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In this article, we first establish a new flow-coupled binary phase-field crystal model and 
prove its energy law. Then by using some newly introduced variables, we reformulate 
this three-phase model into an equivalent form, which makes it possible to construct 
a fully discrete linearized decoupling scheme with unconditional energy stability and 
second-order time accuracy to solve this model for the first time. The energy law of the 
reformulated model is also proved. Then we incorporate the explicit-IEQ (invariant energy 
quadratization) method for the nonlinear potentials, the projection method for the Navier-
Stokes equations, the Crank-Nicolson method for time marching, and the finite element 
method for spatial discretization together to develop the fully discrete scheme for the 
reformulated and equivalent system. By using the nonlocal splitting technique, at each 
time step, only a few decoupled constant-coefficient elliptic equations are required to be 
solved, even though the original and reformulated models are much more complicated in 
the form. The developed algorithm is further proved to be unconditionally energy stable, 
and a detailed implementation process is also provided. Various numerical experiments in 
2D and 3D are carried out to verify the effectiveness of the developed scheme, including 
the binary crystal growth under the action of shear flow and the sedimentation process of 
many binary particles.

 2022 Elsevier Inc. All rights reserved.

1. Introduction

From the pioneering modeling work of Elder et al. in [10,8] to the present, an important application of the phase-field 
method, called the phase-field crystal model (PFC, for short), has attracted significant attention in simulating the growth of 
atomic crystals [49,25,26,35,51,50,46,37,38,18,4,2,9,12,23,1,11]. The framework of the PFC model is to introduce the so-called 
phase-field variable to represent the coarse-grained time average concentration field of atomic density and then postulate a 
phenomenological total free energy. Applying the energy variational method to the total free energy, the governing system 
of equations is then derived, either in the H−1 space (called Cahn-Hilliard dynamics, cf. [10,8]) or in the L2 space (called 
the Allen-Cahn dynamics, cf. [49]).
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According to the number of phase-field variables used, the PFC models can be categorized into different types, such as 
a single-phase PFC model for pure material, i.e., one type of atom, and a binary-phase PFC model for binary alloys, i.e., two 
types of atoms. Since the single-phase PFC model only needs to use one phase-field variable, its free energy composition 
form is relatively simple, consisting of two parts, a linear part and a nonlinear part (double-well and/or vacancy potential). 
After using the variational approach, the derived governing system contains only one independent partial differential equa-
tion (PDE). In contrast, the binary PFC model needs to use two phase-field variables. Hence its total free energy not only 
includes the single-phase energy belonging to each phase-field variable, but also contains a special form of the coupling 
part. Consequently, the governing system of the binary PFC model contains two highly coupled and nonlinear PDEs, which 
is much more complicated than the classical single-phase PFC model. Hence, while the single-phase PFC model for pure 
material has been combined with the hydrodynamic equations (Navier-Stokes) to simulate different flow field dominant 
phenomena [25,26,35], it is not surprising to see that the coupling of the binary PFC model with the fluid dynamics and 
the corresponding numerical simulation are still open.

Therefore, in this article, we consider the modeling and the numerical approximation for the hydrodynamics coupled 
binary PFC system. Following the idea of the single-phase PFC model combined with hydrodynamic equations [25,35,26], 
we first establish the governing system by coupling the Navier-Stokes equation with the binary PFC model and then prove 
its energy law. Then we focus on constructing an effective numerical scheme for the newly proposed model. The algorithm 
design may face arduous challenges due to the highly complex coupling and nonlinearity of the model itself, especially 
when our goal is to develop a second-order time-accurate, linear, unconditional energy stable, and decoupled fully discrete 
algorithm. More precisely, the numerical challenges include: (i) how to decouple the two phase-field variables; (ii) how 
to decouple the flow field from the two phase-field variables to obtain an easy implementation; and (iii) how to develop 
an appropriate time-discrete method for the nonlinear cubic term to obtain the linear format. Here, difficulty (i) is the 
exclusive problem of the binary model, and difficulty (ii) is an exclusive problem of the fluid coupling model. And we 
aim to simultaneously address these three difficulties together with another two major goals: unconditional stability and 
second-order temporal accuracy.

There are several numerical schemes available for difficulty (iii), including the convex-splitting method [37,38,18,4,27], 
the implicit quadrature method [16], the stabilization method [31,45,14,19], the IEQ method [46,50,48], the scalar auxiliary 
method (SAV) method [49,51,50], etc. Finite element methods have also been developed to solve various phase field models 
[3,6,13,21,22,28]. However, even for the simpler flow-coupled single-phase PFC model, which has attracted much attention 
[25,35,26], the numerical difficulties (i) and (ii) have not been addressed simultaneously. And it is even more difficult to 
address them directly for the more complicated binary case. Thus, to the authors’ best knowledge, so far none of the 
above traditional methods can achieve linearity, decoupling, second order accuracy in time, and unconditional stability for 
these sophisticated models at the same time. Hence, for the flow-coupled binary PFC model proposed in this paper, we 
aim to design the first fully discrete numerical scheme, which is capable of achieving all of these four desired properties 
simultaneously.

The key idea of the new scheme is the introduction of two auxiliary variables and special ordinary differential equations 
(ODEs). Using these tools, the original system is then reformulated into an equivalent form by using an ingenious coupling 
method. More precisely, one local auxiliary variable and its ODE are used to rewrite the nonlinear potential as a quadratic 
function. And the nonlocal auxiliary variable and its ODE are used to deal with the coupled nonlinear terms. The major 
advantage to achieve this equivalent system for the original model is that the unconditional energy stability can be easily 
obtained by using simple explicit methods to discretize nonlinear terms. The nonlocal auxiliary variable can also be used to 
decompose every discrete equation into several sub-equations with constant coefficients, so that each variable can be solved 
independently at each time step, thereby greatly improving the computational efficiency. These are the major motivations for 
us to pay the cost of formulation complexity to reformulate the original model, while the later numerical implementation 
of the reformulated model only needs to solve several decoupled constant-coefficient elliptic equations. It is worthwhile to 
trade off this cost for improving the efficiency of the numerical implementation of such a sophisticated model and achieving 
all the four desired properties discussed above.

For the above novel designs, we are inspired by the IEQ scheme developed for the no-flow version of the PFC model in 
[46,50]. And one distinguishing feature of the proposed scheme is the use of explicit discretization to deal with almost all 
nonlinear and coupled terms. Therefore, we call this technique an explicit-IEQ method. In the following, we will provide 
the significant differences between the new explicit-IEQ method and the IEQ method developed in [46,50]. First, the ideas 
to define the critical auxiliary variables are different. Second, the IEQ method developed in [46,50] is designed for the no-
flow model, while the explicit-IEQ method developed in this article is for the flow coupled model. Third, the IEQ scheme 
in [46,50] needs to solve a linear system with variable coefficients at each time step, which generally results in higher 
computational costs. In contrast, the explicit-IEQ method developed in this article only requires solving a few completely 
decoupled, linear, and constant-coefficient equations. Hence it’s more efficient. To the best of our knowledge, the scheme 
constructed in this article is the first fully discrete algorithm of the flow-coupled PFC model with all of these characteristics: 
linearity, decoupling, temporal second-order accuracy, unconditional energy stability, and constant coefficients.

The rest of the article is organized as follows. In Section 2, we formulate the flow-coupled binary PFC model and then 
reformulate it to an equivalent form, with the energy dissipation structure provided. In Section 3, the fully discrete finite 
element numerical scheme is constructed, and a detailed step-by-step implementation process is given. The solvability and 
unconditional energy stability will also be proven rigorously. In Section 4, using the developed scheme, various numerical 
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examples of 2D and 3D, including some benchmark examples, such as crystal growth process and sedimentation process of 
many particles, are further carried out to show its effectiveness. Finally, some concluding remarks are provided in Section 5.

2. Flow-coupled binary phase-field crystal model and its energy law

In this section, we will first propose and analyze a basic flow-coupled binary phase-field crystal model. Then, inspired by 
some observation in the analysis of the basic model, we will introduce several auxiliary variables to equivalently reformulate 
the model so that it is more convenient to construct the desired numerical scheme.

We first introduce some notations, which will be used in the rest of this article. We assume that the domain � ∈ Rd, d =
2, 3 is open, rectangular, smooth and bounded. For any two functions φ(x) and ψ(x), their L2-inner product on � is denoted 
by (φ, ψ) =

∫

�
φ(x)ψ(x)dx, and the L2-norm of φ(x) is denoted by ‖φ‖ = (φ, φ)

1
2 .

2.1. The flow-coupled binary PFC model

We now develop a binary PFC model with fluid dynamic coupling for binary alloys. We define two phase-field variables 
φ1, φ2 : � → R to describe the local atomic density field for each atom type. From the modeling work of the so-called Swift-

Hohenburg energy postulated in [34,24,10,8,25,35,26,2,9,12,23,1,11], the total free energy of the binary PFC system (no flow 
case) reads as follows:

E(φ1, φ2) =
∫

�

(

L(φ1, φ2) + N(φ1, φ2)
)

dx. (2.1)

Here L(φ1, φ2) is the linear part, which will lead to the linear terms in the PDE model, and N(φ1, φ2) is the nonlinear 
part, which will lead to the non-linear terms in the PDE model:

L(φ1, φ2) = φ1

2
L21φ1 + φ2

2
L22φ2 + φ1

2
L212φ2, (2.2)

N(φ1, φ2) = F (φ1) + F (φ2) + F vac(φ1) + F vac(φ2) + Fcouple(φ1, φ2), (2.3)

where L1 , L2 , and L12 are defined as

L1 = � + a1, L2 = � + a2, L12 = � + a12, (2.4)

� is the Laplace operator, a1 and a2 represent the equilibrium distance between atoms of the same species, and a12 sets 
the distance between different species of atoms, F (ψ) = 1

4
ψ4 − ε

2
ψ2 is the fourth-order nonlinear smoothing potential, 

F vac(ψ) = β
3
(|ψ |3 − ψ3) is the cubic penalized vacancy potential (cf. [5,32,33]), Fcouple(φ1, φ2) = 1

2
γ φ2

1φ2
2 is the coupling 

potential, and ε, β, γ are all positive constants (see [8,11,2] for further discussion of how these parameters relate to material 
properties).

In the following Lemma, we show that the total free energy E(φ1, φ2) is bounded from below, which is a very important 
feature. Otherwise, the energy decay characteristic is meaningless.

Lemma 2.1. The free energy E(φ1, φ2) is bounded from below.

Proof. We first consider the linear part 
∫

�
L(φ1, φ2)dx and reformulate it to

∫

�

L(φ1, φ2)dx = 1

2
‖L1φ1‖2 + 1

2
‖L2φ2‖2 + 1

2
(L12φ1, L12φ2). (2.5)

By using the Cauchy–Schwarz inequality, we estimate the lower bound of the last term as

(L12φ1, L12φ2) = (L12φ1 − L1φ1, L12φ2) + (L1φ1, L12φ2)

= (L12φ1 − L1φ1, L12φ2 − L2φ2) + (L12φ1 − L1φ1, L2φ2)

+ (L1φ1, L12φ2 − L2φ2) + (L1φ1, L2φ2)

= (a12 − a1)(a12 − a2)(φ1, φ2) + (a12 − a1)(φ1, L2φ2)

+ (a12 − a2)(L1φ1, φ2) + (L1φ1, L2φ2)

≥ −|(a12 − a1)(a12 − a2)|
2

(

‖φ1‖2 + ‖φ2‖2
)

− ζ

4
‖L2φ2‖2 − 1

ζ
|a12 − a1|2‖φ1‖2

− ζ

4
‖L1φ1‖2 − 1

ζ
|a12 − a2|2‖φ2‖2 − 1

2
‖L1φ1‖2 − 1

2
‖L2φ2‖2.

(2.6)
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Hence, combining with the nonlinear part, we deduce

E(φ1, φ2) =
∫

�

(L(φ1, φ2) + N(φ1, φ2))dx

≥ (
1

2
− ζ

4
)‖L1φ1‖2 + (

1

2
− ζ

4
)‖L2φ2‖2

+
∫

�

{

F (φ1) + F (φ2) + 1

2
γ φ2

1φ
2
2 + β

3
|φ1|3 + β

3
|φ2|3 − β

3
φ3
1 − β

3
φ3
2

−
( |(a12 − a1)(a12 − a2)|

2
+ 1

ζ
|a12 − a1|2

)

|φ1|2

−
( |(a12 − a1)(a12 − a2)|

2
+ 1

ζ
|a12 − a2|2

)

|φ2|2
}

dx.

(2.7)

It is easy to see that the terms in { } are bounded from below, since the fourth-order terms contained in F (φ1) and F (φ2)

dominate all other negative terms from below. Therefore, as long as the constant ζ is set to satisfy 0 < ζ ≤ 2 (for example, 
we take ζ = 1), we deduce that E(φ1, φ2) is bounded from below. �

Following the similar variational approach for deriving the flow-coupled single-phase PFC model given in [25,35,26], we 
propose the flow coupled binary-phase PFC model for binary alloys as follows:

φ1t + ∇ · (uφ1) = M�μ1, (2.8)

μ1 = λ(L21φ1 + 1

2
L212φ2 + f (φ1) + f vac(φ1) + γ φ1φ

2
2), (2.9)

φ2t + ∇ · (uφ2) = M�μ2, (2.10)

μ2 = λ(L22φ2 + 1

2
L212φ1 + f (φ2) + f vac(φ2) + γ φ2

1φ2), (2.11)

ut + (u · ∇)u + ∇p − ν�u+ φ1∇μ1 + φ2∇μ2 = 0, (2.12)

∇ · u = 0, (2.13)

where u is the fluid velocity, p is the pressure, ν is the viscosity, μ1 = δE
δφ1

and μ2 = δE
δφ2

are the chemical potentials, 

f (ψ) = F ′(ψ) = ψ3 − εψ , f vac(ψ) = F ′
vac(ψ) = β(|ψ | − ψ)ψ , M is the relaxation mobility, λ is a positive constant (see 

[26]). The equations for φ1, μ1, φ2, μ2 are derived by taking the variational gradient flow approach to the free energy 
E(φ1, φ2) in the H−1 space, i.e., the Cahn-Hilliard dynamics.

Remark 2.1. We can also expand the two linear operators L21 and L22 in (2.9) and (2.11) to the following open format:

⎧

⎪
⎨

⎪
⎩

μ1 = λ(�2φ1 + 2a1�φ1 + a21φ1 + 1

2
L212φ2 + f (φ1) + f vac(φ1) + γ φ1φ

2
2),

μ2 = λ(�2φ2 + 2a2�φ2 + a22φ2 + 1

2
L212φ1 + f (φ2) + f vac(φ2) + γ φ2

1φ2).

(2.14)

Since we expect to establish a decoupling scheme, in Section 3, we will use this open format for the two linear operators 
L21 and L22 .

The initial conditions of the system (2.8)-(2.13) read as

u|(t=0) = u0, φ1|(t=0) = φ0
1 , φ2|(t=0) = φ0

2 , p|(t=0) = p0. (2.15)

We also consider the following boundary conditions:

u|∂� = 0, ∂nφ1|∂� = ∂nφ2|∂� = ∂n�φ1|∂� = ∂n�φ2|∂� = ∂nμ1|∂� = ∂nμ2|∂� = 0, (2.16)

where n is the unit outward normal on the boundary. Note that it is also very common to assume that all variables meet 
periodic boundary conditions in the existing work, see [34,24,10,8,25,35,26,2,9,12,23,1,11,37,38,18,4,46,50].

It is easy to derive that the total free energy of the system (2.8)-(2.13) follows an energy dissipation law, which is shown 
in the following Lemma.

Lemma 2.2. The PDE system (2.8)-(2.13) holds a law of energy dissipation:

d

dt
Etot(u, φ1, φ2) = −M(‖∇μ1‖2 + ‖∇μ2‖2) − ν‖∇u‖2 ≤ 0, (2.17)
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where

Etot(u, φ1, φ2) = 1

2
‖u‖2 + λE(φ1, φ2). (2.18)

Proof. First, taking the L2 inner product of (2.8) with μ1 , of (2.9) with −φ1t , of (2.10) with μ2 , of (2.11) with −φ2t , using 
integration by parts and combining the four obtained equations, we obtain

λ
d

dt

∫

�

(L(φ1, φ2) + N(φ1, φ2))dx = −M‖∇μ1‖2 − M‖∇μ2‖2 − (∇ · (uφ1),μ1) − (∇ · (uφ2),μ2). (2.19)

Second, by taking the inner product of (2.11) with u in L2 , and using the divergence-free condition (2.12) and integration 
by parts, we derive

d

dt

∫

�

1

2
|u|2dx = −ν‖∇u‖2 − ((u · ∇)u,u) − (φ1∇μ1,u) − (φ2∇μ2,u). (2.20)

By combining (2.19) and (2.20) and using (2.21) of Remark 2.2, we deduce the law of energy dissipation (2.17), where 
Etot(u, φ1, φ2) is the total free energy for the model (2.8)-(2.13). From Lemma 2.1, the total energy Etot(u, φ1, φ2) can be 
guaranteed to be bounded from below. �

Remark 2.2. Remarkably, in the process deriving (2.17), we utilize the following three equations:

(∇ · (uφi),μi) + (φi∇μi,u) = 0, i = 1,2, ((u · ∇)u,u) = 0, (2.21)

which can be verified by applying integration by parts, the boundary conditions of (2.16) and the divergence-free condition 
(2.13). In the energy law derivation process of Lemma 2.2, the final elimination of these three terms means that they will 
not have any impact on the energy law of the governing system. This feature of “zero-contribution-energy” (see also in 
[44,47,40,43,41,42]) prompts us to construct a scheme with a decoupling structure, as shown in the next section.

2.2. Equivalent reformulation of the model

As discussed in the introduction, none of the traditional methods can achieve linearity, decoupling, second order accuracy 
in time, and unconditional stability at the same time for the sophisticated target model of this paper. Therefore, in this paper 
we need to develop a new method, which additionally defines local/non-local variables inspired from various ideas and uses 
them to reconstruct the above PDE system into a desired form. This extra effort is particularly paid to overcome the major 
difficulty in designing the first fully discrete numerical scheme, which is capable of achieving all of the above four desired 
properties simultaneously for the flow-coupled binary PFC model proposed in this paper. On the other hand, the features 
of this reformulated model and our ideas of the new numerical scheme in the next section will eventually lead to solving 
a few decoupled constant-coefficient elliptic equations only at each time iteration step. That is, the extra effort and the 
complexity of the reformulated model is traded off for the efficiency of the numerical implementation and the algorithm’s 
capability of simultaneously achieving the above four desired properties. Therefore, in this subsection we will first focus on 
the model reformulation by using the newly defined critical auxiliary variables.

First, in order to force the original energy potential to be “quadratic”, which comes from the IEQ method developed for 
the no-flow version of the PFC model in [46,50], we define an auxiliary variable (local type) U (x, t) as

U (x, t) =

√

a21
2

φ2
1 +

a22
2

φ2
2 + N(φ1, φ2) − S

2
φ2
1 − S

2
φ2
2 + B, (2.22)

where S > 0 and B > 0 are two predetermined constants. Note that the term in the square root, 
a21
2

φ2
1 + a22

2
φ2
2 + N(φ1, φ2) −

S
2
φ2
1 − S

2
φ2
2 , is always bounded from below. This is because all the negative terms, including the cubic polynomial terms in 

F vac(φ1) and F vac(φ2), the negative quadratic terms related to S , and the negative quadratic terms in F (φ1) and F (φ2), can 
be always bounded by the fourth-order terms contained in F (φ1) and F (φ2) from below. The reason for using a predeter-
mined constant B is that we are trying to make the term in the square root always positive.

Using the new variable U (x, t) and defining ψ1 = �φ1, ψ2 = �φ2, �1 = L12φ1, �2 = L12φ2 , we reformulate (2.8)-(2.11)
as the following form:

φ1t + ∇ · (uφ1) = M�μ1, (2.23)

μ1 = λ(�ψ1 + 2a1ψ1 + 1

2
L12�2 + Sφ1 + H1U ), (2.24)

φ2t + ∇ · (uφ2) = M�μ2, (2.25)

5
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μ2 = λ(�ψ2 + 2a2ψ2 + 1

2
L12�1 + Sφ2 + H2U ), (2.26)

ψ1 = �φ1,ψ2 = �φ2,�1 = L12φ1,�2 = L12φ2, (2.27)

Ut = 1

2
(H1φ1t + H2φ2t), (2.28)

U |(t=0) = U (x,0), (2.29)

where

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

H1 =
a21φ1 + f (φ1) + f vac(φ1) + γ φ1φ

2
2 − Sφ1

√

a21
2

φ2
1 + a22

2
φ2
2 + N(φ1, φ2) − S

2
φ2
1 − S

2
φ2
2 + B

,

H2 =
a22φ2 + f (φ2) + f vac(φ2) + γ φ2

1φ2 − Sφ2
√

a21
2

φ2
1 + a22

2
φ2
2 + N(φ1, φ2) − S

2
φ2
1 − S

2
φ2
2 + B

.

(2.30)

The equivalence between (2.8)-(2.11) and (2.23)-(2.29) is straightforward since a simple integration of (2.28) together with 
the initial condition (2.29) can recover (2.22). Therefore (2.9) and (2.11) are obtained by using (2.24) and (2.26).

Second, we introduce the most critical auxiliary variable Q (t) (nonlocal type) for the effort of model reformulation, and 
define a special ODE for it:

⎧

⎪
⎨

⎪
⎩

Q t = ((u · ∇)u,u) + (∇ · (uφ1),μ1) + (φ1∇μ1,u) + (∇ · (uφ2),μ2) + (φ2∇μ2,u)

+ λ(H1U , φ1t) − λ(H1φ1t,U ) + λ(H2U , φ2t) − λ(H2φ2t,U ),

Q |(t=0) = 1,

(2.31)

where the variables u, φ1, μ1, φ2, μ2 follow the boundary conditions given in (2.16), and u also satisfies the divergence-free 
condition. Thus, from (2.21), it is easy to see that the ODE (2.31) is actually Q t = 0, Q |(t=0) = 1, which simply means a 
trivial solution of Q (t) = 1.

Remark 2.3. Note that all inner product terms contained in (2.31) cancel each other out in the continuous case. That is, the 
equation (2.31) is a trivial ODE (Q t = 0) in the continuous case. However, this trivial ODE with such a special form can help 
us achieve the desired form of the algorithm that we expect in the discrete case, that is, a fully-decoupled scheme. By using 
different discrete methods for the two inner product terms that can cancel in the continuous case, we can simultaneously 
achieve second-order accuracy, full decoupling, linearity, and unconditional energy stability, as detailed below.

By replacing (2.9) and (2.11) with (2.24)-(2.29), and combining with the ODE (2.31) for Q , we get a new (but temporary) 
PDE system as

φ1t + ∇ · (uφ1) = M�μ1, (2.32)

μ1 = λ(�ψ1 + 2a1ψ1 + 1

2
L12�2 + Sφ1 + H1U ), (2.33)

φ2t + ∇ · (uφ2) = M�μ2, (2.34)

μ2 = λ(�ψ2 + 2a2ψ2 + 1

2
L12�1 + Sφ2 + H2U ), (2.35)

ψ1 = �φ1,ψ2 = �φ2,�1 = L12φ1,�2 = L12φ2, (2.36)

Ut = 1

2
(H1φ1t + H2φ2t), (2.37)

Q t = ((u · ∇)u,u) + (∇ · (uφ1),μ1) + (φ1∇μ1,u) + (∇ · (uφ2),μ2) + (φ2∇μ2,u) (2.38)

+λ(H1U , φ1t) − λ(H1φ1t,U ) + λ(H2U , φ2t) − λ(H2φ2t,U ),

ut + (u · ∇)u − ν�u+ ∇p + φ1∇μ1 + φ2∇μ2 = 0, (2.39)

∇ · u = 0, (2.40)

with Q |(t=0) = 1 and U |(t=0) = U (x, 0). It is straightforward to see that the new system (2.32)-(2.38) is equivalent to the 
original system (2.8)-(2.13).

Third, we reformulate the system (2.32)-(2.38) through the nonlocal variable Q into the following final form:

φ1t + Q ∇ · (uφ1)
︸ ︷︷ ︸

Q−reform

= M�μ1, (2.41)

6
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μ1 = λ(�ψ1 + 2a1ψ1 + 1

2
L12�2 + Sφ1 + Q H1U

︸ ︷︷ ︸

Q−reform

), (2.42)

φ2t + Q ∇ · (uφ2)
︸ ︷︷ ︸

Q−reform

= M�μ2, (2.43)

μ2 = λ(�ψ2 + 2a2ψ2 + 1

2
L12�1 + Sφ2 + Q H2U

︸ ︷︷ ︸

Q−reform

), (2.44)

ψ1 = �φ1,ψ2 = �φ2,�1 = L12φ1,�2 = L12φ2, (2.45)

Ut = 1

2
(Q H1φ1t + Q H2φ2t)
︸ ︷︷ ︸

Q−reform

, (2.46)

Q t = ((u · ∇)u,u) + (∇ · (uφ1),μ1) + (φ1∇μ1,u) + (∇ · (uφ2),μ2) + (φ2∇μ2,u) (2.47)

+λ(H1U , φ1t) − λ(H1φ1t,U ) + λ(H2U , φ2t) − λ(H2φ2t,U ),

ut + Q (u · ∇)u
︸ ︷︷ ︸

Q−reform

−ν�u+ ∇p + Q φ1∇μ1 + Q φ2∇μ2
︸ ︷︷ ︸

Q−reform

= 0, (2.48)

∇ · u = 0, (2.49)

with the boundary conditions

u|∂� = 0, ∂nφ1|∂� = ∂nφ2|∂� = ∂n�φ1|∂� = ∂n�φ2|∂� = ∂nμ1|∂� = ∂nμ2|∂� = 0, (2.50)

and the initial conditions

u|(t=0) = u0, φ1|(t=0) = φ0
1 , φ2|(t=0) = φ0

2 , p|(t=0) = p0,U |(t=0) = U (x,0), Q |t=0 = 1. (2.51)

Remark 2.4. In the process of the third reformatting to obtain (2.41)-(2.49), since Q (t) = 1, those under braced terms in 
(2.41)-(2.49) by multiplying with Q (marked as “Q-reform”) will not be changed. Hence, from the detailed reformulation 
process mentioned above, it is easy to see that the finally obtained system (2.41)-(2.49) is equivalent to the original system 
(2.8)-(2.13).

In the following two lemmas, we show that the reformulated equivalent system (2.41)-(2.49) obeys the law of energy 
dissipation, and the total free energy is bounded from below.

Lemma 2.3. The reformulated equivalent system (2.41)-(2.49) holds the law of energy dissipation as

d

dt
Êtot(φ1, φ2,ψ1,ψ2,�1,�2,u, Q ,U ) = − M(‖∇μ1‖2 + ‖∇μ2‖2) − ν‖∇u‖2 ≤ 0, (2.52)

where

Êtot(φ1, φ2,ψ1,ψ2,�1,�2,u, Q ,U ) = 1

2
‖u‖2 + 1

2
λ
{

‖ψ1‖2 + ‖ψ2‖2 + (�1,�2)

− 2a1‖∇φ1‖2 − 2a2‖∇φ2‖2 + S‖φ1‖2 + S‖φ2‖2
}

+ λ‖U‖2 + 1

2
|Q |2 − 1

2
− B|�|. (2.53)

Proof. By taking the inner product of (2.41) with μ1 in L2 and using integration by parts, we obtain

(φ1t,μ1) = −M‖∇μ1‖2 −Q (∇ · (uφ1),μ1)
︸ ︷︷ ︸

I1

. (2.54)

By taking the inner product of (2.42) with −φ1t in L2 and using integration by parts, we have

−(μ1, φ1t) = − λ(ψ1,�φ1t) − 2λa1(ψ1, φ1t) − 1

2
λ(�2, L12φ1t) − 1

2
λ
d

dt
(S‖φ1‖2)−λQ (H1U , φ1t)

︸ ︷︷ ︸

II1

.
(2.55)

By taking the L2 inner product of (2.43) with μ2 and using integration by parts, we derive

(φ2t,μ2) = −M‖∇μ2‖2 −Q (∇ · (uφ2),μ2)
︸ ︷︷ ︸

III1

. (2.56)

7
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By taking the L2 inner product of (2.44) with −φ2t in L2 and using integration by parts, we get

−(μ2, φ2t) = − λ(ψ2,�φ2t) − 2λa2(ψ2, φ2t) − 1

2
λ(�1, L12φ2t) − 1

2
λ
d

dt
(S‖φ2‖2)−λQ (H2U , φ2t)

︸ ︷︷ ︸

IV1

.
(2.57)

By taking the time derivative of the four equations in (2.45), we have

ψ1t = �φ1t,ψ2t = �φ2t,�1t = L12φ1t,�2t = L12φ2t . (2.58)

By taking the L2 inner product for the first equation in (2.58) with λψ1 , and the second equation in (2.58) with λψ2 , we 
obtain

1

2
λ
d

dt
‖ψ1‖2 = λ(�φ1t,ψ1),

1

2
λ
d

dt
‖ψ2‖2 = λ(�φ2t,ψ2). (2.59)

By taking the L2 inner product of the third equation in (2.58) with 1
2
λ�2 , of the fourth equation in (2.58) with 1

2
λ�1 , we 

obtain

1

2
λ(�1t,�2) = 1

2
λ(L12φ1t,�2),

1

2
λ(�2t,�1) = 1

2
λ(L12φ2t,�1). (2.60)

By taking the L2 inner product of the first and second equation of (2.45) with −2λa1φ1t and −2λa2φ2t , respectively, we get

−2λa1(ψ1, φ1t) = 1

2
λ
d

dt
(2a1‖∇φ1‖2), −2λa1(ψ2, φ2t) = 1

2
λ
d

dt
(2a2‖∇φ2‖2). (2.61)

By taking the inner product of (2.46) with 2λU , we obtain

λ
d

dt
‖U‖2 = λ Q (H1φ1t,U )

︸ ︷︷ ︸

V1

+λQ (H2φ2t,U )
︸ ︷︷ ︸

VI1

. (2.62)

By taking the inner product of (2.48) with u in L2 , and using (2.49) and integration by parts, we obtain

d

dt

∫

�

1

2
|u|2dx = −ν‖∇u‖2 −Q (φ1∇μ1,u)

︸ ︷︷ ︸

VII1

−Q (φ2∇μ2,u)
︸ ︷︷ ︸

VIII1

−Q ((u · ∇)u,u)
︸ ︷︷ ︸

IX1

.
(2.63)

By multiplying (2.44) with Q , we obtain

d

dt

(1

2
|Q |2

)

= Q ((u · ∇)u,u)
︸ ︷︷ ︸

IX2

+ Q (∇ · (uφ1),μ1)
︸ ︷︷ ︸

I2

+ Q (φ1∇μ1,u)
︸ ︷︷ ︸

VII2

+ Q (∇ · (uφ2),μ2)
︸ ︷︷ ︸

III2

+ Q (φ2∇μ2,u)
︸ ︷︷ ︸

VIII2

+ λQ (H1U , φ1t)
︸ ︷︷ ︸

II2

−λQ (H1φ1t,U )
︸ ︷︷ ︸

V2

+λQ (H2U , φ2t)
︸ ︷︷ ︸

IV2

−λQ (H2φ2t,U )
︸ ︷︷ ︸

VI2

.
(2.64)

After taking the combination of (2.54)-(2.57), (2.59)-(2.64), and noting that all terms under braced with the same Roman 
numerals (e.g., I1 and I2 , etc.) are canceled out, we derive the energy dissipation law (2.52). �

Lemma 2.4. If S satisfies the following condition

S ≥max(
3

2
a212 + 4a21,

3

2
a212 + 4a22), (2.65)

then the free energy Êtot(φ1, φ2, ψ1, ψ2, �1, �2, u, Q , U ) given in (2.53) is bounded from below.

Proof. We only need to show that the terms in {} of (2.53) are bounded from below. First, similar to Lemma 2.1, we 
estimate the term (�1, �2) as follows by using the Cauchy-Schwarz inequality:

(�1,�2) = (�1 − ψ1,�2) + (ψ1,�2)

= a212(φ1, φ2) + a12(φ1,ψ2) + a12(ψ1, φ2) + (ψ1,ψ2)

≥ −
a212
2

(

‖φ1‖2 + ‖φ2‖2
)

− ζ

4
‖ψ2‖2 − 1

ζ
a212‖φ1‖2 − ζ

4
‖ψ1‖2 − 1

ζ
a212‖φ2‖2 − 1

2
‖ψ1‖2 − 1

2
‖ψ2‖2.

(2.66)

Second, we estimate the negative terms −a1‖∇φ1‖2 − a2‖∇φ2‖2 as follows

8
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−2a1‖∇φ1‖2 − 2a2‖∇φ2‖2 = −2a1(∇φ1,∇φ1) − 2a2(∇φ2,∇φ2)

= 2a1(�φ1, φ1) + 2a2(�φ2, φ2)

= 2a1(ψ1, φ1) + 2a2(ψ2, φ2)

≥ −η

4
‖ψ1‖2 − 4

η
a21‖φ1‖2 − η

4
‖ψ2‖2 − 4

η
a22‖φ2‖2.

(2.67)

Hence, we deduce

‖ψ1‖2 + ‖ψ2‖2 + (�1,�2) − 2a1‖∇φ1‖2 − 2a2‖∇φ2‖2 + S‖φ1‖2 + S‖φ2‖2

≥ (
1

2
− ζ

4
− η

4
)‖ψ1‖2 + (

1

2
− ζ

4
− η

4
)‖ψ2‖2

+
(

S −
a212
2

− 1

ζ
a212 − 4

η
a21

)

‖φ1‖2 +
(

S −
a212
2

− 1

ζ
a212 − 4

η
a22

)

‖φ2‖2.

(2.68)

It is easy to see that the total free energy is bounded from below as long as the condition (2.65) is satisfied, which 
means we choose ζ = η = 1 in (2.68). �

Remark 2.5. The difference between the proof of the Lemma 2.2 and the proof of the Lemma 2.3 in the derivation of 
energy dissipation law fully explains why we need to transform the original system (2.8)-(2.13) to a new equivalent form 
(2.41)-(2.49) in such a special manner.

We take the advective term ∇ · (uφ1) and the surface tension term φ1∇μ1 in the original system (2.8)-(2.13) as an 
example to illustrate the reason. In the process of Lemma 2.2, we notice that the inner product term (φ1∇μ1, u) in (2.20)
(term IV) will be offset by the term (∇ · (uφ1), μ1) (term I) contained in (2.19). This means that the discretization of the 
advective term ∇ · (uφ1) and the surface tension φ1∇μ1 must be handled in some way, thereby leading to a coupled type 
scheme.

While for the newly modified system (2.41)-(2.49), in the Lemma 2.3, the term I1 in (2.54) and VII1 in (2.63) do not 
need to cancel each other, because the term I2 in (2.64) can cancel I1 , and the term VII2 in (2.64) can cancel VII1 . This 
means that when developing a numerical scheme, one can use different discretization methods to deal with the convection 
term Q ∇ · (φ1u) in (2.41) and the surface tension term Q φ1∇μ1 in (2.48), which makes it possible to build a complete 
decoupling type scheme.

3. Numerical methods

To construct a fully discrete numerical scheme for the flow coupled binary PFC system (2.8)-(2.12), we introduce a new 
method to realize the decoupled calculation. Instead of investigating each nonlinear term of the original model to distinguish 
whether to use implicit or explicit methods for discretization, the key idea is to discretize the above reformulated system.

3.1. Numerical scheme

In this subsection, we develop a fully-discrete algorithm for the system (2.41)-(2.49), which is an equivalent system of 
the hydrodynamically-coupled binary PFC model (2.8)-(2.13).

Some finite-dimensional discrete subspaces are introduced here. Suppose that the polygonal/polyhedral domain � is dis-
cretized by a conforming and shape regular triangulation/tetrahedron mesh Th that is composed by open disjoint elements 
K such that �̄ =

⋃

K∈Th
K̄ . We use Pl to denote the space of polynomials of total degree at most l and define the following 

finite element spaces:

Yh =
{

φ ∈ C0(�) : φ|K ∈ Pl1(K ),∀K ∈ Th

}

, V h =
{

v ∈ C0(�)d : v|K ∈ Pl2(K )d,∀K ∈ Th

}

∩ H1
0(�)d,

Oh =
{

q ∈ C0(�) : q|K ∈ Pl2−1(K ),∀K ∈ Th

}

∩ L20(�), Xh =
{

U ∈ C0(�) : U |K ∈ Pl3(K )d,∀K ∈ Th

}

,
(3.1)

where H1
0(�) = {u ∈ H1(�) : u|∂� = 0} and L20(�) = {q ∈ L2(�) :

∫

�
qdx = 0}. Hence,

Yh ⊂ H1(�), V h ⊂ H1
0(�)d, Oh ⊂ L20(�), Xh ⊂ L2(�). (3.2)

Besides, we assume the pair of spaces (V h, Oh) satisfy the inf-sup condition [15]:

β‖q‖ ≤ sup
v∈V h

(∇ · v,q)

‖∇v‖ , ∀q ∈ Oh,

where the constant β only depends on �.

The semi-discrete formulations of the system (2.41)-(2.49) in the weak form read as: find φ1 , μ1 , φ2 , μ2 , ψ1 , ψ2 , �1 , 
�2 ∈ H1(�), U ∈ L2(�), u ∈ H1

0(�)d , p ∈ L20(�), such that

9



X. Yang and X. He Journal of Computational Physics 467 (2022) 111448

(φ1t, w1) − Q (uφ1,∇w1) = −M(∇μ1,∇w1), (3.3)

(μ1,�1) = −λ(∇ψ1,∇�1) + 2λa1(ψ1,�1) + 1

2
λ(L

1
2

12�2, L
1
2

12�1) + λS(φ1,�1) + λQ (H1U ,�1), (3.4)

(φ2t, w2) − Q (uφ2,∇w2) = −M(∇μ2,∇w2), (3.5)

(μ2,�2) = −λ(∇ψ2,∇�2) + 2λa2(ψ2,�2) + 1

2
λ(L

1
2

12�1, L
1
2

12�2) + λS(φ2,�2) + λQ (H2U ,�2), (3.6)

(ψ1, ξ1) = −(∇φ1,∇ξ1), (ψ2, ξ2) = −(∇φ2,∇ξ2), (3.7)

(�1,χ1) = (L
1
2

12φ1, L
1
2

12χ1), (�2,χ2) = (L
1
2

12φ2, L
1
2

12χ2), (3.8)

(Ut, V ) = 1

2
Q (H1φ1t, V ) + 1

2
Q (H2φ2t, V ), (3.9)

Q t = ((u · ∇)u,u) − (uφ1,∇μ1) + (φ1∇μ1,u) − (uφ2,∇μ2) + (φ2∇μ2,u) (3.10)

+λ(H1U , φ1t) − λ(H1φ1t,U ) + λ(H2U , φ2t) − λ(H2φ2t,U ),

(ut, v) + Q ((u · ∇)u, v) + ν(∇u,∇v) − (p,∇ · v) + Q (φ1∇μ1, v) + Q (φ2∇μ2, v) = 0, (3.11)

(∇ · u,q) = 0, (3.12)

for �1, w1, �2, w2, ξ1, ξ2, χ1, χ2 ∈ H1(�), V ∈ L2(�), v ∈ H1
0(�)d, q ∈ L20(�), where the linear operator associated with L

1
2

12

is defined as

(L
1
2

12ψ, L
1
2

12�) = −(∇ψ,∇�) + a12(ψ,�). (3.13)

We let δt > 0 be a time step size and tn = nδt for 0 ≤ n ≤ N with T = Nδt , and use ψn
h

to denote the finite element 

approximation for the function ψ(·, t) at t = tn . For convenience, we define ¯̃un+ 1
2

h = 1
2
(ũn+1

h
+un

h
), and for any other variables 

�, we define �̄n+ 1
2 = 1

2
(�n+1 + �n).

Using the second-order Crank-Nicolson type formula for time marching, a fully discrete numerical scheme to solve the 
system (3.3)-(3.12) can be constructed as follows. Find φn+1

1h
, μn+1

1h
, φn+1

2h
, μn+1

2h
, ψn+1

1h
, ψn+1

2h
, �n+1

1h
, �n+1

2h
∈ Yh , U

n+1
h

∈
Xh, ̃u

n+1
h

∈ V h, p
n+1
h

∈ Oh , and one nonlocal scalar Q n+1 ∈ R , such that

(φn+1
1h

− φn
1h

δt
, w1h

)

− Q̄ n+ 1
2 (u∗φ∗

1 ,∇w1h) = −M(∇μ̄
n+ 1

2

1h
,∇w1h), (3.14)

(μ̄
n+ 1

2

1h
,�1h) = −λ(∇ψ̄

n+ 1
2

1h
,∇�1h) + 2λa1(ψ

∗
1 ,�1h) (3.15)

+1

2
λ(L

1
2

12�̄
n+ 1

2

2h
, L

1
2

12�1h) + λS(φ̄
n+ 1

2

1h
,�1h) + λQ̄ n+ 1

2 (H∗
1U

∗,�1h),

(φn+1
2h

− φn
2h

δt
, w2h

)

− Q̄ n+ 1
2 (u∗φ∗

2 ,∇w2h) = −M(∇μ̄
n+ 1

2

2h
,∇w2h), (3.16)

(μ̄
n+ 1

2

2h
,�2h) = −λ(∇ψ̄

n+ 1
2

2h
,∇�2h) + 2λa2(ψ

∗
2 ,�2h) (3.17)

+1

2
λ(L

1
2

12�̄
n+ 1

2

1h
, L

1
2

12�2h) + λS(φ̄
n+ 1

2

2h
,�2h) + λQ̄ n+ 1

2 (H∗
2U

∗,�2h),

(ψn+1
1h

, ξ1h) = −(∇φn+1
1h

,∇ξ1h), (ψ
n+1
2h

, ξ2h) = −(∇φn+1
2h

,∇ξ2h), (3.18)

(�n+1
1h

,χ1h) = (L
1
2

12φ
n+1
1h

, L
1
2

12χ1h), (�n+1
2h

,χ2h) = (L
1
2

12φ
n+1
2h

, L
1
2

12χ2h), (3.19)

(Un+1
h

− Un
h

δt
, Vh

)

= 1

2
Q̄ n+ 1

2 (H∗
1φ

∗
1t, Vh) + 1

2
Q̄ n+ 1

2 (H∗
2φ

∗
2t, Vh), (3.20)

Q n+1 − Q n

δt
= ((u∗ · ∇)u∗, ¯̃un+ 1

2

h ) − (u∗φ∗
1 ,∇μ̄

n+ 1
2

1h
) + (φ∗

1∇μ∗
1,

¯̃un+ 1
2

h ) (3.21)

−(u∗φ∗
2 ,∇μ̄

n+ 1
2

2h
) + (φ∗

2∇μ∗
2,

¯̃un+ 1
2

h ) + λ(H∗
1U

∗,
φn+1
1h

− φn
1h

δt
) − λ(H∗

1φ
∗
1t, Ū

n+ 1
2 )

+λ(H∗
2U

∗,
φn+1
2h

− φn
2h

δt
) − λ(H∗

2φ
∗
2t, Ū

n+ 1
2 ),

( ũn+1
h

− un
h

δt
, vh

)

+ Q̄ n+ 1
2 ((u∗ · ∇)u∗, vh) + ν(∇ ¯̃un+ 1

2

h
,∇vh) + (∇pnh, vh) (3.22)

+Q̄ n+ 1
2 (φ∗

1∇μ∗
1, vh) + Q̄ n+ 1

2 (φ∗
2∇μ∗

2, vh) = 0,

10
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(∇(pn+1
h

− pnh),∇qh) = − 2

δt
(∇ · ũn+1

h
,qh), (3.23)

un+1
h

= ũn+1
h

− δt

2
(∇pn+1

h
− ∇pnh), (3.24)

for all �1h, w1h, �2h, w2h, ξ1h, ξ2h, χ1h, χ2h ∈ Yh, Vh ∈ Xh, vh ∈ V h, qh ∈ Oh , where

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

u∗ = 3

2
un
h − 1

2
un−1
h

, φ∗
1 = 3

2
φn
1h − 1

2
φn−1
1h

, φ∗
2 = 3

2
φn
2h − 1

2
φn−1
2h

,

ψ∗
1 = 3

2
ψn

1h − 1

2
ψn−1

1h
,ψ∗

2 = 3

2
ψn

2h − 1

2
ψn−1

2h
,

μ∗
1 = 3

2
μn

1h − 1

2
μn−1

1h
,μ∗

2 = 3

2
μn

2h − 1

2
μn−1

2h
,

H∗
1 = H1(φ

∗
1 , φ

∗
2), H

∗
2 = H2(φ

∗
1 , φ

∗
2),

φ∗
1t =

ãφn
1h

− b̃φn−1
1h

+ c̃φn−2
1h

2δt
, φ∗

2t =
ãφn

2h
− b̃φn−1

2h
+ c̃φn−2

2h

2δt
, ã = 2, b̃ = 3, c̃ = 1.

(3.25)

Remark 3.1. In the above scheme (3.14)-(3.24), we adopt the time marching strategy based on the second-order Crank-
Nicolson formula. All nonlinear terms are discretized using the second-order extrapolation method in turn, while the 
nonlocal auxiliary variable Q in (3.14), (3.15), (3.16), (3.17), (3.20), and (3.22) is discretized in an implicit manner, i.e., 
Q̄ n+ 1

2 . Meanwhile, the initialization of the scheme (3.14)-(3.24) requires the values of all variables at t1 = δt, t2 = 2δt which 
can be obtained by using the first-order scheme, namely, setting ã = b̃ = 2, ̃c = 0 in practice.

Remark 3.2. The second-order pressure-correction scheme is used to decouple the computation of the pressure from that 
of the velocity. This projection method was analyzed in [29], where it is shown (discrete in time, continuous in space) that 
the scheme is second-order accurate for velocity but only first-order accurate for pressure. The loss of pressure accuracy 
is caused by the artificial Neumann boundary condition imposed on the pressure [7]. The final solution un+1

h
satisfies the 

discrete divergence-free condition, which can be deduced by taking the L2 inner product of (3.24) with ∇qh ∈ Oh , that is

(un+1
h

,∇qh) = (ũn+1
h

,∇qh) − δt

2
(∇(pn+1

h
− pnh),∇qh). (3.26)

From the boundary condition of ũn+1
h

, we derive (ũn+1
h

, ∇qh) = −(∇ · ũn+1
h

, qh) by applying integration by parts. Therefore, 
from (3.23), we derive

(un+1
h

,∇qh) = 0. (3.27)

3.2. Decoupled implementation using the nonlocal splitting method

In this subsection, we introduce a nonlocal splitting method to obtain the decoupling implementation process for the 
scheme (3.14)-(3.24).

Step 1: using Q̄ n+ 1
2 , we split φn+1

1h
, μn+1

1h
, φn+1

2h
, μn+1

2h
, ψn+1

1h
, ψn+1

2h
, �n+1

1h
, �n+1

2h
into a linear combination form as

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

φn+1
1h

= φn+1
11h

+ Q̄ n+ 1
2 φn+1

12h
, μn+1

1h
= μn+1

11h
+ Q̄ n+ 1

2 μn+1
12h

,

φn+1
2h

= φn+1
21h

+ Q̄ n+ 1
2 φn+1

22h
, μn+1

2h
= μn+1

21h
+ Q̄ n+ 1

2 μn+1
22h

,

ψn+1
1h

= ψn+1
11h

+ Q̄ n+ 1
2 ψn+1

12h
, ψn+1

2h
= ψn+1

21h
+ Q̄ n+ 1

2 ψn+1
22h

,

�n+1
1h

= �n+1
11h

+ Q̄ n+ 1
2 �n+1

12h
, �n+1

2h
= �n+1

21h
+ Q̄ n+ 1

2 �n+1
22h

.

(3.28)

We solve φn+1
ih

, μn+1
ih

, ψn+1
ih

, �n+1
ih

for i = 1, 2, as follows.

Using (3.28), we replace φn+1
ih

, μn+1
ih

, ψn+1
ih

, �n+1
ih

, i = 1, 2 in the system (3.14)-(3.19), and decompose the obtained equa-

tions according to Q̄ n+ 1
2 into the following four subsystems:

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

1

δt
(φn+1

11h
, w1h) + 1

2
M(∇μn+1

11h
,∇w1h) = G1,

(μn+1
11h

,�1h) = −λ(∇ψn+1
11h

,∇�1h) + 1

2
λ(L

1
2

12�
n+1
21h

, L
1
2

12�1h) + λS(φn+1
11h

,�1h) + G2,

(ψn+1
11h

, ξ1h) = −(∇φn+1
11h

,∇ξ1h), (�
n+1
21h

,χ2h) = (L
1
2

12φ
n+1
21h

, L
1
2

12χ2h),

(3.29)

11
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⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

1

δt
(φn+1

12h
, w1h) + 1

2
M(∇μn+1

12h
,∇w1h) = (u∗φ∗

1 ,∇w1h),

(μn+1
12h

,�1h) = −λ(∇ψn+1
12h

,∇�1h) + 1

2
λ(L

1
2

12�
n+1
22h

, L
1
2

12�1h) + λS(φn+1
12h

,�1h) + 2λ(H∗
1U

∗,�1h),

(ψn+1
12h

, ξ1h) = −(∇φn+1
12h

,∇ξ1h), (�
n+1
22h

,χ2h) = (L
1
2

12φ
n+1
22h

, L
1
2

12χ2h),

(3.30)

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

1

δt
(φn+1

21h
, w2h) + 1

2
M(∇μn+1

21h
,∇w2h) = G3,

(μn+1
21h

,�2h) = −λ(∇ψn+1
21h

,∇�2h) + 1

2
λ(L

1
2

12�
n+1
11h

, L
1
2

12�2h) + λS(φn+1
11h

,�1h) + G4,

(ψn+1
21h

, ξ2h) = −(∇φn+1
21h

,∇ξ2h), (�
n+1
11h

,χ1h) = −(L
1
2

12φ
n+1
11h

, L
1
2

12χ1h),

(3.31)

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

1

δt
(φn+1

22h
, w2h) + 1

2
M(∇μn+1

22h
,∇w2h) = (u∗φ∗

2 ,∇w2h),

(μn+1
22h

,�2h) = −λ(∇ψn+1
22h

,∇�2h) + 1

2
λ(L

1
2

12�
n+1
12h

, L
1
2

12�2h) + λS(φn+1
22h

,�2h) + 2λ(H∗
2U

∗,�2h),

(ψn+1
22h

, ξ2h) = −(∇φn+1
22h

,∇ξ2h), (�
n+1
12h

,χ1h) = (L
1
2

12φ
n+1
12h

, L
1
2

12χ1h),

(3.32)

where
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

G1 = 1

δt
(φn

1h, w1h) − 1

2
M(∇μn

1h,∇w1h),

G2 = −(μn
1h,�1h) − λ(∇ψn

1h,∇�1h) + 1

2
λ(L

1
2

12�
n
2h, L

1
2

12�1h) + λS(φn
1h,�1h) + 4λa1(ψ

∗
1 ,�1h),

G3 = 1

δt
(φn

2h, w2h) − 1

2
M(∇μn

2h,∇w2h),

G4 = −(μn
2h,�2h) − λ(∇ψn

2h,∇�2h) + 1

2
λ(L

1
2

12�
n
1h, L

1
2

12�2h) + λS(φn
2h,�2h) + 4λa2(ψ

∗
2 ,�2h).

(3.33)

Note that (3.29) and (3.31) are coupled together, and so are (3.30) and (3.32). The following tips can help us realize their 
decoupling calculations. We take (3.29) and (3.31) as an example to describe the process.

We define
{

φa = φn+1
11h

+ φn+1
21h

,ψa = ψn+1
11h

+ ψn+1
21h

,�a = �n+1
11h

+ �n+1
21h

,μa = μn+1
11h

+ μn+1
21h

,

φb = φn+1
11h

− φn+1
21h

,ψb = ψn+1
11h

− ψn+1
21h

,�b = �n+1
11h

− �n+1
21h

,μb = μn+1
11h

− μn+1
21h

.
(3.34)

We choose w1h = w2h = wh , �1h = �2h = �h , ξ1h = ξ2h = ξh , χ1h = χ2h = χh and add (3.29) and (3.31) together to form 
the following two decoupled systems:

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

1

δt
(φa, wh) + 1

2
M(∇μa,∇wh) = G1 + G3,

(μa,�h) = −λ(∇ψa,∇�h) + 1

2
λ(L

1
2

12�a, L
1
2

12�h) + λS(φa,�h) + G2 + G4,

(ψa, ξh) = −(∇φa,∇ξh), (�a,χh) = (L
1
2

12φa, L
1
2

12χh),

(3.35)

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

1

δt
(φb, wh) + 1

2
M(∇μb,∇wh) = G1 − G3,

(μb,�h) = −λ(∇ψb,∇�h) − 1

2
λ(L

1
2

12�b, L
1
2

12�h) + λS(φb,�h) + G2 − G4,

(ψb, ξh) = −(∇φb,∇ξh), (�b,χh) = (L
1
2

12φb, L
1
2

12χh).

(3.36)

These two decoupled systems can be solved independently. Once we obtain the solution of them, we can update 
φn+1
11h

, φn+1
21h

, ψn+1
11h

, ψn+1
21h

, �n+1
11h

, �n+1
21h

, μn+1
11h

, μn+1
21h

from (3.34) (for example, φn+1
11h

= φa+φb

2
, φn+1

21h
= φa−φb

2
). (3.30) and (3.32)

can be solved in the similar manner. For the sake of brevity, we omit the details here.

Step 2: using Q̄ n+ 1
2 , we split Un+1

h
into a linear combination form as

Un+1
h

= Un+1
1h

+ Q̄ n+ 1
2 Un+1

2h
. (3.37)

We then decompose (3.20) into the following two equations:

(
Un+1

1h

δt
, Vh) = (

Un
h

δt
, Vh), (3.38)

(
Un+1

2h

δt
, Vh) = 1

2
(H∗

1φ
∗
1t, Vh) + 1

2
(H∗

2φ
∗
2t, Vh). (3.39)

12
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These two equations are easy to solve because all the terms on the right are known.

Step 3: using Q̄ n+ 1
2 , we split ũn+1

h
into a linear combination form as

ũn+1
h

= ũn+1
1h

+ Q̄ n+ 1
2 ũn+1

2h
. (3.40)

We solve ũn+1
1h

, ̃un+1
2h

as follows.

(
ũn+1
1h

δt
, vh) + 1

2
ν(∇ũn+1

1h
,∇vh) = (

un
h

δt
, vh) − 1

2
ν(∇un

h,∇vh) − (∇pnh, vh), (3.41)

(
ũn+1
2h

δt
, vh) + 1

2
ν(∇ũn+1

2h
,∇vh) = −((u∗ · ∇)u∗, vh) − (φ∗

1∇μ∗
1, vh) − (φ∗

2∇μ∗
2, vh). (3.42)

It is very easy to solve (3.41) and (3.42), since they are linear and elliptic equations with only constant coefficients.

Step 4: we solve Q̄ n+ 1
2 in (3.21). By using the linear combination forms for the variables φn+1

1h
, μn+1

1h
, φn+1

2h
, μn+1

2h
, Un+1

h
, 

ũn+1
h

in (3.28), (3.37), (3.40), we formulate (3.21) into the following form:

(
2

δt
− η2)Q̄

n+ 1
2 = 2

δt
Q n + η1, (3.43)

where we use Q n+1 − Q n = 2(Q̄ n+ 1
2 − Q n), and ηi, i = 1, 2 are given by

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

η1 =((u∗ · ∇)u∗,
1

2
(ũn+1

1h
+ un

h)) − (u∗φ∗
1 ,

1

2
∇(μn+1

11h
+ μn

1h)) + (φ∗
1∇μ∗

1,
1

2
(ũn+1

1h
+ un

h))

− (u∗φ∗
2 ,

1

2
∇(μn+1

21h
+ μn

2h)) + (φ∗
2∇μ∗

2,
1

2
∇(μn+1

11h
+ μn

1h))

+ λ(H∗
1U

∗,
φn+1
11h

− φn
1h

δt
) − λ(H∗

1φ
∗
1t,

1

2
(Un+1

1h
+ Un

h))

+ λ(H∗
2U

∗,
φn+1
21h

− φn
2h

δt
) − λ(H∗

2φ
∗
2t,

1

2
(Un+1

1h
+ Un

h)),

η2 =((u∗ · ∇)u∗,
1

2
ũn+1
2h

) − (u∗φ∗
1 ,

1

2
∇μn+1

12h
) + (φ∗

1∇μ∗
1,

1

2
ũn+1
2h

) − (u∗φ∗
2 ,

1

2
∇μn+1

22h
) + (φ∗

2∇μ∗
2,

1

2
ũn+1
2h

)

+ λ(H∗
1U

∗,
φn+1
12h

δt
) − λ(H∗

1φ
∗
1t,

1

2
Un+1

2h
) + λ(H∗

2U
∗,

φn+1
22h

δt
) − λ(H∗

2φ
∗
2t,

1

2
Un+1

2h
).

(3.44)

It is very easy to solve (3.43) since all terms contained in η1 and η2 are already obtained from Steps 1, 2, and 3 (solvability 

of (3.43) is given below). Once Q̄ n+ 1
2 is obtained from (3.43), we can update ũn+1 , φn+1

1 , μn+1
1 , φn+1

2 , μn+1
2 and Un+1 from 

(3.28), (3.37), and (3.40).
Now we further prove the solvability of (3.43) by showing 2

δt
− η2 
= 0. By setting vh = 1

2
ũn+1
2h

in (3.42), we deduce

−((u∗ · ∇)u∗,
1

2
ũn+1
2h

) − (φ∗
1∇μ∗

1,
1

2
ũn+1
2h

) − (φ∗
2∇μ∗

2,
1

2
ũn+1
2h

) = 1

2δt
‖ũn+1

2h
‖2 + 1

4
ν‖∇ũn+1

2h
‖2. (3.45)

By setting w1h = 1
2
μn+1

12h
, �1h = − 1

2δt
φn+1
12h

, ξ1h = λ
2δt

ψn+1
12h

in (3.30), χ1h = λ
4δt

�n+1
22h

in (3.32), and combining the four ob-
tained equations, we get

(u∗φ∗
1 ,

1

2
∇μn+1

12h
) − λ(H∗

1U
∗,

φn+1
12h

δt
) = 1

4
M‖∇μn+1

12h
‖2 + λS

2δt
‖φn+1

12h
‖2 + λ

2δt
‖ψn+1

12h
‖2 + λ

4δt
(�n+1

12h
,�n+1

22h
). (3.46)

By setting w2h = 1
2
μn+1

22h
, �2h = − 1

2δt
φn+1
22h

, ξ2h = λ
2δt

ψn+1
22h

in (3.32), χ2h = λ
4δt

�n+1
12h

in (3.30), and combining the four ob-
tained equations, we get

(u∗φ∗
2 ,

1

2
∇μn+1

22h
) − λ(H∗

2U
∗,

φn+1
22h

δt
) = 1

4
M‖∇μn+1

22h
‖2 + λS

2δt
‖φn+1

22h
‖2 + λ

2δt
‖ψn+1

22h
‖2 + λ

4δt
(�n+1

22h
,�n+1

12h
). (3.47)

By setting Vh = λUn+1
2h

in (3.39), we deduce

λ(H∗
1φ

∗
1t,

1

2
Un+1

2h
) + λ(H∗

2φ
∗
2t,

1

2
Un+1

2h
) = λ

δt
‖Un+1

2h
‖2. (3.48)

Combining (3.45)-(3.48), we deduce

13
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−η2 = 1

2δt
‖ũn+1

2h
‖2 + 1

4
ν‖∇ũn+1

2h
‖2 + 1

4
M‖∇μn+1

12h
‖2 + 1

4
M‖∇μn+1

22h
‖2 + λ

δt
‖Un+1

2h
‖2

+ λ

2δt

(

S‖φn+1
12h

‖2 + S‖φn+1
22h

‖2 + ‖ψn+1
12h

‖2 + ‖ψn+1
22h

‖2 + (�n+1
12h

,�n+1
22h

)
)

.

(3.49)

From Lemma 3.1, assuming S satisfies the condition (2.65), we obtain −η2 ≥ 0. Thus (3.43) is always solvable.

Lemma 3.1. If the constant S satisfies the condition (2.65), then the following inequality holds

S‖φn+1
12h

‖2 + S‖φn+1
22h

‖2 + ‖ψn+1
12h

‖2 + ‖ψn+1
22h

‖2 + (�n+1
12h

,�n+1
22h

) ≥ 0. (3.50)

Proof. From (3.30), (3.32), and the definitions of L
1
2

12 in (3.13), we deduce

(�n+1
12h

− ψn+1
12h

, ξh) = a12(φ
n+1
12h

, ξh), (�n+1
22h

− ψn+1
22h

, ξh) = a12(φ
n+1
22h

, ξh),∀ξh ∈ Yh. (3.51)

By using a process similar to Lemma 2.1 or Lemma 2.4, we estimate (�n+1
12h

, �n+1
22h

) as

(�n+1
12h

,�n+1
22h

) = (�n+1
12h

− ψn+1
12h

,�n+1
22h

) + (ψn+1
12h

,�n+1
22h

)

= (�n+1
12h

− ψn+1
12h

,�n+1
22h

− ψn+1
22h

) + (�n+1
12h

− ψn+1
12h

,ψn+1
22h

) + (ψn+1
12h

,�n+1
22h

− ψn+1
22h

) + (ψn+1
12h

,ψn+1
22h

)

= a212(φ
n+1
12h

, φn+1
22h

) + a12(φ
n+1
12h

,ψn+1
22h

) + a12(ψ
n+1
12h

, φn+1
22h

) + (ψn+1
12h

,ψn+1
22h

)

≥ −
a212
2

(‖φn+1
12h

‖2 + ‖φn+1
22h

‖2) − ζ

4
‖ψn+1

22h
‖2 − 1

ζ
a212‖φn+1

12h
‖2

− ζ

4
‖ψn+1

12h
‖2 − 1

ζ
a212‖φn+1

22h
‖2 − 1

2
‖ψn+1

12h
‖2 − 1

2
‖ψn+1

22h
‖2.

(3.52)

Hence, we deduce

S‖φn+1
12h

‖2 + S‖φn+1
22h

‖2 + ‖ψn+1
12h

‖2 + ‖ψn+1
22h

‖2 + (�n+1
12h

,�n+1
22h

)

≥ (
1

2
− ζ

4
)‖ψn+1

12h
‖2 + (

1

2
− ζ

4
)‖ψn+1

22h
‖2 +

(

S −
a212
2

− 1

ζ
a212

)

‖φn+1
12h

‖2 +
(

S −
a212
2

− 1

ζ
a212

)

‖φn+1
22h

‖2.
(3.53)

Therefore, as long as the condition (2.65) is satisfied, we deduce (3.50), where we choose ζ = 1 in (3.53). �

Step 5: we update un+1
h

and pn+1
h

from (3.23) and (3.24).

As seen from the above implementation process, the computation process of the developed scheme is completely decou-
pled for all variables, and all nonlinear terms will not bring any variable coefficients, which means very efficient practical 
calculations.

3.3. Energy stability

In this subsection, we show that the fully discrete scheme (3.14)-(3.24) is unconditionally energy stable. We will use the 
following two identities repeatedly:

2(a − b)a = |a|2 − |b|2 + |a − b|2, (3.54)

(a − b,3b − c) =
(

|a|2 − 1

2
|a − b|2

)

−
(

|b|2 − 1

2
|b − c|2

)

− 1

2
|a − 2b + c|2. (3.55)

Theorem 3.1. When S satisfies the condition (2.65), the fully-discrete scheme (3.14)-(3.24) follows the following discrete energy dissi-
pation law:

1

δt
(En+1

h
− Enh) = −ν‖∇ ¯̃un+ 1

2

h
‖2 − M‖∇μ̄

n+ 1
2

1h
‖2 − M‖∇μ̄

n+ 1
2

2h
‖2 ≤ 0, (3.56)

where En+1
h

is bounded from below and defined as

14
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En+1
h

=1

2
‖un+1

h
‖2 + λ

1

2

{

‖ψn+1
1h

‖2 + ‖ψn+1
2h

‖2 + (�n+1
1h

,�n+1
2h

)

− 2a1‖∇φn+1
1h

‖2 − 2a2‖∇φn+1
2h

‖2 + S‖φn+1
1h

‖2 + S‖φn+1
2h

‖2
}

+ λ

2
a1‖∇φn+1

1h
− ∇φn

1h‖2 + λ

2
a2‖∇φn+1

2h
− ∇φn

2h‖2 + λ‖Un+1‖2 + 1

2
|Q n+1|2

+ δt2

8
‖∇pn+1

h
‖2 − 1

2
− B|�|.

(3.57)

Proof. We now prove the dissipative law (3.56) as follows. The property of boundedness (from below) of the discrete energy 
En+1
h

will be shown in Theorem 3.2.

Taking vh = 2δt ¯̃un+ 1
2

h = δt(ũn+1
h

+ un
h
) in (3.22), and using (3.54) and integration by parts, we obtain

‖ũn+1
h

‖2 − ‖un
h‖2 + 2νδt‖∇ ¯̃un+ 1

2

h
‖2 + 2δt(∇pnh,

¯̃un+ 1
2

h )

+ 2δt Q̄ n+ 1
2 ((u∗ · ∇)u∗, ¯̃un+ 1

2

h ) + 2δt Q̄ n+ 1
2 (φ∗

1∇μ∗
1,

¯̃un+ 1
2

h ) + 2δt Q̄ n+ 1
2 (φ∗

2∇μ∗
2,

¯̃un+ 1
2

h ) = 0. (3.58)

We rewrite (3.24) as

un+1
h

− ũn+1
h

= −δt

2
∇(pn+1

h
− pnh). (3.59)

Taking the L2 inner product for the above equation with un+1
h

and using (3.27), we derive

‖un+1
h

‖2 − ‖ũn+1
h

‖2 + ‖un+1
h

− ũn+1
h

‖2 = 0. (3.60)

We further rewrite (3.24) as

un+1
h

+ un
h + δt

2
(∇pn+1

h
− ∇pnh) = 2 ¯̃un+ 1

2

h .

Taking the L2 inner product for the above equation δt∇pn
h
and using (3.27), we derive

2δt( ¯̃un+ 1
2

h ,∇pnh) = δt2

4
(‖∇pn+1

h
‖2 − ‖∇pnh‖2) − δt2

4
‖∇pn+1

h
− ∇pnh‖2. (3.61)

By taking the square of (3.59), we deduce

−‖un+1
h

− ũn+1
h

‖2 = −δt2

4
‖∇pn+1

h
− ∇pnh‖2. (3.62)

By combining (3.58), (3.60), (3.61) and (3.62), we derive

‖un+1
h

‖2 − ‖un
h‖2 + δt2

4
(‖∇pn+1

h
‖2 − ‖∇pnh‖2) = −2νδt‖∇ ¯̃un+ 1

2

h
‖2

−2δt Q̄ n+ 1
2 ((u∗ · ∇)u∗, ¯̃un+ 1

2

h )
︸ ︷︷ ︸

I1

−2δt Q̄ n+ 1
2 (φ∗

1∇μ∗
1,

¯̃un+ 1
2

h )
︸ ︷︷ ︸

I I1

−2δt Q̄ n+ 1
2 (φ∗

2∇μ∗
2,

¯̃un+ 1
2

h )
︸ ︷︷ ︸

I I I1

.
(3.63)

Taking w1h = 2δtμ̄
n+ 1

2

1h
in (3.14), we derive

2(φn+1
1h

− φn
1h, μ̄

n+ 1
2

1h
) = − 2δtM‖∇μ̄

n+ 1
2

1h
‖2 +2δt Q̄ n+ 1

2 (u∗φ∗
1 ,∇μ̄

n+ 1
2

1h
)

︸ ︷︷ ︸

I V1

.
(3.64)

Taking �1h = −2(φn+1
1h

− φn
1h

) in (3.15), we find

−2(μ̄
n+ 1

2

1h
, φn+1

1h
− φn

1h) =2λ(∇ψ̄
n+ 1

2

1h
,∇(φn+1

1h
− φn

1h)) − 4λa1(ψ
∗
1 , φn+1

1h
− φn

1h)

− λ(L
1
2

12�̄
n+ 1

2

2h
, L

1
2

12(φ
n+1
1h

− φn
1h)) − 2λS(φ̄

n+ 1
2

1h
, φn+1

1h
− φn

1h)

−2λQ̄ n+ 1
2 (H∗

1U
∗, φn+1

1h
− φn

1h)
︸ ︷︷ ︸

V1

.

(3.65)
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Taking w2h = 2δtμ̄
n+ 1

2

2h
in (3.16), we derive

2(φn+1
2h

− φn
2h, μ̄

n+ 1
2

2h
) = − 2δtM‖∇μ̄

n+ 1
2

2h
‖2 +2δt Q̄ n+ 1

2 (u∗φ∗
2 ,∇μ̄

n+ 1
2

2h
)

︸ ︷︷ ︸

V I1

.
(3.66)

Taking �2h = −2(φn+1
2h

− φn
2h

) in (3.17), we find

−2(μ̄
n+ 1

2

2h
, φn+1

2h
− φn

2h) = 2λ(∇ψ̄
n+ 1

2

2h
,∇(φn+1

2h
− φn

2h)) − 4λa2(ψ
∗
2 , φn+1

2h
− φn

2h)

− λ(L
1
2

12�̄
n+ 1

2

1h
, L

1
2

12(φ
n+1
2h

− φn
2h)) − 2λS(φ̄

n+ 1
2

2h
, φn+1

2h
− φn

2h)−2λQ̄ n+ 1
2 (H∗

2U
∗, φn+1

2h
− φn

2h)
︸ ︷︷ ︸

V I I1

. (3.67)

We apply the two equations in (3.18) to two consecutive time nodes at tn, tn−1 to get
{

(3ψn
1h − ψn−1

1h
, ξ1h) = 2(ψ∗

1 , ξ1h) = −(∇(3φn
1h − φn−1

1h
),∇ξ1h),

(3ψn
2h − ψn−1

2h
, ξ2h) = 2(ψ∗

2 , ξ2h) = −(∇(3φn
2h − φn−1

2h
),∇ξ2h).

(3.68)

Taking ξ1h = −2λa1(φ
n+1
1h

− φn
1h

), ξ2h = −2λa2(φ
n+1
2h

− φn
2h

) in (3.68), we get

−4λa1(ψ
∗
1 , φn+1

1h
− φn

1h) = 2λa1(∇(3φn
1h − φn−1

1h
),∇φn+1

1h
− ∇φn

1h)

= 2λa1(‖∇φn+1
1h

‖2 − 1

2
‖∇φn+1

1h
− ∇φn

1h‖2)

− 2λa1(‖∇φn
1h‖2 − 1

2
‖∇φn

1h − ∇φn−1
1h

‖2) − 2λa1
1

2
‖∇φn+1

1h
− 2∇φn

1h + ∇φn−1
1h

‖2,

−4λa2(ψ
∗
2 , φn+1

2h
− φn

2h) = 2λa2(∇(3φn
2h − φn−1

2h
),∇φn+1

2h
− ∇φn

2h)

= 2λa2(‖∇φn+1
2h

‖2 − 1

2
‖∇φn+1

2h
− ∇φn

2h‖2)

− 2λa2(‖∇φn
2h‖2 − 1

2
‖∇φn

2h − ∇φn−1
2h

‖2) − 2λa1
1

2
‖∇φn+1

2h
− 2∇φn

2h + ∇φn−1
2h

‖2.

We apply the four equations in (3.18) and (3.19) to two consecutive time nodes at tn+1, tn to obtain

{

(ψn+1
1h

− ψn
1h, ξ1h) = −(∇(φn+1

1h
− φn

1h),∇ξ1h), (ψn+1
2h

− ψn
2h, ξ2h) = −(∇(φn+1

2h
− φn

2h),∇ξ2h),

(�n+1
1h

− �n
1h,χ1h) = (L

1
2

12(φ
n+1
1h

− φn
1h), L

1
2

12χ1h), (�n+1
2h

− �n
2h,χ2h) = (L

1
2

12(φ
n+1
2h

− φn
2h), L

1
2

12χ2h).
(3.69)

Taking ξ1h = 2λψ̄
n+ 1

2

1h
, ξ2h = 2λψ̄

n+ 1
2

2h
, χ1h = λ�̄

n+ 1
2

2h
, χ2h = λ�̄

n+ 1
2

1h
in (3.69), we get

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

2λ(ψn+1
1h

− ψn
1h, ψ̄

n+ 1
2

1h
) = λ(‖ψn+1

1h
‖2 − ‖ψn

1h‖2) = −2λ(∇(φn+1
1h

− φn
1h),∇ψ̄

n+ 1
2

1h
),

2λ(ψn+1
2h

− ψn
2h, ψ̄

n+ 1
2

2h
) = λ(‖ψn+1

2h
‖2 − ‖ψn

2h‖2) = −2λ(∇(φn+1
2h

− φn
2h),∇ψ̄

n+ 1
2

2h
),

λ(�n+1
1h

− �n
1h, �̄

n+ 1
2

2h
) = λ(L

1
2

12(φ
n+1
1h

− φn
1h), L

1
2

12�̄
n+ 1

2

2h
),

λ(�n+1
2h

− �n
2h, �̄

n+ 1
2

1h
) = λ(L

1
2

12(φ
n+1
2h

− φn
2h), L

1
2

12�̄
n+ 1

2

1h
).

(3.70)

Taking Vh = 4λδtŪ
n+ 1

2

h
in (3.20), we obtain

4λ(Un+1
h

− Un
h, Ū

n+ 1
2

h
) = 2δtλQ̄ n+ 1

2 (H∗
1φ

∗
1t, Ū

n+ 1
2

h
)

︸ ︷︷ ︸

V I I I1

+2δtλQ̄ n+ 1
2 (H∗

2φ
∗
2t, Ū

n+ 1
2

h
)

︸ ︷︷ ︸

I X1

.
(3.71)

By multiplying (3.21) with 2δt Q̄ n+ 1
2 and using (3.54), we obtain

2(Q n+1 − Q n)Q̄ n+ 1
2 (3.72)

= 2δt Q̄ n+ 1
2 ((u∗ · ∇)u∗, ¯̃un+ 1

2

h )
︸ ︷︷ ︸

I2

−2δt Q̄ n+ 1
2 (u∗φ∗

1 ,∇μ̄
n+ 1

2

1h
)

︸ ︷︷ ︸

I V2

+2δt Q̄ n+ 1
2 (φ∗

1∇μ∗
1,

¯̃un+ 1
2

h )
︸ ︷︷ ︸

I I2
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−2δt Q̄ n+ 1
2 (u∗φ∗

2 ,∇μ̄
n+ 1

2

2h
)

︸ ︷︷ ︸

V I2

+2δt Q̄ n+ 1
2 (φ∗

2∇μ∗
2,

¯̃un+ 1
2

h )
︸ ︷︷ ︸

I I I2

+2λQ̄ n+ 1
2 (H∗

1U
∗, φn+1

1h
− φn

1h)
︸ ︷︷ ︸

V2

−2δtλQ̄ n+ 1
2 (H∗

1φ
∗
1t, Ū

n+ 1
2 )

︸ ︷︷ ︸

V I I I2

+2λQ̄ n+ 1
2 (H∗

2U
∗, φn+1

2h
− φn

2h)
︸ ︷︷ ︸

V I I2

−2δtλQ̄ n+ 1
2 (H∗

2φ
∗
2t, Ū

n+ 1
2 )

︸ ︷︷ ︸

I X2

. (3.73)

Hence, by combining (3.63), (3.64), (3.65), (3.70)-(3.72), using (3.54), and noticing that all under braced terms with the 
same Roman numerals are canceled, we arrive at

‖un+1
h

‖2 − ‖un
h‖2 + δt2

4
(‖∇pn+1

h
‖2 − ‖∇pnh‖2)

+ λ(‖ψn+1
1h

‖2 − ‖ψn
1h‖2) + λ(‖ψn+1

2h
‖2 − ‖ψn

2h‖2) + λ(�n+1
1h

,�n+1
2h

) − λ(�n
1h,�

n
2h)

− 2λa1(‖∇φn+1
1h

‖2 − 1

2
‖∇φn+1

1h
− ∇φn

1h‖2) + 2λa1(‖∇φn
1h‖2 − 1

2
‖∇φn

1h − ∇φn−1
1h

‖2)

− 2λa2(‖∇φn+1
2h

‖2 − 1

2
‖∇φn+1

2h
− ∇φn

2h‖2) + 2λa2(‖∇φn
2h‖2 − 1

2
‖∇φn

2h − ∇φn−1
2h

‖2)

+ λS(‖φn+1
1h

‖2 − ‖φn
1h‖2) + λS(‖φn+1

2h
‖2 − ‖φn

2h‖2) + 2λ(‖Un+1
h

‖2 − ‖Un
h‖2)

+ (|Q n+1|2 − |Q n|2) = −2δtν‖∇ ¯̃un+ 1
2

h
‖2 − 2δtM‖∇μ̄

n+ 1
2

1h
‖2 − 2δtM‖∇μ̄

n+ 1
2

2h
‖2.

(3.74)

Finally, by dividing 2 of (3.74) and dropping some unnecessary positive terms, we obtain (3.56). �

Theorem 3.2. If the constant S satisfies the condition (2.65), then the discrete energy En+1
h

given in (3.57) is bounded from below.

Proof. From the definitions of L
1
2

12 in (3.13) and (3.18)-(3.19), we deduce

(�n+1
1h

− ψn+1
1h

, ξh) = a12(φ
n+1
1h

, ξh),

(�n+1
2h

− ψn+1
2h

, ξh) = a12(φ
n+1
2h

, ξh),∀ξh ∈ Yh.
(3.75)

Using the Cauchy-Schwarz inequality, we estimate (�n+1
1h

, �n+1
2h

) as

(�n+1
1h

,�n+1
2h

) = (�n+1
1h

− ψn+1
1h

,�n+1
2h

) + (ψn+1
1h

,�n+1
2h

)

= (�n+1
1h

− ψn+1
1h

,�n+1
2h

− ψn+1
2h

) + (�n+1
1h

− ψn+1
1h

,ψn+1
2h

)

+ (ψn+1
1h

,�n+1
2h

− ψn+1
2h

) + (ψn+1
1h

,ψn+1
2h

)

= a212(φ
n+1
1h

, φn+1
2h

) + a12(φ
n+1
1h

,ψn+1
2h

) + a12(ψ
n+1
1h

, φn+1
2h

) + (ψn+1
1h

,ψn+1
2h

)

≥ −
a212
2

(‖φn+1
1h

‖2 + ‖φn+1
2h

‖2) − ζ

4
‖ψn+1

2h
‖2 − 1

ζ
a212‖φn+1

1h
‖2

− ζ

4
‖ψn+1

1h
‖2 − 1

ζ
a212‖φn+1

2h
‖2 − 1

2
‖ψn+1

1h
‖2 − 1

2
‖ψn+1

2h
‖2.

(3.76)

Second, we estimate the negative terms −a1‖∇φn+1
1h

‖2 − a2‖∇φn+1
2h

‖2 as follows

−2a1‖∇φn+1
1h

‖2 − 2a2‖∇φn+1
2h

‖2 = −2a1(∇φn+1
1h

,∇φn+1
1h

) − 2a2(∇φn+1
2h

,∇φn+1
2h

)

= 2a1(ψ
n+1
1h

, φn+1
1h

) + 2a2(ψ
n+1
2h

, φn+1
2h

)

≥ −η

4
‖ψn+1

1h
‖2 − 4

η
a21‖φn+1

1h
‖2 − η

4
‖ψn+1

2h
‖2 − 4

η
a22‖φn+1

2h
‖2,

(3.77)

where we use (3.18) and the Cauchy-Schwarz inequality.
Hence, we deduce

‖ψn+1
1h

‖2 + ‖ψn+1
2h

‖2 + (�n+1
1h

,�n+1
2h

) − a1‖∇φn+1
1h

‖2 − a2‖∇φn+1
2h

‖2 + S‖φn+1
1h

‖2 + S‖φn+1
2h

‖2

≥ (
1

2
− ζ

4
− η

4
)‖ψn+1

1h
‖2 + (

1

2
− ζ

4
− η

4
)‖ψn+1

2h
‖2

+
(

S −
a212
2

− 1

ζ
a212 − 4

η
a21

)

‖φn+1
1h

‖2 +
(

S −
a212
2

− 1

ζ
a212 − 4

η
a22

)

‖φn+1
2h

‖2.

(3.78)

Therefore, as long as the condition (2.65) is satisfied, the energy En+1
h

is bounded from below, where we choose ζ = η = 1

in (3.78). �
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Fig. 4.1. Convergence order tests for spatial and temporal discretization, where the numerical errors at t = 1 for all variables are computed. (For interpreta-
tion of the colors in the figure(s), the reader is referred to the web version of this article.)

4. Numerical simulations

In this section, the accuracy, energy stability of the proposed explicit-IEQ scheme (3.14)-(3.24) (denoted by EIEQ, for 
short) will be investigated. Various numerical tests will be carried out, including binary crystal growth affected by the 
imposed shear flow acting on the wall boundary and the sedimentation process of many particles of binary alloys under the 
action of gravity. We use Taylor-Hood elements [15] for V h and Oh that satisfy inf-sup condition and set the finite element 
spaces (3.1) with l1 = 1, l2 = 2, l3 = 1.

4.1. Accuracy and stability test

We first verify the convergence rate of the EIEQ scheme by conducting 2D simulations for the flow-coupled binary PFC 
model. The computational domain is set as � = [0, 2π ]2 . By setting some suitable forcing functions, we assume the exact 
solution of the system read as

{

φ1(x, y, t) = cos(2x)cos(2y)cost, φ2(x, y, t) = cos(x)cos(y)cost, p(x, y, t) = cos(x)cos(y)sint,

u(x, y, t) = (u(x, y, t), v(x, y, t)) = cos(t)(sin(2y)sin2(x),−sin(2x)sin2(y)).
(4.1)

The boundary conditions are specified in (2.16), and the model parameters are set as a1 = a2 = 1, a12 = 1.2, ε = 0.1, ν = 1, 
S = 4, M = 1, γ = 0.5, β = 10, λ = 0.01, B = 1e5.

In Fig. 4.1 (a), we first verify the spatial convergence order by plotting the error in various norms which are computed 
using various grid size h. We choose δt to be small enough (δt = 1e−5) so that the errors are dominated by the spatial 
discretization error. We can see that the second-order convergence rate is followed by the H1-error for the velocity, L2-error 
of the pressure p, and L2-error of the two phase-field variables φ1 and φ2 . The third-order convergence rate is observed for 
L2 error of the velocity. These results fully agree with the theoretical expectation of accuracy for P2/P1 element of (u, p)

and P1 element of φ1 and φ2 .

In Fig. 4.1 (b), we verify the temporal convergence order by fixing the grid size h = 2π
256

. In this way, the spatial grid size 
is small enough and the spatial discretization errors are negligible compared with the time discretization error. The L2-
errors between the numerical solution of φ, u, p and the exact solution at t = 1 are plotted, where various time step sizes 
from δt = 0.01 to δt = 0.01/25 (with factor of 2) are used. It can be observed that the scheme EIEQ gives the second-order 
time accuracy of u and φ, and the first-order time accuracy of p (note that the pressure is only first-order accurate for the 
particular projection type scheme used in this article due to the boundary layer phenomenon, see the theoretical/numerical 
evidence in [36,20,7,29,17]).

To further test the energy stability of the developed scheme, we use the well-known phase separation (spinodal decom-

position) example of the vacancy PFC model (see also in [5]). The 2D computational domain is set as � = [0, 200]2 , and the 
initial conditions read as follows:

φ0
1(x, y) = 0.07+ 0.001rand(x, y), φ0

2(x, y) = 0.07+ 0.001rand(x, y),

u0(x, y) = 0, p0(x, y) = 0,
(4.2)
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Fig. 4.2. Snapshots of φ1 − φ2 at t = 0,6,13,20 and 75 for the phase separation example with the initial conditions given in (4.2).

Fig. 4.3. (a) Time evolution of the free energy (2.18) computed by using various time step sizes; and (b) the energy evolutions of the free energy (2.18)
(original form) and (3.57) (modified discrete form) computed by using the scheme EIEQ and two different time steps δt = 1 and 1

32
.

where rand(x, y) is the random number in the range [−1, 1]. The model parameters are set as a1 = a2 = 1, a12 = 1.2, 
ε = 0.9, ν = 1, S = 4, M = 1, γ = 0.5, β = 3000, λ = 0.01, B = 1e5, δt = 0.01, h = 200

256
. We plot the snapshots of the 

configuration profile φ1 − φ2 at different times in Fig. 4.2. We observe that the final steady state shows clusters of binary 
particles with vacancies in the entire region, which is qualitatively consistent with the simulations shown in [2,5].

Further numerical simulations are carried out to verify the time marching energy stability. The time evolution of the 
free energy (2.18) computed using various time steps (from δt = 1 to δt = 1

32
with the factor 1/2) are shown in Fig. 4.3 (a). 

We observe that all obtained energy curves show monotonic decays, thus verifying the unconditional stability of EIEQ. In 
Fig. 4.3 (b), we plot the time evolution of the free energy in the original form (2.18) and the discrete energy (3.57) using the 
time step size δt = 1 and δt = 1

32
. We find these two energies have almost invisible differences.

4.2. Crystal growth in a shear flow regime

In this example, for the no-vacancy model (β = 0), we study how the fluid flow affects the dynamical growth of binary 
crystal particles. We refer to [10,37,16,39] for single-phase crystal growth simulation, in which the model set does not 
involve the vacancy potential and flow field.

We carry out numerical simulations in 2D with the computed domain [0, 512]2 . The model parameters are set as a1 =
a2 = 1, a12 = 1.2, ε = 0.05, ν = 1, S = 4, M = 1, γ = 0.1, β = 0, λ = 0.01, B = 1e5, δt = 0.01, h = 1. We set the boundary 
condition (2.16) along the y-direction and assume that the x-direction satisfies the periodic boundary condition.

We first simulate the no-flow situation (i.e., u = 0, p = 0) to study how a small binary core gradually forms an ordered 
pattern to the entire domain. In order to obtain the initial configuration of one or more tiny crystal nuclei as seeds, we 
implement EIEQ for sufficiently long enough time and cut out a small circular patch from the designated area. See below 
for the detailed process of obtaining the initial conditions of φ0

i
(x, y), i = 1, 2.

First, we define two functions �i(x, y) (i = 1, 2):

�i(x, y) =

⎧

⎨

⎩

φ̄ + q
(

cos(
ζ√
3
yil )cos(px

i
l ) − 0.5cos(

2ζ√
3
yil )

)

, if (xil , y
i
l ) ∈ D,

φ̄, else,

(4.3)
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Fig. 4.4. 2D simulations of crystal growth with one initial crystal nucleus deposited at the center of the domain, in which, (a) snapshot of c at different 
times for the no-flow case and (b) snapshots of φ1 − φ2 at t = 1000 for various shear flow magnitude.

where D represents a small circular patch in the center of the domain that is given as D = {(x, y) :
√

(x− 256)2 + (y − 256)2 ≤ 10}, (φ̄, ζ, q) = (0.285, 0.66, 0.446), and (xi
l
, yi

l
) defines a local Cartesian system obtained using 

local affine transformation that reads as follows:

(xil , y
i
l ) = (xsin(θ i) + ycos(θ i),−xcos(θ i) + ysin(θ i)), (4.4)

with θi = ±π
3

for i = 1, 2. By using these two functions �i(x, y) as the initial conditions, we implement EIEQ scheme for a 

long time (t = 2000) to obtain the intermediate profiles of �̂i(x, y).
Then, we cut out a small circular region D from the intermediate configuration profiles �̂i(x, y), and use them as the 

true initial conditions of φ0
i
(x, y), i.e.,

φ0
i (x, y) =

{

�̂i(x, y), if (x, y) ∈ D,

φ̄, else.
(4.5)

By using the initial condition φ0
i
, i = 1, 2 obtained from the above process (the profile of φ0

1 − φ0
2 is shown in the first 

subfigure in Fig. 4.4), the scheme EIEQ is carried out to investigate how a small crystal nucleus evolves in the absence of 
the flow field. From the snapshots of φ1 − φ2 taken at t = 0, 500, 1000, 1500, 1700 shown in Fig. 4.4 (a), we can see that 
the tiny nucleus grows gradually and forms an ordered pattern, in which two different atoms are closely aligned together 
to form the FCC (face-centered-cubic) lattice structure.

We further impose the shear flow on the wall boundary. For y-direction, the following shear flow boundary conditions 
are assumed for the velocity field u = (u, v):

u|(y=0,512) = ±uw , v|(y=0,512) = 0, (4.6)

where uw is the magnitude of the shear flow imposed on the wall boundary. Using the same initial conditions (4.5), we 
change the size of the wall velocity uw and plot snapshots of φ1 − φ2 at t = 1000 in Fig. 4.4 (b). We find that under the 
condition of applying a flow field, the FCC structure formed by the close arrangement of binary atoms still appears. But due 
to the influence of the shear flow field, the shape of the outer edge of the particles has been deformed as a whole. When 
the size of the shear flow field becomes larger (uw is set as 3, 5, 7, 9), the deformation becomes more significant.

Next, using the same method in the above example, we obtain three randomly placed crystal nuclei as the initial con-
ditions of the seed, as shown in the first subfigure of Fig. 4.5 (a). For the case which does not involve the flow field, the 
complete dynamic process of binary crystal growth is shown in Fig. 4.5 (a). We can see that due to the different orientations 
of the three binary crystal nuclei, three dislocation lines have been formed and elongated over time. To show the effect of 
the shear flow field on crystal formation, we also plot snapshots of φ1 − φ2 at t = 1000 in Fig. 4.5 (b). It can be seen that as 
the wall velocity uw increases, the tilt angle of the dislocation line changes greatly, and some obvious vacancies are formed 
inside the cluster of binary atoms.

20



X. Yang and X. He Journal of Computational Physics 467 (2022) 111448

Fig. 4.5. 2D simulations of crystal growth with one initial crystal nucleus deposited at the center of the domain, in which, (a) snapshot of φ1 − φ2 at 
different times for the no-flow case and (b) snapshots of φ1 − φ2 at t = 100 for various shear flow magnitude.

Fig. 4.6. 2D simulations of sedimentation process of many binary particles under the action of gravity force. Snapshots of φ1 − φ2 are plotted at t = 0, 200, 
500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 5000, and 10000.

4.3. Sedimentation process of binary particles under gravity

In this example, using the model with the vacancy potential (β 
= 0), we numerically simulate the sedimentation process 
of heavier particles under the gravity force in 2D and 3D. We assume that the density difference between the crystal 
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Fig. 4.7. 3D simulations of sedimentation process of many binary particles under the action of gravity force. Snapshots of the isosurfaces {φ1 = 0.3} (cyan) 
and {φ2 = 0.3} (red) are plotted at t = 0, 1200, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 10000, 12000, and 20000.

atoms and the surrounding fluid is small, and use the so-called Boussinesq approximation to introduce gravity to the fluid 
momentum equation (see [45,30]). Thus, the momentum equation (2.11) is replaced by the following form

ut + (u · ∇)u − ν�u + ∇p + φ∇μ = (ρ1 − ρ2)g0(φ1 + φ2), (4.7)

where g0 = (0, g0) for 2D and g0 = (0, 0, g0) for 3D, g0 is the pre-assumed gravity constant, ρ1 is the density of the lighter 
fluid medium, and ρ2 is the density of the heavier particles.

We set the computed domain � to be [0, 256]2 for 2D and [0, 256]3 for 3D, and the model parameters to be a1 = a2 = 1, 
a12 = 1.2, ε = 0.9, ν = 1, S = 4, M = 1, γ = 0.5, β = 3000, λ = 0.01, B = 1e5, δt = 0.01, h = 1. For 2D, we use the boundary 
conditions (2.16) along the y-direction and use the periodic boundary conditions along the x-direction. For 3D, the boundary 
conditions (2.16) are assumed along the z-direction and the periodic boundary conditions are used for x, y-directions.

To obtain the initial configuration of many particles near the top wall, we define the function �i(x), i = 1, 2 as a constant 
value with small perturbations �i(x) = 0.07 + 0.001rand(x) (same as (4.2)). We implement EIEQ sufficiently long enough 
(t = 2000) to obtain the intermediate configuration profile of �̂i(x). Then we cut out a small strip patch D from �̂i(x) near 
the top wall, and use it as the true initial condition of φ0

i
(x), namely,

φ0
i (x) =

{

�̂i(x), if x ∈ D,

0, else,
(4.8)

where D = {200 ≤ y ≤ 256} for 2D and D = {200 ≤ z ≤ 256} for 3D represent the strip patch near the top.
Using the initial conditions shown in the first subfigure of Fig. 4.6 for 2D and Fig. 4.7 for 3D, we implement the developed 

scheme EIEQ to obtain the sedimentation dynamics of many binary particles. For 2D, snapshots of φ1 − φ2 are plotted at 
various times (shown in Fig. 4.6), where the Rayleigh-Taylor instability and fingering are observed. After long-time chaotic 
sedimentation, the particles finally evolve to the BCC (body-centered-cubic) structure. For 3D, we show snapshots of the 
isosurfaces {φ1 = 0.3} and {φ2 = 0.3} at various times in Fig. 4.7 as well. These obtained 2D and 3D sedimentation dynamics 
are consistent with the 2D simulations given in [26] using the single-phase flow-coupled PFC model, qualitatively.
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5. Concluding remarks

The goals of this paper include two folds, namely, (i) we formulate the Navier-Stokes coupled binary phase-field crystal 
model and prove its energy law, and (ii) we design a fully discrete finite element scheme to solve the model. When designing 
the algorithm, we utilize special characteristics satisfied by those coupling terms (zero contribution to the dissipation law 
of energy). Based on this special feature, we construct special ODEs so that the original system is formulated in a form 
that is conducive for time discretization. In this way, the system becomes easy to be discretized, by using a linear scheme 
with the full decoupling structure and unconditional energy stability. We also provide a detailed practical implementation 
method and strictly show its solvability and energy stability. To the authors’ best knowledge, the developed scheme is the 
first fully discrete, linear, fully decoupled algorithm for the flow-coupled phase-field crystal model, with second-order time 
accuracy and unconditional energy stability. Finally, we numerically demonstrate the effectiveness of the developed scheme 
by simulating many 2D and 3D numerical examples, including the crystal growth with/without shear flow, and sediment 
process of heavier binary particles.
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