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Single‑particle excitations 
in the uniform electron gas 
by diagrammatic Monte Carlo
Kristjan Haule1* & Kun Chen1,2

We calculate the single-particle excitation spectrum and the Landau liquid parameters for the 
archetypal model of solids, the three-dimensional uniform electron gas, with the variational 
diagrammatic Monte Carlo method, which gives numerically controlled results without systematic 
error. In the metallic range of density, we establish benchmark values for the wave-function 
renormalization factor Z, the effective mass m∗/m , and the Landau parameters Fs

0

 and Fa
0

 with 
unprecedented accuracy, and we resolve the long-standing puzzle of non-monotonic dependence 
of mass on density. We also exclude the possibility that experimentally measured large reduction of 
bandwidth in Na metal can originate from the charge and spin fluctuations contained in the model of 
the uniform electron gas.

The uniform electron gas (UEG) is the most fundamental model for understanding the electronic properties of 
metallic materials. The ground-state properties of the model have been very precisely calculated by quantum 
Monte Carlo methods1, and this allowed one to build approximate density functionals2,3, which are at the heart 
of the ab-initio approaches in material science and modern theory-driven materials design. The knowledge of 
the low energy excitations of the same model remain challenging to evaluate accurately4–10, even though such 
calculations are important for building more sophisticated density functionals11–13, and these excitations are 
directly measured in experiments on simple metals, such as alkaline materials. Some aspects of the excitation 
spectra, such as the quasiparticle renormalization amplitude, were recently determined by extention of the vari-
ational Monte Carlo method in Ref.14, which turn out to be in very good agreement with our current results.

In the metallic regime, the low-energy properties of the electron liquid are dominated by the long-lived qua-
siparticles near the Fermi surface, and their dynamics is described by a handful of the Fermi liquid parameters. 
These parameters completely characterize the low energy excitation spectra of the metallic state. Unfortunately, 
they are very challenging to calculate by a first principle approach, therefore they are usually treated as phenom-
enological parameters requiring input from experiments.

Here we develop an extension of the recently introduced variational diagrammatic Monte Carlo (VDMC) 
method15, which fills this void, and allows us to determine the single-particle excitations of UEG with unprec-
edented accuracy. In this letter, we calculate the single-particle excitation spectra, and in particular, we give 
controlled values of the wave-function renormalization factor Z, the quasiparticle effective mass ratio m∗/m 
and also the Landau Fermi liquid parameters Fa0 and Fs0 . Our computed values are free of systematic error, and 
their uncertainty is mainly controlled by the statistical error, and hence our established value can be used as a 
precise benchmark for new method development. Moreover, these precise Fermi liquid parameters are also useful 
for building more sophisticated density functionals. Finally, the method we develop here can be used to solve 
more sophisticated models, and can also be used in the ab-initio framework on models of realistic materials, a 
development which is currently underway16.

Results
The Feynman expansion algorithm.  The VDMC method15 is a flavor of diagrammatic Monte Carlo 
method (DMC)17–24, which samples high-order Feynman diagrams with a Monte Carlo importance sampling. 
The novelty of VDMC is two-fold: (1) it optimizes the starting point of the perturbative expansion in such a way 
that the expansion converges very rapidly with the increasing perturbation order. (2) it efficiently combines an 
exponentially large number of Feynman diagrams, which mostly cancel among themselves due to alternating 
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fermionic sign so that the groups of diagrams can be efficiently sampled with the Monte Carlo importance sam-
pling hence avoiding the explosion of statistical error with perturbative order.

In Ref. 15 we computed the spin and the charge response functions of the UEG model with VDMC by evalu-
ating the Feynman diagrams for the polarization function. A similar type of Feynman expansion in terms of 
non-interacting single-particle Green’s function, and statically screened Coulomb interaction does not converge 
rapidly enough to establish a reliable infinite order result, hence we here develop an alternative approach.

In this work, we show that extremely rapid convergence with perturbation order can be achieved by using 
a Hedin-type equation, in which we first compute the numerically exact screened interaction Wq (previously 
developed in Ref. 15), and we then expand only the three-point vertex function Ŵ3 in powers of the bare electron 
propagator G0

k , and statically screened interaction vq(�) , with proper counter terms defined in the Method section. 
Here the screened Coulomb interaction vq(�) has a Yukawa form, characterized by the inverse screening length � . 
This screening parameter has to be determined by the principle of minimal sensitivity in order to achieve rapid 
convergence of the perturbative series, so that the extrapolation to infinite order is possible. Figure 1 shows the 
sketch of the corresponding Feynman diagrams up to the third order. Below we apply the algorithm to the UEG 
model, although the method is completely general and could as well be carried out for realistic material in the 
ab-initio framework.

The single particle excitations.  We first present the single-particle excitation spectral results. Figure 2a–c 
show how the wave-function renormalization factor Z depends on the screening parameter � in our theory. To 
determine the optimized parameter � , we scan Z(�) for each rs , and determine it with the principle of minimal 
sensitivity. For efficiency, we here sample the self-energy only at the Fermi wave vector kF and at the two lowest 
Matsubara frequencies, which is sufficient to determine Z. We notice that for the first two orders, no counter 
term in the parameter � occurs, therefore the curve Z(�) displayed in Fig. 2 does not have extremum, while 
all higher-order terms have a well-defined maximum, which broadens and develops into a broad plateau with 
increasing order. The insets of Fig. 2a–c show optimized Z versus perturbation order, where the first two orders 
are evaluated at the optimal � of the third order, and for later orders, we take the value in the maximum. We also 
display the value of � used at each order. From Fig. 2 it is apparent that beyond order three the rate of conver-
gence to limiting value of Z is extremely fast, and therefore we can confidently determine the first three digits 
of Z. The values and the estimated error-bar from the extrapolation and statistical errors are shown in Table 1.

In Fig. 2d we compare our computed Z(rs) with the previous best available estimates, obtained by vari-
ous flavors of Monte Carlo (MC) methods, which are reproduced from Ref.14. Note that all these published 
MC methods rely on fixed node approximation and the thermodynamic limit extrapolation, hence they have 
an inherent systematic error, nevertheless they turn out to be in very good agreement with current VDMC 
results.  The VDMC method has well controlled numerical error which can be made very small. It originates from 
the statistical error due to MC sampling, and the error due to extrapolation from finite order to infinite order 
of expansion, which is well behaved in the metallic regime rs≤4. We note that VDMC has no systematic error.  
We notice that previous MC results are broadly consistent with our results, with SJ-VMC method predicting 
slightly too large and BF-VMC and BF-RMC slightly too small value. It is also well known that G0W0 predicts 
quite accurate Z values, however, we can now confidently claim that in the range of metallic densities, G0W0 
consistently underestimates Z.

Figure 1.   Feynman diagrams for the self-energy in terms of the three leg vertex Ŵ3 , which is expanded in bare 
series in terms of G0

k and partially screened interaction vq = 8π
q2+�

 and counter-terms ( �

8π
)N ( 8π

q2+�
)N+1 . The 

dressed Wq was computed in Ref. 15, and G(N−1) = ((G0)−1 −�(N−1))−1 is determined from previous order 
�(N−1) , which is stored and reused.
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Once the extremal value of � is determined, we compute the entire momentum and frequency dependence 
of the self-energy, which allows us to determine also the momentum derivative of the self-energy, and hence the 
effective mass of the electron through the relation

The convergence of the effective mass ratio m∗/m with perturbation order is shown in Fig. 3a, and its depend-
ence on rs is displayed in Fig. 3b.

The dependence of the effective mass m∗/m on rs has been controversial for many decades. Some theories 
predict that the ratio is monotonically decreasing with increasing rs7,27, while others predict the existence of 
a turning point r∗s 26,28–31 at which the trend is reversed. Our controlled results confirm the correctness of the 
later theories. Furthermore, we compare our controlled VDMC results with previous best estimates, which are 
based on the theory of many-body local field factors26. This theory includes vertex corrections associated with 
charge and spin fluctuations, extracted from available Monte Carlo data. We notice that G0W0 overestimates 
the effective mass in the entire range of metallic densities. The density fluctuations beyond RPA are included in 
theory with G+ local field corrections, which reduce the mass substantially and bring it very close to our VDMC 
results at small rs . However, beyond rs > 3 our VDMC results are closer to the theory which contains both the 
charge and the spin fluctuations ( G+&G− ), hence we can infer that at moderate correlations strength, the spin 

(1)
m

m∗ = Z

(

1+ m

kF

d�(kF ,ω = 0)

dk

)

Figure 2.   The wave-function renormalization factor Z versus screening parameter � for various perturbation 
orders N = 1...5 and for rs = 1, 2, 3 and 4. The insets show the convergence of Z with perturbation order N 
when its value is taken at the extremal � . The numbers next to each point show the value of � used for each 
calculated point. Panel d) compares current VDMC results with prior Monte Carlo results from Ref.14 and 
G0W0 from Ref.25.

Table 1.   Landau liquid parameters: The wave-function renormalization factor Z, effective mass m∗/m , and the 
Landau parameters Fa0 , Fs0 for various values of the density parameter rs with the estimated error.

rs Z m
∗/m F

a

0
F
s

0

1 0.8725(2) 0.955(1) − 0.171(1) − 0.209(5)

2 0.7984(2) 0.943(3) − 0.271(2) − 0.39(1)

3 0.7219(2) 0.965(3) − 0.329(3) − 0.56(1)

4 0.6571(2) 0.996(3) − 0.368(4) − 0.83(2)
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fluctuations start to play an important role, and charge fluctuations are no longer sufficient in determining the 
mass of the electron gas.

The Landau liquid parameters.  With precisely calculated effective mass, as well as the spin and charge 
susceptibility determined in our previous work15, we can calculate Landau parameters Fa0 and Fs0 , which are 
obtained from χs

χ0
s
= m∗

m
1

1+Fa0
 and Pq=0

P0q=0

= m∗
m

1
1+Fs0

 . Here χs and Pq are the spin susceptibility and charge polariza-
tion, while χ0

s  and P0q are their non-interacting analogues. In Table 1 we list our calculated Landau parameters Fa0 
and Fs0 , together with the estimation of their error, which mostly comes from error in determining spin and 
charge susceptibility in Ref. 15. While the Landau parameters, which determine the interaction between quasi-
particle, have been estimated by various approximate numerical methods before7, to our knowledge their 
numerically controlled value has not be obtained before.

The spectral function and the bandwidth.  The present VDMC algorithm also allows us to compute a 
numerically controlled value for the dynamic self-energy on the imaginary axis. Analytic continuation is needed 
to obtain the self-energy on the real frequency axis. In contrast to physical quantities computed from the imagi-
nary axis data, the analytic continuation is not a numerically controlled method in which precise error bars 
would be available. We use the maximum entropy as well as the Pade method, to compute the quasiparticle 
energy at the k = 0 point, which determines the bandwidth of the electron dispersion, i.e., the energy differ-

Figure 3.   Electron effective mass: The upper panel shows our calculated effective mass versus perturbation 
order for rs = 1− 4 (the statistical error-bar is smaller than the size of the symbols). The lower panel compares 
the rs dependence of the effective mass of this work (VDMC) with the prior analytic and numeric work from 
Ref. 26.

Figure 4.   The spectral function and �k=0(ω) at rs = 4 and k = 0 as relevant for bandwidth of Na metal. The 
vertical dotted line marks the peak position of the non-interacting model. The thick and thin lines correspond to 
two different methods of analytical continuation, the maximum-entropy and Pade method, respectively.
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ence between the Fermi level and the lowest possible quasiparticle energy. The difference between these two 
standard analytic continuation methods gives a rough estimate of the error bar for the bandwidth. In Fig. 4 we 
display the self-energy, as well as the spectral function at momentum k = 0 and finite frequency. We notice that 
the imaginary part of the self-energy starts to grow rapidly when the energy of the single-particle excitations 
exceeds the plasma frequency ωp ≈ 1.881EF . Consequently, there appears a strong pole at ω < −2EF due to 
such plasma excitations, and makes quasiparticle approximation invalid at a frequency below ω < −EF , as the 
real part of the self-energy is no longer a linear function of frequency. However, around EF the real-part of � is 
still quite close to a linear function, and only minor deviations are noticed. Consequently, the renormalization 
of the dispersion can not substantially deviate from our earlier estimation of m∗/m , which is valid at the Fermi 
level. Our numerical estimation based on the analytically continued self-energy is that the spectral function 
at rs = 4 and k = 0 has a peak around −0.96EF (maximum-entropy method) −0.93EF (Pade method), which 
deviates from the non-interacting value by 4–7%, hence the bandwidth reduction due to interactions at rs = 4 is 
approximately 4–7%. This value is much smaller than the experimental estimation of the bandwidth reduction 
in Na metal, in which the measured ARPES bandwidth appears to be renormalized for about 18–25%32,33. How-
ever, our estimated bandwidth is definitely not substantially larger as compared to the non-interacting band-
width, in contrast to several other many-body calculations5,34, and is neither substantially smaller as in early GW 
calculations35 or GW with paramagnon vertex corrections8. Based on our very precise estimation of the single-
particle self-energy, we can confidently exclude a possibility of such a dramatic reduction of the bandwidth in the 
model of electron gas due to correlation effects at the density corresponding to Na metal. This large reduction of 
the effective mass in ARPES thus requires an alternative explanation, which was assigned to the interaction in 
the final states5,36 in ARPES, surface effects37, and possibly the lattice effects, i.e, deviation of Na metal from the 
continuous model of the uniform electron gas.

In summary, we established the low energy excitation spectrum of the uniform electron gas at metallic den-
sity using recently developed VDMC. Controlled values of Z, m∗/m , Fs0 , and Fa0 are given, which agree with the 
state of the art calculations in the field, but here we provide much more precise values than previously known.

Methods
The Hamiltonian of UEG problem is

where ψ̂/ψ̂† are the annihilation/creation operator of an electron, µ is the chemical potential controlling the 
density of the electrons in the system, and the long-range Coulomb repulsion is 8π/q2 , as we measure the energy 
in units of Rydbergs, and the wave number k, q in units of inverse Bohr radius.

The expansion in terms of the bare interaction is divergent, therefore we first transform the original problem 
into an equivalent but a more appropriate problem for power expansion, which describes the emergent degrees 
of freedom at the lowest order, and the corrections are perturbatively included with very rapid convergence. 
Motivated by the well-known fact that the long-range Coulomb interaction is screened in the solid and that the 
effective potential of emerging quasiparticles differs from the bare potential, we introduce the screening param-
eter �q and an electron potential vk into the quadratic part of the emergent Lagrangian L0 of the form

We then add the following interacting part to the Lagrangian

so that, when the number ξ is set to unity, L(ξ) = L0(ξ)+�L(ξ) is Lagrangian of UEG. Indeed integrating 
out the bosonic fields φq from Lagrangian L, we get the Lagrangian corresponding to the original Hamiltonian 
Eq. (2). Here ρq is the density fluctuation of the problem ρq =

∑

kσ ψ†

kσψk+qσ . Note that the first two terms 
in �L are the counterterms38 which exactly cancel the two terms we added to L0 above. We use the number ξ to 
track the order of the Feynman diagrams so that order N contribution sums up all diagrams carrying the factor 
ξN . We set ξ = 1 once we enumerate all the diagrams of a certain order.

The emergent screening length �q and effective potential vk are not a-priory known and need to be properly 
optimized to achieve an optimal speed of convergence. We note in passing that determining those parameters 
self-consistently, i.e., �q from the self-consistent polarization, and vk from the single-particle self-energy, is not 
the most optimal choice for the speed of convergence. Determining them by the principal of minimal sensitiv-
ity is a much better choice, as pointed out by Kleinert and Feynman39–42. They showed that when an effective 
parameter of a theory is optimized with this principle, the perturbative expansion converges very fast, and can 
succeed even when the interaction is strong, and regular perturbation theory fails.

To make algorithm sufficiently simple to implement, we take �q to be q independent constant ( � ), which 
is already sufficient for rapid convergence of the series. We emphasize that for any choice of these parameters 
we are guaranteed to converge to the same answer, provided that the series converges. Furthermore, we found 
that the convergence of the expansion is best when the Fermi surface of both the dressed Gk and the bare G0

k 

(2)
Ĥ =

∑

kσ

(
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)
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kσ ψ̂kσ + 1

2V

∑
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Green’s function at each order is fixed with the Luttinger’s theorem so that the density and the Fermi sur-
face volume is not changed with the increasing perturbation order. We therefore, expand vk in power series 
vk = (�x

k(�)−�x

kF
(�))+ ξ s1 + ξ 2 s2 · · · , and we determine sN so that all contributions at the order ξN do not 

alter the physical volume of the Fermi surface. Similarly to optimizing �q , we found that it is sufficient to take sN 
constants independent of the momentum. Since the exchange ( �x

k ) is static and is typically large, we accommo-
date it at the zeroth-order into the effective potential, so that at the first order we recover the GW type self-energy 
with Gk at the screened Hartree-Fock (screened by screening length � ) and exact Wq.

As mentioned before, the algorithm depicted in Fig. 1 needs a numerically exact (converged) Wq , which is 
first computed with the algorithm of Ref. 15. It was shown in Ref. 15 that the most rapidly converging scheme for 
charge and spin-susceptibilities is the so-called vertex correction scheme, in which we add an infinite sum of 
ladder diagrams on both sides of a polarization Feynman diagram. To do that, we first precompute the three-point 
ladder vertex and then attach it to both sides of a polarization Feynman diagram while the diagrams are sampled, 
and at the same time, we eliminate all ladder-type diagrams from the sampling, to avoid double-counting of 
diagrams. Next, we use Hedin’s type equation depicted in Fig. 1 in which one fermion propagator is dressed and 
requires self-consistent G. It easy to see that it is sufficient to use bold G of the lower order N − 1 when evaluating 
self-energy at order N, to avoid the expensive self-consistent calculation. Finally, we use the finite temperature 
imaginary-time formalism, and we set the temperature to T = 0.04 EF , which is sufficiently below the Fermi 
liquid scale, so that is essentially equivalent to zero temperature.

Note added
During the refereeing of this article, an alternative method based on the diffusion Monte Carlo (using fixed 
node approximation) has been used to compute the effective mass of the same model in Refs. 43. Their results are 
substantially different from ours, and show monotonically decreasing effective mass with increasing correlation 
strength (increasing rs ) reaching m∗/m = 0.85 at rs ≈ 4 , which is consistent with previous fixed node approxima-
tion work on Na metal34, that showed a considerable increase of the bandwidth in Na metal as compared to the 
LDA, in stark contrast to our results and even larger deviation from ARPES experiments of Refs. 32,33. In the MC 
work on Na metal34 the increase of the bandwidth was ascribed to the fixed node approximation, in which the 
quality of the nodal surface deteriorates at the bottom of the band, and hence leads to systematic error. An even 
more problematic issue in extracting the effective mass using diffusion Monte Carlo method was explained in 
Ref. 44 (see discussion around Fig. 23.3). Namely, the diffusion MC method uses a finite-size system simulations 
(in contrast to our method defined in the thermodynamic limit), in which the momentum resolution near the 
Fermi wave vector is limited, hence some further approximate assumptions are needed to extract the effective 
mass on the Fermi surface. This issue led to two very different extractions of the effective mass in the 2D electron 
gas (compare Ref. 45 and Ref. 46) using almost identical Monte Carlo data. In light of our controlled results for 
the effective mass of the 3D electron gas, it would be desired to revisit the analysis of variational MC data using 
the method of Ref. 46, which uses only the excitations in a narrow window of the Fermi level when extracting the 
effective mass, which would hopefully, be more consistent with our data and those of analytical theories which 
include charge and spin vertex corrections to GW26.

Data availability
The source code has been made available for download under gnu license at: https://​github.​com/​haulek/​VDMC.
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