned every
spring {a-4ontrol for Wcﬁﬁﬁpeciesfﬂe mown grassland is predominantly unmanaged except for annual fall mowing to control for woody
= il o

-
. L
species.

Field Sampling

SoilQm%ﬁr?gugg rlr%B lfléusr%ﬂwes over the course of the growing season within each system (Figure 1). Sampling time is defined as the point of
the W‘guzg_son in which samples are collected (i.e., May, June July, or August). System is defined as t i@ﬁg@gfﬁfft system that samples
were taken from (i.e., Conventional sQy, no-till soy, reduced input soy, biologically based soy, poplar, switchdrass, early successional, or mid-
samplin:;ggégl Men using a 1.9 cm diameter push probe down to a 10 cm depth. Soil cores were taken

J system plot. Five soil cores were taken at each station. Ultimately, 25 cores were taken

nvere then imimediately processed for aravime oil mo e conten able 31).

1 h. . .J
Soil Health |ncg%3rs A
N

“ruINe

Permanganate oxidizable C reflects a more processed C pool and was analyzed using methods adapted by Weil etal. (32) and Culman etal. (14).
Soils were dried at 40°C, ground, and sieved to 2 mm prior to analysis. Potassium permanganate (0.02 M) (KMnO,4) was added to soil (2.5 g),
shaEn é%&%géégﬁ hﬁg ésgl% 0 min). Supernatant was removed and diluted to a 99:1 deionized water to supernatant ratio. Absorbance was
measured in 96-well plate readef spectrophotometer at 550 nm.

;ust 2021

. M.a! 2021 . S S . coo A .
Mineralizable C represents the soil C pool that is available to the microbial community within the soil. MineraliZable C was measured using
methods adapted from Franzluebbers etal. (3 Hurisso etal. (34) r to analysis sq “‘(:; dried at 40°C, ground, and sieved to 2 mm. Soil
(10 g) *CJ for 24 hrs. To measure the concentration of carbon
I astaroc oo o c .

The enzyme activity, B-glucosidase (GLU)&4a% determined using the fluo%nce microplat; zyme-assay (35). Soil was prepared by blending
2.75 g of soil and 91 mL of S%wtat&iﬁr. Soil was then poured int lass bowl and Placé&d cﬁs{ir plate where the soil was mixed on
low. Standards of 0, 0.0005, 0.001, 0.002, 0.005, 0.01, and 0.02 umols were prepared for each sample by combining 4-methylumbelliferone
(MUB) (200 pL) and prepared soil (800 pL) in a well of 96-well plate. Soil (800 pL) and 4-MUB- R-D-glucopyranoside substrate (200 pL) was
co indﬂﬂpbﬁfe@ﬁdtsmtﬁhgrﬂ%e. Standard and GLU enzyme assay plates were sealed, inverted ten times, and incubated at 35°C for 1.5 hrs.
Plates wer: %rifuged for 2 min at 1500 rpm and 250 pL of solution from each well was pipetted into a H%—Mflate. Sodium hydroxide
(0.5 ngg Wwas then added to each sample. Fluorescemg »yas measured on an H1 synergy Biotek microplate reader at an excitation

e

wavelength of 365 and emission wavelength of 450. . -':;5 @
———— )
Stais
An analysis of variance (ANOVA) was perforigmgl using the [me function from the {lem4} package (36) in R ian 4.1.0, where system, sampling
time, and the interaction between time and lgsiem were fixed effects and replicate was a random effect. S g time point was treated as a

repeajed measure to control for the variability of measurement within each timepoint. Normality of the data was determined via studentized

resi lE;ﬁblH wHReRSSIoNakand. Miawnifaraseland log transformed to obtain greater normality of the data. Tukey's pairwise comparison
meama@ﬁiﬁn was obtained through the emmeans function using the {multcomp} package in R (38). Siﬂr&&‘ﬁa&tfﬁ%iences were determined
at a=0.05.

To assesgél C stability in this study, we used a linear regression model adapted from Hurisso etal. (11). This model utilized Min C as a predictor
variable arld POXC ag a response variable Residuals were then extracted from the madel outn Positive residyals depi stems trending

towards POXC or C stabilization, whereas negative residuals indicate systems trending towards Min C or mineralization processes.

Multiple linear regressions were performed between independent variables of average temperature and precipitation and dependent variables of
POXC, Min C, and GLU. For ali odels, syswere combined to |11el5i:test for effects of Wgathgr each sammigg..;imepoint the average
r

montMﬂ%ita@&Q%\Eﬁ%ﬂatﬂ@iWa 9 20il mm@eii a%@.imﬁﬁgm@tﬂéﬂk sRIaRtIng T ising the Im function in R
(Supplemental Materials). Graﬁ‘hlﬂ'&; was con_gdéted using { t2} in R (39).
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Analysis of

Results _
Biomass
Weather Allocation
. ) S ) . , Patterns in
Daily average temperature and daily precipitation measurement readings were obtained from the KBS LTER weather station located at 42.408537,
-85.373637. The 2021 cumulative precipitation and the 32-year average was calculated for, March 1-August 30, to encapsulate the sampling time Plants
points and key months during the growing season. Cumulative growing degree days (GDD) were calculated from the average daily temperature Hendrik

using a base of 10°C (40). The growing season in 2021 was characterized as abnormal compared to the 32-year average. From April through the
end of June, cumulative precipitation was 57% lower in 2021 than the 32-year average (Figure 2A). Large rain events in July caused precipitation to
be 8% greater from July to August in 2021 compared to the 32-year average (Figure 2A). Additionally, throughout the entire growing season
average temperatures were 22% higher than the 32-year average, which resulted in a greater number of GDD over the course of the growing
season (Figure 2B).

Poorter and
Lawren Sack

Figure 2
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System significantly affected Min C (p<0.05; Table 1), where differences in management intensity and perenniality had/a strang influence. When
averaged over the growing season Min C was 68% greater in unmanaged systems that consisted of a mown grassland and early successional
community, compared to all other systems (Table S2; Figure 3). Additionally, perennial systems had 41% greater mineralizable C than conventional
and no-till systems ([able S2; Figure 3). Biologically-based and reduced input soy systems were found to have cémparable levels of Min C to
those of perennial systems (Table S2; Figure 3).
BOOD «

Table 1

Factor Mineralizable C B-Glucosidase POXC

System 28.97 0.72 38.6631**
Time 15.9*** 5.69" 20.1349™

System_ﬂx Time 1257 1.04 3.2767
&
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Minerali ignificantly changed over the course of a single growing season (p<0.05; Table 1). Overall, unmanaged and perennial systems
appeare perience more drastic shiftsiin Min C levels compared to annual systems (Figure 3). From May to June, Min C decreased two-fold,
within nnial and unmanaged systems (Figure 3). Likewise, Min C decreased in most annual systems between May and June but to a lesser
extent (Figure3). After the sharp decline in Min C that occurred in June, measurements proceeded to increase in July and August within all systems
ntional system (Figure 3).
oint but not system was found to have a significant effect on GLU activity (p<0.05; Table 1; Table S2). Generally, GLU activity

decrerd over the growing seas@n in unmanaged systems, whereas GLU activity in perennial and annual systems still decreased but to a
lesser extent (Figure 4).
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Residua
In gene ems with greater perennialil and reduced management intensity were found to trend towards C storage, whereas the annual
d systems trended towards C mifleralization (Figure 6). When averaged over the growing season mown grasslands, switchgrass, poplar,

and beiloglcally based systems had positiv@ residuals that indicated C storage (Table S2). In contrast, the conventional, no-till, early successiopal,
uced input systems had negative rTiduals indicating that these systems trended towards C mineralization. However, averages over t
N the broa ge of fluctuation of the residuals within a single growing season.

and r

growinmay have been biased giv
| rmS———

200~

Additionally, the extent to which systems mineralli ersus stabilized C, shifted over the course of the growing season. All unmanagefl and
perennial systems were found to trend towards C lization in May and June (Figure 6). In the second half of the growing season hojvever, both
perennial systems as well as the early succession em trended towards C mineralization (Figure 6). The mown grassland system wia
system that trended towards C stabilization over t tire growing season (Figure 6). The annual cropping systems all trended towards C
stabilization in May, except for the conventional s (Figure 6). However, over the rest of the growing season, most annual system§ trended
towards C mineralization (Fig 6).

Effect of Climate on Carbon Cycling

A series of multiple linear regressions were condu to investigate the effect that precipitation and temperature had on the various sbil health
indicators. Through taking the monthly averages cipitation and temperature that corresponded to each sampling period we werd able to
account for changes il p i amsltempera ver the growing season. The Min C model found that precipitation had a signifigant effect
on Min C, while tempeat t. In general, nd that increased precipitation decreased Min C (8= -0.12; Table 2). The GLU rhodel
indicated that both temperature and precipitation significant effect on GLU activity (Table 2). Specifically, increased temperaturefwas found
to decrease GLU activity (3= -1.39) and increased ipitation was found to increase GLU activity (R=0.27). Moreover, temperature a@peared to
have a greater effect on GLU activity. The POXC | found that both temperature (3=0.27) and precipitation (R=-22.17) had a signifigant effect
on POXC, where precipitation had a greater effec OXC relative to temperature (Table 2).

©

Model Independent Variable Dependent Variable r B
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Precipitation -22.61
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Discussion

Reduced Management Intensity Fosters C Stabilization Across Systems

Our results indicate that systems with greater perenniality and diversity can enhance C cy: and C stability. Overall, unmanaged systg
consistently greater Min C and POXC, which supported our first hypothesis that systems u
C stability and cycling. Most noteworthy, is that the monoculture perennial systems had si

may have also contributed to reduced soi j moke likema,t__‘__
the contribution of belowground biomass from exte i 3 ffect on enhancing s@il C accumulation across
these systems (46-51). For instance, Rasse etal. (47) reports that the mean residence time of C derived from roots is 2.4 times greater than C
derived from shoots, due to increased recalcitrance ang the protection of C root hairs and mycogrhizae in aggregates@piverse perennial
systems have also been found to have increased a e stability due f mechanical ﬁce ). Enhan Xregate stability can (q\
lead to greater macroaggregates and physical c@ cessed pooéoll C, which creased C c‘%lon and accumulatlonb‘
AN ‘

(53, 54). g

Differences in root production between varying systems may hav d a 5|gn|f|cant impact on soil C pools (Nxa ple, switchgrass systems have
been found to increase soil C stocks when compared to soybean systems because of their deep root s at have higher C/N ratios (55).
Soybean systems have shallow roots with low C/N ratios and low biomass, which adds less organic mat®r to soil systems (56). Additionally, the
low C/N ratios may cause increased C mineralization rather than C stabilization (55). Moreover, within early successional and mid-successional
systems root biomass comprises a majority of plant standing biomass (57), where the decomposition of root biomass has been shown to
increased microbial activity and the assimilation of organic matter into soil C pools (58). Moreover, plant diversity can also accelerate root
production due to plant complementarity from legumes (59). To our knowledge, root production has never been measured within this
experiment. That said, multiple studies have demonstrated that perennial cropping systems produce significantly more root biomass compared to
annuals crops (60, 61) and this often leads to greater C pools within perennial systems (12, 43, 62, 63).

Soil C trends across the management intensity gradient were assessed through the calculation of residuals, where positive trends indicate C
stabilization and negative trends indicate C mineralization (11, 18). The conventional system had the largest negative residuals across all systems,
which indicates that these systems trend towards C mineralization. Mown grassland systems had the greatest positive residuals when compared to
all other systems. Surprisingly, early successional communities substantially differed from mown grasslands as early successional systems trended
towards C mineralization. Our results indicate that early successional systems may foster a greater labile C pool, but more processed C pools may
be suppressed. Likewise, Sprunger and Robertson (43) also indicate that early successional systems have similar slow C pools to those of annual
systems. Moreover, the mown grassland has never been disturbed and fosters a diverse perennial community whereas the early successional
system is dominated by annual plant species, which likely reduces fine root productivity and ultimately C accumulation (59). Additionally the early
successional system was managed intensely until 1989. Ward etal. (64) reported that legacy effects of previous management intensity can have a
substantial effect on soil C inventories. Our results indicate that both plant community composition as well as past management disturbance likely
influence long-term C stabilization.

Our results also indicate that long-term management rather than within season management perturbations influenced labile and more processed
C pools, given that soil C indicators were not altered after planting and tillage events took place. For instance, all three soil C indicators within the
biologically based system remained relatively static over the course of the growing season and did not decrease, even following frequent
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mechanical disturbance (Figure 1). These results are consistent with others that have found larger C pools in the biologically based systems relative
to the conventional system (62, 65, 66). The greater C levels despite frequent disturbance may be due to continuous C inputs from the cover
crops included in the rotation (62). Like our study, Culman etal. (1) reports that long-term rotational diversity and cover cropping rather than within
season management perturbations had a substantial effect on soil C pools over the course of a growing season. It was also surprising that GLU was
not responsive to system. The lack of differences between GLU in system varying in management intensity may have been caused by the effect of
weather perturbation from drought confounding system effects (67). Additionally, GLU activity is highly variable because it reflects the microbial
community decomposition of cellulose in a specific moment in time. This variability brings into question whether GLU activity is reflecting C
decay based on long-term management or on the rapid changes of the microbial community that are consistently taking place within all systems.

Short-Term Weather Alters Soil C Pools and Stability Over a Single Growing Season

The sensitive soil health indicators measured in this study were clearly influenced by weather patterns over the course of the growing season. Our
results indicate that measures of labile and more processed C pools were significantly impacted by both precipitation and temperature partially
disproving our hypothesis that only Min C would demonstrate temporal variability. Our results indicated that measures of the labile C pool were
sensitive to precipitation but not temperature, whereas measures of C decay and processed pools of C were impacted by both precipitation and
temperature. Given that moisture and a minimum temperature is essential for aggregate formation, it is not surprising that both precipitation and
temperature would affect processed C pools, as increased aggregation can lead to the protection of processed C pools (23, 68-70). Precipitation
has been found to alter labile C pools, reduced precipitation shrinks soil water films and increases the soils ionic strength to C, which results in a
decrease of labile C (71, 72). Temperature may have affected POXC and GLU as increased temperature has been found to enhance microbial
activity and the decomposition of complex C (73, 74). These results differ from others who report that labile C pools are impacted by temperature
and moisture, and stable C pools are affected by only moisture (21, 23, 75). Our results may differ from others simply because precipitation swings
during the 2021 growing season may have overwhelmed temperature effects (23, 75). That being said, within season fluctuations in soil C pools
may have also been impacted by short-term management perturbations and not just weather events. Our findings demonstrate that more
research is needed to understand how labile and stable C pools function in response to temperature, precipitation, and short-term management
perturbations at the field scale.

Seasonal temperature and precipitation changes were also found to alter soil C stability. Drought periods within a growing season were found to
substantially decrease both labile and more processed C pools. However, re-wetting periods after drought were found to increase Min C pools,
while POXC remained reduced. Thus, it was not surprising that systems trended towards mineralization processes at the end of the growing
season. These results are like others that have found that wetting events that follow droughts result in rapid respiration due to the rewetting of
destabilized C from drought events (76—-78). These rewetting events then transport soluble C via soil water, which changes the bioavailability of
the C and potential for decomposition (71, 79). Increased temperatures may have also played a role in prompting mineralization processes within
most systems, as warmer temperatures have been reported to increase the microbial respiration costs associated with maintaining enzyme
production and biomass (80). In addition to changes in weather, plant nutrient demand (81) as well as increased root turnover (59) may have
caused increases in the labile C pool at the end of the growing season.

The extent to which soil C cycling fluctuated over the course of a growing season in response to weather events differed across the eight systems.
While all systems were impacted by weather perturbations, unmanaged systems always maintained greater POXC and Min C levels over the
course of the growing season than compared to perennial and annual systems. Moreover, the mown grassland system always trended towards C
stabilization, even when experiencing large precipitation swings. These results indicate that increased plant diversity and reduced disturbance are
key in enhancing mechanisms that foster soil C stability, including belowground C transfer between functionally different plants and aggregation
(82, 83). Such rhizosphere interactions are critical to stabilizing C and could explain why more diverse systems are resilient to weather
perturbations. Surprisingly, perennial monoculture systems had similar Min C and POXC values as annual systems over the growing season and
trended towards C mineralization. This finding is like Syswerda etal. (62) and indicates that although perennial systems may have greater C input
through root biomass (4 6), most of this C is in a labile form that is susceptible to loss (61). Changes in weather over the growing season appeared
to have a minimal effect on soil C pools in the conventional system. One may speculate that because the conventional system is consistently
losing soil C over time (Cordova et al., under review), weather disturbances have minimal effects on soil C pools within a single growing season.

Given that soil health indicators were only measured over the course of a single growing season our study is limited in the extent to which we can
infer how soil health indicators may shift in the absence of roots and dormant perennial roots. The measurement of soil health indicators between
growing seasons is important as the presence of cover crop or dormant perennial roots can stimulate the microbial community and enhance
nutrient cycling (4 3). Additionally, the crop that is currently growing in rotation may have influenced the soil health indicators, more studies that
measure soil C indicators over the course of an entire crop rotation could be useful to comprehensively understand how soil C pools are shifting.
Conclusions on the extent in which weather can alter soil C indicators are limited in this study, given that only one long-term field site in
southwest Michigan was used. A study that uses multiple field sites in regions that vary distinctly in weather shifts could be compared to determine
assess weather pattern effects on soil C more concretely. In addition, our model was limited in its ability to account for the effect of management
in combination with weather on soil C measures within a single growing season.

Implications for Future Soil Health Sampling

The soil health community has made significant advancements in recent years by identifying indicators that are sensitive to recent changes in
management (84). These sensitive indicators are critical for informing agronomic performance and assessing C sequestration potential (1, 18).
Furthermore, as C markets continue to expand, it will be critical to find indicators that accurately reflect C stabilization within agroecosystems
(85). This study demonstrates that soil health indicators are not only sensitive to long-term management but clearly respond to weather
perturbations as well. This sensitivity to extended periods of drought and large precipitation events has practical implications for soil health
sampling and interpretation. While it has been noted that soil biological health indicators are susceptible to temporal variation over a single
growing season (86, 87), the conversation is rarely extended to how this variability might impact soil health testing, interpretation, and
recommendations to farmers. Based on our results, we recommend that soil health testing should occur at the same time every year. Moreover,
given that weather patterns can strongly dictate these sensitive measures of soil C, it may be beneficial to increase the frequency of soil sampling
and take multiple samples within a growing season to comprehensively understand how within season perturbations may be impacting C
stabilization, nutrient availability, and overall soil health.

Conclusion

Our study found that diverse perennial systems under long-term management can enhance both labile and more processed C pools. Moreover,



systems with greater perennial diversity were able to consistently trend towards C stabilization over the course of a single growing season. In
addition, POXC and Min C were both found to fluctuate over the course of the growing season and were affected by major precipitation events
and temperature. Our study indicates that 1) long-term management can substantially affect C cycling and stability 2) Increased perenniality
combined with greater plant diversity can foster soil C pools that are resilient to extreme variability in temperature and precipitation and 3) Soil
health testing should take place at the same time every year given that sensitive indicators can heavily vary over the course of a growing season.
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