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The water-to-land transition in vertebrate evolution
offers an unusual opportunity to consider computation-
al affordances of a new ecology for the brain.
All sensory modalities are changed, particularly a
greatly enlarged visual sensorium due to air versus
water as a medium, and expanded by mobile
eyes and neck. The multiplication of limbs, as
evolved to exploit aspects of life on land, is a
comparable computational challenge. As the total
mass of living organisms on land is a hundredfold
larger than the mass underwater, computational
improvements promise great rewards. In water,
the midbrain tectum coordinates approach/avoid
decisions, contextualized by water flow and by the
animal’s body state and learning. On land, the relative
motions of sensory surfaces and effectors must be
resolved, adding on computational architectures from
the dorsal pallium, such as the parietal cortex. For
the large-brained and long-living denizens of land,
making the right decision when the wrong one means
death may be the basis of planning, which allows
animals to learn from hypothetical experience before
enactment. Integration of value-weighted, memorized
panoramas in basal ganglia/frontal cortex circuitry,
with allocentric cognitive maps of the hippocampus
and its associated cortices becomes a cognitive habit-
to-plan transition as substantial as the change in
ecology.
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1. Introduction

The water to land transition in vertebrate life nearly 400 million years ago was accompanied
by conspicuous changes in two quite different realms: ecological, with 100-fold increases in
total living organism mass [1] and visual range [2] over that of aquatic ecosystems; and
neuroanatomical, with two of the largest radiations of land animals—mammals and birds—
featuring 10-fold larger brains relative to body size than fish [3]. Considering that evolution
is definitionally the natural selection of advantageous adaptations to an environment, the rarity
of systematic analyses of what different kinds of ecosystems prohibit or promote in sensory,
motor and cognitive adaptations is a striking gap in our understanding of brain evolution
(but see [2,4-7]). The multiple dimensions along which terrestrial environments differ from
aquatic environments is an unparalleled opportunity to examine brain functions at a meso-level
of analysis. Computational requirements and opportunities that are more general than those
that emerge from the neuroethological approach to niche specialists can be identified. While
phylogenetic analyses of whole brain volume, or brain/body relationships are necessarily limited
to very general descriptions like “increased cognitive capacity” or “cognitive buffer”, here we can
be more targeted.

In this review, we will first consider key ecological changes relevant to land vertebrate brain
evolution, and then examine current evidence for how the brain responded. We suggest several
factors at work in the great brain expansion co-occurring with the endothermic land vertebrate
radiations—mammals and birds. One is that a 100-fold increase in the mass of living organisms
on land creates a demand for more neural resources towards valuation of the ramifying rewards
and harms. A million-fold increase in the volume of visually inspected space, from the higher
transparency of air to light, enables enough time for this valuation to occur in a less stereotyped
manner. This information enrichment includes more mobile sensory surfaces, such as a neck to
swivel the greatly expanded visual sensorium, and new ways to integrate their information.
Finally, the mechanics of life on land, where aquatic animals feel the full force of gravity from
a prior state of near neutral buoyancy, creates a need for stiffening against its onslaught and
complex ways of manipulating the highly variable ground through multi-degree of freedom limbs
to achieve movement [8]. The multiplication of mobile end-effectors from what is essentially one
in the fish (the mouth) results in a need for an easily modified way of coordinating between the
reference frames of these freshly endowed musculoskeletal degrees of freedom in the forebrain
using a style of computation based on preserving neighborhood relations over topographic maps.
A different style of computation centered on events and temporal sequences is found in the
olfactory-limbic complex.

These two styles of computation, the first based on spatial/nearest neighbor co-occurrence
characteristic of the neocortex, just described, versus a second based on events and temporal
co-occurrence characteristic of olfactory cortices and hippocampus are progressively separated
and expanded in land animals compared to aquatic vertebrates. Finally, the more challenging
environments occurring on land may generate a selective benefit for learning with few or no
trials. This occurs via planning, a process that can be thought of as learning from hypothetical
experience, and abstraction. Learning from hypothetical experience is particularly advantaged
in action selection where irreversible outcomes are present, such as when evading predation.
The ability to learn a high-acuity, value-tagged egocentric visual panorama characteristic of the
cortex and its homologues and integration with the temporal-sequence computations of the
hippocampus together seem critical to planning.

2. The neuroecology of the water to land transition

Air is more electromagnetically permissive than water and thereby results in a massive 100x jump
in visual range, if unblocked by irregular topography or exuberant plant life [2]. Adding eye and
head rotation, the total volume of space containing visual information to guide action grows with
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Figure 1. Computationally estimated change in visual range for a 30 cm black disk through two types of water and through
air for the tripling of eye size that occurred as vertebrates transitioned from water on to land over 300 million years ago.
Visual range was calculated for bright daylight (noon, no clouds), clear water, and coastal water [2,5]. For reference,
typical human eye diameter is 24 mm. Note how underwater visual range hardly varies across the tripling of eye size from
10 to 30 mm, in contrast to the doubling in range that occurs for overwater visual range. The water clarity used for the
clear water range estimate (in full sun, at a depth of 10 m) is based on a very clear sample taken in the Bahamas. The
water clarity used for the coastal water estimate (also full sun) is based on water typical of freshwater bodies and along
the coastlines of oceans (Baseline Model [2]). These values are an upper bound on possible visual range for a black
disk (as detailed previously [2]). For less than full sun, or for more naturalistic contrast ratios than a black disk provides,
range decreases rapidly [2]. This results in aquatic visual ranges on the order of one body length [2,10] for coastal and
freshwater domains where much of aquatic life is concentrated. Figure modified from [5].

the cube of range, or a million-fold. Easy passage of light benefits plants as well, increasing food
availability on land 100-fold—95% due to plants [1]. Ironically, this plant bounty can render the
visual signs of predators or other perils absent or cryptic as photosynthesis requires absorbing
and blocking the same light that would disclose them. To access this resource, vertebrates had
to master a vastly different mechanical milieu, one that favors jointed limbs in order to structure
the ground reaction forces on flowable substrates such as soil, sand, and mud, since movement
easily fails without such conformation [9]. Movement through the resource-dense but partially
occluded space of land increases the selective benefit of planning if the necessary computational
resources can be afforded [5], a point we will return to after considering what happened to the
brain.

(a) Light in water, light in air, and visual perception

Sensory ecologists have charted the many sensory signal differences between water and air
environments. A few sensory modes could not survive the transition, such as electrosense, which
depend on electrical charge flow in water that is not possible in air. Similarly, the mechanosensory
lateral line—critical for detecting the velocity and accelerations of adjacent water flows around
aquatic animals relating to locomotion and the movement of other animals nearby—has no
analog in terrestrial vertebrates, although the key sensory receptor, the hair cell, continues within
auditory organs. Visual, sound, chemical, geomagnetic and mechanical signals are the remaining
external signals. Here, we focus on visual signals, as the change in how light works on land is so
large, reasonably easy to quantify, and accompanied by clear changes in the brains of terrestrial
animals.
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Figure 2. Eye orbit size tripled as fish morphed into their terrestrial form, during which time their skulls became flattened
with eyes on top, probably for viewing out over the water surface. Bottom to top shows a finned representative (red orbits),
two transitional representatives (yellow orbits), and two digited representatives of this period. Holes in the top of the head
(spiracles) thought to be used for breathing in these taxa and later giving rise to the Eustachian tube in the auditory organs
of more derived tetrapods, are shown in green. In terrestrial taxa that later return to the water, orbit size recedes to the
values typical of ancestral fish [2]. For time reference, Eusthenopteron is ~385 Ma, while Pederpes is ~348 Ma. Figure
modified from [2], with addition of Parmastega from [21]. Caiman comparison modified from Extended Data Fig. 8 of [21].

Light is rapidly scattered and absorbed in water, while it passes unimpeded through long
distances in air [2,11,12]. The “beam attenuation length”, defined as the distance a parallel beam
of light of a given wavelength travels at which 37% of the light remains, demonstrates this.
For the most penetrating wavelengths of light (bluish) this distance can be 24 meters in the
clearest deep ocean water [13,14], to several meters in coastal waters [10,13] and down to 2 m
and less in fresh water [15-17]. In air, the attenuation length for similar wavelengths is easily over
25,000 m [18,19]. For example, the longest line-of-sight photograph from a mountain in Spain
to a mountain in France is 443,000 meters [20]. Estimation of visual range from visual system
and water parameters coheres with empirical measurements. For fish, these give detection ranges
for ecologically relevant objects on the order of a body length [2,10]. The thousand-fold higher
transparency of air translates to a hundred-fold increase in visual range (figure 1).

After the minor corneal shape changes required for the change in refractive index, a hundred-
fold improvement in visual range for simply surfacing the eyeball has major implications for
animal behavior. Adding the onset of targeted eye movements [22], the evolution of necks in
transitional tetrapods [23] along with the rapid body reorientation possible on land results in
the animal’s visual sensorium increasing a million-fold [2,5]. All the opportunities and threats
formerly seen a few body lengths ahead, often forcing high behavioral urgency, can be seen at a
more comfortable distance and confers the possibility to use more extensive processing for lower-
urgency behaviors. The emergence of planning, a time-consuming process that gives way to habit
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Figure 3. An aquatic visual scene (a) compared to a terrestrial visual scene (b), and the different realms of lacunarity
characterizing land versus underwater habitats (c). The marine environment has ~100 times less biomass than land
despite occupying more than twice the area of land, and most of the biomass is accumulated in animals; in contrast, on
land most of the biomass (~95%) is in plants, primarily in their stems and trunks. Key sensory signals like light travel
a far shorter distance through water than through air. Focusing on light, aquatic visual scenes are blurry, homogeneous
and typically empty other than the occasional animal seen at close quarters (a). In contrast, terrestrial visual scenes are
dominated by biogenic and topographic structure, in a medium that enables sensing from a far greater distance (b). (c)
The mean lacunarity of land habitats is midway between the high lacunarity of coastal water zones and low lacunarity
of structured aquatic zones. Here, we plot this against another measure of habitat structure, entropy, which has proven
useful for generative models of different landscape types within the simulations of predator-prey dynamics discussed later.
The inset shows a sample of a savannah-like habitat from the Okavango Delta, where there is a mix of open areas and
closed areas. The green filled circle shows a region of environmental entropy/lacunarity where simulations show there
is a selective benefit to plan-based action selection during evasion of a visually guided predator. Top-view images are
converted to black and white images prior to the lacunarity calculation. Image (a) from [33] with permission from Elsevier;
(b) from “Zebra and giraffe” by Caty T, used under CC BY 2.0 (cropped from original); (c) from [5], used under CC BY 4.0.

when time is short, likely depends on this additional time [24-26]. However, even with other
possible long-range senses in water, as will be detailed later, the absence of much of the habitat
structure found on land appears to reduce the utility of planning in water. An exception may
occur where temporary structures are created by certain land mammals that have returned to
the water and use echolocation, which has much greater range than vision in water. Examples of
these include bubble nets, mud rings, and the use of multiple bodies to form walls and carousels
during cooperative hunts of whales and dolphins [27].

Paleontology of the water-land transition A bony testament to the effect of the water-land
transition on vision is the change in eye orbit size—a reliable proxy for eye size—when vertebrates
came on to land over 300 million years ago (figure 2). Analysis of the variation in orbit size over
pre-, mid- and post-transition shows eye orbit size triples [2]. Tripling eye size has almost no
effect on underwater visual range, but produces a large payoff in aerial range, particularly for
unimpeded sightlines over water (figure 1). The transitional tetrapods, some of which are believed
to have been primarily aquatic such as Tiktaalik, already show this adaptation [28]. Given the
flattening of the skull with eyes perched high (figure 2) and the use of biting for predation [29]
in addition to the more common suction method found in aquatic animals, these animals appear
to already be exploiting a greater visual range. What they used this for is less clear, but seeing
distant prey over the water surface would have been possible, including terrestrial invertebrates
(preceding vertebrates on to land by 50 Ma), other transitional tetrapods and air-breathing fish
[30] that surfaced to breathe using ventilation holes just behind the eyes (spiracles, green; figure 2),
or early amphibious taxa and stranded fish [2,21,31,32].

(b) Components of the terrestrial tableau

Land, with a mean elevation above sea of 840 m, has many forms of structural complexity
arising from plants spanning a wide spatial scale from grasses to large trees (figure 3), as well
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as arising from topographical features spanning ravines and hillocks to canyons and mountains.
In addition, terra firma presents an interface varying from hard ground and other solids such as
tree trunks to flowable, plastically deforming solids and granular media such as sand, mud, and
leaf litter all at angles varying from horizontal to vertical [34]. The challenge of terradynamics
for locomoting animals is in its much higher diversity of physics compared to the uniformity
of hydrodynamics [8]. The diversity of land habitats contrasts with the relative homogeneity of
marine habitats, whose mean depth of 3,700 m puts most of the ocean far outside the 200 m deep
zone where enough light penetrates to support photosynthesis [35].

Land is a scaffold on which the prime directive of plant life—to intercept light—competes
with the visual range of animals unleashed by the transparency of air, forming occlusions that
make clues of adversary state cryptic. In very dense foliage visual range is contracted similar
to the aquatic context. The effects of occlusions on land are manifold—for pursuit predators,
it is hard to play hide and seek on a flat open plain; while for ambush predators, occlusions
provide something to ambush from. Later we will provide evidence that between the extremes
of dense vegetative or topographical barriers and flat open plains there is an intermediate level
of sight-line interruption—such as savannah-like habitats—that provide high selective benefit to
planning in predator-prey interactions [5]. Note that crypsis is hardly unique to the terrestrial
condition, as it is a major theme of aquatic predator-prey dynamics as well [11]; however, aquatic
animals have far less at their disposal—chiefly background matching, given the relative paucity
of topographic or vegetative barriers. The octopus, the champion of underwater crypsis (and
perhaps of underwater cognition besides aquatic mammals [36]) can use their flexibility to exploit
very small hiding spots in the benthos and use millions of display and sensing elements to match
arbitrary patterns to deceive foe and conspecific competitor alike [37-41].

The change in resources from water to land is shown through biomass data [1]. The total
primary productivity—the amount of fixed carbon per unit time (mostly photosynthetic) across
all of life—on land is similar to that of the ocean, despite land only being a third of the Earth’s
total surface [1]. However, the magnitude and distribution of the ensuing net biomass is markedly
different between these two ecosystems [1]. Land biomass (=470 gigatons of carbon, Gt C) is
two orders of magnitude higher than marine biomass (=6 Gt C) [1]. Ninty-five percent of this
is plants; consumers such as animals are a relatively minor component. Oddly, this is flipped in
the marine environment: the biomass of producers (mostly photosynthetic) is only 20% of the
total. This is because the producers, primarily phytoplankton, turnover in a matter of days, while
consumers such as fish turnover on a much slower time scale [1]. A surprising point worth noting
for animals in terms of choosing food is that while not all of terrestrial biomass is equally easily
acquired and digested for its energy (thus herbivores have digestive tracts three times the length
of a carnivore’s), it is similar in energy density per unit dry mass—around a factor of two from
the lowest energy density to the highest [42].

Thus, in addition to the geological texture of land, there is a massive amount of biogenic
structure growing on it that is for the most part absent from oceans but for coral reefs, kelp forests,
and mangroves. Besides providing food and crypsis, this living scaffold provides a host of new
biomechanical niches, including climbing on stems and trunks, jumping or brachiating between
trees, and crawling, slithering, or burrowing through organic and inorganic material.

As important as land’s carbon-hoarding tendencies is the way in which it is arrayed on the
landscape. Lacunarity (from lacuna, a gap) is a measure of the variability of gaps in a landscape,
such as grassland between trees, and is a useful measure in this regard [5,43-45]. Terrestrial
landscapes inhabit a realm of mean lacunarity nesting between coastal seascapes and complex
aquatic seascapes such as those provided by coral reefs [5]. In the center of the land lacunarity
domain, habitats feature patches of dense vegetation interspersed by expanses of grassland
(savannah-like). It is in this region (green circle, figure 3c) where simulation results we will discuss
near the end show an advantage for planning over automatized action sequences.
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(c) Terradynamics and the need for multi-jointed limbs

Animals move by way of interaction forces emerging from muscles as they push the body against
the external environment. From the standpoint of a vertebrate in water, the force situation on land
is so different as to be like life on an alien planet. If you compute the force on a fish in water from
gravity, it is only at most a few percent of the force on land, as fish approach neutral buoyancy
(teleosts especially due to a swim bladder, and slightly less so for the cartilaginous fish which need
to swim while oscillating a non-symmetric tail to fight gravity) [12,46,47]. For this reason, if you
rotate an underwater vertebrate 180° around its long axis, you will be hard pressed to notice the
difference from a distance due to the symmetry of the top and bottom halves of the body. Rotating
limbed animals in this way breaks symmetry in an obvious way. The change in interaction forces
bears on why the tetrapod body plan is marked by a high number of joints compared to the
ancestral body, which in turn requires substantial neural innovation for coordinating between the
multiplying limb-centered frames as will be detailed later. One example we will discuss is wrist
flexion for movement, and another is the evolution of the neck.

Substrates around the water-land interface are often granular and yield upon interaction, such
as wet or dry sand and mud [8,34]. In prior work examining movement over such substrates,
using live and robotic sea turtles moving over sand, it was found that locomotor effectiveness was
determined by an interaction between limb substrate intrusion, belly friction, degree of substrate
disturbance, and wrist flexibility [9]. Without wrist flexion, the region of contact with the sand
rotated with forward body movement, and this disturbance causes the sand around the limb
contact area to now become soft and flowing [9]. As a result, the body sinks down into the
disturbed sand, causing a large increase in the belly friction. In addition, the flowing sand at
the limb intrusion point reduced the propulsive force that could be applied before exceeding its
lower yield stress (at which point the limb slips back). To move effectively, then, the sea turtle has
to use its limbs not only as propulsors, but also as manipulators, actuating joints of the limb to
carefully control interaction with the ground and maintain forward movement.

Neck mobility initially appeared in the transitional tetrapod Tiktaalik 385 million years ago [23].
Its absence prior to that time may partially relate to drag or control challenges of underwater head
rotations. Animals on land turn their head, and even at full speed, this incurs insignificant yaw
or pitch destabilization due to the low drag force of air. However, another key factor is that above
water, head rotation vastly expands the total visual sensory volume that can be inspected, while
below water this is not true. Consider two animals: one animal with 3 meters of underwater visual
range and another on land with 300 meters of visual range. If the fields of view of both animals
expands to 360 degrees due to head mobility, the total sensory volume on land would be 100 or a
million-fold larger compared to the underwater sensory volume [2,48,49]. A signature of the yaw
instability issue combined with the advantages of swiveling larger sensory volumes may be seen
in mammalian underwater echolocators, with their much longer sensory range than is possible
with underwater vision (order 100 m for prey-sized objects [50]). At low speeds, they use head
rotations underwater during esonification of their targets [51] while at higher speeds they steer
their beam internally over a more limited range without moving their head [52].

(d) Limbs and avoidance of tipping over

Since being above water puts the full force of gravity on the body, and dragging the body incurs a
large drag penalty or can cause movement to fail [9,53], attaining ground clearance and associated
neural control was important for the early land vertebrate. Brains greatly increased in size in two
key radiations (mammals and birds) and not in a third (reptiles), and as will be described later,
most of that increase is in the telencephalon and in the cerebellum. Just as controlling the body
from falling over when on land depends on the body’s orientation to gravity, muscle activations
to move a limb to a certain point in the egocentric frame are entirely different if that limb’s initial
orientation is parallel or transverse to gravity. Yet, this is a common need given movement over
the variously flat, tilted, or vertical surfaces of land. Compensating for these variable control
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needs and reweighting sensory inputs according to body state seems part of the cerebellum’s
function [54] as discussed further below.

Focusing on avoidance of tipping over, the relevant abstraction is the support polygon—the
points of contact on the ground—relative to the body’s center of mass. When the center of mass is
low and within a wide polygon (sprawled posture), there is no tipping; but if it is high, then only
a slight body destabilization will bring the center of mass outside of the polygon and result in
falling over without corrective maneuvers [55]. Indeed, one clinical sign of cerebeller damage is
taking a wide stance [56], the bipedal equivalent of the sprawled stance that occurred in ancestral
tetrapods and still used by amphibians and many reptiles. Unsurprisingly, aquatic therapy is a
common modality for balance issues in humans [57], either directly related to cerebellum deficits,
or to those of the basal ganglia to which it is highly coupled. Simply getting to a sprawled posture
required a 40 million year-long “training-wheel” phase at the transition on to land in which partial
submersion and body dragging was prominent [53,58,59], as well as a need for tail manipulation
[60,61].

The issue of sprawled-stance versus the more upright stance found in more derived tetrapods
such as mammals, with the feet directly under the body, has received considerable attention in
the biomechanics and evolution literature [53,55,62-68] though less within neuroscience [69].
There appears to be a correlation between the upright stance found in mammals and their much
higher speed and energy use, in comparison to lizards (all ecotherms measured at 35-40° for the
following numbers, from [70]). The VOymax Of mammals is 6-fold that of lizards; at the VOypmax
they have a maximal aerobic speed that is ~7.4-fold higher. Their daily energy expenditure is
~11.4-fold higher. The increase in daily energy expenditure relates not only to higher speeds, but
also to their 10-fold larger relative brain mass over that of ectotherms [3].

These considerations point to an ecological stratification of niches along a dimension of power
density [71]. High power density animals like birds and mammals go faster and have more
rapid neural computation due to hotter, larger brains [3,72], while low power density animals
like amphibians and lizards go slower and have slower neural computation in smaller brains,
using strategies like sprawled posture. It is interesting, and seemingly not accidental, that the
low power density animals on land have a number of features (e.g., small, cold brains) similar
to the underwater vertebrates from which they evolved. These neuroecological considerations of
the water to land transition provides background for understanding changes in the brain over
the water to land transition. The issue of power density will return at the end, where we will
argue that the water to land transition is paralled by a habit to plan transition in potential action
control modes among mammals and birds—seemingly rare or nonexistant in the ectothermic land
animals perhaps due to planning’s high computational demands.

3. Approaches to the evolution of brains and brain function

Here, we begin to consider how vertebrate brains have evolved consequent to the new
informational and mechanical ecology offered them by life on land. We will argue that the
water-to-land transition offers potentially massive benefits to the possessors of brains capable
of solving some very specific problems in gathering information and structuring decisions. The
study of brain evolution has been active for more than a century, and now carries with it a
host of broad and essentially unresolved questions, several of which we will touch on. Brain
evolution research ranges from the broadest questions of the relation of brain mass to survival and
longevity to the specifics of circuit redesign in sensorimotor specialists. The circuitry-intensive
tasks of accurate integration of visual information over a moving eye, neck and body and the
integration of multiple motor effectors, both of which demand plasticity over both phylogenetic
and developmental time, come to depend in mammals on the neocortex. These functions are
expanded and altered from their original predominantly “hardwired” midbrain organization,
entailing a new computational architecture whose extended use for comparisons of new domains
of information may be key to its retention in the neocortex.
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(a) Brain mass and behavioral complexity

(i) Behavioral complexity

A taxon-general, positive relationship of brain mass to behavioral complexity has survived a
contentious century of redefinition and refinement of the measures of both “complexity” and
“mass” [73-76]. Behavioral complexity, variously identified ad hoc with the capacities of prey
versus predator [73], bottom feeders versus more ambitious predators [77], folivores versus
frugivores [78], or residence in low versus high environmental complexity [5,79] correlates with
brain size. Behavioral inventories (including stringently-defined “behavioral innovations” in the
wild), success in invasion of new niches after accidental introductions, and relative longevity
also correlate with greater brain mass, often in interaction with sociality [80-82]. “Cognitive
control”, the ability to choose the best of competing responses accurately [83] or to delay reward
for increasing lengths of time [84] correlate similarly. Finally, the endothermic branches of the
terrestrial vertebrate invasion, birds and mammals, show a 10-fold increase in relative brain size,
called a “grade shift”, which is one of the most distinct in vertebrate history. What is this as-yet
undefined brain mass? Neurons, glia, or connections? All of the brain, or parts (and which parts?),
more generalized “computing power”, memory, or specific classes of circuitry? The water-to-
land transition generates an unusually well-defined list of behavioral necessities that allow some
reinterpretations of the basic facts known about how brains change.

(i) Mass and neuron number

Overall mass, a crude measure indeed for any computing device, has successfully resisted more
decomposition than would seem probable. Substitution of neuron number for mass, whether
done by exhaustive stereological techniques or flow cytometry [85-88], produces generally similar
rankings, and shows that between-taxon density differences are pervasive. Neuron number is
usually thought to be the germinal element of change in brain volume, but in specific cases,
alteration in the amount of connectivity can be the direct cause of a significant functional change.

For specific cases we will discuss, we draw your attention also to alterations in convergence
of connectivity as a direct cause of significant volumetric and functional change. For example, in
primate neocortex, while the prefrontal and parietal cortex are equal in their disproportionate
volume increase in large brains, they stem from different causes. The increase in prefrontal
volume is largely due to an increase in axodendritic volume that reflects extreme convergence
of inputs to the frontal cortex [89]. The increase in parietal volume is due to increased neuron
number [90]. The distinction between increased convergence in the frontal cortex—useful for
action selection—and more computational elements in parietal cortex—useful for accurate
integration of embedded visual circuits—may be essential to the tasks they perform.

(i) “Correcting” brain mass for body mass

How to separate the necessary costs of maintenance of a larger sensory and motor periphery
and its visceral regulation from potentially increased computational power has been a perennial
issue. While Jerison’s measure of relative brain size, the “encephalization quotient” (EQ), [73],
successfully identifies those species with relatively large brains for their bodies, its conceptual
basis is problematic [91]. Encephalization measures very often do no better than absolute brain
mass in predicting behavioral complexity, as in the cognitive control experiments described
earlier [83]. Overall, the point of this section is to show that increase in brain mass, absolute or
relative, can be one aspect of an adaptive response to the challenge of a new niche. Examining
the phylogenetic path a species has taken to its present brain and body masses can be particularly
informative about the significance of changes observed [92,93] to which we can add an ecological
path. Overall, as apparent from the neuroecology section above, removing the requirements of
body control from consideration in brain evolution seems poorly motivated. See the electronic
supplementary material for other issues in comparing brains.
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(b) Fractionating behavior and the brain

The search for better focus on the drives and mechanisms of brain evolution led researchers
looking at the relationship of whole brain volume increases to aspects of real-world function—
the allometric tradition—naturally desire to make a more detailed account. The next step was to
attempt to find variable behavioral competencies that correlated with the volume of particular
neural substrates. The first, and most dramatic evidence for different brains for different niches
was the contrast between olfactory versus visual representation in nocturnal versus diurnal
mammals. Those who are principally nocturnal have relatively larger olfactory bulbs and
olfactory cortices while diurnal animals favor the remaining forebrain, specifically the neocortex
in mammals. This contrast can be seen throughout the vertebrate lineage, in sharks and rays,
teleosts, reptiles, birds, mammals, in characteristic changes from domestication, and in individual
variation in humans [94-103]. Oddly, moving away from this particular axis of vertebrate brain
organization to find other similarly-sized effects has proved difficult. The analytical problem
facing researchers may be appreciated in figure 4 [104].

Although it is clear that the olfactory bulb is quite variable in volume, and many other
interesting distinctions appear, the first message of figure 4 is covariation and high predictability.
A principal component analysis of the mammals in this set shows that the first and second
principal components explain 99% of the variance. All brain divisions load on the first principal
component (Factor 1) which explains about 96% of the variance. Olfactory bulb, olfactory cortices,
hippocampus and amygdala load on the second principal component (Factor 2), about 3%. The
remaining 1% of variance must then subsume individual variation, variation by sex, experience
effects, and simple error in addition to any niche or specialist variation in the “proper mass” of
interest.

The second message of figure 4 is the overwhelming contribution of differential allometry,
the different slopes of rate of increase of size of particular brain divisions with increase in brain
size. This difference can be difficult to appreciate in the necessary log/log relationships plotted
in the graphs, but can be seen in the two insets. Both the forebrain and the cerebellum have
“positive allometry” with respect to the rest of the brain. In the bottom inset, we show a set of four
vertebrates (goldfish, whale shark, cat and sheep) whose brains range up progressively in size but
which are shown at the same magnification, with the goldfish boosted as indicated so that it can
be seen. These brains show how the forebrain and cerebellum progressively and predictably come
to dominate brain volume. In the side inset, a similar point is made about the positive allometry
of the neocortex with respect to the rest of the forebrain for three marsupials, the dunnart (the
“marsupial mouse”), the sugar glider and the gray kangaroo, chosen for a smooth progression in
size and similar Factor 1 and 2 loadings. In this case, the coronal sections of each brain are printed
at different magnifications, but are visually matched in size so that the regular expansion of the
neocortex in the larger brains can be appreciated.

Unfortunately, the search for a relation between a specific behavioral ability and the volume
of a particular brain division, area or nucleus has been unusually prone to premature conclusions
because of the markedly different allometry of brain parts and the covariation between
the elements of Factors 1 and 2. These two issues make defining a “base” rate of change
exceptionally difficult. Interestingly, at least some cases of what would seem to be very species-
specific adaptations in complexity, like differences in dexterity ranging from paws to hands are
accompanied by more neural tissue dedicated to the appropriate limb, but which in turn is
entirely accounted for by overall brain mass [109]. Most important, figure 4 and 5 together beg
the question of just why the allometrically-privileged structures like the forebrain and cerebellum
are so, and why the vision versus olfaction dimension of variability can make such a demand on
brain organization, which other sensory specialists rarely show.
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Figure 4. (a) The natural-logged values of brain region volumes are regressed against the natural-logged values of
overall brain volume in ray-finned fishes, sharks and rays, amphibians and mammals. While simple regression is easiest
to visually comprehend, and emphasizes the brains of smaller volumes central to the water-land transition, it has the fault
of minimizing the apparent variability of the structures with the largest allometric slope in the largest brains (primates, large
ungulates and carnivores), which should be kept in mind. Other representations with a variety of indexing and any form of
general linear analysis corrected for overweighting of phylogenetic covariation will confirm the overall features we describe
and can be found elsewhere [100,103,105]. Added species’ brain divisions were drawn to match the original Stephan
dataset conventions. Brain divisions are ordered from bottom to top in order of increasing slope. A constant was added
to the brain region volume to separate brain region volumes on the Y axis and is listed adjacent to each named structure.
(b) Lateral drawings of four vertebrate brains to show the effect of the high allometric slope of the telencephalon (red) and
cerebellum (blue) relative to the remaining brain on their increasing contribution to total brain mass in four species. Left
to right: a teleost, the goldfish (Carassius auratus) [106], a chondrichthyan, the whale shark (Rhincodon typus) [105], and
two mammals, the domestic cat (Felis catus) and the domestic sheep (Ovis aries domestica) [107]. They are all shown
to approximately the same rostro-caudal length, but notice the size of the scale bar, always 0.5 cm, under each but for
the magnified fish brain at 0.05 cm. (c) As in the bottom inset, this time the increasing contribution of the neocortex to
total brain volume, for three marsupials with brain size increasing from top to bottom. They are shown to approximately
equilibrate the distance from midline to the lateral margin of the putamen (dotted line), and each is marked with a 1 mm
scale bar. These marsupials were chosen because of their more intermediate values on the neocortex/olfactory-limbic
axis (figure 5¢). From top to bottom, the fat-tailed dunnart (=16 g, Sminthopsis crassicaudata) [108], the sugar glider
(=120 g, Petaurus breviceps), and the grey kangaroo (/245,000 g, Macropus fuliginosus). The latter two images are
from the Comparative Mammalian Brain Collections, www.brainmuseum.org, property of the University of Wisconsin and
Michigan State Comparative Mammalian Brain Collections funded by the National Science Foundation and the National
Institutes of Health.
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Figure 5. Allocation of forebrain volume to olfactory/limbic components versus neocortex or “other forebrain” in
vertebrates. All vertebrate taxonomic groups examined to date show covariation of a set of olfactory and limbic structures
which vary independently or negatively with respect to the volume of the rest of the brain or neocortex. The species chosen
for illustration in panels (a) and (b) contrast the structural consequences of weighting on the olfactory/limbic factor, in the
context of other covariates, brain and body mass and nocturnal and diurnal niche. (a) Contrast of the nocturnal owl
monkey with the nocturnal/diurnal agouti, lateral view, rostral to the right. Their brains are quite similar in volume, while
the agouti’s body mass is approximately 5 times the owl monkey’s, which can be appreciated by comparing the spinal
cords (black arrows). In the owl monkey, the olfactory bulb and tract is a barely-visible thin ribbon on the inferior aspect
of the rostral forebrain, while the agouti’s are robust. Primary olfactory cortex, piriform cortex, is visible below the dorsal
neocortex. In the owl monkey, the size of the neocortex obscures all other brain components from view, including the
cerebellum, equal in size to the agouti’s [110]. Magnification is equivalent for both brains. (b) A coronal section from a
large-brained, small bodied squirrel monkey (Primata) is contrasted with that of a small-brained, larger-bodied armadillo
(Xenarthra), which represent the extreme divisions of the graph in (c). The section was chosen at the point of maximum
cross-sectional volume of the hippocampus of each, which is quite small in the monkey, as is the olfactory cortex. In the
armadillo, the hippocampus and olfactory bulb and cortices dominate the volume of the forebrain. Images are from the
Comparative Mammalian Brain Collections, www.brainmuseum.org, property of the University of Wisconsin and Michigan
State Comparative Mammalian Brain Collections, funded by the National Science Foundation and the National Institutes
of Health. (c) The strong negative correlation within and across mammalian taxonomic groups of the relative volume
of the olfactory/limbic principal component compared to neocortex volume, both normed with respect to core (medulla,
mesencephalon, diencephalon, and striatum) [103]. Additional point for Mus musculus estimated from [111]. Black circle in
the upper left quadrant is around the the squirrel monkey data point, while that in the lower right quadrant is the armadillo.
Microbats are filled squares, while mega bats are open. (d) A comparable analysis of residual volumes of the olfactory
bulb versus “rest of forebrain” predicted from medulla volume for sharks and rays. In this case, brain volumes show a
relation to niche, with greater volume for “rest of forebrain” for reef denizens (turquoise symbols) and greater olfactory
bulb volume for deep water denizens (dark blue), but the brain features vary independently, not negatively with respect to
each other [94].
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Before proceeding, one qualification is in order. To believe that that mosaic volume alterations
are not part of the evolutionary palette would be incorrect. The forgoing discussion has
principally referenced mammals, which were the only vertebrates with data available for analysis
for some time. Demonstrated differences in allocation of neural tissue are often seen in small
mammals with pronounced sensory specializations, like the star-nosed mole [112], or in allocation
to specialized body parts within primary sensory areas in larger mammals [113]. The remaining
vertebrate taxonomic groups, particularly birds [114,115] show considerably more variability
in brain organization both between species, and across the lifetimes of individuals. Brain
reorganizations may be seasonal or related to changing sex or social status (for example [116]).
The source of such brain variation in non-mammalian vertebrates is partially from much more
modifiable neurogenesis over their lifespans compared to mammals [117].

(c) Deep dives into specialized behaviors and abilities: neuroethology

One alternative to the allometric study of very general traits over very many animals’ brains in
order to understand brain evolution has been the intensive study of easily-recognized, specialized
traits in particular animals. The neuroethological approach offers the opportunity to study
behaviors that are unambiguously the result of special selection, distinguish innate and learned
contributions to behavior, and investigate the role of environmental context [118]. Conspecific
recognition in amphibians [119], prey capture behavior in fish [120], echolocation in bats [121],
electroreception in mormyrids [122], territorial displays in lizards [123] and food caching in
birds [124] are some examples of this first approach. By now, though, the number of studies
of diverse animals (even allowing for the dominating laboratory mouse) makes it impossible
to draw a line around the domain of neuroethology [6]—it has become the field of systems
neuroscience. For the most part, in accord with the discussion of fractionating the brain, most
of the specialized systems of neuroethology can be seen as elaboration of existing subsystems
rather than add-ons of new parts, compared to closely related species without the specialization.
Even the “song system” of passerine birds, whose components were originally granted an entirely
independent neuroanatomical nomenclature, has been progressively gathered back into the avian
fold [125-127].

The idea that an entire behavioral capability could be dependent on a single brain part has
gone progressively out of favor as neuroscience describes functional distribution more closely.
Brain regions are more often viewed as the providers of a particular class of computations which
multiple behaviors may utilize, which we will explore more deeply later in this paper. Focus
has shifted toward identifying factors that can produce distributed recruitment of processing
power across multiple brain regions, and those can include alteration in neuromodulators and
neurohormones [128,129], “reservoirs of variability” in founder species [130], “evolutionary paths
of least resistance” [131] or niche constructions large and small [132]. Unlike the relative scarcity
of specialized volume differences related to function, these other sources of evolutionary change
are ubiquitous. Via changes in these systems, “experience effects” are not late add-ons to brain
structure but can be fundamental to the path of structural development [133,134]. Via changes in
life history, evolution changes the opportunity for the environment to impact brain development
and the brain’s responsiveness to particular inputs [135].

The critical challenge is to find a principled way to integrate the general positive manifold
of brain and behavioral complexity discussed above with the accounts of specific, adaptive
behaviors of neuroethology and systems neuroscience. We will argue that a very specific example
of this kind comes from the water to land transition. The computational challenge of the specific,
but ubiquitous problem of how to integrate increasingly mobile spatial frames of eye, head,
neck and limbs in terrestrial vertebrates is the explicit kind of behavioral adaptation favored
in neuroethology, and indeed, the study of integration of auditory and visual information in the
midbrain is one of its classic paradigms [136]. Adding a phylogenetic and neuroecological level to
this account underlines an overlooked aspect of changed distribution of function in the terrestrial
midbrain and forebrain.

10000000 g 90S 4 901d qdsi/feunol/Bio-BuiysigndAiaioosieos



412

415

416

417

418

419

420

422

423

424

425

426

427

428

429

430

434

435

436

437

438

439

440

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

4. The fundamental decisions: Orienting, approaching and
avoiding

(a) Simple approach in water becomes elaborated on land

While a fish striking at a swimming insect, a frog striking at a flying insect, or a human using a
flyswatter might appear to be executing quite similar tasks, the motor and sensory computational
requirements necessary to success in this minimal effort are much more complex on land.
Given the depth and richness of the visual array and the need for more variable and nuanced
interactions with land over water discussed above, virtually all land vertebrates have amplified
various combinations of ocular motility, flexible necks and torsos, and scanning and searching
procedures to exploit their visual resources. By comparison, fish principally use their oculomotor
capabilities not to seek out nor avoid, but to stabilize their motion with respect to the visual
environment, using saccades to recenter their eyes in orbit [137]. No fish is known to use smooth
pursuit to keep prey in sight, though some do have saccade and variable aim abilities [138], and
conjugate vergence of the eyes is used preceding the moment of attack, possibly as a mechanism
of estimating strike distance [139,140]. When fish strike, the mouth is by far the organ of choice,
but land animals quickly elaborate multiple-axis foveation, limb placement and grasp, and a
reasonable percentage even develop tool use. No matter how rich a visual array; if it cannot be
searched (either in real time or memory), and the results of that search accurately represented in
ego-, paw- or hand-centered coordinates, it will not be useful. Just how and where this sine qua
non is integrated into the terrestrial brain sheds new light on the nature of neocortex evolution.

(b) The midbrain optic tectum
(i) Approach

The midbrain tectum is highly conserved in its connectional structure across vertebrates. More
than any other structure in the brain, it physically replicates the spatial relationships of the visual
(and other sensory) scene to the body in the brain and thus lays out a solution of how to orient
the mouth or body to a desired object or location of interest. The retinal surface, representing
the visual world, is laid out topographically across the surface of the tectum, central visual field
in rostral tectum, peripheral visual field in caudal tectum, upper visual field medially, lower
visual field laterally. The next layer down brings in somatosensory, or auditory, or infrared
(depending on which the species possesses and prefers), in spatial register with forward visual
fields, whiskers and forward auditory receptive fields located in front and their corresponding
opposites behind. Yet further down is the motor approach zone, with secondary or tertiary
motoneurons, capable of orienting each animal toward the location of items of interest with a
species-appropriate action: whether prey strike, head turn with ears pricked, or conjugate eye
movements alone [141].

One basic role of the midbrain optic tectum is quite easy to assess: orienting toward food
(the term “optic tectum” will be used for all vertebrates). The behavior of orienting toward
species-appropriate food items in bony fish, amphibians, birds and mammals, either completely
dependent or partly on the optic tectum, is so reliable that it is the basic assay for the normal
and abnormal development of the visuotopic map in the tectum representation [142-145]. These
motions are not automatic or reflexive: species-typical criteria are wired into the response
properties of the visual neurons, and motivational and physiological states help gate movements
by their interactions with basal forebrain and diencephalon. The optic tectum is often cited as an
example of plasticity, because if the optic nerve is severed in goldfish and some amphibians, it will
regrow and reconnect appropriately [142]. If one sensory surface is developmentally displaced
with respect to another, they will align to bring themselves into register during a critical period
[136], and in some mammals receptive field location will be altered dynamically to correct for
eye movements of limited range [146]. However, this structure has the basic vertebrate body
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(the fish body) patently wired into it. Looking back over one’s shoulder toward an interesting
sound would throw its visual, somatosensory, auditory and motor representations unusably, and
perhaps fatally out of register. In teleosts, as reviewed earlier, the tectum also participates in
an optomotor reflex whereby the animal stabilizes its position if the distal visual environment
moves (that is, in the lab, an experimenter moves stripes in an aquarium wall) [145] The goal
of this “reflex” is functionally analogous to how a human swimmer might key on a shore
landmark to keep their position against an ocean current. In the mammals that have been closely
studied, optomotor responses do not involve the tectum (reviewed in [147]). Instead, a variety
of interacting, often mutually overriding mechanisms for stabilization of eyes, body and posture
are added to its neural control systems, especially when the species in question is in command
of a large repertoire of eye movements [137,148,149]. These new mechanisms come to depend
principally on the vestibulocerebellum and subcortical optic nuclei, and the forebrain as well.

Interestingly, birds appear to have a hybrid system at multiple levels, exploiting increased
ability to use visual information while under “aquatic” constraints [150]. In flight, their
aerodynamic constraints are similar to the hydrodynamic constraints of fish (and dolphins, as
described earlier). In tandem, the range of bird eye movements, in the relatively few species
studied, are reduced or altogether eliminated. As in fish, the essential information about whole
field movement, as might be experienced in an air current (described below) is conveyed to the
optic tectum whose volume is relatively large in birds [151] (“Mes” regression line in figure 4a;
note that bird values (green triangles) lie above mammal values (red circles), closer to sharks
and rays (blue triangles)). While, like fish, the relative movement of bird sensory surfaces with
respect to each other is constrained, the visual acuity and pattern and object recognition of some
birds exceeds most land vertebrates. Their eyes may be multifoveate with specialized tracking
and scanning abilities—for example, a high-acuity region of the retina may be preferentially
used to guide cruising, and a second retinal area for prey capture [114,152]). In general, while
mammals directly trade off central visual field acuity for peripheral acuity [153], birds can
maintain high peripheral acuity while developing even higher central specializations for acuity,
all with higher temporal resolution as well [154]. The interleaving machinery of navigational and
pattern-recognition abilities employs multiple subcortical nuclei, the vestibulocerebellum and
major components of the forebrain.

Why would the medium, whether water, land or air affect the relative use of midbrain vs.
forebrain in teleosts, birds and mammals (including bats)? In aquatic environments, movement
of the distal visual field either arises from movement of the animal by water currents, which the
fish must counter to remain stable, or from self-initiated movement which must be discounted.
Therefore, compensation for this omnipresent, large-magnitude external cause of self-motion
must be always available to modulate approach, avoidance or any other visual calculation of
importance, likely accounting for its residence in the optic tectum. On land, it is unusual for
the surrounding medium, air, to be moving at such a speed as to directly move an organism,
contrasted with its role as a moment-by-moment problem to be countered or exploited in water,
or in flight in air. In land animals, if the animal has not initiated movement itself (which typically
predicts and thereby “cancels” the sensation of visual field motion), movement of the distal
visual environment instead signifies potential catastrophic failure of postural stabilization (so
well calibrated is this system that numerous mammals, including ourselves, use any signal from
it as a signal of poisoning, particularly alcohol poisoning, hence carsickness and some hangover
prevention). In terrestrial environments, the principal use of oculomotor information becomes
optimization of visual information processing [155,156], keeping the eye stable with respect
to the visual surround. Basic ocular stabilizing mechanisms are overlaid with overrides that
permit saccades and visual pursuit, which are distributed in the brain and normally involve the
cerebellum as well as numerous subcortical pathways, as mentioned earlier. Avian vision must
hybridize the aquatic stabilizing mechanisms with the high-acuity requirements of terrestrial
vision.
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Birds have, in part, a second fish-like feature relevant to neural organization (interestingly,
bats have evidence of the same midbrain dependence; figure 5). The use of wings for flight rather
than for grasping or navigating terrain makes birds more fishlike in the kinds of orientation and
approach to be controlled in a substantial part of their ecology. Limb control is obviously not
a feature of fish, and the neural locus organizing limb movement for the most part ends up
outside the brainstem and midbrain in terrestrial animals, particularly for grasp. What about
perching birds, and even more, birds like parrots with good manipulation capabilities in their
feet? Any answer to this question would be quite interesting, but has spurred virtually no research
(excepting lateralization of foot preference in relation to song, by analogy to human language
lateralization and handedness [157]). Finally, a much-researched third type of mammal can be
added to those having the design features of passive movement and absence of functional limbs.
Human infants have been shown to be highly dependent on the midbrain for visual orientation in
the first three months, but over the first year, the cortex becomes dominant in visuomotor control
[158,159]. Typically, this is interpreted as the large cortex overtaking or subsuming midbrain
control [160]. The changing neuroecology of the infant might be a better way to understand
a problematic “ontogeny recapitulates phylogeny” interpretation: an infant makes the neural
transition from a limbless creature subject to passive movement to a fully terrestrial one by the
end of the first year.

(i) Avoid, scan, traverse

In almost all species, avoidance movements to visual events also depend upon the tectum, from
dorsiflexion to overhead shadows in fish [145], to a 180 degree leap or scramble away from
a threat in birds, amphibians and small mammals [161,162]. While organization of approach
resides in the dorsal tectal layers, organization of avoidance depends on the more ventral
layers, with those in close apposition to the dorsal periaqueductal gray, an organizing region
for avoidance generated by negative somatic and visceral events [163]. Additional approach-
avoid behavior can also be dependent on the midbrain, such as initiation of visual exploration
of the environment—scanning on entry to new arenas—and avoidance of obstacles in the terrain
for desired orienting movements in either approach or escape [162]. Some form of coding of
species-relevant identification of the objects of desire or avoidance may also be part of optic
tectum single-unit electrophysiology, but the scattering of this research over decades, theorists
and species makes a phylogenetic summary of this research approach close to impossible.

(c) Posterior parietal cortex, the integration of reference frames, and the
multiplication of end-organs for grasp

The computational demands of the terrestrial vertebrate body radically expand those of the
minimal aquatic body. The addition of four limbs, which even if not employed directly for
grasp, must minimally be added to the description of “an egocentric frame of reference” from
visually directed footfalls or locomotoric grasping, as in tree climbing or branch swinging.
Greater ranges of relative eye, neck and torso movements further complicate the rendering
of a body “main axis” even for simple approach. The much-studied partial separation of the
two routes of visual information to the forebrain in terrestrial vertebrates, the tecto-pulvinar-
cortical versus geniculocortical pathways [166], or alternately, the dorsal versus ventral visual
streams in mammalian cortex [167], probably have their functional roots in this essential added-on
computation.

Within the neocortex, the posterior parietal cortex has a positive allometry equal to frontal
cortex. That is, as the neocortex increases in absolute size, the frontal and parietal show the
relatively largest increases (every brain subdivision has an allometric relationship with respect
to the division it is in, such as cortical areas or regions with respect to whole neocortex, thalamic
nuclei with respect to whole thalamus and so on). Functionally, both participate in the general,
spatially-organized egocentric topography of the lateral neocortical convexity (figure 6). That
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Figure 6. Schematic demonstrating the egocentric topography of the lateral cortical convexity, and the non-egocentric,
but nearest-neighbor topology of the temporal lobe. For this representation, the current arealization of the lateral convexity
of the neocortex in an individual macaque (Macaca fascicularis), with the procedures of the same authors for unrolling
and “flattening” the cortex [89] is used as the basic template (Dotted line box, top left) used with permission as described
in [90]. The flattened map in in the bottom left groups the same map into compartments of embryonic thalamocortical
topographic continuity [164,165] each associated with a unique primary sensory or motor area, as labeled on this map
and also as described in [90]. In the top right, the flattened schematization, now omitting limbic cortex, is squared up
to correspond to the medial-to-lateral and the anterior-to-posterior location of these fields in the embryonic cortical plate
with emphasis placed on longitudinal stripes of cortical areas extending along the mediolateral axis of the unrolled cortex,
always maintaining nearest-neighbor relationships. The number of non-primary cortical areas, each represented by a
rectangle in this figure, corresponds to the macaque cortex from which it was drawn, but would vary by species, with
fewer areas in smaller-brained mammals, and more areas in larger ones. Finally (bottom right), functional mappings of
interest are overlaid on this representation, the visual and somatomotor egocentric representational axes indicated by
the visual scene and human figure to the left and right of the cortex, as well as the feedforward/feedback pathways
described by Markov and colleagues [89]. In the temporal lobe, three examples of the several non-egocentric functional
maps (which still maintain nearest-neighbor thalamocortical projection relationships) represented in that region are given.
Elements from [90] are redrawn and rearranged, containing new material.

is, the lower visual field, sounds from the floor and the sensations and actions of feet position
themselves in the medial superior margin of the cortex, while upper regions of multimodal and
motoric space abut the temporal lobe [90]. In order to participate in this organizing egocentric
topography for action, the position of eyes-in-head, head on neck and torso rotations must be
integrated to allow the head to turn or the hand to reach toward a desired goal. To the surprise
of most of the original researchers in this area, the posterior parietal cortex does not accomplish
this by generating a sequential, embedded hierarchy of maps of visual-stimulus-in-retina, then
retina-in-head, and then head-on-body explicit in successive parietal cortical areas. Rather a non-
hierarchical recombination of subsets of retinal, eye, and head positions in different parietal areas
produces a standing combinatorial array of a retinal target position weighted by eye-in-head,
head-on-neck, and arm positions—all of these in the very general egocentric frame of the whole
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lateral cortex. Any particular motion is represented by a weighted combination of outputs from
this array relayed directly to effectors, to the striatum and hippocampus, and to the frontal lobe
[168-171]. This organization is quite distinct from the orderly superposition of sensory and motor
maps in the optic tectum, but has extreme modifiability—or “evolvability”—in both individual
development and in evolutionary time to accommodate new body arrangements and abilities.

The parallel terrestrial multiplication of types of “grasp”—"foveation”, bringing items to
mouth, independent grasps by either hand, whole-body tackles, and catches and kicks of any
object—appear to have found a similar solution to the egocentric axis integration problem just
described. Potential points of contact with the world are not represented as explicit locations
on the body on a general egocentric map. Rather a series of overlaid maps are described, some
representing distance with respect to the mouth, or either hand, or the midline, or created ad
hoc [172-175]. The formerly perplexing study of 23 mammals varying in “dexterity” from the
slow loris and rabbit to the marmoset and macaque [109], concerning the measured volume
of cortex contributing corticospinal neurons to upper limbs, can now be put in context. Direct-
projection cortical volume did in fact correlate with dexterity, but that volume in turn was entirely
accounted for by total cortical volume. Considering the sequence of body, hand, eye and mouth
spatial registrations required for a monkey to request social foraging for an insect in the pelt of
another monkey, catch the insect with a pincer grip, visually inspect it, and bring it to its own
mouth, the need for cortical volume in excess of the neurons generating the immediate volume of
the corticospinal tract origin is no longer mysterious.

As to functional homology of these functions across aquatic to terrestrial environments, by
their simple description, they cannot be homologous—fish are not required to recalibrate relative
map positions of shifting sensory frames and localize limbs. Some recalibration of reference
frames does occur in the vertebrate optic tectum, recentering the egocentric map after eye
movements, though the computational job is slight compared to the large range of parietal
computations. A neuroanatomical substrate for a potential elaborated map in the forebrain can
be found in ascending projections from midbrain to forebrain in most vertebrates, Butler’s [166]
“collothalamic” projections, though a convincing “thalamocortical” homologue cannot be found
in fish [6]. The ability to initiate approach movements is quite distributed in the spinal cord,
midbrain and forebrain in mammals, but the ability to control single limbs, digits, and rapid
movements of the mouth and face depends on the cortex.

5. Egocentric versus allocentric maps: understanding the
forebrain through the water-to land transition

(a) Characterizing sensory systems and the animals using them

Considering the transition from water to land from the brain’s perspective can be understood
on first pass as a change in the relative usefulness of different classes of sensory information
coupled with marked and variable new motor capabilities. For example, in water, chemosensory
information can be used as a kind of distance sense with a range greater than vision, and is
particularly useful for “object” or source identification, whether that be the olfactory signature
of a location, or a potential mate or prey. Terrestrial olfaction does not lose these functions, but
becomes supplanted, in part, by the greater usefulness of vision, except for those cases where
useful chemical information might have no visual correlate, such as the presence of a poison or
the reproductive state of a conspecific.

Both folk and academic beliefs about sensory systems color beliefs about the internal states and
capacities of those thought to be sensory specialists. Sharks, for example, had been characterized
as “swimming noses”, with olfactory information dominating the forebrain, by the pioneer
comparative neuroanatomists [176], as reviewed in [177]. A revisionist period followed, showing
that multiple sensory modalities also had access to the aquatic forebrain [77], but of late, the
pendulum has swung back to acknowledge that yes, olfaction appears to dominate, though
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not as completely as the first claims pronounced [178-181]. For vision, particularly considering
mammals, it is instructive to notice just how much of the cortical surface is captured by primary
visual cortex and extrastriate visual representations in even nocturnal animals like rats and
mice. The relative representation of vision in “non-visual” mammals such as these exceeds
that of diurnal, shore-dwelling sharks and rays [94,182]—perhaps not surprising given that
estimated nighttime visual ranges on land exceed daytime ranges in water [2]. The diurnal,
high-visual-acuity terrestrial mammal does not have an aquatic counterpart.

The distance information available to an animal will also likely privilege different memory and
decision-making strategies. Consider a diurnal marmot-sized mammal entering a large, fairly
open field in a woodland that it has entered before, compared to a trout viewing the extended
riverbank before it. The marmot has had the opportunity to “tag” the multiple distant but
recognizable features it sees as represented egocentrically, each with its reinforcement history, and
its motoric affordances. For decisions of where to proceed, the marmot can neglect an allocentric
representation of its relation to unseen landscapes, to a degree. So scanning, left to right: “water”;
“potential danger”; “berries depleted”; “possible berries”, “good hiding location”. This kind of
visual array maps easily onto what is understood about the egocentric cortical surface, for sensory
representations of useful objects and routes, and their evaluation via its reinforcement history, as
realized in the frontal/prefrontal cortex to basal ganglia connections [183-185]. The larger the
mammalian brain, the relatively more mass is allocated to this egocentrically- and hierarchically-
organized prefrontal/ frontal cortex, supporting such decision arrays, then decision trees, and
onto variable strategies [186] such as planning, which we will discuss shortly. The trout will
generally view no such differentiated array at effective visual infinity (figure 3b). Conceivably,
the trout might have instead evolved an unusually good memorized allocentric representation
system to use in lieu of a directly perceptible, tagged array [187]. It would be interesting to
compare capacities for allocentric route memorization versus static spatial arrays in aquatic and
terrestrial foragers, though a memorized allocentric summary could not fully compensate for an
immediately perceived array [188] particularly in fast-changing scenes [5].

(b) The olfactory-limbic complex: a sensory specialization or fundamental
computational division?

The “olfactory” versus “visual” distinction is so striking in vertebrate brains that it can be seen in
whole brains (figure 5a-b). The large brain volume devoted to olfactory processing in olfactory
specialists generated Jerison’s term “proper mass” in his first allometric investigations of the
vertebrate brain (1973). Figure 5a shows a lateral view of the identically-sized brains of an
owl monkey and versus an agouti—a primarily diurnal rodent—showing the large volume of
neocortex in the primate, completely hiding the cerebellum. Figure 5b shows a coronal section
of the forebrain at the level of posterior thalamus in a squirrel monkey (one of the yellow dots
in the upper left quadrant in figure 5c), and a similar section in the nine-banded armadillo (one
of the red dots, Xenarthra, in the bottom right quadrant of figure 5c). Comparing the two, the
relatively greater extent of the neocortex in the squirrel monkey compared to the greater extent of
the olfactory cortices in the armadillo is as expected, but the extreme volume of its hippocampus
compared to the squirrel monkey is startling. While the hippocampus gets olfactory input, it is not
the majority input even in an olfactory specialist, which the multiple descriptions of hippocampal
“place cells” support [189].

Not all of the set of structures we term the “olfactory-limbic complex” on the basis of
their volumetric covariation in mammals can be seen in figure 51-b, and they include the
olfactory bulbs, olfactory cortex, perirhinal cortex, hippocampus, amygdala and septum [103].
In mammals, there is a robust negative correlation of neocortex volume and the volume of the
olfactory-limbic complex, both within and across taxonomic groups (figure 5¢). Those mammals
with a high weighting of the olfactory-limbic complex are quite often nocturnal, or locate their
food non-visually, as anteaters do. The species that are high on both factors, for example, the
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large carnivores (figure 5¢ blue stars), or low on both, like microbats (figure 5c¢ blue-filled squares)
would be good targets for greater investigation. Interestingly, the same covariation pattern often
can be seen in individual variation of a number of domesticated species [111] and in human
volumetric variation [98], suggesting genetic or stable developmental control of the covariation.

Do components of this covariation appear outside mammals? In figure 5d the relative masses
of the olfactory bulb versus the remaining telencephalon are compared for deep-water sharks and
rays versus their pelagic and shallow water counterparts. Olfactory bulb size is increased in the
deep-water chondrichthyans, but rest-of-forebrain is independent of it [94]. That is, olfactory bulb
increase does not entail smaller rest-of brain. Similarly, reef dwellers have relatively greater mass
in the “rest of telencephalon”. This evidence provides some support for a strategic allocation of
neural tissue on the basis of preferred sensory modality, but no elaborate factor structure. The
actual or potential dorsal pallium, the structure giving rise to most of the neocortex in mammals,
is quite variable in the several fish lineages, ranging from a few cells with principally olfactory
input in ray-finned fishes [181] to a central pallial nucleus in sharks that receives visual input
and is involved in visual behavior [190]. Functional homologies in fish behavior based on medial,
dorsal and lateral pallial origins in several fish lineages have been described [191]. Given this
variability, perhaps the most interesting question is to determine what it is about the forebrain
that produces its consistent allometric predominance when brains enlarge (figure 4).

Returning to the olfactory-limbic complex, the sensory account (that is, olfactory-versus-
visual) of the enduring distinction of allocation of resources between limbic and neocortical
forebrain in the vertebrate brain reveals multiple problems, and eventually disintegrates.
Historically, the term “limbic system” was coined to describe the interconnected cortical areas
including olfactory, perirhinal, entorhinal, hippocampal and cingulate cortices that are located
along the outer edge, the limbus, of the collected forebrain cortices. The olfactory bulb itself was
not seen as integral to the grouping. To the perpetual confusion of the popular understanding of
the brain, the limbic regions were fancifully termed the “primitive” or “emotional” brain [192],
though none of these regions are more primitive than other forebrain nor exclusively involved
with either emotion or olfaction, excepting primary olfactory cortex [193]. “Neocortex” or worse
still, “rest-of-brain” is not a sensory category at all. Similarly, in terrestrial vertebrates generally
and in diurnal mammals particularly, excepting the olfactory bulb and cortex, none of the listed
structures are devoted to olfaction alone, and in primates, the hippocampus has the largest
volume of the limbic-olfactory complex, while olfaction as a fraction of its input is tiny [103].
In marine mammals, the olfactory bulbs become vestigial (5C), and the immediately connected
cortices are reduced, but the hippocampus is relatively little changed. Still, whatever category
these collections of brain structures represent, development keeps them distinct, both in their
germinal zones [194] and in the later expression of transcription factors [195]. The “limbic factor”
does not permit the dorsal thalamus, the structure relaying visual, somatic and auditory input
to the neocortex, to enter limbic cortex [196]. Such reticence in mixing “modalities” or more
neutrally, the connectivity of the products of designated embryonic zones at any other level of
the brainstem, midbrain or other forebrain is quite unusual. A further interesting hint is that
the same sequestration and reciprocal covariation has been observed in Drosophila, and possibly,
several other insect nervous systems [197].

(c) The distinction between the olfactory-limbic complex and the
neocortex is computational

We suggest that above and beyond a distinction between olfaction and vision sensory modalities,
there is a more fundamental distinction between the basic wiring of the structures of the olfactory-
limbic complex and the neocortex. This wiring principle discriminates basic olfactory and basic
visual processing, but is not confined to them. We have already discussed that the lateral
convexity of the neocortex has a cross-modal, loose egocentric topography, which arises from the
alignment of the spatial up-to-down axes of the primary visual and somatomotor surfaces [90].
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This cross-modal overall mapping relies on point-to-point mapping of each modality separately.
For vision, neighboring areas in the visual field represent neighboring areas in the retina, and so
forth in the thalamus and cortex. For somesthesis, the same is true for the relationship between the
skin surface and their neural representations, and more generally for peripheral musculature, as
the sensory and motor homunculi of the cortex testify. The mapping principle that characterizes
the entire neocortex is not egocentric topographic mapping, however, but is the maintenance of
nearest neighbor relationships of the sensory surface as they project via thalamus into the cortex,
in the motor areas it projects to, and in the connections between cortical areas. This clarifying
distinction may be understood by considering the cortical representation of audition. In the case
of audition, the transduction process of the cochlea produces a tonotopic map of sound, where
nearest neighbors on the cochlea represent close frequencies, but nothing about the external
location of the sound in egocentric space. The primary auditory cortex represents this tonotopic
map. No separate map of auditory space is to be found in the cortex, though appropriate spatial
auditory responses appear in the multisensory neurons of egocentric parietal cortex [170]). Other
cortical areas of the temporal cortex have reduced or absent egocentric maps—for example, the
relative lack of topographic order in gustatory and visceral representations in the insula. In “face”
or “scene” areas, detailed nearest-neighbor order of scenes and faces is preserved, with only the
preference for an upright position in both cases showing egocentricity. In the hierarchical, back-to-
front convergence of information between cortical areas across the entire neocortex, the “grain” of
the nearest-neighbor array-to-array mapping, whether representing spatial location or any other
dimension, grows larger, but the organization principle is maintained [90].

That nearest-neighbor topography characterizes the neocortex has been known for some time,
but that the olfactory cortices and hippocampus share a different organizing principle has been
clarified more recently, particularly as the understanding of olfactory coding has progressed.
In both of these structures, their input does not preserve nearest-neighbor relationships in
the connections of the input array to the target array. Connectivity is diffuse and correlated
information in the input is recognized by temporal co-occurrence [198]. This might be the
simultaneous activation of receptors distributed across the olfactory bulb identifying an odorant
[199,200], or the simultaneous, sensory, motor, motivational and visceral activations that specify
either a scene or event in the hippocampus [201]. Sequences can be assembled to specify an
item, as in homing in on an identifiable complex odorant via a concentration gradient [198],
or connecting consecutive scenes to construct allocentric space or an autobiographical memory.
Finally, a strikingly similar non-cohabitation rule for hippocampus and cortex, completely
independent of sensory modalities, was proposed in McClelland, McNaughton and O’Reilly’s
classic paper (1995) [202] to prevent catastrophic overwriting of long-term memory.

The connectivity rules for axons are also distinct in development for these structures, which
suggests that it may be impossible or perhaps simply inefficient for neurons to attempt to organize
themselves on different Hebbian grouping rules simultaneously, one spatial, one temporal. For
early vision, reliance on nearest-spatial-neighbor correlations is optimal for data sparsification of
the visual world, for both features of reducing redundancies in representation and identifying
useful conjunctions [203]. Similar analyses have rarely been done for olfaction and allocentric
spatial memory. Considerations of how the transition from an aquatic to a terrestrial environment
might alter olfactory processing have been offered that reflect some of these ideas [204]. A more
recent claim is that the hippocampus’ computational role is the creation of task-specific low-
dimensional manifolds that contain a geometric representation of learned knowledge through
sequences of hippocampal cell activations [205].

Whether the mature derivatives of the medial pallium and hypothetical dorsal pallium in
fish have the same general properties in axonal projections and integration principles seen in
mammals is yet to be determined, but it seems reasonably certain that the set of modalities
represented in the mammalian cortex do not claim a sequestered space in the aquatic forebrain
[179,180,206]. For the purposes of this paper, the central point is that consideration of the
information available in aquatic versus terrestrial ecologies produces more powerful insights for
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the evolution of computational processes in the brain than whether a species is more “olfactory”
or “visual”. Perhaps, the immense computational necessities of registration of spatial reference
frames and integration of limbs for egocentric operations in the water-to-land transition pressed
the minimal sensory segregation seen in teleosts toward the computational independence seen in
mammals.

6. The variable terrestrial body, contextualized decisions and
predictions

So far, following the demonstrations of the richness of the terrestrial visual ecology for guiding
behavior, the computational necessities of the new structures gathering this information, and
the comparable problems of new limbs and other end-organs were described. To begin, this
information integration was related to the fundamental approach/avoid decision structure of
the midbrain, but it is clear that the machinery of decision-making is also quite altered in the
terrestrial world, allowing more planning and prediction [5,26]. The optic tectum is more a
reactive than a predictive device for egocentric operations, in keeping with the visual affordances
of the marine world described in the section on neuroecology. The changed forebrain apparatus
for motor decisions in the terrestrial world maintains a similar relationship to the conserved
dopaminergic evaluative circuitry of the basal forebrain and diencephalon that the midbrain
maintains [163,207]. The frontal and prefrontal cortex, now focusing on mammals, embed
decisions in several extended contexts, all with a similar looped organization, which we will
sketch briefly.

Motor commands from the motor cortex, itself embedded in a hierarchical cortical structure
of prefrontal cortex which also increases in size disproportionately with brain size [208],
encompassing larger and larger time windows, go directly to effectors of all kinds, including
motor neurons directly, and secondary and tertiary motor regions of the midbrain and medulla.
These commands are also accompanied by corollary discharge of four different kinds, all of
which can return modification or cancellation of the intended acts through the thalamus, thus
looped back to the motor cortices [183]. The first is corollary discharge to the basal ganglia,
where its history of reinforcement success, including its habit status, may be modified by the
current context, as represented by the array-to-array mapping of neocortex to the basal ganglia,
and canceled or delayed via a thalamic loop [184,209-211]. Second, the current state of the body
and all its relevant sensory systems are represented to the motor and premotor cortex directly
through the hierarchical ascending projections of the neocortex [212], as well as the route via the
basal ganglia. This loop updates the intended results of the motion for sensory surfaces and limb
positions as well. Third, the cerebellum in mammals has been repurposed from its marine role in
sensory predictions, such as filtering the effects of water turbulence caused by respiration through
gills on the body surface [213] and calibrating the effects of unexpected vestibular challenges on
upcoming visual and somatosensory input [214]. Massive input from the motor and premotor
cortex, and in fact most of the cortex, via the pons and deep cerebellar nuclei, registers the
proposed movement and corrects it for the altered load of variable limb positions, and the body
state (for example, fatigue, damage or pain) [215]. These computed updates are conveyed back
to the motor thalamus via an entirely new tract in mammals, the superior cerebellar peduncle.
Finally, the hippocampus receives a processed version of the ongoing cortical state via the
entorhinal cortex, as part of the recording of successive scenes generating an autobiographical
timeline, and linking successive scenes to generate an allocentric space, or generate a trajectory
of a planned movement through a previously generated space [183,201,216]. The word “context”
hardly does this wealth of information justice, and it is important to remember the range it can
cover from the smallest to the largest brains. Action plans can range from the simple execution and
contextual endorsement of an ingrained habit (enter this burrow, where it will be dark), to actions
evaluated probabilistically for outcome values in extended frames (will hitting the policeman
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with a flagpole be effective to clear a path up the stairs, in light of the decline and fall of the
Roman Empire?).

While we can clearly identify the simple end of these action control possibilities in all animals,
it seems that the more complex control possibilities—namely using a predictive model to plan a
future trajectory and enact it—while present in at least some mammals and birds, is rare among
aquatic animals excepting land mammals that have returned to an aquatic existence. Perhaps,
then, the ecological water to land transition included a cognitive “habit to plan” transition in
possible ways to control behavior. We will examine this hypothesis next.

7. A habit to plan transition

Planning involves some form of imagining of future state and evaluation prior to behavioral
execution [26]. If it occurs at all in aquatic animals—other than former land animals like dolphins
and whales—it seems to be less common than among the two radiations of land vertebrates
this review has focused on, mammals and birds [5]. Can any of the previously discussed
neuroecological or brain evolution changes provide insight into this apparent disparity? In water,
the short range of most interactions means that the previously discussed fast and stereotyped
action selection mechanisms of the tectum are favored [217-219]. On land, computational results
suggest that spatial planning is advantaged in a certain type of terrestrial habitat, one where
clusters of sight line-blocking vegetation (conferring places for hiding and stealth) are separated
by large open areas (conferring detection of distant opportunities and the time to plan to attain
them) [5]. As we will describe, planning enables zero-shot learning where animals can effectively
learn from hypothetical experience prior to enacting one of the multiple futures considered [220].
While planning provides strategic choice between a set of rewards, where it has the largest impact
is when irreversible outcomes are present among choices, such as choices made in escaping from
a predator [5,221].

(a) Under water vs above water decision making

As described earlier, fish see one to several body lengths ahead [2,10]. Upon sensing a predator,
a rapid escape maneuver occurs, often aided by a ten millisecond reduction in the delay between
detection of an attack and initiation of an escape through activation of a giant command neuron
called the Mauthner cell found in aquatic vertebrates [218,219,222] (figure 7a). An example is the
ambush predation of larval zebrafish by dragonfly nymphs, which use a hydraulically-powered
grasping appendage (mask) to capture prey ( [219], figure 7b). Experiments show that a gap of
only 15 milliseconds in the arrival time of the predator separates a high likelihood of survival
from a low likelihood [219]. Theory and modeling indicate that a key abstraction that predicts
outcome is the “motor volume,” defined as where the predator or prey can reach over a specified
duration given any feasible input to its musculoskeletal system [219] (figure 7c). If the motor
volume of the predator largely encompasses that of the prey over the time period from initiation
of attack until the predator reaches the prey, then the chance of survival is low (figure 7d), while if
it only intersects a small portion of the motor volume of the prey, survival is probable [219]. One
way for the overlap to be low is if the sensory volume of the prey—the volume within which the
prey senses the predator—is large enough to provide for more time to initiate escape. Another
is for the prey to initiate movement sooner after detecting the predator by decreasing neural
processing delays. This is the strategy of activating the Mauthner cell. Escape for the fish, either
way, is a decision under temporal duress. Delays on the order of conduction times of signals along
neurons make the difference between survival and death. Clearly, there is no time for planning,
and when there is no time for planning there is reliance on habits [24,25].

As detailed in the section on light above, the situation is entirely different for behavior on
land, since in some situations at least a predator can be sensed with more time until capture
(figure 7e). To test the intuition that planning can be more advantaged in such a scenario, a prior
study examined how escape from a stalking predator is affected by a host of factors [5]. These
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has reached the fish in 30 ms, as much of the fish’s motor volume at 30 ms is within the mask’s 30 ms motor volume, the
probability of survival is low. (e) On land, the sensory volume is a million-fold larger due to the ~100x increase in visual
range. Several future trajectories to a safety point can be inspected while hiding from a predator: one (far left) going too
near the predator, one (middle) requiring a risky swim through a water body, and one (far right) that avoids being revealed
by stalking along a line of vegetation. The prey gets to safety by skirting both the sensory volume of the predator, and
the predator’s near-term motor volume. Panels (a) and (e) from [5]; panel (b) unpublished images from Maclver, panels
(c)—(d) from [219].

include how densely cluttered the environment was, the range at which a predator was detected,
and whether the prey was using habits or planning. In the planning condition, the study varied
the amount of planning the prey was allowed to do before taking action. The predator in these
computational experiments was controlled through a simple reactive policy: if the prey is in view,
pursue it until captured (details: [5]).

The study found that in the condition designed to represent the aquatic scenario (open space,
short sensing range), planning conferred no advantage over habits. In the land condition (space
with barriers to vision, extended sensing range), planning led to higher survival rates on land
compared to habits, but not in all terrestrial conditions (figure 8). In conditions where there
were few barriers to vision (similar to an open plain), results matched the aquatic condition: no
advantage to planning, despite the much higher range to detect predators. In conditions where
there were many barriers (similar to a rain forest), again there was no advantage to planning—a
high density of barriers is just like having the short visual range present in the aquatic scenario.
In between these two regions there is an intermediate level of openness, with lacunarity values
comparable to savannah habitats—figure 3—in which there is clusters of vegetation interspersed
with open areas. If we look at the expected value function, which discloses the expected reward
to the prey as different paths are considered during the planning process, a unique feature of the
interaction between sensing range, occlusions, and moving prey and predator is high variability
of the expected reward over time. This corresponds to the high variability of successful paths
through the space (figure 8b). In this region, using habits fails to be adaptive because these are
learned previously and—without radically intractable compute times due to the combinatorial
growth of possibilities—have to be poorly matched to the volatile environment.
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Figure 8. (a) Predator-prey simulations were performed in which the prey needed to reach the safety point without capture
(details: [5]). These occurred in a grid world as the prey’s action selection method varied between habit and planning (the
faster predator was always under a reactive controller to chase prey when seen, and search when not), visual range
varied from short to unlimited, and obstacle density as quantified by entropy (black squares in panel b) varied from zero
to high. (b) Mid-entropy environments had the highest survival rates at the maximal degree of planning simulated. Low-
and high-entropy environments performed no better under plan-based action selection than habit-based. On the right,
occupancy frequency heat maps show that successful paths were stereotyped for low entropy and high entropy. In mid
entropy there was a high diversity of successful paths. Modified from [5].

In savanna-like habitats, the paths taken by prey suggest the use of occlusions to deceive the
predator. Video 1 and Video 2 of the electronic supplementary materials show how, as the amount
of planning that the prey performs increases from a baseline to 100 times the baseline, so too does
1) its margin of safety from being captured and 2) its use of tactics like waiting behind occlusions
in critical spots where moving forward would have disclosed its position to the predator (the
“battle of waits” [223]).

These results suggest that the selective benefit for planning underwater may be low, which
is not to say that once it has evolved on land in big-brained and warm-blooded animals, it may
be maintained for its advantages as appears to be true in dolphins and whales. This may be
through the creation of ephemeral structures within the open space of water over which planning
can work—mud rings, bubble nets and so on, as mentioned above [27]. As detailed elsewhere,
however, planning is a complex process which requires considerable computation with current
models [5]. While these models may not be representative of the way brains actually do planning,
all models thus far posited are far more intensive to compute than retrieval of previously learned
or innate habits [5].

(b) Planning as high efficiency virtualized learning

While the simulation results indicate that planning can increase survival rate, it is also costly in
terms of time and computation. How can we understand this trade off space? Modeling work
in reinforcement learning can provide insights. In this domain, planning is called a model-based
method, since a model of action-outcome relationships is needed, whereas learning a strategy for
subsequent reuse, called a habit above, is termed a model-free method [224].

The artificial intelligence (AI) called AlphaGo is a primarily model-free method that required
the equivalent of 7.8 million matches from human games and self-play to beat the world
champion of Go, Lee Sedol, by 4 games to 1 [225]. Even if Sedol had played 3 games every day
of his 36 years alive, 7.8 million games would require 200 lifetimes. The power differential is
even larger, with 20 watts needed for Lee’s brain versus 1,000,000 watts estimated for AlphaGo.
The gap between the number of trials that machines require compared to animals is called the
“sample efficiency” problem of reinforcement learning methods. The space of learnable strategies
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is enormous, and model-free methods are searching and sampling from this space, but seemingly
not as efficiently as brains can.

The current champion of the series of Als that started with AlphaGo is MuZero [226], which
combines elements of planning with the model-free reinforcement methods used in AlphaGo. An
analysis of why planning helps for this Al suggests that planning improves the sample efficiency
of learning [227], as also suggested by earlier work [228]. The use of the word “learning” in this
context can be confusing, since the learning typically denotes changes arising from experience
[229]. In this case, learning denotes a virtualized analog that precedes action in the world: there
is no experience happening in the world, simply the same internal search and simulation process
that is core to all current models of planning [26]. For example, in thinking through a map to
work, you might think of a new method to go home you had never thought of before—or you
could say you learned a new way home, even though all you were doing was forward simulating
and searching your internal representations. The alternative in a model-free context might be to
try all possible paths home (in the physical world), an extremely large number of paths, leading to
the low sampling efficiency problem and therefore very slow learning. The planning mechanism,
however, has ways of cutting through the massive possible solution space to consider only a
few paths with higher likelihoods of being a useful shortcut. One way our planning system may
do that is by focusing on regions where there are transitions from open space to closed space
(meaning near occlusions, good to move to for hiding), or closed space to open space (good to
get to for rapid movement or intentionally disclosing position to the adversary) [5]. Transitions
in the connectedness of space can be easily computed given enough visual range. In non-spatial
planning problems such as who you should groom next in a troop of primates, such transitions
translate to changes in the degree of connectedness of nodes of a network representation of
social/kinship relations [230] rather than literal space.

8. Future Directions and Conclusion

(a) Lacunae in knowledge: Small and large, transitory and persisting

A paper such as this, covering a wide range of disparate topics, will directly reveal where
information is lacking, at many levels. First, there are gaps immediately pertinent to the paper,
such as any holes in the authors” own knowledge, particularly those that interfere with proper
understanding and resolution of controversies, or gaps in empirical knowledge that require
assumptions or speculations at key points in an evolutionary argument. Second, a state that will
be familiar to any researcher assembling a database or meta-analysis, the coverage of knowledge
that is assumed to be well-known is often dismayingly overestimated, often accompanied by the
absence of key details that would allow large databases to be integrated. Finally, only data that
can be gathered is gathered—analysis of the single-unit neurophysiology at global navigation
decision points in great white sharks is far off. Less dramatically, for anything other than gross
morphology or large-scale behavior patterns, the generally smaller, more tractable and cheaper
lab animals overwhelm the available information, from demonstration of gene and gene-product
expression, to electrophysiology, to analytical approaches to behavior. These animals are far
from a fair sample of existing taxa, emphasizing the small-brained, the predated-upon and the
promiscuous. All of these influence the fundamental inferential problem of constructing the
process of evolution from forever-incomplete knowledge.

One assumption, perhaps best characterized as a studied agnosticism, should be laid out. In
the case of tracing the homologies of whole brain structures, from the first vertebrates, through
the branches of their aquatic descendants, to their terrestrial descendants, conclusions vary
considerably. One end of the range is defined by the claim of close conservation of all major
brain components from the earliest lampreys to all extant vertebrates [207,231,232]. For two sister
groups of the three-branch aquatic radiation, cartilaginous and ray-finned fishes (the remaining
lobe-finned fishes making the transition to land), there is general consensus on the conservation
and predictable scaling of major brain components [77,94], with a variety of views on the best
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characterization of the forebrain. Principal forebrain issues for these two groups are its relative
domination by olfaction compared to multisensory integration and to what extent the embryonic
dorsal pallium of the forebrain gives rise to connectivity or internal structure shared across
vertebrates, or has specific features shared with the neocortex in mammals [233]. Variability from
a tissue dominated by olfaction to integrative multisensory, dependent on niche, is emphasized
for chondrichthyans (sharks and rays) [178,234]. A general absence of conserved structure in
the pallial aspect of the forebrain of teleosts is claimed, the most species-snumerous of the
radiations [6], though not without controversy [179,180]. Differences arise from the information
sources individual researchers view as most critical, which range from whole-brain morphology,
connectional architecture, identification of regional identity via genomic and other neurochemical
identification [194,235], and whether the whole brain or the forebrain is the subject of the most
scrutiny. For birds versus mammals a comparable controversy has persisted for decades about the
homologies of forebrain regions [236,237]. In both cases, we have avoided any argument about
the emergence of land vertebrates that depends on the connectional and functional anatomy of an
identified forebrain neuron class, with the limited exceptions of the assumption of conservation of
the basal ganglia/nucleus accumbens reinforcement circuitry, which appears to have reasonable
acceptance, and the medial pallium, the hippocampus in adult mammals, which is persistently
identified with multimodal spatial and learning functions when investigated.

At this point we should firmly acknowledge a deficiency in our reportage of empirical
information about the water to-land transition, the result of a lack of behavioral work combined
with neurophysiology in reptiles in most of their diverse radiations (but see [238]). Recall that
salamanders, lizards, and crocodilians retain their sprawling posture, sparing themselves some
of the problems of degrees of freedom in multi-jointed limbs and postural control, which might
provide an avenue to understand where in the brain the first new control paths might have been
established [69,70]. Particularly in visuomotor systems, behavior and many neurophysiological
mechanisms can be compared with reasonable certainty across teleosts, amphibians, birds, and
small and large mammals, but possible transitional states of the smaller-brained reptile ectotherm
are missing from our discussion. The large predators who are ectotherms, from great white sharks
to Komodo dragons [239,240], are especially interesting. The necessity to leap from information
sources about teleost organization to primates and birds might produce the impression that there
was, or that the authors of this paper believe there was a massive, stepwise increase in complexity
of eyes, limbs and brains when vertebrates first stepped on land. Foremost, examining what
visuomotor integration problems the various reptile taxa faced, and what forebrain brain regions
were brought in would be exceptionally useful. Using available information in a neuroecological
light might be useful in finding continutity in visuomotor evolution—that is, by viewing the small
nocturnal rodent or shrew as a fish, with similar strong limitations on the visual information
they can use. Target acquisition in mice is primarily done by head/body orientation, though
there are some eye movements. Their compact head and limb structure (contrast ungulates, or
diurnal carnivores) may allow adequate remapping within the fixed tectal structure, and in fact,
the midbrain tectum remains comparatively large in this group.

Finally, the general availability of comparative information should be noted. With the
proliferation of corpora of genetic, morphological and neurochemical descriptions of model
systems “from fish to man”, including the exhaustive cataloguing of every connection
and cell class in the mouse basal ganglia, or mammalian motor cortex [241,242], and the
expansion of the number of databases of brain anatomy, from the Digital Fish Library
(http:/ /www.digitalfishlibrary.org), to primate databases that have more than doubled in species
covered [78], readers not in these fields might be forgiven for assuming that more is known
than there is. Integration of databases in different domains is often possible only at the
juncture of the crudest measurement in each. As behavioral ecology was finding its feet, while
comparative psychology began restricting itself to the laboratory, an attempt was made to begin
building “ethograms”, behavioral inventories which ran afoul of disagreement about behavioral
taxonomies, e.g. whether small amplitude, rapid forward motion in fish, body-inflated, should
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have the additional interpretive descriptor of “territorial defense”. Meanwhile, a reasonably
substantial literature in behavior has grown in several fields separately, which, at least according
to citation patterns, appears to be opaque or unusable to each other [243]. Some potential
ways forward are appealing, for example, the generation of basic movement taxonomies by
Al categorization of unrestrained, if not fully “natural” behavior [244], or attempts to match
behavioral innovations to genetic alterations in closely related species [245]. Additionally, the
ability to compare new or conserved genetic mechanisms in neuronal morphologies or other cell
biology with new or conserved computational or behavioral phenotypes is particularly exciting
[246].

(b) Potential computational models for changed behavior at the water-land
transition, particularly foraging and predator avoidance

This article has attempted to lay out the differences in the amount and layout of information,
visual information in particular, between air and water. This limitation, a limitation of both
information availability and pages, will hopefully be resolved in due course, particularly in the
olfactory domain. A second factor that emerged was the importance of sub-habitats in vision,
where and when animals chance the unobstructed sightlines of their predators. The reverse
transition from land to water, as seen in multiple marine mammals is a very interesting source
of information about alteration of paths of evolution depending on the initial state of an animal’s
nervous system on entering new environments. Large mammals are literally the most visible, but
there is a substantial cohort of marine “rodents” that is largely unstudied (the exact classification
of many small mammals remains in flux) [162]. Since for mammals breathing to smell underwater
would result in drowning, olfaction is sacrificed to respiration in this group [103]. Vision must
lose dominance, while echolocation arises numerous times, though rather little is known about
the neural substrates of marine mammal echolocation. The ability for dexterous manipulation is
often lost in favor of streamlining, even though the ability to stow such useful appendages during
rapid motion would not appear to require extensive modification of either, as various otters testify.

The stabilization of the push-pull relationship of the embryonic separation and adult contrast
of computational abilities in the neocortex versus the olfactory-hippocampal system described
here clearly requires much more scrutiny. We have advanced the hypothesis that the embryonic
and early developmental establishment of both systems—neocortex requiring rough simultaneity
in physically-neighboring neurons to reach its basic structure of iterated egocentric or other
topographic maps, and the olfactory-hippocampal system requiring more precise simultaneity
to connect distributed neurons together—is the reason they are sequestered from each other
in large degree in early development [247]. Further, we argued that the grouping of olfactory
bulb and olfactory cortex, and hippocampus together was one of computational similarity, not of
“subject”—odorant in the first case, event in the other.

At least in Chondrichthyes, adaptive variation in olfaction versus visual dependence is
plain, though assessing the variation in the derivatives of medial pallium in the adult is
not yet possible. This variation is amplified in the relative development of both systems in
avian and in mammalian brains, now including hippocampus and associated limbic cortices
along with olfactory structures. The variation is so pronounced, as in the extent of the
hippocampus of the armadillo in figure 5, that it seems entirely possible that completely different
strategies for common needs might have developed independently. For example, a nocturnal
olfactory specialist might develop a fully-memorized allocentric environmental representation for
avoidance of and escape from predators and for foraging, while a neocortex-dependent animal
might use the cued-array map described earlier, augmented by sequence information contributed
by its hippocampal formation. The fact that the largest mammalian predators in our sample have
the largest, and most symmetric representation of both subcomponents is highly interesting.
Balanced or asymmetric, the information sources of these two anatomical entities must be
integrated in some way, and the nature of information integration in intervening structures in the
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animals with the most distinct lifestyle and structural differences, for example, entorhinal cortex
or the amygdala, would be very informative about how such information-integration problems
are solved in evolutionary time.

(c) Prediction and planning

The burgeoning of interest in predictive coding as a ubiquitous process in neural computation has
immediate relevance for how to view the evolutionary account of the emergence of planning as
a useful component of the behavior of relevant land vertebrates. “Predictive coding” is presently
the catch-all term for any use of memory (genetic or computed) to inform or supplement a present
sensory or motor representation, or predict the sensory, motor or value consequences of decisions
on limited data in any realm. The range of potential examples is wide: lateral inhibition predicts
that neighboring neurons in topographic maps will be correlated, reducing the cost of duplication
of correlated information [248]; prediction “fills in” scotomata or areas of reduced sensory input
such as the visual periphery with their probable contents [249]; in fish, the cerebellum discounts
the expected effects of turbulence of gill respiration on somatosensory input. Earlier, we described
the necessity of integrating the sensory consequences of a whole body, sensory surface or limb
movement, as well as its motor consequences, but might better have described it as a component
of prediction, used to generate an intended body position as the stage for the next movement.
Investigation of the prevalence of predictive coding by brain size or by taxon is minimal as yet,
though it is widely assumed that the amount and duration of memory will be related to brain
size [250]. The present paper marks one first foray into the environmental affordances of planning,
and the costs of its computation in an evolutionary framework.

The feed-forward, feed-back circuit of the mammalian motor and premotor cortex through the
basal ganglia returning via the thalamus to the original generator is the computational structure
most relevant to the planning described in this paper, though at this point a healthy agnosticism
should be retained about where and how similar circuitry might emerge. Motor commands are
usually conceived in this circuit as one-shots, stop/go, left/right, where the motor command
is fitted with its immediate sensory context, event sequences or other hippocampal contexts in
which it is embedded, and evaluated for success or reinforcement expectations by the history
of such actions in the basal ganglia. By virtue of downstream or recurrent projections to the
thalamus, the action may thereby be aborted, modified or executed, and in time elevated to
habit [184,209]. “Hierarchical reinforcement learning” may introduce levels of execution to such
a command, which may integrate sequences. “Planning” as discussed in this paper involves
computation of the virtual consequences of any one, or a set of independent decisions, extending
in a branching tree-like fashion to several expected outcomes. We suggested, with minimal
elaboration, that the combinatorial procedure used to compute an egocentric location, or a limb
position as described by Andersen, Colby and colleagues previously—if reimagined as decision
consequences strung out over time—might support sequential planning. Many other solutions
are possible, of course, even likely—hybrid decisions involving multiple structures and decision
classes for example [251].

We briefly mentioned the interesting clue from follow ups on the success of the latest offspring
of AlphaGo, MuZero, on why adding model-based planning can lead to efficiencies in learning
compared to model-free reinforcement learning with massive training. Planning may act to prune
an infinite range of possible sequences into the future into a more informative set for efficient
learning, particularly useful in volatile environments where the shelf life of canned solutions
is short. But why is it enriched in some animals and less so in others? We have hypothesized
that a certain structure of partial information, provided by savanna-like habitats similar to those
invaded by the first hominins [5], maximizes its value. But there is likely more to it. One idea
that may merit examination has to do with more and less costly ways for a species to sample
the adaptive landscape that is continuously evolving at all timescales. These sample methods
are essentially the r and K reproductive strategies. The r strategy of many samples with low
investment is like a Monte Carlo simulation, while the K strategy of fewer samples with more
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investment calls for more robust decision making. Indeed bigger brained animals live longer [80],
with fewer offspring and larger parental investment. As detailed above, the biomass of land is two
orders of magnitude higher than that of the oceans, making the aquatic context harder to support
an energy intensive investment in bigger brains or longer parental period. But even for terrestrial
ectotherms that have access to this bounty, it is seemingly harder to attain without the energy
intensive lifestyle of birds and mammals, with the latter expending an order of magnitude more
energy per day than terrestrial ectotherms [70]. So far, we have discussed predation and escape
as our principle examples of planning, but a further consideration of large mammals, above and
below water, suggests a larger context for it. Where planning may be most useful is for those
organisms whose own energy investment and that of their parents means death is especially
costly, and successful decision-making around possibly mortal outcomes becomes key.

In the prior paragraph, we pointed at interesting research in Al demonstrating the gains
that can be made in solving learning and performance in games by adding aspects of model-
based planning, but with the important qualification of its usefulness in volatile environments
where learning times are short. This interaction of learning style with environmental affordances
is central to a neuroecological approach. In current cognitive science, a similar interaction of
computational tools and a learning/action environment is emerging. For example, the capacity
of working memory, as a property of the computing power of an individual, is often laid out
as a fundamental constraint on the nature of possible communication systems, motor capacities
and so forth. In human language, Christiansen and Chater [252] have argued that 3—4 sequential
units of speech must be chunked into a lexical or semantic decision. This amounts to a “now-or-
never bottleneck” for human language comprehension, arising from an interaction of memory
constraints over a limited time window with the possible speed of language comprehension.
They have argued that language itself evolves to match this computing constraint of the human
nervous system. Another aspect to this limit of four items in working memory has now been
suggested, that it is an optimization of the number of steps into the future that provide useful
results prior to combinatorial explosion [253]. In both cases, the ecology, language or landscape,
together with the computing device generate the required computation.
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