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hydromagnetic Kelvin-Helmholtz instability, and driven cavity problems.
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1. Introduction

When a conductive fluid moves in an electromagnetic field, an electric current is generated in the fluid. The current
interacts with the magnetic field to generate Lorentz force, thereby changing the movement of the fluid, and at the same
time, the current causes a change in the electromagnetic field. The description of the complex behavior of the interaction
between the conductive fluid and electromagnetic field generally uses the MHD equation, which is widely applied to de-
scribe the hydrodynamic behavior of conductive fluids such as plasma, liquid metal, and electrolyte (cf. [1-3]). Formally, the
MHD system is a highly coupled nonlinear, saddle point structure system, that consists of the Navier-Stokes equations for
hydrodynamics and Maxwell’s equations for electromagnetism. The coupling of these two equations is achieved through the
Lorentz force and fluid advection. Concerning the extensive theoretical modeling/analysis/simulations for the MHD system,
we refer to [4-14] and the references therein. For example, positivity preserving analysis of density and pressure is carried
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out in [5]; stochastic Galerkin method for ideal MHD system is proposed in [8]; a stabilized continuous Galerkin method for
MHD problem is presented in [15].

In this paper, we consider the numerical approximation of the MHD system, focusing on establishing a fully-discrete
finite element scheme with desired properties of linearity, second-order time accuracy, full decoupling structure, and un-
conditional energy stability (for simplicity, a numerical scheme with these properties is called as “desired” type scheme).
Here, the linearity means only several linear problems are solved at each time step without requiring nonlinear iterations,
while full decoupling means every unknown is solved independently. For the nonlinear coupled systems, the linear and fully
decoupled algorithms are much more efficient compared with nonlinear coupled solvers. Then, a natural question is how
difficult it is to design such a “desired” type scheme. One might think that it is not difficult because a large number of
numerical methods have been developed to effectively handle this system [6,16-27] and the “desired” type scheme may be
easily obtained by making some slight modifications to those schemes.

However, the opposite is true. Up to the authors’ knowledge, for the full MHD system, no scheme can meet all four
criteria of the “desired” type scheme at the same time. For example, the schemes developed in [6,16] are either first-
order time accurate with unconditional energy stability or second-order time accurate with conditional energy stability. The
schemes developed in [21-23] are decoupled, have first-order time accuracy, and maintain energy stability conditionally. The
first-order/second-order schemes developed in [24,25] can maintain unconditional energy stability with coupled structures.
The schemes developed in [28,29] meet the requirements of full decoupling, unconditional energy stability, and linearity,
but they are first-order time accurate. For the MHD model with simplified Lorentz force (ignoring the V(%|B|2) term), the
“Elsdsser” variable method developed in [18,19] lays a solid foundation and almost reaches the four features at the same
time, while the unconditional stability is obtained under a condition of % < % <2 (v and n are diffusion coefficients in
equations (2.11) and (2.13)). For the full MHD model considering V(%|B\2), the Elsdsser variable method may not maintain
the skew-symmetric structure of the nonlinear terms (see more details about this method in Remark 3.6).

Therefore, the focus of this paper is to construct a desired type fully-discrete numerical scheme for the highly com-
plex, coupled, and nonlinear MHD model. The main challenge we need to overcome is how to develop a second-order time
marching scheme with a decoupling structure under the premise of unconditional energy stability. To this end, while us-
ing several effective numerical methods, including the finite element method for spatial discretization, and the projection
method for the Navier-Stokes equations, we have designed a new decoupling method that can effectively handle the cou-
pling terms (advection and Lorentz force). By avoiding the traditional ways to distinguish which nonlinear items need to
be processed explicitly or implicitly, we adopt a more direct principle to design the numerical scheme. That is, all non-
linear coupling items are handled using the second-order explicit extrapolation. It is well known that such a simple and
crude explicit processing cannot obtain unconditional energy stability. Then, the key to overcome this issue is to use the
“zero-energy-contribution” characteristics satisfied by those coupling terms. The specific approach is to introduce a nonlocal
variable and design an appropriate ordinary differential equation (ODE), which consists of the inner products of the coupled
terms with some specific functions. This ODE is trivial at the continuous level because all the terms contained in it provide a
zero summation. But after discretization, it can help with obtaining unconditional energy stability. Meanwhile, the nonlocal
variable can decompose each discrete equation into multiple sub-equations that can be solved independently and efficiently
by using the fast solvers developed in [30,31], thereby obtaining a fully-decoupled structure.

Besides, the high efficiency of this scheme is also reflected in the fact that all variables can be calculated in a decoupled
manner and all equations have constant coefficients at each time step. We also give rigorous proofs of the solvability
and unconditional energy stability of the scheme. To demonstrate the stability and accuracy numerically, we further carry
out several numerical examples, including the accurate/stability tests, and some MHD benchmark problems such as the
hydromagnetic Kelvin-Helmholtz instability, driven cavity problems, to prove the effectiveness of the developed scheme,
numerically. To the authors’ best knowledge, for the MHD model, the constructed scheme is the first “desired” type scheme that can
meet all four criteria at the same time, namely, it is fully-decoupled, second-order time accurate, linear and unconditionally energy
stable.

The “zero-energy-contribution” idea for constructing a decoupling scheme was recently published in [32-37] for the
Navier-Stokes coupled gradient flow phase-field models. And the stability analysis was carried out only for the semi-discrete
temporal schemes. In this paper, we consider a completely different type of flows, the MHD flows. Due to the major dif-
ficulty caused by the Maxwell’s equations, it is not trivial at all to utilize this idea to construct the nonlocal variable and
carry out the corresponding analysis, for the MHD model. We also analyze the stability of the fully discrete finite element
scheme, instead of the semi-discrete temporal scheme. Furthermore, the proposed decoupling technique through the nonlo-
cal variable is also suitable to deal with the so-called H' discretization incompressible MHD system [7] (or called penalty
MHD equations).

We organize the article in the following way. In Section 2, we briefly describe the MHD model and show its associated
energy law. In Section 3, we construct the decoupled numerical scheme and present its detailed implementation steps.
Unconditional energy stability and well-posedness are also proved rigorously. In Section 4, we present various 2D and 3D
numerical simulations to demonstrate its stability and accuracy. Some concluding remarks are drawn in Section 5.
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2. The MHD model and energy law

We study the incompressible MHD equations in a bounded domain € c RY, d = 2,3 with connected boundary, that
consist of the incompressible Navier-Stokes equations and the magnetoquasistatic Maxwell’s equations, read as

u —vAu+ (u-V)Yu+Vp+Bx]J=0, (2.1)
divu =0, (2.2)
B; + curlE =0, (2.3)
1

—curlB=], (24)
w

J=0(E+uxB), (2.5)
divB =0, (2.6)

where u is the fluid velocity, p is the hydrodynamic pressure, E is the electric field, B is the magnetic induction, J is the
electric current density. The physical parameters v, 1 and o are the kinematic viscosity, the magnetic permeability and the
electric conductivity, respectively.

We plug (2.4) into (2.1) to get

1
u; —vAu+ (u-Vyu+ Vp + —B x curlB=0. (2.7)
w
Taking curl on the equations (2.4) and (2.5), we get

1
curl] = —curlcurlB,
n

curl] = o curlE + o curl(u x B),
which are combined together to get
1
curlE = —curlcurlB — curl(u x B). (2.8)
no
Then we plug (2.8) into (2.3) to obtain
1
B: + —curlcurlB — curl(u x B) = 0. (2.9)
no
In [38], the equation (2.9) is modified to the following form
1
B + M—UcurlcurlB —curlluxB)+Vr=0, r|so=0, (2.10)
where r is the Lagrange multiplier term that is also called as “magnetic pressure”. Note that the modified equation (2.10)
is indeed equivalent to (2.9). This is because if we apply divergence operator to (2.10) and use (2.6), we get Ar = 0. From
the boundary condition for r, we deduce r = 0. In this paper, we adopt (2.10) since this formulation allows us to use the
second-order projection method, which was used to deal with the Navier-Stokes equations and can easily maintain the

divergence-free condition for B.
By denoting 1 = L =1 we combine (2.2), (2.6), (2.7), and (2.10) to obtain the incompressible MHD equations that

o' W
read as follows,
u: — VAu+ (u-V)u+ Vp +«B x curlB=0, (211)
divu =0, (2.12)
B; + ncurlcurlB — curl(u x B) + Vr =0, (213)
divB =0. (2.14)
The system (2.11)~(2.14) is equipped with the following boundary conditions
ujpo=0, Bxnle=0, rlze=0, (2.15)

and initial conditions

u|;—o =ug, B|i=o=Bo, (2.16)
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1

with divug = 0, divBg = 0, where n denotes the outward unit normal of 9. In the literatures, R, = v~"' is called fluids

Reynolds number, « the coupling coefficient, and R,, = ! the magnetic Reynolds number.

We first fix some notations here. For two vector functions v, w, we denote the L2 inner product as (v, w) = va - wdx
and the L% norm |w||2 = (w, w). Let Wk{(Q) stand for the standard Sobolev spaces equipped with the standard Sobolev
norms || - || . For I =2, we write H*(Q) for Wk2(Q) and its corresponding norm is | - [|x. We also list some function spaces
for the MHD equations (2.11)-(2.16) as follows:

HY(Q) = {w cl2(Q):Vwe LZ(Q)d},

Hy(Q) = {w e H'(Q) : wlye =0},

L5(Q) = 1q € L*(Q): /qu:o ,
Q
H'(@) = (@), Hy@) = H)(@)".
Hicurl; @ = [ee 2@ curle € 1223
Ho(curl; Q) = {c € H(curl; Q) : ¢ x n|sg =0}.

The norm in H(curl; ) space is defined by

1
2
lellcun = (el + lcurlel?)*, - Ve e Hcurl; ).

The well-posedness and finite element approximation of steady version of the system (2.11)-(2.15) were discussed in [38].
Here, we also give a brief proof of the energy law followed by the MHD system (2.11)-(2.16), because the energy stability
of the discrete scheme follows the same line. By taking the L% inner product of u with (2.11) and using the integration by
parts and (2.12), we get

| &

1
2

Qu

t||u||2 +v|Vul? + /(u -V)u - udX + k /(B x curlB) - udx = 0. (217)
Q Q

Taking the L? inner product of B with (2.13), and using the integration by parts and (2.14), we have

Kk d
EE”BHZ ~|—/<n||curlB||2 —K / curl(u x B) - Bdx =0. (218)
Q

By combining (2.17) and (2.18), we obtain the law of energy dissipation that reads as:

d 1 K
Egnuuz + 5||B||2) = —v|Vu||? — knllcurlB||* < 0. (219)

Remark 2.1. The above proof to obtain the law of energy dissipation (2.19) lies on the following two identities:

/(u-V)u~udx=0, /[(BxcurlB)-u—uxB-curlB]dx:O.
Q Q

These equalities are derived by using the integration by parts and the boundary conditions for u. These two equalities can
be regarded as the contribution of two types of nonlinear terms (advection and Lorentz force) to the total free energy of
the system is zero. These unique “zero-energy-contribution” property will be used to design decoupling type numerical
schemes.

3. Numerical scheme

In this section, we aim to construct a “desired” type fully-discrete finite element scheme to solve the MHD system
(2.11)-(2.16). The most critical technique for this goal is to follow the “zero-energy-contribution” idea [36,37]. Special pro-
cessing is needed to develop appropriate temporal discretizations for the challenging terms, including the coupling terms of
advection and Lorentz force, and the linear coupling between velocity and pressure through the divergence-free condition.
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3.1. Reformulated equivalent system and energy law

In order to design the desired algorithm, we introduce a nonlocal scalar variable Q (t) and its corresponding ODE, and
we rewrite the MHD equations (2.11)-(2.16) to an augmented equivalent form.
We introduce a nonlocal variable Q (t) and design an ODE system for it, that reads as:

Qtzf(u-V)u-udx+K/BxcurlB~udx—K/u><B~curlex,
(3.1)
Q

Q Q
Qli=0=1.

It is easy to see that the system (3.1) is the same as a trivial ODE system of Q; =0, Q |(—o = 1 with the exact solution of
Qit)=1.
We rewrite the MHD system (2.11)-(2.16) using the new variable Q to the following form:

u —vAu+ Q(u-V)u+ Vp+ QkB x curlB=0, (3.2)
divu=0, (3.3)
B: + ncurlcurlB — Q curl(u x B) + Vr =0, (3.4)
divB =0, (3.5)
Q= /(u -Vu- udx—f—/ch x curlB - udx—/c/u x B - curlBdx, (3.6)
Q Q Q
ujpjo=0, Bxnlye=0, rle=0, (3.7)
ut—o =ug, Bl=0=Bo, Qli=0=1. (3.8)

Remark 3.1. We multiply the advection terms ((u- V)u and curl(u x B)), and Lorentz force kB x curlB with Q. Since the
nonlocal variable Q (t) is equal to 1, the PDE system will not be changed by this modification. Therefore, the two PDE
systems, (2.11)-(2.16) and (3.2)-(3.8) are equivalent.

Theorem 3.1. The transformed MHD system (3.2)-(3.8) admits the following law of energy dissipation

d 1 1
e lull® + ganz . 5|Q|2> = —v|Vu|? - knllcurlB||* < 0. (3.9)

Proof. Taking the L? inner product of u with (3.2) and using the integration by parts, we obtain

EE”“” + v||Vu|| +Q/(u-V)u-udx+KQ/BxcurlB-udx:O. (3.10)
Q Q

Taking the L? inner product of kB with (3.4) and using the integration by parts, we obtain
“4 B2 1B/ B - curlBdx =0
Eall I+ «n|curlB|© —xQ | ux B-curlBdx=0. (311)
Q

Multiplying Q on (3.6) leads to

1d
§E|Q| =Q/(u-V)u-udx+KQ/B><curlB-udx
Q Q

(312)
—KQ/I.I x B - curlBdx.
Q

By combining (3.10) - (3.12), we derive (3.9).
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3.2. Fully-discrete decoupled finite element scheme

We develop the fully discrete finite element scheme for the transformed equivalent model (3.2)-(3.8) in this subsection.
The weak form of the system (3.2)-(3.8) reads as: find u(t) € H)(Q), p(t) € L3(2), B(t) € Ho(curl; ), and r(t) € H} ()
such that

(g, v) +v(Vu, Vv) + Q ((u - V)u, v) — (p, divw) + Q « (B x curlB, v) =0, (3.13)

(diva, ) =0, (3.14)

(B¢, ©) + n(curlB, curlc) — Q (u x B, curlc) + (Vr,c) =0, (3.15)

(B, Vs) =0, (3.16)

Q= /(u -Vu- udx—l—:c/B x curlB - udx—/cfu x B - curlBdx, (3.17)
Q Q Q

for all ve H)(Q), q € L3(), ¢ € Ho(curl; Q), and s € H) ().

We adopt the finite element method for the spatial discretization. We consider regular and quasi-uniform meshes 7} of
mesh-size h that partition €2 into triangle or tetrahedra {K}. Let P;(K) be the space of polynomials of total degree at most [
on K and Py(K) the space of homogeneous polynomials of degree I. The space D;(K) denotes the polynomials p in P;(K)?
that satisfy p-x = 0 on K. For [ > 1, we define the space Nj(K) = Pi_1(K)¢ & D;(K). We apply standard Lagrange finite
element spaces Vi, and My to approximate unknowns in Ha(Q) and Lé(Q), see [39],

Vi = {vi e H)(@) s vilk € Pl (0%, K e Ta
My ={an € L) aulic € (KD, K € Tr .
Moreover, the spaces V, and M, need to satisfy the inf-sup condition:

(divwy, qp)
Blgnll < sup ——=——, Vqn € Mp. (3.18)

vpeVy IVl

To approximate unknowns in Hg(curl; ) and Hé(Q), we use the first family of Nédélec space [40,41] and Lagrange finite
element space,

Cy = {cy € Ho(curl; Q) : eplx e M(K), K € Tp},
Sh={sn € Hy() : splx € Pi(K). K € T} .

Furthermore, the pair C;, and Sy require to satisfy VSy C Cp, which also means the inf-sup condition:

A (cp, Vsp)
Blisnllh < sup ——

s Vsh S Sh. (3.19)
creCy lChllcurt

Some well known inf-sup stable pairs for (V,, M) and (Cp, Sp,) are available, see [39,41,38].

We define extrapolation wj = 2w} — w”h’] for any variable wy,. We use the second-order pressure projection method
to decouple the linear couplings of (u, p) and (B, r), and the second-order backward differentiation formula (BDF2) for the
temporal discretization. Let §t > 0 denote the time step size and set t, =ndt for 0 <n < N with T = Nét. The fully discrete
scheme to solve the system (3.13)-(3.17) reads as follows:

Find @} t! € Vy, ul ™! € Vy + VM, pi! € My, B! € €y, B! € G + VS, 7! € Sy such that

~n+1 n n—1
au, ™ — buh +cuy
25t

,vh> +u(VEt, V) + (Vpl, vp) (3.20)

+Q" N (u}: - Vyui, vp) + Kk Q" (B} x curlB}, vi) =0,
(aﬁnJrl — bB" + Canl
h h h

it ,ch> + n(curlB} ™, curley) (3.21)

—Q"(u}; x B}, curley) + (Vrll, ¢4) =0,

aQﬂ+1 —an-i-CQ"*l _
25t B

/(ugk Vyuj - wdx (322)
Q
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+i /Bh x curlB; - @ dx — K/u,’j x B}, - curlB " dx,

Q Q
Vot vap) = —ﬁ(dwﬁz*] .qn) + (VD Vap), (3.23)
1 2 2
ult =gt Sth'”'] + —(SthZ, (3.24)
(VI Vi) = o B, V) + (Vi Vi), (3.25)
i1 2 2
By =B~ Soviytt 4 Saevry, (3.26)

for all vy, € Vi, ¢ € C, qn € Mp, Sp € Sp, where a=3,b=4,c=1.
Several remarks are in order.

Remark 3.1. The second-order pressure-projection method is used to decouple the computations of the linear couplings of
(u, p) and (B, r). It is shown in [42] that the L? error of velocity can achieve the second-order time accuracy, while the L2
error of pressure and H! error of velocity can only achieve first-order time accuracy. The loss of accuracy for pressure is
due to the artificial Neumann boundary condition imposed on the pressure, see [43].

Remark 3.2. The final velocity field uZ“ in above scheme satisfies the weakly discrete divergence-free condition. This can
be deduced as follows. By taking the L? inner product of (3.24) with Vqy,, Yq, € My, we obtain

@, Vap) = —(divia] ' qp) — —St(V(p’”rl PR, Van).
In view of (3.23), we arrive at

Wt vgn) =0, Ygi € My, (3.27)
Likewise, we also have

(B, Vsp) = (BIH!, Vsp) — —at(Vr"“ — VI, Vsy) =0, Vsj € Sp. (3.28)

Remark 3.3. The above scheme also needs the first step solution u}, p}, B}, i and Q' that can be easily obtained from the
first order scheme by setting n=0,a=2,b=2,c=0 and u} =u)), B} =B} in (3.20)-(3.26).

Remark 3.4. In the pressure projection decoupled method, the initial data of pressure p is often set zero, which may cause
numerical errors or instability. A more reliable way is to compute the system at t =t; using a coupled scheme to obtain
(“1]1’ p;, B;, rﬁ). Then the pressure projection decoupled scheme is implemented from t = t; and initialized by the solution
at t =tq.

We now prove the energy stability of the scheme (3.20)-(3.26).

Theorem 3.2. The scheme (3.20)-(3.26) holds the unconditional energy stability in the sense that

EMT < E" — 28tv|| Vgt |12 — 28tk | curl B} T2, (3.29)

where

K
E = <||u"“|| + [l2uf ! — u’,;||2>+—<||B”+1 ||2+||2B;’+1—B?,||2)

o (3.30)
+§(|Q”“I2+I2Q"“ Q")+ 28 ||Vp"“|| +=— ||w"+1|| :
Proof. Taking vy _uZ“ in (3.20), we have
3ﬁ”+1—4u +un 1 ~
26t
(3.31)

+ Q"1 /(u; Vyup - wtdx + Q! /(Bh x curlB}) - widx = 0.
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Taking ¢, = B} " in (3.21), we obtain

ni+1 n—1
; 3B, — 4B2 +B,
25t

, Eg“) + knlcur B2 + (Vi) Bl
Kk Q"1 /(u,"; x B}y) - curlB} T dx = 0.

Multiplying (3.22) with Q™*1, we have

1
E(BQH+1 _4Qn + Qn—l)Qn-H — Qn+] /(uz . v)uh uh+1dx
+xQ"! /(B,1 x curlB}) -t dx

— Q! /(u,’j x B}) - curlBZ“dx.
Q
Summing up (3.31)-(3.33), we obtain

+1 1 gt an+1 1 pn+l
2—&(3u" —4u a7 At arGBZ —4B; + B, .B,")

- ~ 1
+ Va2 + ke curlBp 12 + —t(3Q”“ —4Q"+ Q" Ht!
+ (VPR + ke (Vi BT =
From (3.24), (3.27), (3.26), and (3.28), we have

n+1

2
(u uz+1 Z-ﬁ-l) 38t(vpﬂ+1 Vpg, TH-]) _

@ - Bt Bt = zat(w"“ vl B =0
Thus, by using (3.35), (3.36), and the following identity
23a—4b+&)a=a]® — |b|? + 26 —b|> — |2b — &|* + |a — 2b + ¢,
we derive
Gult! —4u} +ul ! ﬁg“)
_(3un+1 _4uh +u n+1)+(3un+1 3u2+1 UZH)
_(3un+1 4uf + - 1 n+1) + (3un+1 3u2+1 qi+1 +un+1)
(||u"+l 12 = i + j2up ™ — w1 — 2] —uf "2
+ lup ™! — 2uf +uf =) + 3(EE 2 - 3)up 2,
B! — 4B} + B} Bl
=3B} — 4B} + B} Bt + 3BT — 3B} BT
=3B} — 4B} + B}, B + 3B} — 3BT B! 4+ BT
=%<||Bﬁ“ I — IBR 112 + 2B+ — BRI — 1128, — By~ |
+ BT — 28] + By 1) + 3By — 3B T2,

and

L n+1 n—1 n+1 _ n+1,2 _ n|2 n+1 _ An2
25t 0¢ —4Q"+Q"HQ 45t(|Q 1" =1Q71" +12Q Q"

_|2QH_QH—1| +|Ql‘l+1 _2Qn+Qn—l|2).
From (3.24) and (3.26), we obtain

2 N 2
u 35th"+1 =it + §5th§,

2 . 2
By 4 StV =B+ Sotvi,

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
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Taking the L% inner product of the above two equations with themselves, and using (3.27) and (3.28), we have

3 - St

(u”“,Vp”):@Hu”“Hz || a2+ — ||Vp"+1|| ||Vp"||2, (343)
3

B, vrh) = ||B"“|| ||B"“|| += ||w"+1|| ||Vr"||2. (3.44)

Combining (3.34) with (3.38), (3.39), (3.40), (3.43), (3.44), we derive

2o 12 = 12 4 1208 — w20 — w2 20 )
(BT — B2 + 128} — B — 128 — B2
+||B”+] — 2B +B} 1%

QM - Q"+ 20" — Q" — [2Q" — "2

48t (3.45)
+|Qn+l 2QH+QH—1|2)
Kot
||Vp”“|| ||Vph|| + 52 ||w"+1|| —an;:nz
~n+1 n+l ph+1 3K n-+1,2
B B
|| 12 || J' 4&” 12 — o5
u||Vu"+1 I —;cn||cur132“|| )

From (3.35) and (3.36), we derive

”un—H” ”un+1” (un+1 UZ'H ~n+1+un+1)
_ (uﬂ+1 u2+1 ~n+1 +u11+1 2uZ+1) (346)

= upt! — w2,
and
pi+1,2 _ pnt+1,2 _ qpn+1 _ pn+l pn+l n+1
B, 17— 1B, [I© = (B, B, .B," +B ")
=@ BB 4 BT — 2B (3.47)
— ||EZ+] _BZ-‘H ”2

Finally, combining (3.45), (3.46), (3.47) with multiplying 25t, we obtain

(||u“+1 1% = 1 + g2 ™ — w12 — 120 — a2 2]+ ul TP
+ 5 (1B} I — IBj 12 + 2B} — B2 — 2B — B |1
+ B}t — 2B} + B} %)
+ %(lQn+1 |2 _ |Qn|2 + |2Qn+1 _ Qn|2 _ |2Qn _ Qn—l|2
4 |Qn+1 _ 2Qn 4 Qn—1|2)

28t2 28t 2K 2K 8t?
+—||vlaz“||2 ||Vph||2 3 200 o - =5 Ivnie

1 1 1 1
||u"+ w2 ||B2+ -B
= —2v5t||Vu”+] I - 2/<n5t||cur1f32+1 I1%.
After dropping several unnecessary positive terms, we arrive at (3.29) to finish the proof.
3.3. Decoupled implementation
In this subsection, we construct fully decoupled solution procedures for the proposed scheme (3.20)-(3.26) in which we

make full use of the nonlocal property of the auxiliary variable Q. One can easily prove that the following fully decoupled
linearized scheme is equivalent to the scheme (3.20)-(3.26), hence has the same stability and accuracy.

We split @} "', B}*" into a linear combination form in terms of Q"*!, namely
~n+1 n+l n+1n+1 nin+1 _ pn+1 n+1pn+1
u o=uy +Q u, -, Bh = Bhl +Q th s (3.48)

9
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where @1 e Vy, @S ! € Vy, B! € G, Bl €€
Step 1: Using (3.48) and according to Q"*!, we split (3.20) into the following two sub-equations:

3 . - 1 _
Z—Bt(uﬁl“,vh) +u (vt vy, = 3¢ AUk — U L) — (YD} vh). 3.49)
3.49
3 . -
Z—Bt(uf’;] VR + oVt V) = —(ujh - V)up, vi) — k (B} x curlBj, vy).

It is very easy to solve the above two equations since they are linear elliptic equations with constant coefficients. The
multigrid method [30] is very efficient for this type problem.
Step 2: Using (3.48) and according to Q ™1, we split (3.21) into the following two sub-equations:

3 s 1
— (B, ¢p) + n(curlB!'T!, curley) = ﬁ(4132 —B" !, cp) — (VI ),

28t M ht (3.50)
3 . - .

ﬁ(Bﬁjl, ¢y) + n(curlB}S ", curley) = (uj; x By, curlcy).

It is very easy to solve the above two equations by using the well-known fast solvers [31].
Step 3: By using (3.48), we rewrite (3.22) as follows:
3 n+1 1 -1
- _ = —@4Q"— Q" h, 3.51
(o5 ~MQ m+ 55 (42" - Q") (3.51)

where

ni = /(uZ -Vuy .ﬁg:rlderK/B; x curlBj; - W dx — « f(u;; x BY) - curlBdx.
Q Q o

It is very easy to solve (3.51)~since all terms in 11 and 7, are already obtained from Step 1 and Step 2.
Step 4: Update @' and B} ™" by (3.48); solve (3.23) for p/*'; solve (3.25) for rj*!; update u} ™! by (3.24); update B}
from (3.26). The solvability of (3.51) can be briefly showed by verifying % — 12 #0. We take v, = ﬁgf in the second

equation in (3.49) to deduce

3 pantl2 Sni12 Sl 1
ﬁ||u23L I#+vIVapd 12 = — | (- V)uy -5 dx — k| Bj x curlB; -} dx.
Q Q

We take ¢, = KEZ;A in the second equation of (3.50) to derive

3k~ ~ -
X IBLS T e leunlB | = / (uf x BY) - curlB} dx.
Q

Summing up the above two obtained equations, we derive —7, > 0, that implies the solvability of (3.51).

From the above-detailed implementation process, it can be seen that the calculations of all unknown variables are
completely decoupled. At each time step, the total cost only includes the computations of several elliptic equations. The
decoupling of all equations and the characteristic of having only constant coefficients lead to highly efficient practical cal-
culations.

Remark 3.5. The nonlocal variable Q can also provide a practical criterion of the time step adaptivity, in addition to its
roles of maintaining stability and decoupling unknowns. Generally speaking, when Q"*! deviates from 1, the time step size
St needs to be refined to maintain the accuracy. On the other hand, when Q™! stays close to 1, the time step size 8t could
be relaxed. The detailed mechanism of variable time step size is an interesting future work.

Remark 3.6. The work in [17-20] considered the following MHD model:

U —vAu+ (u-V)u+Vp—-(B-V)B=0,

divu =0,
B —nAB+ (u-V)B— (B-V)u+ Vr=0, (3.52)
divB =0,

ujyo =0, Blye=0.
By defining “Elsdsser” variables v=u+B, w=u—B, q=p +r, A = p —r, the system becomes

10
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Vi — v—;nAv—v;—nAw+(w-V)v+Vq:0,
divw =0,

w; — v;”Aw— v;nAv+(v«V)w+VA=0,
divw =0,

Vlipe =0, Wl =0.

A significant merit of this formulation is that the two nonlinear terms (w- V)v and (v- V)w possess a skew-symmetric
structure, i.e., (W- V)v,v) =0, ((v- V)w, w) = 0. By treating the two nonlinear terms as (w* - V)v"*! and (v* - V)w"*!, in
[18,19], a second-order time-accurate, decoupled, and stable scheme is developed under the condition of % < % < 2. The

work in [18] extends this result and shows that the second-order scheme could be stable without the restriction on % ifa

time step restriction of 8t < 0 (h?) is satisfied. Meanwhile, from the identity B x curlB = V(%|B|2) — B - VB, it can be seen
that the term V(%|B|2) is not considered in (3.52). If one recovers the term V(%lBlz) in the model, the Elsdsser variable
method may not maintain the skew-symmetric structure of the nonlinear terms.

The major differences between this paper and the above works are the full MHD equations (2.11)-(2.14) and no restriction
at all for the unconditional stability, based on the novel “zero-energy-contribution” feature.

Remark 3.7. The decoupling technique through the nonlocal variable Q is also suitable to deal with the so-called H! dis-
cretization incompressible MHD system [7] (or called penalty MHD equations), that reads as:

U — VAu+ (u-V)u+ Vp +«B x curlB=0,

divu =0,

. (3.53)
B; + ncurlcurlB — nVdivB — curl(u x B) =0,
divB = 0.

Note the coupling nonlinear terms are still the advection and Lorentz force, it can be formulated to the following equivalent
form using Q :

U —VvAuU+Qu-V)Yu+Vp+xQBxcurlB=0,

divu =0,
B; + ncurlcurlB — nVdivB — Q curl(u x B) =0,
divB =0,

Q= [ou-V)u-udx+k [o,B x curlB-udx — k [, u x B- curlBdx.

Using similar discretization methods and finite element space, one can easily construct a linear, decoupled, second-order
time accurate, and unconditionally energy stable scheme for the above model. We leave the detailed procedure to the
interested readers.

Remark 3.8. The nonhomogeneous boundary conditions u|yp = up, B X n|3q = By, instead of (2.15) can be handled with the
same idea. We only need to slightly modify the nonlocal variable Q (t) to include the boundary integration as follows:

1
Qtzf(u-V)u-udx—Ef(ub-n)|ub|2ds+K/B><curlB~udx—K/u><B-curlex,
Q aQ Q Q

Ql=0=1.
By taking integration by parts, we can deduce Q =1 as well. In the decoupled procedures Step 1 (3.49) and Step 2 (3.50),
we need to impose the boundary conditions ﬁglﬂ lag =ull, ﬁ;;” lag =0, 321“ x n|yo =Bfl and BZZH x N|yq = 0, where the

u’; and B’l; are proper interpolations or projections of u, and By in finite element spaces.
4. Numerical simulations

In this section, we present ample numerical simulations to show the stability and accuracy of the developed scheme
(3.20)-(3.26) (abbreviated as DS, for short). We use Taylor-Hood elements for V;, and My (second-order polynomial 75
element for Vj, linear polynomial P; element for My) that satisfy the inf-sup condition (3.18) [39]. We also use the first
family second-order H(curl)-conforming Nédéléc edge N> element [40,41] for Cp, second-order polynomial P, element for
Sk, which also satisfy the inf-sup condition (3.19) since VSy, C Cp.

11
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Fig. 1. The numerical errors of |leyll;2, leullyt, llepliz2, llepll 2, llepllcurt, 1Q — 1], and r at t =1 that are computed by using h = ét with the given exact
solutions (4.1).

Table 1
The numerical errors and convergence orders for |ley||1 and |lep|;2 in an interior
domain (0.1, 0.9)2 at t =1 that are computed using 8t = h with the exact solutions

of (4.1).

h 8t llewll g1 Order llepll;2 Order
1 3 1.06629 - 147116 -

: 3 0.965592 014 1.01415 0.54
= = 0.262053 1.88 0.415646 129
= = 0.0608671 210 0.113079 188
& & 0.0163281 1.90 0.0299588 1.92
o3 o8 0.00418888 196 0.00771162 196
75 75 0.00105864 198 0.00194857 198

4.1. Accuracy test

We verify the convergence order of the scheme DS in this example. We set the exact solution (4.1) to verify the temporal-
spatial accuracy. We use the computational domain (0, 1)2 and set parameters R, = Ry = ¥ = 1. The source terms and
boundary conditions are chosen such that the exact solution are given as

u = (exp(t) cos(y), exp(t) sin(x)), p=10*(2x — 1)(2y — 1), 41
B = (sin(t + y), cos(t +x)), r=0. ’
In this case, we set h = §t, and refine h and 8t simultaneously by h = §t = % i=2,3,---,8.

In Fig. 1(a), the L2 errors of u, B, H(curl) error of B, and |Q — 1| at t =1 are plotted, which show the second-order
accuracy. However, the L2 error of p and H! error of u are not full second-order accuracy due to a numerical boundary layer
[43]. If the L2 error of p and H' error of u are measured in an interior domain (0.1, 0.9)2, they all reach the second-order
accuracy, see Table 1. Fig. 1(b) illustrates the numerical solution of r is very close to zero with the mesh refining.

4.2. Energy stability test

In this example, we verify the energy stability of the scheme DS. We choose the computed domain to be 2 = (0, 1),
and load the following initial conditions of u, p, B, and r,

u’ = (XZ(X— D2y(y — DRy — 1), —=y*(y — D%x(x — 1)(2x — 1)) ,p° =0,

(4.2)
0.

B’ = (sin2 (mrx)sin(mry) cos(my), — sin® (7t y) cos(mx) sin(nx)) 70
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Fig. 2. Time evolution of the free energy functional for four different time step sizes with R, = R, = x = 10 computed by (a) DS and (b) Imp-Exp. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

For comparison, we also test the stability performance with the following second-order implicit-explicit (abbreviated as
Imp-Exp) scheme (4.3) that reads as,

3un+1 — 4u" _}_unfl
( h 2&“ b vy ) (VU V) + ((af - VU, vy)
— (pp*1, divwp) + & (B} x curlB}, vy) + (divul ™', gy) =0,
+1 -1
3B} — 4B! + B}
25t

(4.3)

. | +n(curlBl !, curley) — (uf x Bj, curley)

+ (Vi ep) + BETT, Vsy) =0,

where all nonlinear terms are treated explicitly while the linear terms are treated implicitly.

We fix the mesh size h = 11—6, and adopt two sets of physical parameter R, = R, = k = 10 (low stiffness) and R, =
Rm = k =100 (high stiffness). We vary time step size §t = 1.0, 0.1, 0.01, and 0.001 and compare the total free energy
E(u",B") = J|lu"||2 + 1x|B"|? computed by the our scheme DS and the scheme Imp-Exp.

In Fig. 2, for R, = R, = k = 10, we observe that all energy curves computed by both schemes show monotonic decays
for all time step sizes. This means for low Reynolds number (low stiffness case), both schemes are energy stable.

In Fig. 3, for R, = R, = k = 100, we can see that the scheme Imp-Exp is not stable when adopting large time steps
8t > 0.01, which shows that the scheme (4.3) is only conditionally energy stable. While all energy curves computed by DS
always show monotonic decays, thereby verifying its unconditional energy stability.

4.3. Island coalescence

We consider a driven magnetic reconnection example, the so-called island coalescence problem. Fast magnetic recon-
nection is a long-standing issue for understanding plasma physics. The island coalescence problem presents two magnetic
islands embedded in a Harris current sheet by setting a perturbed Harris sheet magnetic field configuration as initial con-
ditions. The combined magnetic field produced by the two magnetic islands produces Lorentz forces, which pull the islands
together over time. Concerning the physical background of this problem and the extensive numerical simulations for it, we
refer to [44-49].

In this simulation, we set the computational domain as  =[—1, 1] x [—0.5, 0.5], and other model parameters as R, =
Rm = 1000, k = 1.0. We equip a source term g for magnetic equation (2.13), where

(24(1 —£2) sinh(%) 2ec(1—g2) sin(%) )

(4.4)

82 (cosh(¥) +ecos($))3’ 82 (cosh(¥) +ecos(¥))3
The initial conditions are set as

13



G.-D. Zhang, X. He and X. Yang Journal of Computational Physics 448 (2022) 110752

10 T T T T T T T T T T T T T
6t=1
4 e §1=0.01 7
6t=0.001
3 | B |
5 5
[= (=4
w - w 4
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time Time
(a) DS. (b) Imp-Exp.

Fig. 3. Time evolution of the free energy functional for four different time step sizes with R, = Ry, = k = 100 computed by (a) DS and (b) Imp-Exp.

Fig. 4. Snapshots of the magnetic field B (in arrows) and the magnitude of the current density J (in colormap) at t =0.2,1.3,1.4,1.5,2,2.2.

sinh(%) esin($)
uo=(0,0), Bo= v — 141, 5 ~ td2], (4.5)
cosh(3) + € cos(3) cosh(s) + € cos(3)
where §1 = —% cos(Tx) sin(%ﬂy), 8y = % cos(%ny) sin(7rx) are perturbations, ¢ =1.0, € =0.2, § = % and y = —0.01.

The boundary conditions are zero tangential stress (u = 0) and perfect conducting wall (B = 0) on the top and bottom
boundaries, and periodic conditions on the left and right walls.

We set the time step size 5t = ﬁ, and the spatial mesh size h = 61—4. In Fig. 4, we plot the vector field of the magnetic
field B and the magnitude of the current density J (J = curlB). We observe the dynamical reconnection behaviors of
magnetic islands and current density during the coalescence process. At t = 1.5 s, the two islands start to coalesce, and a
sharp peak in current density is produced where the magnetic field lines reconnect. In Fig. 5, we plot the magnitude of the
pressure at different times, in which, the pressure also displays the coalescence process as the magnetic field B. In Fig. 6,

we plot the velocity field u at different times.
4.4. Hydromagnetic Kelvin-Helmholtz instability

The Kelvin-Helmholtz (K-H) instability in sheared flow configurations is an efficient mechanism that cause fluid mixing,
momentum and energy transfer, and turbulence development. These issues need to be considered when studying various
space, celestial and geophysical conditions involving shear plasma flow. Related configurations include the interface between

the solar wind and the magnetosphere, and the coronal belt that moves in the solar wind. Since most astrophysical envi-
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Fig. 5. Snapshots of the pressure p (in colormap) at t =0.2,1.3,1.4,1.5,2,2.2.

5

Fig. 6. Snapshots of the velocity field u at t =0.2,1, 1.5, 2.

ronments are electrically conductive, and related fluids are likely to be magnetized, it is important to understand the role
of magnetic field in K-H instability [2,49,12,50-52].

We study occurrence of the K-H instability in a single shear flow configuration that is embedded in a uniform flow-
aligned magnetic field. The simulation is performed in a computed domain of Q2 = [0, 2] x [0, 1]. The initial velocity field
is ug = (1.5,0) in the top half domain, and uy = (—1.5,0) in the bottom half domain. The sheared initial magnetic field
is Bp = (tanh(y/¢),0) where & = 0.07957747154595 (cf. [49]). The velocity u, magnetic field B are periodic boundary
conditions on left and right boundaries. On the top and bottom boundaries, the second component v = 0 of the velocity
field u = (u, v) is imposed. The boundary conditions for B are B x n =By x n for the top boundary and B x n= —By x n
for the bottom. We set the model parameters as R, = 1000, Ry = 1000, k = 0.095, h = 75, 8t = 5.

In Fig. 7, we show snapshots of the magnitude of By (B = (By, By)) at various times that is superimposed by the velocity
field u. We observe that over time, the vortexes start to form at around t = 3. After t = 3.5, the profiles of vortexes and
the magnetic field show the typical structure of K-H instability, and it deforms and rotates along with the flow soon. In
Fig. 8, we plot the pressure p at various times, and we can see that the contours of p correspond with the By. The obtained
numerical results coincide well with the numerical/experimental results in [51,50,52], qualitatively.
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Fig. 7. The velocity field u with the filled contour of By that shows the hydromagnetic K-H instability. Snapshots are taken at t = 0.01, 2.5, 3, 3.25,
3.5,3.75,4,4.25,4.5.

Fig. 8. Snapshots of the pressure p taken at t =0.01, 2.5, 3, 3.25,3.5,3.75,4,4.25,4.5.

4.5. 3D driven cavity flow

In this example, we simulate a benchmark problem of three-dimensional driven cavity flow, see [53,54,12].

We set the computational domain as €2 = [0, 1]3. The top boundary (z = 1) condition are set by u= (1,0, 0), no slip
boundary conditions (u=0) are imposed on other walls. An external magnetic field effect is imposed by setting the mag-
netic field boundary of B x n=(—1, 0, 0) x n on the walls. The initial conditions are set as u(0, X) = (uy, 0, 0) where uy =1
for z=1 and uy =0 for z < 1, B(0,x) = (—1, 0, 0). We set model parameters as R, =100,k =1,h = 11—2 5t = ]1%.

In Fig. 9, we plot the two-dimensional cut-off planes of the streamlines of the velocity field at y = 0.5 for the magnetic
Reynolds number R, = 0.1, 1, and 10. We observe that for low magnetic Reynolds number, the solution of velocity is
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(a) Ry, =0.1. (b) Ry =1. (©) Ry =10.

Fig. 9. Streamlines of velocity at y = 0.5 for R, =100, k = 1.

(@) Ry =0.1. (b) Ry =1. (©) Ry =10.

Fig. 10. Pressure contours for R, = 100, k =1 seen from top.

(b) Ry =1

Fig. 11. Vector field of magnetic field for R, =100, x = 1.

dominated by one large vortex (shown in Fig. 9(a) and (b)). While as Rp, increases, the vortex pushes upward in the
domain, and the lower part velocity streamlines distort (shown in Fig. 9(c)). The obtained numerical simulations are very
close to the results in the literatures [54,12]. In Fig. 10, we also demonstrate the magnitude of pressure contours, which
indicate the pressure gradient mainly distribute over the two top corners in the cavity. The vector fields of the magnetic
field are depicted in Fig. 11. We find the induced magnetic field is almost equal to the imposed magnetic field (—1, 0, 0)

17




G.-D. Zhang, X. He and X. Yang Journal of Computational Physics 448 (2022) 110752

for the small magnetic Reynolds number Ry (shown in Fig. 11(a)). With the increasing Ry, the induced magnetic field in
the cavity gradually deviates the external imposed magnetic field because of the enhanced fluids convective action(shown
in Fig. 11(c)).

5. Concluding remarks

We design a “desired” type of fully-discrete finite element scheme to solve the MHD system, namely, the scheme is
fully-decoupled, linear, second-order time accurate, and unconditionally energy stable. The novelty of the developed scheme
is that it utilizes the special characteristic of “zero-contribution-energy” satisfied by the advection and Lorentz force and
design a special ODE based on it. The property is actually well-known, but never had been used in the design of numerical
schemes. This property and the associated ODE based on it play a key role in obtaining the fully decoupled structure while
maintaining the unconditional energy stability. The novel scheme is very efficient since it only needs to solve several in-
dependent linear elliptic sub-equations with constant coefficients and it can easily obtain second-order numerical solutions
with unconditional energy stability. To the best of the author’s knowledge, for the MHD system, this is the first second-order scheme
that can simultaneously have so many desirable properties.
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