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For highly coupled nonlinear incompressible magnetohydrodynamic (MHD) system, a well-
known numerical challenge is how to establish an unconditionally energy stable linearized 
numerical scheme which also has a fully decoupled structure and second-order time 
accuracy. This paper simultaneously reaches all of these requirements for the first time by 
developing an effective numerical scheme, which combines a novel decoupling technique 
based on the “zero-energy-contribution” feature satisfied by the coupled nonlinear terms, 
the second-order projection method for dealing with the fluid momentum equations, and 
a finite element method for spatial discretization. The implementation of the scheme is 
very efficient, because only a few independent linear elliptic equations with constant 
coefficients need to be solved by the finite element method at each time step. The 
unconditional energy stability and well-posedness of the scheme are proved. Various 
2D and 3D numerical simulations are carried out to illustrate the developed scheme, 
including convergence/stability tests and some benchmark MHD problems, such as the 
hydromagnetic Kelvin-Helmholtz instability, and driven cavity problems.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

When a conductive fluid moves in an electromagnetic field, an electric current is generated in the fluid. The current 
interacts with the magnetic field to generate Lorentz force, thereby changing the movement of the fluid, and at the same 
time, the current causes a change in the electromagnetic field. The description of the complex behavior of the interaction 
between the conductive fluid and electromagnetic field generally uses the MHD equation, which is widely applied to de-
scribe the hydrodynamic behavior of conductive fluids such as plasma, liquid metal, and electrolyte (cf. [1–3]). Formally, the 
MHD system is a highly coupled nonlinear, saddle point structure system, that consists of the Navier-Stokes equations for 
hydrodynamics and Maxwell’s equations for electromagnetism. The coupling of these two equations is achieved through the 
Lorentz force and fluid advection. Concerning the extensive theoretical modeling/analysis/simulations for the MHD system, 
we refer to [4–14] and the references therein. For example, positivity preserving analysis of density and pressure is carried 
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out in [5]; stochastic Galerkin method for ideal MHD system is proposed in [8]; a stabilized continuous Galerkin method for 
MHD problem is presented in [15].

In this paper, we consider the numerical approximation of the MHD system, focusing on establishing a fully-discrete 
finite element scheme with desired properties of linearity, second-order time accuracy, full decoupling structure, and un-
conditional energy stability (for simplicity, a numerical scheme with these properties is called as “desired” type scheme). 
Here, the linearity means only several linear problems are solved at each time step without requiring nonlinear iterations, 
while full decoupling means every unknown is solved independently. For the nonlinear coupled systems, the linear and fully 
decoupled algorithms are much more efficient compared with nonlinear coupled solvers. Then, a natural question is how 
difficult it is to design such a “desired” type scheme. One might think that it is not difficult because a large number of 
numerical methods have been developed to effectively handle this system [6,16–27] and the “desired” type scheme may be 
easily obtained by making some slight modifications to those schemes.

However, the opposite is true. Up to the authors’ knowledge, for the full MHD system, no scheme can meet all four 
criteria of the “desired” type scheme at the same time. For example, the schemes developed in [6,16] are either first-
order time accurate with unconditional energy stability or second-order time accurate with conditional energy stability. The 
schemes developed in [21–23] are decoupled, have first-order time accuracy, and maintain energy stability conditionally. The 
first-order/second-order schemes developed in [24,25] can maintain unconditional energy stability with coupled structures. 
The schemes developed in [28,29] meet the requirements of full decoupling, unconditional energy stability, and linearity, 
but they are first-order time accurate. For the MHD model with simplified Lorentz force (ignoring the ∇( 1

2 |B|2) term), the 
“Elsässer” variable method developed in [18,19] lays a solid foundation and almost reaches the four features at the same 
time, while the unconditional stability is obtained under a condition of 1

2 < ν
η < 2 (ν and η are diffusion coefficients in 

equations (2.11) and (2.13)). For the full MHD model considering ∇( 1
2 |B|2), the Elsässer variable method may not maintain 

the skew-symmetric structure of the nonlinear terms (see more details about this method in Remark 3.6).
Therefore, the focus of this paper is to construct a desired type fully-discrete numerical scheme for the highly com-

plex, coupled, and nonlinear MHD model. The main challenge we need to overcome is how to develop a second-order time 
marching scheme with a decoupling structure under the premise of unconditional energy stability. To this end, while us-
ing several effective numerical methods, including the finite element method for spatial discretization, and the projection 
method for the Navier-Stokes equations, we have designed a new decoupling method that can effectively handle the cou-
pling terms (advection and Lorentz force). By avoiding the traditional ways to distinguish which nonlinear items need to 
be processed explicitly or implicitly, we adopt a more direct principle to design the numerical scheme. That is, all non-
linear coupling items are handled using the second-order explicit extrapolation. It is well known that such a simple and 
crude explicit processing cannot obtain unconditional energy stability. Then, the key to overcome this issue is to use the 
“zero-energy-contribution” characteristics satisfied by those coupling terms. The specific approach is to introduce a nonlocal 
variable and design an appropriate ordinary differential equation (ODE), which consists of the inner products of the coupled 
terms with some specific functions. This ODE is trivial at the continuous level because all the terms contained in it provide a 
zero summation. But after discretization, it can help with obtaining unconditional energy stability. Meanwhile, the nonlocal 
variable can decompose each discrete equation into multiple sub-equations that can be solved independently and efficiently 
by using the fast solvers developed in [30,31], thereby obtaining a fully-decoupled structure.

Besides, the high efficiency of this scheme is also reflected in the fact that all variables can be calculated in a decoupled 
manner and all equations have constant coefficients at each time step. We also give rigorous proofs of the solvability 
and unconditional energy stability of the scheme. To demonstrate the stability and accuracy numerically, we further carry 
out several numerical examples, including the accurate/stability tests, and some MHD benchmark problems such as the 
hydromagnetic Kelvin-Helmholtz instability, driven cavity problems, to prove the effectiveness of the developed scheme, 
numerically. To the authors’ best knowledge, for the MHD model, the constructed scheme is the first “desired” type scheme that can 
meet all four criteria at the same time, namely, it is fully-decoupled, second-order time accurate, linear and unconditionally energy 
stable.

The “zero-energy-contribution” idea for constructing a decoupling scheme was recently published in [32–37] for the 
Navier-Stokes coupled gradient flow phase-field models. And the stability analysis was carried out only for the semi-discrete 
temporal schemes. In this paper, we consider a completely different type of flows, the MHD flows. Due to the major dif-
ficulty caused by the Maxwell’s equations, it is not trivial at all to utilize this idea to construct the nonlocal variable and 
carry out the corresponding analysis, for the MHD model. We also analyze the stability of the fully discrete finite element 
scheme, instead of the semi-discrete temporal scheme. Furthermore, the proposed decoupling technique through the nonlo-
cal variable is also suitable to deal with the so-called H1 discretization incompressible MHD system [7] (or called penalty 
MHD equations).

We organize the article in the following way. In Section 2, we briefly describe the MHD model and show its associated 
energy law. In Section 3, we construct the decoupled numerical scheme and present its detailed implementation steps. 
Unconditional energy stability and well-posedness are also proved rigorously. In Section 4, we present various 2D and 3D 
numerical simulations to demonstrate its stability and accuracy. Some concluding remarks are drawn in Section 5.
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2. The MHD model and energy law

We study the incompressible MHD equations in a bounded domain � ⊂ Rd , d = 2, 3 with connected boundary, that 
consist of the incompressible Navier-Stokes equations and the magnetoquasistatic Maxwell’s equations, read as

ut − ν�u + (u · ∇)u + ∇p + B × J = 0, (2.1)

divu = 0, (2.2)

Bt + curlE = 0, (2.3)
1

μ
curlB = J, (2.4)

J = σ(E + u × B), (2.5)

divB = 0, (2.6)

where u is the fluid velocity, p is the hydrodynamic pressure, E is the electric field, B is the magnetic induction, J is the 
electric current density. The physical parameters ν , μ and σ are the kinematic viscosity, the magnetic permeability and the 
electric conductivity, respectively.

We plug (2.4) into (2.1) to get

ut − ν�u + (u · ∇)u + ∇p + 1

μ
B × curlB = 0. (2.7)

Taking curl on the equations (2.4) and (2.5), we get

curlJ = 1

μ
curlcurlB,

curlJ = σ curlE + σ curl(u × B),

which are combined together to get

curlE = 1

μσ
curlcurlB − curl(u × B). (2.8)

Then we plug (2.8) into (2.3) to obtain

Bt + 1

μσ
curlcurlB − curl(u × B) = 0. (2.9)

In [38], the equation (2.9) is modified to the following form

Bt + 1

μσ
curlcurlB − curl(u × B) + ∇r = 0, r|∂� = 0, (2.10)

where r is the Lagrange multiplier term that is also called as “magnetic pressure”. Note that the modified equation (2.10)
is indeed equivalent to (2.9). This is because if we apply divergence operator to (2.10) and use (2.6), we get �r = 0. From 
the boundary condition for r, we deduce r ≡ 0. In this paper, we adopt (2.10) since this formulation allows us to use the 
second-order projection method, which was used to deal with the Navier-Stokes equations and can easily maintain the 
divergence-free condition for B.

By denoting η = 1
μσ , κ = 1

μ , we combine (2.2), (2.6), (2.7), and (2.10) to obtain the incompressible MHD equations that 
read as follows,

ut − ν�u + (u · ∇)u + ∇p + κB × curlB = 0, (2.11)

divu = 0, (2.12)

Bt + ηcurlcurlB − curl(u × B) + ∇r = 0, (2.13)

divB = 0. (2.14)

The system (2.11)-(2.14) is equipped with the following boundary conditions

u|∂� = 0, B × n|∂� = 0, r|∂� = 0, (2.15)

and initial conditions

u|t=0 = u0, B|t=0 = B0, (2.16)

3



G.-D. Zhang, X. He and X. Yang Journal of Computational Physics 448 (2022) 110752

with divu0 = 0, divB0 = 0, where n denotes the outward unit normal of ∂�. In the literatures, Re = ν−1 is called fluids 
Reynolds number, κ the coupling coefficient, and Rm = η−1 the magnetic Reynolds number.

We first fix some notations here. For two vector functions v, w, we denote the L2 inner product as (v, w) = ∫
�

v · wdx
and the L2 norm ‖w‖2 = (w, w). Let W k,l(�) stand for the standard Sobolev spaces equipped with the standard Sobolev 
norms ‖ · ‖k,l . For l = 2, we write Hk(�) for W k,2(�) and its corresponding norm is ‖ · ‖k . We also list some function spaces 
for the MHD equations (2.11)-(2.16) as follows:

H1(�) =
{

w ∈ L2(�) : ∇w ∈ L2(�)d
}

,

H1
0(�) = {

w ∈ H1(�) : w|∂� = 0
}
,

L2
0(�) =

⎧⎨
⎩q ∈ L2(�) :

∫
�

qdx = 0

⎫⎬
⎭ ,

H1(�) = H1(�)d, H1
0(�) = H1

0(�)d,

H(curl;�) =
{

c ∈ L2(�)d : curlc ∈ L2(�)2d−3
}

,

H0(curl;�) = {c ∈ H(curl;�) : c × n|∂� = 0} .

The norm in H(curl; �) space is defined by

‖c‖curl =
(
‖c‖2 + ‖curlc‖2

) 1
2
, ∀c ∈ H(curl;�).

The well-posedness and finite element approximation of steady version of the system (2.11)-(2.15) were discussed in [38]. 
Here, we also give a brief proof of the energy law followed by the MHD system (2.11)-(2.16), because the energy stability 
of the discrete scheme follows the same line. By taking the L2 inner product of u with (2.11) and using the integration by 
parts and (2.12), we get

1

2

d

dt
‖u‖2 + ν‖∇u‖2 +

∫
�

(u · ∇)u · udx + κ

∫
�

(B × curlB) · udx = 0. (2.17)

Taking the L2 inner product of κB with (2.13), and using the integration by parts and (2.14), we have

κ

2

d

dt
‖B‖2 + κη‖curlB‖2 − κ

∫
�

curl(u × B) · Bdx = 0. (2.18)

By combining (2.17) and (2.18), we obtain the law of energy dissipation that reads as:

d

dt
(

1

2
‖u‖2 + κ

2
‖B‖2) = −ν‖∇u‖2 − κη‖curlB‖2 ≤ 0. (2.19)

Remark 2.1. The above proof to obtain the law of energy dissipation (2.19) lies on the following two identities:∫
�

(u · ∇)u · udx = 0,

∫
�

[(B × curlB) · u − u × B · curlB] dx = 0.

These equalities are derived by using the integration by parts and the boundary conditions for u. These two equalities can 
be regarded as the contribution of two types of nonlinear terms (advection and Lorentz force) to the total free energy of 
the system is zero. These unique “zero-energy-contribution” property will be used to design decoupling type numerical 
schemes.

3. Numerical scheme

In this section, we aim to construct a “desired” type fully-discrete finite element scheme to solve the MHD system 
(2.11)-(2.16). The most critical technique for this goal is to follow the “zero-energy-contribution” idea [36,37]. Special pro-
cessing is needed to develop appropriate temporal discretizations for the challenging terms, including the coupling terms of 
advection and Lorentz force, and the linear coupling between velocity and pressure through the divergence-free condition.
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3.1. Reformulated equivalent system and energy law

In order to design the desired algorithm, we introduce a nonlocal scalar variable Q (t) and its corresponding ODE, and 
we rewrite the MHD equations (2.11)-(2.16) to an augmented equivalent form.

We introduce a nonlocal variable Q (t) and design an ODE system for it, that reads as:

⎧⎪⎨
⎪⎩

Q t =
∫
�

(u · ∇)u · udx + κ

∫
�

B × curlB · udx − κ

∫
�

u × B · curlBdx,

Q |t=0 = 1.

(3.1)

It is easy to see that the system (3.1) is the same as a trivial ODE system of Q t = 0, Q |t=0 = 1 with the exact solution of 
Q (t) = 1.

We rewrite the MHD system (2.11)-(2.16) using the new variable Q to the following form:

ut − ν�u + Q (u · ∇)u + ∇p + Q κB × curlB = 0, (3.2)

divu = 0, (3.3)

Bt + ηcurlcurlB − Q curl(u × B) + ∇r = 0, (3.4)

divB = 0, (3.5)

Q t =
∫
�

(u · ∇)u · udx + κ

∫
�

B × curlB · udx − κ

∫
�

u × B · curlBdx, (3.6)

u|∂� = 0, B × n|∂� = 0, r|∂� = 0, (3.7)

u|t=0 = u0, B|t=0 = B0, Q |t=0 = 1. (3.8)

Remark 3.1. We multiply the advection terms ((u · ∇)u and curl(u × B)), and Lorentz force κB × curlB with Q . Since the 
nonlocal variable Q (t) is equal to 1, the PDE system will not be changed by this modification. Therefore, the two PDE 
systems, (2.11)-(2.16) and (3.2)-(3.8) are equivalent.

Theorem 3.1. The transformed MHD system (3.2)-(3.8) admits the following law of energy dissipation

d

dt
(

1

2
‖u‖2 + κ

2
‖B‖2 + 1

2
|Q |2) = −ν‖∇u‖2 − κη‖curlB‖2 ≤ 0. (3.9)

Proof. Taking the L2 inner product of u with (3.2) and using the integration by parts, we obtain

1

2

d

dt
‖u‖2 + ν‖∇u‖2 + Q

∫
�

(u · ∇)u · udx + κ Q

∫
�

B × curlB · udx = 0. (3.10)

Taking the L2 inner product of κB with (3.4) and using the integration by parts, we obtain

κ

2

d

dt
‖B‖2 + κη‖curlB‖2 − κ Q

∫
�

u × B · curlBdx = 0. (3.11)

Multiplying Q on (3.6) leads to

1

2

d

dt
|Q |2 = Q

∫
�

(u · ∇)u · udx + κ Q

∫
�

B × curlB · udx

− κ Q

∫
�

u × B · curlBdx.

(3.12)

By combining (3.10) - (3.12), we derive (3.9).

5
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3.2. Fully-discrete decoupled finite element scheme

We develop the fully discrete finite element scheme for the transformed equivalent model (3.2)-(3.8) in this subsection.
The weak form of the system (3.2)-(3.8) reads as: find u(t) ∈ H1

0(�), p(t) ∈ L2
0(�), B(t) ∈ H0(curl; �), and r(t) ∈ H1

0(�)

such that

(ut,v) + ν(∇u,∇v) + Q ((u · ∇)u,v) − (p,divv) + Q κ(B × curlB,v) = 0, (3.13)

(divu,q) = 0, (3.14)

(Bt, c) + η(curlB, curlc) − Q (u × B, curlc) + (∇r, c) = 0, (3.15)

(B,∇s) = 0, (3.16)

Q t =
∫
�

(u · ∇)u · udx + κ

∫
�

B × curlB · udx − κ

∫
�

u × B · curlBdx, (3.17)

for all v ∈ H1
0(�), q ∈ L2

0(�), c ∈ H0(curl; �), and s ∈ H1
0(�).

We adopt the finite element method for the spatial discretization. We consider regular and quasi-uniform meshes Th of 
mesh-size h that partition � into triangle or tetrahedra {K }. Let Pl(K ) be the space of polynomials of total degree at most l
on K and P̃l(K ) the space of homogeneous polynomials of degree l. The space Dl(K ) denotes the polynomials p̃ in P̃l(K )d

that satisfy p̃ · x = 0 on K . For l ≥ 1, we define the space Nl(K ) = Pl−1(K )d ⊕ Dl(K ). We apply standard Lagrange finite 
element spaces Vh and Mh to approximate unknowns in H1

0(�) and L2
0(�), see [39],

Vh =
{

vh ∈ H1
0(�) : vh|K ∈ Pl+1(K )d, K ∈ Th

}
,

Mh =
{

qh ∈ L2
0(�) : qh|K ∈ Pl(K ), K ∈ Th

}
.

Moreover, the spaces Vh and Mh need to satisfy the inf-sup condition:

β‖qh‖ ≤ sup
vh∈Vh

(divvh,qh)

‖∇vh‖ , ∀qh ∈ Mh. (3.18)

To approximate unknowns in H0(curl; �) and H1
0(�), we use the first family of Nédélec space [40,41] and Lagrange finite 

element space,

Ch = {ch ∈ H0(curl;�) : ch|K ∈ Nl(K ), K ∈ Th} ,

Sh = {
sh ∈ H1

0(�) : sh|K ∈ Pl(K ), K ∈ Th
}
.

Furthermore, the pair Ch and Sh require to satisfy ∇ Sh ⊂ Ch , which also means the inf-sup condition:

β̂‖sh‖1 ≤ sup
ch∈Ch

(ch,∇sh)

‖ch‖curl
, ∀sh ∈ Sh. (3.19)

Some well known inf-sup stable pairs for (Vh, Mh) and (Ch, Sh) are available, see [39,41,38].
We define extrapolation w∗

h = 2wn
h − wn−1

h for any variable wh . We use the second-order pressure projection method 
to decouple the linear couplings of (u, p) and (B, r), and the second-order backward differentiation formula (BDF2) for the 
temporal discretization. Let δt > 0 denote the time step size and set tn = nδt for 0 ≤ n ≤ N with T = Nδt . The fully discrete 
scheme to solve the system (3.13)-(3.17) reads as follows:

Find ũn+1
h ∈ Vh , un+1

h ∈ Vh + ∇Mh , pn+1
h ∈ Mh , B̃n+1

h ∈ Ch , Bn+1
h ∈ Ch + ∇ Sh , rn+1

h ∈ Sh such that(
aũn+1

h − bun
h + cun−1

h

2δt
,vh

)
+ ν(∇ũn+1

h ,∇vh) + (∇pn
h,vh) (3.20)

+Q n+1((u∗
h · ∇)u∗

h,vh) + κ Q n+1(B∗
h × curlB∗

h,vh) = 0,(
aB̃n+1

h − bBn
h + cBn−1

h

2δt
, ch

)
+ η(curlB̃n+1

h , curlch) (3.21)

−Q n+1(u∗
h × B∗

h, curlch) + (∇rn
h, ch) = 0,

aQ n+1 − bQ n + c Q n−1

2δt
=

∫
�

(u∗
h · ∇)u∗

h · ũn+1
h dx (3.22)

6
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+κ

∫
�

B∗
h × curlB∗

h · ũn+1
h dx − κ

∫
�

u∗
h × B∗

h · curlB̃n+1
h dx,

(∇pn+1
h ,∇qh) = − a

2δt
(divũn+1

h ,qh) + (∇pn
h,∇qh), (3.23)

un+1
h = ũn+1

h − 2

a
δt∇pn+1

h + 2

a
δt∇pn

h, (3.24)

(∇rn+1
h ,∇sh) = a

2δt
(B̃n+1

h ,∇sh) + (∇rn
h,∇sh). (3.25)

Bn+1
h = B̃n+1

h − 2

a
δt∇rn+1

h + 2

a
δt∇rn

h, (3.26)

for all vh ∈ Vh, ch ∈ Ch , qh ∈ Mh , sh ∈ Sh , where a = 3, b = 4, c = 1.
Several remarks are in order.

Remark 3.1. The second-order pressure-projection method is used to decouple the computations of the linear couplings of 
(u, p) and (B, r). It is shown in [42] that the L2 error of velocity can achieve the second-order time accuracy, while the L2

error of pressure and H1 error of velocity can only achieve first-order time accuracy. The loss of accuracy for pressure is 
due to the artificial Neumann boundary condition imposed on the pressure, see [43].

Remark 3.2. The final velocity field un+1
h in above scheme satisfies the weakly discrete divergence-free condition. This can 

be deduced as follows. By taking the L2 inner product of (3.24) with ∇qh, ∀qh ∈ Mh , we obtain

(un+1
h ,∇qh) = −(divũn+1

h ,qh) − 2

a
δt(∇(pn+1

h − pn
h),∇qh).

In view of (3.23), we arrive at

(un+1
h ,∇qh) = 0, ∀qh ∈ Mh. (3.27)

Likewise, we also have

(Bn+1
h ,∇sh) = (B̃n+1

h ,∇sh) − 2

a
δt(∇rn+1

h − ∇rn
h,∇sh) = 0, ∀sh ∈ Sh. (3.28)

Remark 3.3. The above scheme also needs the first step solution u1
h , p1

h , B1
h , r1

h and Q 1 that can be easily obtained from the 
first order scheme by setting n = 0, a = 2, b = 2, c = 0 and u∗

h = u0
h , B∗

h = B0
h in (3.20)-(3.26).

Remark 3.4. In the pressure projection decoupled method, the initial data of pressure p is often set zero, which may cause 
numerical errors or instability. A more reliable way is to compute the system at t = t1 using a coupled scheme to obtain 
(u1

h, p1
h, B1

h, r1
h). Then the pressure projection decoupled scheme is implemented from t = t2 and initialized by the solution 

at t = t1.

We now prove the energy stability of the scheme (3.20)-(3.26).

Theorem 3.2. The scheme (3.20)-(3.26) holds the unconditional energy stability in the sense that

En+1 ≤ En − 2δtν‖∇ũn+1
h ‖2 − 2δtκη‖curlB̃n+1

h ‖2, (3.29)

where

En+1 =1

2
(‖un+1

h ‖2 + ‖2un+1
h − un

h‖2) + κ

2
(‖Bn+1

h ‖2 + ‖2Bn+1
h − Bn

h‖2)

+ 1

2
(|Q n+1|2 + |2Q n+1 − Q n|2) + 2δt2

3
‖∇pn+1

h ‖2 + 2κδt2

3
‖∇rn+1

h ‖2.

(3.30)

Proof. Taking vh = ũn+1
h in (3.20), we have(

3ũn+1
h − 4un

h + un−1
h

2δt
, ũn+1

h

)
+ ν‖∇ũn+1

h ‖2 + (∇pn
h, ũn+1

h )

+ Q n+1
∫
�

(u∗
h · ∇)u∗

h · ũn+1
h dx + κ Q n+1

∫
�

(B∗
h × curlB∗

h) · ũn+1
h dx = 0.

(3.31)

7
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Taking ch = κ B̃n+1
h in (3.21), we obtain

κ

(
3B̃n+1

h − 4Bn
h + Bn−1

h

2δt
, B̃n+1

h

)
+ κη‖curlB̃n+1

h ‖2 + κ(∇rn
h, B̃n+1

h )

− κ Q n+1
∫
�

(u∗
h × B∗

h) · curlB̃n+1
h dx = 0.

(3.32)

Multiplying (3.22) with Q n+1, we have

1

2δt
(3Q n+1 − 4Q n + Q n−1)Q n+1 = Q n+1

∫
�

(u∗
h · ∇)u∗

h · ũn+1
h dx

+ κ Q n+1
∫
�

(B∗
h × curlB∗

h) · ũn+1
h dx

− κ Q n+1
∫
�

(u∗
h × B∗

h) · curlB̃n+1
h dx.

(3.33)

Summing up (3.31)-(3.33), we obtain

1

2δt
(3ũn+1

h − 4un
h + un−1

h , ũn+1
h ) + κ

2δt
(3B̃n+1

h − 4Bn
h + Bn−1

h , B̃n+1
h )

+ ν‖∇ũn+1
h ‖2 + κη‖curlB̃n+1

h ‖2 + 1

2δt
(3Q n+1 − 4Q n + Q n−1)Q n+1

+ (∇pn
h, ũn+1

h ) + κ(∇rn
h, B̃n+1

h ) = 0.

(3.34)

From (3.24), (3.27), (3.26), and (3.28), we have

(un+1
h − ũn+1

h ,un+1
h ) = −2

3
δt(∇pn+1

h − ∇pn
h,un+1

h ) = 0, (3.35)

(Bn+1
h − B̃n+1

h ,Bn+1
h ) = −2

3
δt(∇rn+1

h − ∇rn
h,Bn+1

h ) = 0. (3.36)

Thus, by using (3.35), (3.36), and the following identity

2(3â − 4b̂ + ĉ)â = |â|2 − |b̂|2 + |2â − b̂|2 − |2b̂ − ĉ|2 + |â − 2b̂ + ĉ|2, (3.37)

we derive

(3ũn+1
h − 4un

h + un−1
h , ũn+1

h )

=(3un+1
h − 4un

h + un−1
h , ũn+1

h ) + (3ũn+1
h − 3un+1

h , ũn+1
h )

=(3un+1
h − 4un

h + un−1
h ,un+1

h ) + (3ũn+1
h − 3un+1

h , ũn+1
h + un+1

h )

=1

2
(‖un+1

h ‖2 − ‖un
h‖2 + ‖2un+1

h − un
h‖2 − ‖2un

h − un−1
h ‖2

+ ‖un+1
h − 2un

h + un−1
h ‖2) + 3‖ũn+1

h ‖2 − 3‖un+1
h ‖2,

(3.38)

(3B̃n+1
h − 4Bn

h + Bn−1
h , B̃n+1

h )

=(3Bn+1
h − 4Bn

h + Bn−1
h , B̃n+1

h ) + (3B̃n+1
h − 3Bn+1

h , B̃n+1
h )

=(3Bn+1
h − 4Bn

h + Bn−1
h ,Bn+1

h ) + (3B̃n+1
h − 3Bn+1

h , B̃n+1
h + Bn+1

h )

=1

2
(‖Bn+1

h ‖2 − ‖Bn
h‖2 + ‖2Bn+1

h − Bn
h‖2 − ‖2Bn

h − Bn−1
h ‖2

+ ‖Bn+1
h − 2Bn

h + Bn−1
h ‖2) + 3‖B̃n+1

h ‖2 − 3‖Bn+1
h ‖2,

(3.39)

and

1

2δt
(3Q n+1 − 4Q n + Q n−1)Q n+1 = 1

4δt
(|Q n+1|2 − |Q n|2 + |2Q n+1 − Q n|2

− |2Q n − Q n−1|2 + |Q n+1 − 2Q n + Q n−1|2).
(3.40)

From (3.24) and (3.26), we obtain

un+1
h + 2

3
δt∇pn+1

h = ũn+1
h + 2

3
δt∇pn

h, (3.41)

Bn+1
h + 2

3
δt∇rn+1

h = B̃n+1
h + 2

3
δt∇rn

h . (3.42)

8
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Taking the L2 inner product of the above two equations with themselves, and using (3.27) and (3.28), we have

(ũn+1
h ,∇pn) = 3

4δt
‖un+1‖2 − 3

4δt
‖ũn+1

h ‖2 + δt

3
‖∇pn+1‖2 − δt

3
‖∇pn‖2, (3.43)

(B̃n+1
h ,∇rn) = 3

4δt
‖Bn+1‖2 − 3

4δt
‖B̃n+1

h ‖2 + δt

3
‖∇rn+1‖2 − δt

3
‖∇rn‖2. (3.44)

Combining (3.34) with (3.38), (3.39), (3.40), (3.43), (3.44), we derive

1

4δt
(‖un+1

h ‖2 − ‖un
h‖2 + ‖2un+1

h − un
h‖2 − ‖2un

h − un−1
h ‖2 + ‖un+1

h − 2un
h + un−1

h ‖2)

+ κ

4δt
(‖Bn+1

h ‖2 − ‖Bn
h‖2 + ‖2Bn+1

h − Bn
h‖2 − ‖2Bn

h − Bn−1
h ‖2

+ ‖Bn+1
h − 2Bn

h + Bn−1
h ‖2)

+ 1

4δt
(|Q n+1|2 − |Q n|2 + |2Q n+1 − Q n|2 − |2Q n − Q n−1|2

+ |Q n+1 − 2Q n + Q n−1|2)
+ δt

3
‖∇pn+1

h ‖2 − δt

3
‖∇pn

h‖2 + κδt

3
‖∇rn+1

h ‖2 − κδt

3
‖∇rn

h‖2

+ 3

4δt
‖ũn+1

h ‖2 − 3

4δt
‖un+1

h ‖2 + 3κ

4δt
‖B̃n+1

h ‖2 − 3κ

4δt
‖Bn+1

h ‖2

= −ν‖∇ũn+1
h ‖2 − κη‖curlB̃n+1

h ‖2.

(3.45)

From (3.35) and (3.36), we derive

‖ũn+1
h ‖2 − ‖un+1

h ‖2 = (ũn+1
h − un+1

h , ũn+1
h + un+1

h )

= (ũn+1
h − un+1

h , ũn+1
h + un+1

h − 2un+1
h )

= ‖ũn+1
h − un+1

h ‖2,

(3.46)

and

‖B̃n+1
h ‖2 − ‖Bn+1

h ‖2 = (B̃n+1
h − Bn+1

h , B̃n+1
h + Bn+1

h )

= (B̃n+1
h − Bn+1

h , B̃n+1
h + Bn+1

h − 2Bn+1
h )

= ‖B̃n+1
h − Bn+1

h ‖2.

(3.47)

Finally, combining (3.45), (3.46), (3.47) with multiplying 2δt , we obtain

1

2
(‖un+1

h ‖2 − ‖un
h‖2 + ‖2un+1

h − un
h‖2 − ‖2un

h − un−1
h ‖2 + ‖un+1

h − 2un
h + un−1

h ‖2)

+ κ

2
(‖Bn+1

h ‖2 − ‖Bn
h‖2 + ‖2Bn+1

h − Bn
h‖2 − ‖2Bn

h − Bn−1
h ‖2

+ ‖Bn+1
h − 2Bn

h + Bn−1
h ‖2)

+ 1

2
(|Q n+1|2 − |Q n|2 + |2Q n+1 − Q n|2 − |2Q n − Q n−1|2

+ |Q n+1 − 2Q n + Q n−1|2)
+ 2δt2

3
‖∇pn+1

h ‖2 − 2δt2

3
‖∇pn

h‖2 + 2κδt2

3
‖∇rn+1

h ‖2 − 2κδt2

3
‖∇rn

h‖2

+ 3

2
‖ũn+1

h − un+1
h ‖2 + 3κ

2
‖B̃n+1

h − Bn+1
h ‖2

= −2νδt‖∇ũn+1
h ‖2 − 2κηδt‖curlB̃n+1

h ‖2.

After dropping several unnecessary positive terms, we arrive at (3.29) to finish the proof.

3.3. Decoupled implementation

In this subsection, we construct fully decoupled solution procedures for the proposed scheme (3.20)-(3.26) in which we 
make full use of the nonlocal property of the auxiliary variable Q . One can easily prove that the following fully decoupled 
linearized scheme is equivalent to the scheme (3.20)-(3.26), hence has the same stability and accuracy.

We split ũn+1
h , ̃Bn+1

h into a linear combination form in terms of Q n+1, namely

ũn+1
h = ũn+1

h1 + Q n+1ũn+1
h2 , B̃n+1

h = B̃n+1
h1 + Q n+1B̃n+1

h2 , (3.48)

9
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where ũn+1
h1 ∈ Vh , ũn+1

h2 ∈ Vh , B̃n+1
h1 ∈ Ch , B̃n+1

h2 ∈ Ch .
Step 1: Using (3.48) and according to Q n+1, we split (3.20) into the following two sub-equations:⎧⎪⎨

⎪⎩
3

2δt
(ũn+1

h1 ,vh) + ν(∇ũn+1
h1 ,∇vh) = 1

2δt
(4un

h − un−1
h ,vh) − (∇pn

h,vh),

3

2δt
(ũn+1

h2 ,vh) + ν(∇ũn+1
h2 ,∇vh) = −(u∗

h · ∇)u∗
h,vh) − κ(B∗

h × curlB∗
h,vh).

(3.49)

It is very easy to solve the above two equations since they are linear elliptic equations with constant coefficients. The 
multigrid method [30] is very efficient for this type problem.

Step 2: Using (3.48) and according to Q n+1, we split (3.21) into the following two sub-equations:⎧⎪⎨
⎪⎩

3

2δt
(B̃n+1

h1 , ch) + η(curlB̃n+1
h1 , curlch) = 1

2δt
(4Bn

h − Bn−1
h , ch) − (∇rn

h, ch),

3

2δt
(B̃n+1

h2 , ch) + η(curlB̃n+1
h2 , curlch) = (u∗

h × B∗
h, curlch).

(3.50)

It is very easy to solve the above two equations by using the well-known fast solvers [31].
Step 3: By using (3.48), we rewrite (3.22) as follows:

(
3

2δt
− η2)Q n+1 = η1 + 1

2δt
(4Q n − Q n−1), (3.51)

where

ηi =
∫
�

(u∗
h · ∇)u∗

h · ũn+1
hi dx + κ

∫
�

B∗
h × curlB∗

h · ũn+1
hi dx − κ

∫
�

(u∗
h × B∗

h) · curlB̃n+1
hi dx.

It is very easy to solve (3.51) since all terms in η1 and η2 are already obtained from Step 1 and Step 2.
Step 4: Update ũn+1

h and B̃n+1
h by (3.48); solve (3.23) for pn+1

h ; solve (3.25) for rn+1
h ; update un+1

h by (3.24); update Bn+1
h

from (3.26). The solvability of (3.51) can be briefly showed by verifying 3
2δt − η2 �= 0. We take vh = ũn+1

h2 in the second 
equation in (3.49) to deduce

3

2δt
‖ũn+1

h2 ‖2 + ν‖∇ũn+1
h2 ‖2 = −

∫
�

(u∗
h · ∇)u∗

h · ũn+1
h2 dx − κ

∫
�

B∗
h × curlB∗

h · ũn+1
h2 dx.

We take ch = κ B̃n+1
h2 in the second equation of (3.50) to derive

3κ

2δt
‖B̃n+1

h2 ‖2 + κη‖curlB̃n+1
h2 ‖2 = κ

∫
�

(u∗
h × B∗

h) · curlB̃n+1
h2 dx.

Summing up the above two obtained equations, we derive −η2 ≥ 0, that implies the solvability of (3.51).
From the above-detailed implementation process, it can be seen that the calculations of all unknown variables are 

completely decoupled. At each time step, the total cost only includes the computations of several elliptic equations. The 
decoupling of all equations and the characteristic of having only constant coefficients lead to highly efficient practical cal-
culations.

Remark 3.5. The nonlocal variable Q can also provide a practical criterion of the time step adaptivity, in addition to its 
roles of maintaining stability and decoupling unknowns. Generally speaking, when Q n+1 deviates from 1, the time step size 
δt needs to be refined to maintain the accuracy. On the other hand, when Q n+1 stays close to 1, the time step size δt could 
be relaxed. The detailed mechanism of variable time step size is an interesting future work.

Remark 3.6. The work in [17–20] considered the following MHD model:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut − ν�u + (u · ∇)u + ∇p − (B · ∇)B = 0,

divu = 0,

Bt − η�B + (u · ∇)B − (B · ∇)u + ∇r = 0,

divB = 0,

u|∂� = 0, B|∂� = 0.

(3.52)

By defining “Elsässer” variables v = u + B, w = u − B, q = p + r, λ = p − r, the system becomes

10
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt − ν + η

2
�v − ν − η

2
�w + (w · ∇)v + ∇q = 0,

divv = 0,

wt − ν + η

2
�w − ν − η

2
�v + (v · ∇)w + ∇λ = 0,

divw = 0,

v|∂� = 0, w|∂� = 0.

A significant merit of this formulation is that the two nonlinear terms (w · ∇)v and (v · ∇)w possess a skew-symmetric 
structure, i.e., ((w · ∇)v, v) = 0, ((v · ∇)w, w) = 0. By treating the two nonlinear terms as (w∗ · ∇)vn+1 and (v∗ · ∇)wn+1, in 
[18,19], a second-order time-accurate, decoupled, and stable scheme is developed under the condition of 1

2 < ν
η < 2. The 

work in [18] extends this result and shows that the second-order scheme could be stable without the restriction on ν
η if a 

time step restriction of δt < O (h2) is satisfied. Meanwhile, from the identity B × curlB = ∇( 1
2 |B|2) − B · ∇B, it can be seen 

that the term ∇( 1
2 |B|2) is not considered in (3.52). If one recovers the term ∇( 1

2 |B|2) in the model, the Elsässer variable 
method may not maintain the skew-symmetric structure of the nonlinear terms.

The major differences between this paper and the above works are the full MHD equations (2.11)-(2.14) and no restriction 
at all for the unconditional stability, based on the novel “zero-energy-contribution” feature.

Remark 3.7. The decoupling technique through the nonlocal variable Q is also suitable to deal with the so-called H1 dis-
cretization incompressible MHD system [7] (or called penalty MHD equations), that reads as:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ut − ν�u + (u · ∇)u + ∇p + κB × curlB = 0,

divu = 0,

Bt + ηcurlcurlB − η∇divB − curl(u × B) = 0,

divB = 0.

(3.53)

Note the coupling nonlinear terms are still the advection and Lorentz force, it can be formulated to the following equivalent 
form using Q :⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut − ν�u + Q (u · ∇)u + ∇p + κ Q B × curlB = 0,

divu = 0,

Bt + ηcurlcurlB − η∇divB − Q curl(u × B) = 0,

divB = 0,

Q t = ∫
�
(u · ∇)u · udx + κ

∫
�

B × curlB · udx − κ
∫
�

u × B · curlBdx.

Using similar discretization methods and finite element space, one can easily construct a linear, decoupled, second-order 
time accurate, and unconditionally energy stable scheme for the above model. We leave the detailed procedure to the 
interested readers.

Remark 3.8. The nonhomogeneous boundary conditions u|∂� = ub , B × n|∂� = Bb instead of (2.15) can be handled with the 
same idea. We only need to slightly modify the nonlocal variable Q (t) to include the boundary integration as follows:⎧⎪⎨

⎪⎩
Q t =

∫
�

(u · ∇)u · udx − 1

2

∫
∂�

(ub · n)|ub|2ds + κ

∫
�

B × curlB · udx − κ

∫
�

u × B · curlBdx,

Q |t=0 = 1.

By taking integration by parts, we can deduce Q ≡ 1 as well. In the decoupled procedures Step 1 (3.49) and Step 2 (3.50), 
we need to impose the boundary conditions ũn+1

h1 |∂� = uh
b , ũn+1

h2 |∂� = 0, B̃n+1
h1 × n|∂� = Bh

b and B̃n+1
h2 × n|∂� = 0, where the 

uh
b and Bh

b are proper interpolations or projections of ub and Bb in finite element spaces.

4. Numerical simulations

In this section, we present ample numerical simulations to show the stability and accuracy of the developed scheme 
(3.20)-(3.26) (abbreviated as DS, for short). We use Taylor-Hood elements for Vh and Mh (second-order polynomial P2
element for Vh , linear polynomial P1 element for Mh) that satisfy the inf-sup condition (3.18) [39]. We also use the first 
family second-order H(curl)-conforming Nédéléc edge N2 element [40,41] for Ch , second-order polynomial P2 element for 
Sh , which also satisfy the inf-sup condition (3.19) since ∇ Sh ⊂ Ch .

11
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Fig. 1. The numerical errors of ‖eu‖L2 , ‖eu‖H1 , ‖ep‖L2 , ‖eb‖L2 , ‖eb‖curl , |Q − 1|, and r at t = 1 that are computed by using h = δt with the given exact 
solutions (4.1).

Table 1
The numerical errors and convergence orders for ‖eu‖H1 and ‖ep‖L2 in an interior 
domain (0.1, 0.9)2 at t = 1 that are computed using δt = h with the exact solutions 
of (4.1).

h δt ‖eu‖H1 Order ‖ep‖L2 Order
1
4

1
4 1.06629 – 1.47116 –

1
8

1
8 0.965592 0.14 1.01415 0.54

1
16

1
16 0.262053 1.88 0.415646 1.29

1
32

1
32 0.0608671 2.10 0.113079 1.88

1
64

1
64 0.0163281 1.90 0.0299588 1.92

1
128

1
128 0.00418888 1.96 0.00771162 1.96

1
256

1
256 0.00105864 1.98 0.00194857 1.98

4.1. Accuracy test

We verify the convergence order of the scheme DS in this example. We set the exact solution (4.1) to verify the temporal-
spatial accuracy. We use the computational domain (0, 1)2 and set parameters Re = Rm = κ = 1. The source terms and 
boundary conditions are chosen such that the exact solution are given as{

u = (exp(t) cos(y),exp(t) sin(x)), p = 10t2(2x − 1)(2y − 1),

B = (sin(t + y), cos(t + x)), r = 0.
(4.1)

In this case, we set h = δt , and refine h and δt simultaneously by h = δt = 1
2i , i = 2, 3, · · · , 8.

In Fig. 1(a), the L2 errors of u, B, H(curl) error of B, and |Q − 1| at t = 1 are plotted, which show the second-order 
accuracy. However, the L2 error of p and H1 error of u are not full second-order accuracy due to a numerical boundary layer 
[43]. If the L2 error of p and H1 error of u are measured in an interior domain (0.1, 0.9)2, they all reach the second-order 
accuracy, see Table 1. Fig. 1(b) illustrates the numerical solution of r is very close to zero with the mesh refining.

4.2. Energy stability test

In this example, we verify the energy stability of the scheme DS. We choose the computed domain to be � = (0, 1)2, 
and load the following initial conditions of u, p, B, and r,⎧⎨

⎩
u0 =

(
x2(x − 1)2 y(y − 1)(2y − 1), −y2(y − 1)2x(x − 1)(2x − 1)

)
, p0 = 0,

B0 =
(

sin2(πx) sin(π y) cos(π y),− sin2(π y) cos(πx) sin(πx)
)

, r0 = 0.
(4.2)

12
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Fig. 2. Time evolution of the free energy functional for four different time step sizes with Re = Rm = κ = 10 computed by (a) DS and (b) Imp-Exp. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

For comparison, we also test the stability performance with the following second-order implicit-explicit (abbreviated as 
Imp-Exp) scheme (4.3) that reads as,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
3un+1

h − 4un
h + un−1

h

2δt
,vh

)
+ ν(∇un+1

h ,∇vh) + ((u∗
h · ∇)u∗

h,vh)

− (pn+1
h ,divvh) + κ(B∗

h × curlB∗
h,vh) + (divun+1

h ,qh) = 0,(
3Bn+1

h − 4Bn
h + Bn−1

h

2δt
, ch

)
+ η(curlBn+1

h , curlch) − (u∗
h × B∗

h, curlch)

+ (∇rn+1
h , ch) + (Bn+1

h ,∇sh) = 0,

(4.3)

where all nonlinear terms are treated explicitly while the linear terms are treated implicitly.
We fix the mesh size h = 1

16 , and adopt two sets of physical parameter Re = Rm = κ = 10 (low stiffness) and Re =
Rm = κ = 100 (high stiffness). We vary time step size δt = 1.0, 0.1, 0.01, and 0.001 and compare the total free energy 
E(un, Bn) = 1

2 ‖un‖2 + 1
2 κ‖Bn‖2 computed by the our scheme DS and the scheme Imp-Exp.

In Fig. 2, for Re = Rm = κ = 10, we observe that all energy curves computed by both schemes show monotonic decays 
for all time step sizes. This means for low Reynolds number (low stiffness case), both schemes are energy stable.

In Fig. 3, for Re = Rm = κ = 100, we can see that the scheme Imp-Exp is not stable when adopting large time steps 
δt ≥ 0.01, which shows that the scheme (4.3) is only conditionally energy stable. While all energy curves computed by DS 
always show monotonic decays, thereby verifying its unconditional energy stability.

4.3. Island coalescence

We consider a driven magnetic reconnection example, the so-called island coalescence problem. Fast magnetic recon-
nection is a long-standing issue for understanding plasma physics. The island coalescence problem presents two magnetic 
islands embedded in a Harris current sheet by setting a perturbed Harris sheet magnetic field configuration as initial con-
ditions. The combined magnetic field produced by the two magnetic islands produces Lorentz forces, which pull the islands 
together over time. Concerning the physical background of this problem and the extensive numerical simulations for it, we 
refer to [44–49].

In this simulation, we set the computational domain as � = [−1, 1] × [−0.5, 0.5], and other model parameters as Re =
Rm = 1000, κ = 1.0. We equip a source term g for magnetic equation (2.13), where

g =
(

2ζ(1 − ε2)

δ2

sinh(
y
δ
)

(cosh(
y
δ
) + ε cos( x

δ
))3

,
2εζ(1 − ε2)

δ2

sin( x
δ
)

(cosh(
y
δ
) + ε cos( x

δ
))3

)
. (4.4)

The initial conditions are set as
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Fig. 3. Time evolution of the free energy functional for four different time step sizes with Re = Rm = κ = 100 computed by (a) DS and (b) Imp-Exp.

Fig. 4. Snapshots of the magnetic field B (in arrows) and the magnitude of the current density J (in colormap) at t = 0.2,1.3,1.4,1.5,2,2.2.

u0 = (0,0), B0 =
(

sinh(
y
δ
)

cosh(
y
δ
) + ε cos( x

δ
)

+ δ1,
ε sin( x

δ
)

cosh(
y
δ
) + ε cos( x

δ
)

+ δ2

)
, (4.5)

where δ1 = − γ
π cos(πx) sin( 1

2 π y), δ2 = γ
2π cos( 1

2 π y) sin(πx) are perturbations, ζ = 1.0, ε = 0.2, δ = 1
2π , and γ = −0.01. 

The boundary conditions are zero tangential stress (u = 0) and perfect conducting wall (B = 0) on the top and bottom 
boundaries, and periodic conditions on the left and right walls.

We set the time step size δt = 1
5000 , and the spatial mesh size h = 1

64 . In Fig. 4, we plot the vector field of the magnetic 
field B and the magnitude of the current density J ( J = curlB). We observe the dynamical reconnection behaviors of 
magnetic islands and current density during the coalescence process. At t = 1.5 s, the two islands start to coalesce, and a 
sharp peak in current density is produced where the magnetic field lines reconnect. In Fig. 5, we plot the magnitude of the 
pressure at different times, in which, the pressure also displays the coalescence process as the magnetic field B. In Fig. 6, 
we plot the velocity field u at different times.

4.4. Hydromagnetic Kelvin-Helmholtz instability

The Kelvin-Helmholtz (K-H) instability in sheared flow configurations is an efficient mechanism that cause fluid mixing, 
momentum and energy transfer, and turbulence development. These issues need to be considered when studying various 
space, celestial and geophysical conditions involving shear plasma flow. Related configurations include the interface between 
the solar wind and the magnetosphere, and the coronal belt that moves in the solar wind. Since most astrophysical envi-
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Fig. 5. Snapshots of the pressure p (in colormap) at t = 0.2,1.3,1.4,1.5,2,2.2.

Fig. 6. Snapshots of the velocity field u at t = 0.2,1,1.5,2.

ronments are electrically conductive, and related fluids are likely to be magnetized, it is important to understand the role 
of magnetic field in K-H instability [2,49,12,50–52].

We study occurrence of the K-H instability in a single shear flow configuration that is embedded in a uniform flow-
aligned magnetic field. The simulation is performed in a computed domain of � = [0, 2] × [0, 1]. The initial velocity field 
is u0 = (1.5, 0) in the top half domain, and u0 = (−1.5, 0) in the bottom half domain. The sheared initial magnetic field 
is B0 = (tanh(y/ε), 0) where ε = 0.07957747154595 (cf. [49]). The velocity u, magnetic field B are periodic boundary 
conditions on left and right boundaries. On the top and bottom boundaries, the second component v = 0 of the velocity 
field u = (u, v) is imposed. The boundary conditions for B are B × n = B0 × n for the top boundary and B × n = −B0 × n
for the bottom. We set the model parameters as Re = 1000, Rm = 1000, κ = 0.095, h = 1

40 , δt = 1
400 .

In Fig. 7, we show snapshots of the magnitude of Bx (B = (Bx, B y)) at various times that is superimposed by the velocity 
field u. We observe that over time, the vortexes start to form at around t = 3. After t = 3.5, the profiles of vortexes and 
the magnetic field show the typical structure of K-H instability, and it deforms and rotates along with the flow soon. In 
Fig. 8, we plot the pressure p at various times, and we can see that the contours of p correspond with the Bx . The obtained 
numerical results coincide well with the numerical/experimental results in [51,50,52], qualitatively.
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Fig. 7. The velocity field u with the filled contour of Bx that shows the hydromagnetic K-H instability. Snapshots are taken at t = 0.01, 2.5, 3, 3.25,

3.5, 3.75, 4, 4.25, 4.5.

Fig. 8. Snapshots of the pressure p taken at t = 0.01,2.5,3,3.25,3.5,3.75,4,4.25,4.5.

4.5. 3D driven cavity flow

In this example, we simulate a benchmark problem of three-dimensional driven cavity flow, see [53,54,12].
We set the computational domain as � = [0, 1]3. The top boundary (z = 1) condition are set by u = (1, 0, 0), no slip 

boundary conditions (u = 0) are imposed on other walls. An external magnetic field effect is imposed by setting the mag-
netic field boundary of B × n = (−1, 0, 0) × n on the walls. The initial conditions are set as u(0, x) = (ux, 0, 0) where ux = 1
for z = 1 and ux = 0 for z < 1, B(0, x) = (−1, 0, 0). We set model parameters as Re = 100, κ = 1, h = 1

12 , δt = 1
100 .

In Fig. 9, we plot the two-dimensional cut-off planes of the streamlines of the velocity field at y = 0.5 for the magnetic 
Reynolds number Rm = 0.1, 1, and 10. We observe that for low magnetic Reynolds number, the solution of velocity is 
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Fig. 9. Streamlines of velocity at y = 0.5 for Re = 100, κ = 1.

Fig. 10. Pressure contours for Re = 100, κ = 1 seen from top.

Fig. 11. Vector field of magnetic field for Re = 100, κ = 1.

dominated by one large vortex (shown in Fig. 9(a) and (b)). While as Rm increases, the vortex pushes upward in the 
domain, and the lower part velocity streamlines distort (shown in Fig. 9(c)). The obtained numerical simulations are very 
close to the results in the literatures [54,12]. In Fig. 10, we also demonstrate the magnitude of pressure contours, which 
indicate the pressure gradient mainly distribute over the two top corners in the cavity. The vector fields of the magnetic 
field are depicted in Fig. 11. We find the induced magnetic field is almost equal to the imposed magnetic field (−1, 0, 0)
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for the small magnetic Reynolds number Rm (shown in Fig. 11(a)). With the increasing Rm , the induced magnetic field in 
the cavity gradually deviates the external imposed magnetic field because of the enhanced fluids convective action(shown 
in Fig. 11(c)).

5. Concluding remarks

We design a “desired” type of fully-discrete finite element scheme to solve the MHD system, namely, the scheme is 
fully-decoupled, linear, second-order time accurate, and unconditionally energy stable. The novelty of the developed scheme 
is that it utilizes the special characteristic of “zero-contribution-energy” satisfied by the advection and Lorentz force and 
design a special ODE based on it. The property is actually well-known, but never had been used in the design of numerical 
schemes. This property and the associated ODE based on it play a key role in obtaining the fully decoupled structure while 
maintaining the unconditional energy stability. The novel scheme is very efficient since it only needs to solve several in-
dependent linear elliptic sub-equations with constant coefficients and it can easily obtain second-order numerical solutions 
with unconditional energy stability. To the best of the author’s knowledge, for the MHD system, this is the first second-order scheme 
that can simultaneously have so many desirable properties.
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