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Anomaly inflow for subsystem symmetries
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We study ’t Hooft anomalies and the related anomaly inflow for subsystem global symmetries. These
symmetries and anomalies arise in a number of exotic systems, including models with fracton order such as
the X -cube model. As is the case for ordinary global symmetries, anomalies for subsystem symmetries can be
canceled by anomaly inflow from a bulk theory in one higher dimension; the corresponding bulk is therefore a
nontrivial subsystem symmetry protected topological (SSPT) phase. We demonstrate these phenomena in several
examples with continuous and discrete subsystem global symmetries, as well as time-reversal symmetry. For
each example we describe the boundary anomaly, and present classical continuum actions for the corresponding
bulk SSPT phases, which describe the response of background gauge fields associated with the subsystem
symmetries. Interestingly, we show that the anomaly does not uniquely specify the bulk SSPT phase. In general,
the latter may also depend on how the symmetry and the associated foliation structure on the boundary are
extended into the bulk.
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I. INTRODUCTION

Global symmetry is one of the central tools in analyzing
strongly coupled quantum systems. In recent years, a new
kind of global symmetry, known as the subsystem global
symmetry, has featured prominently in many exotic lattice
systems, including the gapless model of Ref. [1] and many
gapped fracton models [2,3].1 (See Refs. [5,6] for reviews on
fractons.) In this paper, we will discuss anomaly inflow [7]
and symmetry-protected topological (SPT) phases for subsys-
tem global symmetries [8–13]. We will be working under the
framework developed in Refs. [14–22] for these exotic field
theories with subsystem global symmetries.

Unlike for ordinary global symmetry, the generator of a
subsystem global symmetry acts only on a subspace S of the
whole spatial manifold.2 Different choices of the subspace
generally give rise to independent conserved charges. On a lat-
tice, the number of independent conserved charges therefore
grow subextensively with the number of sites. In the low-
energy limit, this leads to an infinite number of charges, which
underlies many of the peculiarities in these exotic models.

1Subsystem global symmetries have also appeared in some earlier
references such as Ref. [4].

2Similar to the term higher-form global symmetry, the adjective
“global” does not mean that the charges act globally on the whole
space. Rather, it is used to distinguish the case of interest from that
of the gauge symmetry.

These include the surprising UV/IR mixing in some of the
physical observables [15–27].

It is useful to compare the subsystem global symmetry
with another generalized symmetry, the higher-form global
symmetry [28]. For both kinds of global symmetries, the con-
served charges are supported on closed, higher-codimensional
manifolds S in space. But the charges, especially in the con-
tinuum limit, are different in many ways for these two kinds
of symmetries. The charge Q(S ) of a higher-form symmetry
depends on S topologically, i.e., Q(S ) = Q(S ′) if S and S ′ are
homologous to each other. Relatedly, there is no restriction
on the choice of the manifold S of a given codimension.
However, the charge of a subsystem global symmetry depends
not only on the topology of S, but possibly also on the shape
and the location of S. Furthermore, the charge might only
be allowed to be on certain S but not all manifolds of a
given codimension. (For example, S may be restricted to be
straight lines along certain preferred directions, rather than be
a general curve.) See Refs. [14,29] for related discussions.

Just as for ordinary global symmetry, one can attempt to
gauge a subsystem global symmetry by coupling to dynam-
ical gauge fields. This is, however, not always possible. The
obstruction to gauging a global symmetry is known as the ’t
Hooft anomaly.

A. Review of anomaly inflow

The ’t Hooft anomaly of a quantum system T in d space-
time dimensions, with either ordinary or subsystem global
symmetry, can be diagnosed as follows. We couple the system
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T to background gauge fields A and denote the partition
function by ZT [A]. For an ordinary global symmetry, A are
one-form gauge fields. For a subsystem global symmetry, they
are tensor gauge fields, as we describe in detail in the main
text. When an ’t Hooft anomaly is present, under a background
gauge transformation A → Ag, the partition function is not
invariant but transforms with an anomalous phase:

ZT [Ag] = ei
∫
M(d ) θ (g,A)ZT [A], (1.1)

where M (d ) is the spacetime d-dimensional manifold. We
can always change the anomalous phase θ (g,A) by adding
d-dimensional local counterterms of the background gauge
fields A. However, the ’t Hooft anomaly is characterized by
the fact that no choice of d-dimensional local counterterms
can remove the anomalous phase.

Another powerful way to describe the anomaly is using a
classical field theory in one dimension higher. This classical
field theory is the continuum description of the SPT phase.
Let the partition function for this classical field theory of the
background gauge fields A in d + 1 spacetime dimensions be

exp

[
i
∫
N (d+1)

ω(A)

]
. (1.2)

If N (d+1) has no boundary, then this partition function is gauge
invariant. When N (d+1) has a boundary, then there can be a
boundary term under the background gauge transformation.
Let N (d+1) by a d + 1-dimensional manifold whose boundary
is M (d ), i.e., ∂N (d+1) = M (d ). While a genuine anomaly of
T cannot be canceled by a d-dimensional local countert-
erm, it can generally be canceled by the anomalous gauge
transformation of a classical field theory in d + 1 spacetime
dimensions:

exp

[
i
∫
N (d+1)

ω(Ag)

]

= exp

[
−i

∫
M (d )

θ (g,A)

]
exp

[
i
∫
N (d+1)

ω(A)

]
. (1.3)

In other words, the original d-dimensional system T coupled
to a d + 1-dimensional bulk classical field theory

ZT [A] exp

[
i
∫
N (d+1)

ω(A)

]
(1.4)

is invariant under the background gauge transformation.
We emphasize that there is nothing inconsistent with the

original system T in d spacetime dimensions with an anoma-
lous (subsystem) global symmetry. Such a system can be
defined without the need of a bulk in one dimension higher.
We simply cannot gauge the global symmetry in d spacetime
dimensions.3

B. Anomaly inflow for subsystem symmetries

In this paper, we will discuss several examples of anomaly
inflow for subsystem global symmetries and the correspond-
ing subsystem symmetry-protected topological phases (SSPT)

3Another consequence of the ’t Hooft anomaly of a global symme-
try is that it cannot be realized in an on-site manner in a Hamiltonian
lattice model with tensor product factorized Hilbert space.

in one dimension higher.4 Our examples include discrete and
continuous subsystem symmetries, and for each one of them
we will also discuss an analogous system with an anomalous
ordinary global symmetry in the Appendices.

The simplest example of an ’t Hooft anomaly in a model
with continuous subsystem symmetry is the U (1) ×U (1)
anomaly of the 2+1 dimensions (2+1d) continuum field the-
ory of Ref. [15], which had been first introduced in Ref. [1]:

L = μ0

2
(∂τφ)2 + 1

2μ
(∂x∂yφ)2, φ ∼ φ + 2π. (1.5)

(See also Refs. [21,22,24,30–35] for related discussions on
this theory.) This anomaly, both in the continuum and on the
lattice, was discussed in Refs. [21,22]. Here we will further
present its SSPT in 3+1d, which can be described as a Eu-
clidean Lagrangian of the classical bulk tensor gauge fields
(Aτ ,Axy,Az ), (Ãτ , Ãxy, Ãz ):

i

2π
[Ãxy(∂τAz − ∂zAτ ) + Ãz(∂τAxy

− ∂x∂yAτ ) − Ãτ (∂zAxy − ∂x∂yAz )]. (1.6)

We will discuss this 3+1d SSPT, and the associated tensor
gauge fields, in more detail in Sec. II A 2. Interestingly, this
anomaly can be viewed as a higher-rank analog of a mixed
anomaly between the momentum U (1) and the winding U (1)
symmetry in the ordinary 1+1d compact boson.

In this work, we also analyze a number of systems with
anomalies in their subsystem symmetries and SSPTs that have
not been previously discussed in the literature. A notewor-
thy example is the 3+1d ZN X -cube model [36], one of
the simplest gapped fracton models. The X -cube model has
two sets of ZN subsystem global symmetries, supported on
strips and lines, respectively.5 On the lattice, these symmetries
are simply the logical operators that map between different
ground state sectors. In the continuum field theory, they be-
come the Wilson operators of the underlying tensor gauge
fields [17,40]. We show that these two subsystem symmetries
have a mixed ’t Hooft anomaly, which we describe explicitly
using the field theory developed in Refs. [17,40] (see also
Refs. [23,26,41]). An immediate consequence of this anomaly
is that the two ZN subsystem symmetry operators do not com-
mute with each other, leading to the subextensive ground state
degeneracy [17]. Moreover, we identify a 4+1d SSPT that
cancels the anomaly of these subsystem global symmetries in
the X -cube model.

An analogy can be drawn between the X -cube model and
the 2+1d toric code [42]. The toric code has two ZN stringlike
logical operators which act within the space of ground states.
In the IR, they flow to the two generators of an emergent
ZN × ZN one-form global symmetry of the 2+1d ZN gauge
theory, the continuum description of the toric code. The non-
trivial commutation relation between the two ZN operators

4For the rest of this paper, we will use SSPT and the classical field
theory interchangeably.

5Many gapped fracton models arise as the gauge theory of a sub-
system symmetry [36–39]. Here we discuss the subsystem global
symmetry of the X -cube model, not the gauge symmetry.
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FIG. 1. Two different extensions of the 1+1d boundary (at y =
0) foliation into the 2+1d bulk. The time direction is not displayed
in the figures.

can be interpreted as a mixed ’t Hooft anomaly between the
two ZN one-form global symmetries [28,43,44]. (See also
Ref. [45] for a parallel discussion from the condensed matter
viewpoint.) This anomaly can be canceled by a 3+1d SPT
[28,44,46,47], which is the low-energy limit of a Walker-
Wang model [48].6 Our 4+1d SSPT for the X -cube model
is analogous to this ordinary 3+1d SPT.

In all of our examples, the subsystem symmetries are as-
sociated with a foliation structure in space. The foliation is
typically specified by leaves defined by setting one of the
spatial coordinates to be a constant. The importance of the
choice of the foliation in models with subsystem symmetries
has been emphasized in Refs. [20,23,26,38,41,49–55].

Given a choice of the foliation on the boundary system with
subsystem symmetry anomalies, there is typically more than
one way to extend the foliation structure into the bulk. Each
extensions of the foliation is associated with a distinct bulk
SSPT that can be used to cancel the same boundary anomaly.
We demonstrate this phenomenon in a 1+1d system with
a ZN subsystem symmetry. The two different bulk foliation
structures are shown in Fig. 1.

C. Organization

This paper is organized as follows. In the main text, we
will discuss various systems with subsystem global sym-
metries. We will analyze their ’t Hooft anomalies and the
corresponding SSPTs in one higher dimension. In parallel, in
Appendix, we will review analogous systems with ordinary
global symmetries, ’t Hooft anomalies, and the corresponding
SPTs.

Section II A discusses the anomaly of the U (1) ×U (1)
subsystem symmetry and the corresponding 3+1d SSPT of
the 2+1d φ theory of Ref. [15]. This is to be compared
with the mixed anomaly between the momentum U (1) and
the winding U (1) symmetry in the ordinary 1+1d compact
boson, which we review in Appendix A 1. In Sec. II B, we
then discuss a U (1) subsystem anomaly in a chiral version

6More specifically, this is a Walker-Wang model whose input
braided tensor category is modular. In this case, the low-energy limit
is invertible and has no bulk topological order.

of the scalar field theory in Ref. [18]. This anomaly is anal-
ogous to that of an ordinary 1+1d chiral boson, discussed in
Appendix A 1 b.

Section III A discusses the anomaly and the SSPT of the
two ZN subsystem global symmetries of the X -cube field
theory. The discussion is parallel to that of the ZN × ZN

one-form global symmetry in the ordinary 2+1d ZN gauge
theory, the low-energy limit of the toric code. We will review
this one-form symmetry anomaly in Appendix A 2 a.

In Sec. III B, we turn to a 1+1d system with a ZN subsys-
tem symmetry. Its ’t Hooft anomaly can be canceled by two
distinct 2+1d SSPTs with different foliation structures.

Finally, in Sec. IV we consider the 2+1dU (1) tensor gauge
theory of Ref. [15] with a θ -angle. At θ = π , there is a mixed
anomaly between a U (1) subsystem symmetry and the time-
reversal symmetry. This is analogous to the mixed anomaly
between the U (1) one-form symmetry and the time-reversal
symmetry in the ordinary 1+1d U (1) gauge theory [56,57],
which we review in Appendix A 3.

Note added: In a recent paper [58], the author also studies
the 3+1d chiral ϕ theory with some overlapping results.

II. ANOMALIES OFU (1) SUBSYSTEM SYMMETRIES

A. 2+1dU (1) ×U (1) subsystem symmetry

It is well-known that the 1+1d compact boson conformal
field theory (CFT), which describes the gapless phase of the
1+1d XY model, has aU (1) ×U (1) mixed ’t Hooft anomaly.
A mixed ’t Hooft anomaly between two global symmetries
means that gauging one symmetry breaks the other, and vice
versa. The mixed anomaly of the 1+1d compact boson can be
canceled by a 2+1dU (1) ×U (1) SPT, whose classical action
is given by the mixed Chern-Simons term (see Appendix A 1 a
for a review). Here, we demonstrate an analogous anomaly
for aU (1) ×U (1) subsystem symmetry in the 2+1d φ theory
of Ref. [15]. This anomaly has previously been discussed in
Refs. [21,22]. Below, we review the nature of the anomaly,
and present the 3+1d SSPT that cancels it.

1. 2+1d φ theory

The 2+1d φ theory has a Euclidean Lagrangian

L(φ)
2+1 = μ0

2
(∂τφ)2 + 1

2μ
(∂x∂yφ)2. (2.1)

The field φ is subject to the identification:

φ(τ, x, y) ∼ φ(τ, x, y) + 2πnx(x) + 2πny(y), ni(xi ) ∈ Z.

(2.2)

Because of this, there exist nontrivial winding configurations
of φ and they are summed over in the path integral (see
Ref. [15] for details).7 This continuum Lagrangian has been

7An example of winding configurations of φ on a torus of size 	x, 	y
is

φ = 2π

[
x

	x

(y − y0 ) + y

	y

(x − x0 ) − xy

	x	y

]
, (2.3)

where 
(x) is the Heaviside step function.
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studied extensively in the literature [21,22,24,30–35]. It was
motivated by the 2+1d XY -plaquette lattice model of rotors
(which are related to the compact scalar field by eiφ) intro-
duced in Ref. [1].

The 2+1d φ theory has a U (1) momentum subsystem
symmetry that shifts8

φ(τ, x, y) → φ(τ, x, y) + αx(x) + αy(y). (2.4)

The symmetry is generated by the current

Jτ = iμ0∂τφ, Jxy = i

μ
∂x∂yφ,

∂τ Jτ = ∂x∂yJ
xy. (2.5)

The theory also has a U (1) winding subsystem symmetry
generated by the current

J̃τ = 1

2π
∂x∂yφ, J̃xy = 1

2π
∂τφ,

∂τ J̃τ = ∂x∂yJ̃
xy. (2.6)

The winding subsystem symmetry does not act on the fun-
damental field φ, but there are (discontinuous) winding
configurations, such as Eq. (2.3), carrying nontrivial charge
under this symmetry. This action can be seen explicitly in a
dual version of the model, where the winding symmetry shifts
the field dual to φ in a way similar to Eq. (2.4). We refer the
readers to Ref. [15] for details.

The momentum and winding U (1) symmetries can be
coupled to background tensor gauge fields (Aτ ,Axy) and
(Ãτ , Ãxy). The Lagrangian after coupling becomes

L(φ)
2+1[Aτ ,Axy; Ãτ , Ãxy]

= μ0

2
(∂τφ − Aτ )2 + 1

2μ
(∂x∂yφ − Axy)2

+ i

2π
Ãτ (∂x∂yφ − Axy) + i

2π
Ãxy(∂τφ − Aτ ). (2.7)

It is not invariant under the two U (1) gauge transformations

Aτ ∼ Aτ + ∂τα, Axy ∼ Axy + ∂x∂yα, φ ∼ φ + α,

Ãτ ∼ Ãτ + ∂τ α̃, Ãxy ∼ Ãxy + ∂x∂yα̃. (2.8)

Rather, it is shifted by

L(φ)
2+1 → L(φ)

2+1 + i

2π
α̃(∂τAxy − ∂x∂yAτ ). (2.9)

As discussed in the Introduction, we are always free to add
2+1d counterterms involving just the background gauge fields
(Aτ ,Axy), (Ãτ , Ãxy) to the Lagrangian (2.7). However, there
is no way to completely remove the anomalous gauge trans-
formation (2.9) by adding these 2+1d local counterterms.
For example, one may try to remove the anomaly using the

8Here, by momentum, we mean the conjugate momentum of the
field φ in the target space as opposed to the momentum in coordinate
space. Indeed, the temporal current Jτ of the momentum symmetry
is the conjugate momentum of φ.

FIG. 2. The foliation on the 2+1d boundary (at z = 0) is ex-
tended to the 3+1d bulk. The time direction is not displayed in the
figure.

following counterterm:

i

2π
(ÃτAxy + ÃxyAτ ). (2.10)

This does not help because the Lagrangian now transforms as

L(φ)
2+1 → L(φ)

2+1 − i

2π
α(∂τ Ãxy − ∂x∂yÃτ ). (2.11)

It is easy to see that other quadratic terms in the gauge fields
cannot remove the gauge noninvariance. Furthermore, higher
order terms in the gauge fields have dimensionful coefficients,
so they too cannot remove the gauge noninvariance. We con-
clude that there is a mixed ’t Hooft anomaly between theU (1)
momentum and winding subsystem symmetries.

We emphasize that this mixed ’t Hooft anomaly is absent
in the original 2+1d XY -plaquette lattice model defined in
Ref. [1], since the winding subsystem symmetry is only emer-
gent in the low-energy limit. However, it is possible to realize
both momentum and winding subsystem symmetry, as well as
their mixed ’t Hooft anomaly, exactly on a 3D lattice, where
the third direction corresponds to discrete time [21]. Because
of the mixed ’t Hooft anomaly, the long-distance theory of the
latter lattice model is always gapless and is described by the
2+1d φ theory in the continuum [22].

2. 3+1d SSPT

The mixed anomaly (2.9) can be canceled by coupling the
theory to a 3+1d SSPT. Denote the radial bulk coordinate by
z. The 3+1d geometry will be taken to be S1

τ × Rz�0 × �,
with the 2+1d φ theory living on the boundary S1

τ × � at z =
0. Here � is a 2-manifold with a foliation structure. The leaves
of the foliation on � are specified by either the constant x
or constant y conditions.9 We extend the foliation structure
of � into the bulk, but we do not introduce additional leaves
specified by constant z (see Fig. 2). For this reason, the bulk
SSPT will be called a 2-foliated SSPT.

9For example, we can take � to be a rectangular torus. More
generally, � can be a twisted torus with a choice of the X and Y
cycles that wrap finitely many times. See Ref. [20] for a related
discussion.
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The 3+1d SSPT is protected by a U (1) ×U (1) subsystem
symmetry whose conserved charges are supported on the con-
stant x leaves and the constant y leaves at a fixed time. The
subsystem symmetry can be coupled to background gauge
fields in the bulk with gauge transformations

Aτ ∼ Aτ + ∂τα, Axy ∼ Axy + ∂x∂yα, Az ∼ Az + ∂zα,

Ãτ ∼ Ãτ + ∂τ α̃, Ãxy ∼ Ãxy + ∂x∂yα̃, Ãz ∼ Ãz + ∂zα̃.

(2.12)

The components Az, Ãz are the analogs of the radial compo-
nents of the bulk gauge fields in ordinary anomaly inflow.

The 3+1d SSPT is described by the classical Euclidean
Lagrangian of the background gauge fields:

L3+1[Aτ ,Axy,Az; Ãτ , Ãxy, Ãz]

= i

2π
[Ãxy(∂τAz − ∂zAτ ) + Ãz(∂τAxy − ∂x∂yAτ )

− Ãτ (∂zAxy − ∂x∂yAz )]. (2.13)

Under gauge transformations, the Lagrangian is shifted by

L3+1 →L3+1 + i

2π
∂x[∂yα̃(∂τAz − ∂zAτ )]

− i

2π
∂y[α̃∂x(∂τAz − ∂zAτ )]

+ i

2π
∂z[α̃(∂τAxy − ∂x∂yAτ )]

− i

2π
∂τ [α̃(∂zAxy − ∂x∂yAz )]. (2.14)

The bulk action is invariant up to a boundary term at z = 0:

S3+1 =
∫

dτdxdydzL3+1

→ S3+1 − i

2π

∫
z=0

dτdxdy α̃(∂τAxy − ∂x∂yAτ ),

(2.15)

which cancels the anomaly (2.9) of the boundary φ theory.
We can also place this SSPT on a 3+1d geometry with only

a boundary at x = 0 or y = 0. We will not discuss the anomaly
inflow for those boundaries here.

If we set Ã = A in Eq. (2.13), we will find that the
Lagrangian is a total derivative, i.e., there is no Chern-Simons-
like terms for (Aτ ,Axy,Az ). This implies that the diagonal
U (1) subsystem symmetry of the 2+1d φ theory is anomaly
free.

B. 3+1dU (1) subsystem symmetry

The compact boson CFT in 1+1d has a chiral counterpart,
whose anomaly is well-known (see Appendix A 1 b for a
review). Here, we show that an analogous theory of chiral
bosons exists in 3+1d, withU (1) subsystem symmetry acting
along lines. It can be viewed as a chiral version of the 3+1d ϕ

theory of Ref. [18] (see also Ref. [59]).10 We show that, like

10The 2+1d φ theory (2.1) does not have a chiral counterpart, since
the naive chiral Lagrangian is a total derivative.

its 1+1d cousin, this theory has an ’t Hooft anomaly, which
can be canceled by a 4+1d bulk SSPT.

1. 3+1d chiral ϕ theory

The 3+1d (nonchiral) ϕ theory of Ref. [18] has the Eu-
clidean Lagrangian

L = μ0

2
(∂τϕ)2 + 1

2μ
(∂x∂y∂zϕ)2. (2.16)

The field ϕ is subject to the identification:

ϕ(τ, x, y, z) ∼ ϕ(τ, x, y, z) + 2πnxy(x, y) + 2πnyz(y, z)

+ 2πnzx(z, x), ni j (xi, x j ) ∈ Z. (2.17)

Because of this, there exist nontrivial winding configurations
for ϕ (see Ref. [18] for more details).11

Here we consider a chiral version of this theory with the
Euclidean Lagrangian

L(ϕ)
3+1 = iN

4π
∂τϕ∂x∂y∂zϕ, (2.19)

where N ∈ Z. The field ϕ obeys the same identification (2.17)
and has the same winding configuration, such as Eq. (2.18),
as in the nonchiral theory. The theory has a gauge symmetry

ϕ(τ, x, y, z) ∼ ϕ(τ, x, y, z) + gxy(τ, x, y)

+ gyz(τ, y, z) + gzx(τ, z, x). (2.20)

The theory also has a momentum subsystem global sym-
metry that shifts

ϕ(τ, x, y, z) → ϕ(τ, x, y, z) + f (x, y, z), (2.21)

where f (x, y, z) obeys the same global conditions as ϕ does.
The symmetry is generated by the current

Jτ = − N

2π
∂x∂y∂zϕ, ∂τ Jτ = 0. (2.22)

We can couple the current Jτ to a U (1) background tensor
gauge field (Aτ ,Axyz ). This modifies the Lagrangian according
to

L(ϕ)
3+1[Aτ ,Axyz]

= iN

4π
∂τϕ∂x∂y∂zϕ − iN

2π
Aτ ∂x∂y∂zϕ + iN

4π
AτAxyz. (2.23)

Note that since the current only has a Jτ component, the
background gauge fields Axyz does not couple to any current.
Here we include in the Lagrangian a classical counterterm

11An example of winding configurations of ϕ on a torus of size
	x, 	y, 	z is

ϕ = 2π

[
xyz

	x	y	z
− yz

	y	z

(x − x0) − xz

	x	z

(y − y0)

− xy

	x	y

(z − z0) + x

	x

(y − y0)
(z − z0)

+ y

	y

(x − x0)
(z − z0) + z

	z

(x − x0 )
(y − y0 )

]
. (2.18)
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iN
4π
AτAxyz for later convenience. This does not affect the ’t

Hooft anomaly.
The Lagrangian (2.23) is not invariant under the U (1)

gauge transformation

ϕ ∼ ϕ + α, (Aτ ,Axyz ) ∼ (Aτ + ∂τα,Axyz + ∂x∂y∂zα).
(2.24)

Rather, it transforms as

L(ϕ)
3+1[Aτ ,Axyz] →L(ϕ)

3+1[Aτ ,Axyz] − iN

4π
α(∂τAxyz − ∂x∂y∂zAτ ).

(2.25)

It is straightforward to see that no 3+1d local counterterms
of (Aτ ,Axyz ) can be added to cancel the anomalous gauge
transformation (2.25). This signals an ’t Hooft anomaly of the
U (1) subsystem symmetry.

2. 4+1d SSPT

Just as the anomaly of a 1+1d chiral boson can be canceled
by a 2+1d U (1) SPT described by a classical Chern-Simons
action, we now show that the anomaly (2.25) can be can-
celed by coupling the theory to a 4+1d SSPT described by

a classical Chern-Simons-like action. Denote the radial bulk
coordinate by w � 0. We will place our chiral ϕ theory at the
w = 0 boundary.

The 4+1d SSPT is protected by a U (1) subsystem sym-
metry whose conserved charges are supported on either wx,
wy, or wz planes. As in our previous example (see Fig. 2),
these bulk planes can be viewed as a minimal extension of
the boundary foliation to the bulk, with no additional leaves
added parallel to the boundary. The subsystem symmetry can
be coupled to background gauge fields

(Aτ ,Axyz,Aw ) ∼ (Aτ + ∂τα,Axyz + ∂x∂y∂zα,Aw + ∂wα).

(2.26)

The 4+1d SSPT is described by the classical Euclidean
Lagrangian

L4+1[Aτ ,Axyz,Aw] = iN

4π
[Aτ (∂wAxyz − ∂x∂y∂zAw )

− Aw(∂τAxyz − ∂x∂y∂zAτ )

+ Axyz(∂τAw − ∂wAτ )]. (2.27)

Under the gauge transformation, the Lagrangian is shifted by

iN

4π
[∂τ (α∂wAxyz ) − ∂w(α∂τAxyz )] + iN

4π
[∂x(∂y∂zα∂τAw ) − ∂y(∂zα∂τ ∂xAw ) + ∂z(α∂τ ∂x∂yAw ) − ∂τ (α∂x∂y∂zAw )]

− iN

4π
[∂x(∂y∂zα∂wAτ ) − ∂y(∂zα∂w∂xAτ ) + ∂z(α∂w∂x∂yAτ ) − ∂w(α∂x∂y∂zAτ )]. (2.28)

The bulk action is invariant up to a boundary term at w = 0:

S4+1[Aτ ,Axyz,Aw] → S4+1[Aτ ,Axyz,Aw] + iN

4π

∫
w=0

dτdxdydz α(∂τAxyz − ∂x∂y∂zAτ ). (2.29)

which cancels the anomaly (2.25) of the boundary chiral ϕ

theory.

III. ANOMALIES OF ZN SUBSYSTEM SYMMETRIES

A. 3+1d X -cube field theory

We now consider the continuum field theory [17,40] that
describes the low-energy physics of the ZN X -cube model
[36]. The low-energy field theory has two kinds of ZN sub-
system global symmetries, one supported along strips, and
the other supported along lines [17]. The corresponding sub-
system global symmetry operators of the continuum field
theory descend from the logical operators of the lattice X -cube
model.

We will show that there is a mixed ’t Hooft anomaly be-
tween the two ZN subsystem symmetries. One manifestation
of the anomaly is that the two subsystem symmetry opera-
tors fail to commute when the strips and the lines intersect
in space. The states in the Hilbert space have to transform
under representations of this nontrivial algebra. In particular,
the subextensive ground state degeneracy of the X -cube field
theory can be viewed as a direct consequence of this mixed
anomaly [17].

This mixed anomaly is analogous to that between the two
ZN one-form symmetries of the 2+1d ZN gauge theory. Both

the symmetry operators and the charged objects of the one-
form symmetries are the Wilson lines of the 2+1d ZN gauge
theory. The one-form symmetry operators in the low-energy
field theory descend from the stringlike logical operators of
the microscopic toric code [42]. Another manifestation of this
anomaly is the nontrivial braiding between the electric and the
magnetic Wilson lines. We will review this mixed anomaly in
the ordinary 2+1d ZN gauge theory in Appendix A 2 a.

Below we will encounter gauge fields transforming in
tensor representations of the spatial S4 rotation symmetry.
These can be described with spatial indices (i, j, k), which we
will always take to be cyclically ordered and, in particular,
nonequal, i.e., (i, j, k) = (x, y, z), (y, z, x), or (z, x, y). We
will use [i j] to denote antisymmetrization over the indices
i and j, and (i j) to indicate symmetrization thereof. The
tensors we will encounter include the symmetric off-diagonal
tensor T i j = T ji with three component T xy,T yz,T zx; the
partially antisymmetric tensor T [i j]k , with three components
T [xy]z,T [yz]x,T [zx]y and a common gauge symmetry T [i j]k ∼
T [i j]k + c; the partially symmetric tensor T i( jk) with three
components that obey T x(yz) + T y(zx) + T z(xy) = 0; and T[i j]k

with three components that obey T[xy]z + T[yz]x + T[zx]y = 0.
Note that we distinguish upper and lower indices. Fields with
indices T [i j]k and T k(i j) are related by T k(i j) ≡ T [ki] j − T [ jk]i.
For more details on this notation and its connection to repre-
sentations of spatial S4 rotation group, see Refs. [16,17,21].
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The ZN X -cube model can be described by a low-energy
continuum field theory using two sets of U (1) tensor gauge
fields

(Aτ ,Ai j ) ∼ (Aτ + ∂τα,Ai j + ∂i∂ jα),(
Âi( jk)

τ , Âi j
) ∼ (

Âi( jk)
τ + ∂τ α̂

i( jk), Âi j + ∂kα̂
k(i j)

)
. (3.1)

The Euclidean Lagrangian of the low-energy continuum field
theory is [17,40]

LXC
3+1 = iN

2π

[
Ai j

(
∂τ Â

i j − ∂kÂ
k(i j)
τ

) + Aτ ∂i∂ j Â
i j
]
. (3.2)

The simplest gauge-invariant operator that can be con-
structed from A is

W (x, y, z) = exp

[
i
∮

dτAτ

]
, (3.3)

which is the worldline of an immobile fracton. In addition, we
have

W (z1, z2, C)

= exp

[
i
∫ z2

z1

dz
∮
C

(∂zAτ dτ + Azx dx + Ayz dy)

]
, (3.4)

where C is a curve in (τ, x, y) representing the world strip of
a dipole of fractons separated in the z direction, which are
mobile in the (x, y) plane.

The gauge-invariant operators constructed from Â have the
form

Ŵ z(x, y, Ĉ ) = exp

[
i
∮
Ĉ

(
Âz(xy)

τ dτ + Âxy dz
)]

, (3.5)

where Ĉ is a curve in the (τ, z) plane, which describes the
world-line of a z-lineon, which can move only along the z di-
rection. The analogous operators Ŵ x(y, z, Ĉ ) and Ŵ y(z, x, Ĉ )
represent the motion of x and y lineons.

1. Global symmetries and anomaly

We now discuss the two ZN subsystem global symmetries
of the continuum field theory for the X -cube model.

2. ZN subsystem global symmetries

The theory has a ZN subsystem global symmetry generated
by the Ŵ operators in Eq. (3.5), with Ĉ chosen to be a straight
line at a fixed time. Due to the commutation relations implied
by Eq. (3.2), such an operator shifts (Aτ ,Ai j ) by a flat ZN ten-
sor gauge field. The corresponding gauge-invariant charged
operators are the W operators.

We can couple the symmetry to the following background
tensor gauge fields12

(Cτ i j,C[i j]k ) ∼ (Cτ i j + ∂τλi j − ∂i∂ jλτ ,C[i j]k − ∂iλ jk + ∂ jλik ).
(3.6)

The gauge parameters (λτ , λi j ) have their own gauge symme-
try

(λτ , λi j ) ∼ (λτ + ∂τ γ , λi j + ∂i∂ jγ ). (3.7)

12The U (1) and the ZN tensor gauge theories of (Cτ i j,C[i j]k ) were
studied in Ref. [18].

These background gauge fields are U (1) gauge fields. We
can restrict them to ZN gauge fields by coupling them to the
dynamical fields φ̂[i j]k :

LC = iN

2π
φ̂[i j]k (∂τC[i j]k + ∂iCτ jk − ∂ jCτ ik ). (3.8)

The theory has another ZN subsystem global symmetry
generated by the W operator (3.4) with C chosen to be at a
fixed time. This operator shifts (Âk(i j)

τ , Âi j ) by a flat ZN tensor
gauge field. The corresponding gauge-invariant charged oper-
ators are the Ŵ operators.

We can couple this second symmetry to the following
background tensor gauge fields13

(
Ĉi j

τ , Ĉ
) ∼ (

Ĉi j
τ + ∂τ λ̂

i j − ∂kλ̂
k(i j)
τ , Ĉ + ∂i∂ j λ̂

i j
)
, (3.9)

where the gauge parameters (λ̂k(i j)
τ , λ̂i j ) have their own gauge

symmetry(
λ̂k(i j)

τ , λ̂i j
) ∼ (

λ̂k(i j)
τ + ∂τ γ̂

k(i j), λ̂i j + ∂k γ̂
k(i j)). (3.10)

Again, these background gauge fields are U (1) gauge fields.
To restrict them to ZN gauge fields, we couple them to a
dynamical scalar φ:

LĈ = iN

2π
φ
(
∂τĈ − ∂i∂ jĈ

i j
τ

)
. (3.11)

3. Mixed ’t Hooft anomaly

Having introduced the background gauge fields for the
two ZN subsystem symmetries, we now discuss how they are
coupled to the X -cube model at low energy. This coupling is
described by the Lagrangian

LXC
3+1[C, Ĉ] =LC + LĈ + iN

2π

[
Ai j

(
∂τ Â

i j − ∂kÂ
k(i j)
τ − Ĉi j

τ

)

+ Aτ (∂i∂ j Â
i j − Ĉ) + Âi jCτ i j + Â[i j]k

τ C[i j]k
]
.

(3.12)

To ensure that this Lagrangian is invariant under the dy-
namical gauge symmetry of the X -cube model, we require that
under the gauge transformations (3.1), the dynamical scalar
fields transform according to

φ ∼ φ − α, φ̂[i j]k ∼ φ̂[i j]k + α̂[i j]k, (3.13)

where α̂[i j]k obeys α̂k(i j) = α̂[ki] j − α̂[ jk]i and has a gauge
symmetry α̂[i j]k ∼ α̂[i j]k + c. Additionally, under the gauge
transformations (3.6) and (3.9) of the background gauge
fields, the dynamical fields of the original X -cube model trans-
form according to

(Aτ ,Ai j ) ∼ (Aτ + λτ ,Ai j + λi j ),(
Âk(i j)

τ , Âi j
) ∼ (Âk(i j)

τ + λ̂k(i j)
τ , Âi j + λ̂i j ). (3.14)

13The U (1) and the ZN tensor gauge theories of (Ĉi j
τ , Ĉ) were

studied in Ref. [18].
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Thus, we see that under these background gauge transformations, the Lagrangian is not invariant; rather, it is shifted by

iN

2π

[−λi jĈ
i j
τ − λτĈ + λ̂i j (Cτ i j + ∂τλi j − ∂i∂ jλτ ) + λ̂[i j]k

τ (C[i j]k − ∂iλ jk + ∂ jλik )
]
. (3.15)

This signals a mixed ’t Hooft anomaly between the two ZN subsystem global symmetries.

4. 4+1d SSPT

The mixed ’t Hooft anomaly described by Eq. (3.15) can be canceled by coupling the system to a 4+1d SSPT protected by
two ZN subsystem symmetries, as we now describe. We denote the radial bulk coordinate by w � 0, and place our X -cube field
theory at the w = 0 boundary.

Our bulk theory has two sets of background tensor gauge fields, which couple to the two subsystem ZN symmetries. The first
set is comprised of the fields

(Cτ i j,C[τw],C[i j]k,Cwi j ) ∼ (Cτ i j + ∂τλi j − ∂i∂ jλτ ,C[τw] + ∂τλw − ∂wλτ ,C[i j]k − ∂iλ jk + ∂ jλik,Cwi j + ∂wλi j − ∂i∂ jλw ).
(3.16)

As in our boundary theory, the gauge parameters (λτ , λi j, λw ) have their own gauge symmetry

(λτ , λi j, λw ) ∼ (λτ + ∂τ γ , λi j + ∂i∂ jγ , λw + ∂wγ ). (3.17)

Since these are U (1) gauge fields, we couple them to a dynamical gauge field(
B̂k(i j)

τ , B̂i j, B̂k(i j)
w

) ∼ (
B̂k(i j)

τ + ∂τ β̂
k(i j), B̂i j + ∂kβ̂

k(i j), B̂k(i j)
w + ∂wβ̂k(i j)), (3.18)

with the Euclidean Lagrangian

L(C)
4+1 = iN

2π

[
B̂[i j]k

τ (∂wC[i j]k + ∂iCw jk − ∂ jCwik ) − B̂[i j]k
w (∂τC[i j]k + ∂iCτ jk − ∂ jCτ ik ) − B̂i j (∂i∂ jC[τw] + ∂τCwi j − ∂wCτ i j )

]
.

(3.19)

The second ZN symmetry couples to the following tensor gauge fields:(
Ĉi j

τ , Ĉk(i j)
[τw] , Ĉ, Ĉi j

w

) ∼ (
Ĉi j

τ + ∂τ λ̂
i j − ∂k λ̂

k(i j)
τ , Ĉk(i j)

[τw] + ∂τ λ̂
k(i j)
w − ∂wλ̂k(i j)

τ , Ĉ + ∂i∂ j λ̂
i j, Ĉi j

w + ∂wλ̂i j − ∂k λ̂
k(i j)
w

)
, (3.20)

where the gauge parameters (λ̂k(i j)
τ , λ̂i j, λ̂

k(i j)
w ) have their own gauge symmetry(

λ̂k(i j)
τ , λ̂i j, λ̂k(i j)

w

) ∼ (
λ̂k(i j)

τ + ∂τ γ̂
k(i j), λ̂i j + ∂k γ̂

k(i j), λ̂k(i j)
w + ∂wγ̂ k(i j)

)
. (3.21)

To restrict the symmetry to ZN , we introduce the dynamical
gauge fields

(Bτ ,Bi j,Bw ) ∼ (Bτ + ∂τβ,Bi j + ∂i∂ jβ,Bw + ∂wβ ), (3.22)

which couple to Ĉ via the Euclidean Lagrangian

L(Ĉ)
4+1 = iN

2π

[
Bτ

(
∂wĈ − ∂i∂ jĈ

i j
w

) − Bw

(
∂τĈ − ∂i∂ jĈ

i j
τ

)

− Bi j
(
∂kĈ

k(i j)
[τw] + ∂τĈ

i j
w − ∂wĈ

i j
τ

)]
. (3.23)

Our 4+1d SSPT is described by coupling these two
subsystem-symmetric theories, via the classical Euclidean La-
grangian

L4+1d =L(C)
4+1 + L(Ĉ)

4+1 + iN

2π

(
Cτ i jĈ

i j
w −Cwi jĈ

i j
τ

+C[τw]Ĉ −C[i j]kĈ
[i j]k
[τw]

)
. (3.24)

For the coupling between the C and Ĉ gauge fields to be
gauge-invariant, the dynamical gauge fields B and B̂ also
have to transform under the background gauge symmetries of
(λτ , λi j, λw ) and (λ̂k(i j)

τ , λ̂i j, λ̂
k(i j)
w ) as follows:

(Bτ ,Bi j,Bw ) ∼ (Bτ − λτ ,Bi j − λi j,Bw − λw ),(
B̂k(i j)

τ , B̂i j, B̂k(i j)
w

) ∼ (
B̂k(i j)

τ + λ̂k(i j)
τ , B̂i j + λ̂i j, B̂k(i j)

w + λ̂k(i j)
w

)
.

(3.25)

It is straightforward to check that the resulting action is in-
variant under the background gauge transformations up to a
boundary term at w = 0, which cancels the anomaly (3.15) of
the boundary X -cube field theory (3.2).

B. 1+1d system with a ZN subsystem symmetry

We now consider a 1+1d system with a ZN subsystem
symmetry. As we show in Sec. III B 5, this system is related to
the 1+1d chiral boson by gauging a Z subsystem symmetry.

Consider the Euclidean action

S = iN

4π

∮
dx

[ ∫ τ∗+	τ

τ∗
dτ ∂τφ(τ, x)∂xφ(τ, x)

+ 2π∂xφ(τ∗, x)wτ (x)

]
. (3.26)

The field φ is subject to the identification

φ(τ, x) ∼ φ(τ, x) + 2πm(x), m(x) ∈ Z. (3.27)

It can wind in the Euclidean time and the spatial directions:

φ(τ + 	τ , x) = φ(τ, x) + 2πwτ (x), wτ (x) ∈ Z,

φ(τ, x + 	x ) = φ(τ, x) + 2πwx, wx ∈ Z. (3.28)
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Here wτ (x) is a single-valued, integer function. Indeed, under
the identification (3.27), the action is shifted by

S → S + 2π iN
∮

dxwτ (x)∂xm(x), (3.29)

which is an integer multiple of 2π i. Therefore the partition
function is invariant under this subsystem symmetry.

The action (3.26) is very similar to that of an ordinary
chiral boson (A12), but they differ in the second term. We
now explain the importance of this term. Because of the
position-dependent winding of φ in the τ direction, the first
term in the action (3.26) is not well-defined on its own. This
is precisely fixed by adding the second correction term. With
the correction term, the full action (3.26) is independent of the
choice of the reference time τ∗, and it is invariant modulo 2π i
under the identification (3.27) [see Eq. (3.29)]. This correction
term is similar to the correction term in the action of the
quantum mechanics of N degenerate ground states reviewed
in Appendix A 2 b.

In addition to the subsystem symmetry, the theory (3.26)
has a gauge symmetry

φ(τ, x) ∼ φ(τ, x) + g(τ ), (3.30)

where g(τ ) can wind in time, g(τ + 	τ ) − g(τ ) ∈ 2πZ.

1. Global symmetry and anomaly

The action (3.26) is invariant under the ZN subsystem
global symmetry:

φ(τ, x) → φ(τ, x) + 2πm(x)

N
, m(x) ∈ Z. (3.31)

Note that the symmetry with constant m(x) = m is not a global
symmetry, but part of the gauge symmetry (3.30). The sub-
system global symmetry is generated by the gauge invariant
operator

U (x1, x2) = exp [iφ(x2) − iφ(x1)], (3.32)

with x1 < x2. It shifts φ(τ, x) → φ(τ, x) + 2π
N only within an

interval, x ∈ (x1, x2).
Using the commutation relation,

[φ(x1), ∂xφ(x2)] = 2π i

N
δ(x1 − x2), (3.33)

we find that the symmetry operators obey a nontrivial com-
mutation relation

U (x1, x2)U (x3, x4)

=

⎧⎪⎨
⎪⎩
e−2π i/NU (x3, x4)U (x1, x2) x1 < x3 < x2 < x4,

e2π i/NU (x3, x4)U (x1, x2) x3 < x1 < x4 < x2,

U (x3, x4)U (x1, x2) otherwise.
(3.34)

This signals an ’t Hooft anomaly of the ZN subsystem sym-
metry. In other words, the ZN subsystem symmetry acts
projectively on the Hilbert space.

The ’t Hooft anomaly can also be detected by coupling the
system to the background gauge field Aτ for the ZN subsystem

symmetry. The action after coupling becomes

S = iN

4π

∮
dτdx(∂τφ∂xφ − 2Aτ ∂xφ). (3.35)

Here we omit the correction term, and restrict the holonomies
of the U (1) background gauge fields Aτ to be ZN -valued. The
background gauge symmetry is

φ ∼ φ + α, Aτ ∼ Aτ + ∂τα. (3.36)

It shifts the action by

S → S − iN

4π

∮
dτdx (∂τα∂xα + 2Aτ ∂xα), (3.37)

which signals an ’t Hooft anomaly of the ZN subsystem sym-
metry.

2. 2+1d SSPT

We now construct the 2+1d SSPTs that cancel the anomaly
via anomaly inflow. We will show that there are two such
SSPTs, and they differ in their global symmetry and foliation.
Denote the radial bulk coordinate by y � 0. We place our
1+1d system on the y = 0 boundary.

3. 1-foliated SSPT

First, we consider a 2+1d SSPT protected by a 1-foliated
ZN subsystem global symmetry. The subsystem symmetry is
generated by distinct symmetry line operators, that extend in
the y direction, at different x. This is illustrated on the left in
Fig. 1. Hence, we refer to it as a 1-foliated symmetry, and the
corresponding SSPT as 1-foliated SSPT.

We can couple the subsystem symmetry to a background
gauge field (Aτ ,Ay). The SSPT that we are interested in is
described by the Euclidean Lagrangian

L2+1 = iN

2π
�(∂τAy − ∂yAτ ) − iN

2π
Aτ ∂xAy, (3.38)

where � is a dynamical field of mass dimension +1 that
constrains the classical U (1) gauge field (Aτ ,Ay) to a ZN

gauge field. The background gauge transformation,

� ∼ � + ∂xα, (Aτ ,Ay) ∼ (Aτ + ∂τα,Ay + ∂yα), (3.39)

shifts the Lagrangian by total derivatives

− iN

4π
[∂x(∂τα∂yα + 2Ay∂τα) + ∂y(∂τα∂xα + 2Aτ ∂xα)

− ∂τ (∂xα∂yα + 2Ay∂xα)]. (3.40)

It leads to an anomaly inflow to the y = 0 boundary, which
cancels the anomaly (3.37) of the boundary 1+1d system.

4. 2-foliated SSPT

Second, we show that the anomaly can also be canceled by
a 2+1d SSPT protected by a 2-foliated ZN subsystem symme-
try. The subsystem symmetry is generated by symmetry line
operators that extend in either the x or the y direction. This is
illustrated on the right in Fig. 1. These symmetry lines are all
distinct operators except that the products of symmetry lines
that extend in the x and y directions are the same.
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We can couple the subsystem symmetry to a ZN back-
ground tensor gauge field (Aτ ,Axy). The SSPT that we are
interested in is described by the classical Lagrangian

L2+1 = iN

2π
�xy(∂τAxy − ∂x∂yAτ ) − iN

2π
AτAxy, (3.41)

where �xy is a dimensionless dynamical field that constrains
the classical U (1) gauge field (Aτ ,Axy) to a ZN gauge field.
The gauge symmetry is

Aτ ∼ Aτ + ∂τα, Axy ∼ Axy + ∂x∂yα, �xy ∼ �xy − α.

(3.42)

The Lagrangian is invariant under the gauge symmetry up to
total derivatives

− iN

4π
[∂x(∂τα∂yα − 2α∂yAτ ) + ∂y(∂τα∂xα + 2Aτ ∂xα)

− ∂τ (∂xα∂yα − 2αAxy)]. (3.43)

These terms signal an anomaly inflow to the y = 0 boundary,
which cancels the anomaly (3.37) of the boundary 1+1d sys-
tem.

5. Relation to the ordinary chiral boson

We now show that starting from the 1+1d ordinary chiral
boson theory (reviewed in Appendix A 1 b), we can gauge a
Z subsystem symmetry to obtain the 1+1d system (3.26). We
will see that the correction term in Eq. (3.26) arises naturally
from this gauging.

In the absence of the velocity term (∂xϕ)2, the ordinary
chiral boson theory (A12) of ϕ has a Z subsystem symmetry
that acts as

ϕ(τ, x) → ϕ(τ, x) + 2πwτ (x), wτ (x) ∈ Z. (3.44)

Note that the conjugate momentum of ϕ is π = N
2π

∂xϕ.
Gauging the subsystem symmetry amounts to inserting the
symmetry operators

exp

[
2π i

∮
dxwτ (x)π (τ∗, x)

]

= exp

[
iN

∮
dxwτ (x)∂xϕ(τ∗, x)

]
, (3.45)

at a given time τ∗, and then summing over all possible
wτ (x).14 Inserting these symmetry operators is equivalent to
modifying the action to

S = iN

4π

∮
dx

[ ∫ τ∗+	τ

τ∗
dτ ∂τϕ(τ, x)∂xϕ(τ, x)

+ 4πwτ (x)∂xϕ(τ∗, x)

]
, (3.46)

where we sum over the winding configurations (A13) of ϕ in
the path integral.

Next, we define a new field φ as

φ(τ, x) = ϕ(τ, x) + 2πwτ (x)
(τ − τ∗), (3.47)

14Note that the symmetry operator with constant wτ (x) = n is a
trivial operator since it shifts ϕ → ϕ + 2πn.

and rewrite the path integral using this field. In contrast to the
old field ϕ, the new field φ can have nontrivial, x-dependent
winding in the Euclidean time direction. The action then be-
comes (3.26), and in the path integral, we now sum over the
winding configurations (3.28) of φ.

IV. ANOMALIES OF TIME-REVERSAL
AND SUBSYSTEM SYMMETRIES

For our final example, we consider a time-reversal invariant
U (1) tensor gauge theory with a θ -angle θ = π . We show
that this system exhibits is a mixed ’t Hooft anomaly be-
tween time-reversal symmetry and a subsystem symmetry.
This anomaly is analogous to the mixed anomaly between the
electric one-form symmetry and the time-reversal symmetry
in the ordinary 1+1d U (1) gauge theory at θ = π [56,57].
See Appendix A 3 for a review.

Importantly, the tensor gauge fields (Aτ ,Axy) below are
dynamical gauge fields, rather than background gauge fields
for a response action. The subsystem symmetry in question is
analogous to a one-form symmetry, whose charged objects are
extended Wilson strips rather than points.

A. 2+1dU (1) tensor gauge theory

Consider a 2+1d U (1) tensor gauge theory of a symmetric
tensor gauge field

(Aτ ,Axy) ∼ (Aτ + ∂τα,Axy + ∂x∂yα), (4.1)

with a Euclidean Lagrangian [15]

L(A)
2+1 = 1

g2
e

E2
xy + iθ

2π
Exy. (4.2)

Here Exy = ∂τAxy − ∂x∂yAτ is the gauge-invariant electric
field. This continuum Lagrangian was studied in the context
of higher order topological insulator in Ref. [32].

The θ -parameter has a 2π periodicity, i.e., θ ∼ θ + 2π ,
since the electric flux is quantized as follows:∮

dτdxdy Exy ∈ 2πZ. (4.3)

To see this quantization explicitly, observe that the gauge field
configuration

Aτ = 0, Axy = 2πτ

	τ

[
1

	x
δ(y − y0) + 1

	y
δ(x − x0) − 1

	x	y

]

(4.4)

carries nontrivial electric flux. This is a valid configuration
since Axy(τ + 	τ , x, y) − Axy(τ, x, y) = ∂x∂yg with the transi-
tion function g given by Eq. (2.3). See Ref. [15] for a more
detailed discussion of the fluxes in this U (1) tensor gauge
theory.

Because θ is periodic, the theory at θ = 0, π has a time-
reversal symmetry

(τ, x, y) → (−τ, x, y), (Aτ ,Axy) → (−Aτ ,Axy). (4.5)

If the gauge field is classical, the θ -term at θ = π can be
viewed as a response action for a 2+1d SSPT with gapless
corner modes protected by time-reversal and U (1) subsystem
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symmetry [32]. Here, we instead consider the situation where
the tensor gauge field is dynamical.

In this case, at all values of θ , the theory has aU (1) electric
tensor symmetry that shifts (Aτ ,Axy) by a flat tensor gauge
field. The symmetry is generated by a current

Jxyτ = 2i

g2
e

Exy − θ

2π
,

∂τ J
xy
τ = 0, ∂x∂yJ

xy
τ = 0. (4.6)

The operators charged under this symmetry are the following
Wilson strips:

Wx(y1, y2) = exp

(∫ y2

y1

dy
∮

dx Axy

)
,

Wy(x1, x2) = exp

(∫ x2

x1

dx
∮

dy Axy

)
. (4.7)

We will show below that this electric tensor symmetry has a
mixed ’t Hooft anomaly with the time-reversal symmetry at
θ = π .

We can couple the electric tensor symmetry to a U (1)
background tensor gauge field Bxy

τ . The gauge transformation
acts as

Aτ ∼ Aτ + λτ , Axy ∼ Axy + λxy,

Bxy
τ ∼ Bxy

τ + ∂τλxy − ∂x∂yλτ . (4.8)

The gauge parameters (λτ , λxy) are tensor gauge fields them-
selves with gauge symmetry

(λτ , λxy) ∼ (λτ + ∂τ γ , λxy + ∂x∂yγ ). (4.9)

The Lagrangian that couples to the background gauge field is

L(A)
2+1

[
Bxy

τ

] = 1

g2
e

(
Exy − Bxy

τ

)2 + iθ

2π

(
Exy − Bxy

τ

)
. (4.10)

We now examine the action of time-reversal symmetry at θ =
0, π . Time-reversal symmetry acts on the background gauge
field according to Bxy

τ → −Bxy
τ , whereas Exy → −Exy. At θ =

0, this leaves both Eqs. (4.2) and (4.10) invariant; hence, the
total theory is time-reversal symmetric. However, at θ = π ,
under time-reversal symmetry the Lagrangian transforms as

L(A)
2+1

[
Bxy

τ

] → L(A)
2+1

[
Bxy

τ

] + iBxy
τ . (4.11)

Here we have dropped the term iExy since its integral is always
2π iZ. In contrast, the integral of iBxy

τ is generally not 2π iZ.
One may try to fix the anomalous time-reversal transformation
(4.11) by adding the following local counterterm

i

2
Bxy

τ . (4.12)

However, this will breaks the background gauge symmetry of
Bxy

τ . Hence, our theory exhibits a mixed ’t Hooft anomaly be-
tween the time-reversal and theU (1) electric tensor symmetry
at θ = π .

B. 3+1d SSPT

We can restore the time-reversal symmetry at θ = π by
coupling the system to a 3+1d SSPT. Denote the radial bulk
coordinate by z � 0. We will place our theory at the z = 0
boundary.

The 3+1d SSPT is protected by time-reversal symme-
try and a U (1) tensor symmetry generated by the currents
(Jxyτ , J[τ z], J

xy
z ) that obey

∂τ J
xy
τ + ∂zJ

xy
z = 0,

∂τ J[τ z] + ∂x∂yJ
xy
z = 0,

∂zJ[τ z] = ∂x∂yJ
xy
τ . (4.13)

We can couple the SSPT to a background tensor gauge field

(
Bxy

τ ,B[τ z],B
xy
z

) ∼ (
Bxy

τ + ∂τλxy − ∂x∂yλτ ,B[τ z] + ∂τλz − ∂zλτ ,B
xy
z + ∂zλxy − ∂x∂yλz

)
. (4.14)

The gauge parameters (λτ , λxy, λz ) are gauge fields them-
selves with gauge transformations

(λτ , λxy, λz ) ∼ (λτ + ∂τ γ , λxy + ∂x∂yγ , λz + ∂zγ ). (4.15)

The 3+1d SSPT can be described by the classical Euclidean
Lagrangian

L3+1 = i

2

(
∂τB

xy
z − ∂zB

xy
τ + ∂x∂yB[τ z]

)
. (4.16)

On a closed manifold, the theory is invariant under the time-
reversal symmetry transformation

(τ, x, y) → (−τ, x, y),(
Bxy

τ ,B[τ z],B
xy
z

) → ( − Bxy
τ ,−B[τ z],B

xy
z

)
. (4.17)

Here we have used the quantization of the following fluxes:
∮

dτdxdydz
(
∂τB

xy
z − ∂zB

xy
τ + ∂x∂yB[τ z]

) ∈ 2πZ. (4.18)

For example, a gauge field configuration that carries nontrivial
flux is

Bxy
τ = 2πz

	τ 	z

[
1

	x
δ(y − y0) + 1

	y
δ(x − x0) − 1

	x	y

]
,

B[τ z] = 0, Bxy
z = 0. (4.19)

This is a valid configuration since Bxy
τ (z + 	z ) − Bxy

τ (z) =
∂τλxy with λxy the configuration in Eq. (4.4). On a manifold
with boundary at z = 0, the SSPT is time-reversal invariant
up to a boundary term

S3+1 → −S3+1 = S3+1d − i
∫
z=0

dτdxdy Bxy
τ , (4.20)

which cancels the anomalous time-reversal transformation
(4.11) of the 2+1dU (1) tensor gauge theory on the boundary.

V. DISCUSSION AND OUTLOOK

In this work, we have discussed a number of qualitatively
different examples of ’t Hooft anomalies that arise in the
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context of subsystem symmetry, and shown how these anoma-
lies can be canceled by a suitably chosen bulk theory in
one higher dimension via the anomaly inflow mechanism.
Our examples illustrate that the diversity of possible ’t Hooft
anomalies in systems with subsystem global symmetry paral-
lels that known to exist for ordinary global symmetry; hence, a
comparably rich classification of SSPT phases presumably ex-
ists. Specifically, we have demonstrated that anomalies occur
in systems with discrete and continuous subsystem symmetry,
whose charged operators can be pointlike or extended objects.

The subsystem symmetries examined in this work are all
naturally associated with a certain foliation structure in space.
More generally, there are lattice models exhibiting fractal
subsystem symmetries, i.e., the symmetry operators on fractal
geometric objects. These include the fracton topological order
of Ref. [3] and also the fractal SPT of Ref. [60]. It is a
challenging open question to develop a continuum framework
to understand these fractal subsystem symmetries.

Even for the examples discussed here, where the anoma-
lous theory has a natural foliation structure, there can be more
than one possible extension of the boundary foliation structure
into the bulk. For example, in Sec. III B, we encountered an
example of a ZN subsystem symmetry anomaly in 1+1d that
can be canceled by two distinct 2+1d SSPTs with different
bulk foliation structures. Thus the correspondence between
anomalies and SPTs appears to be more subtle than for or-
dinary global symmetries, where anomalies can be classified
by SPTs in one dimension higher. To achieve a classification
of subsystem anomalies via SSPTs in one dimension higher,
one needs to first understand the possible extensions of the
boundary foliation structure into the bulk.15

The perspective adopted in this paper is to start from a
boundary system with a given anomaly and then identify a
bulk theory to cancel this anomaly. Alternatively, one can start
with a bulk SSPT, and analyze the anomaly inflow into the
boundary. Since our SSPT does not have continuous spatial
rotation symmetry, the anomaly inflow depends sensitively
on the choice of the boundary. For example, the anomalies
might be different for the boundaries along different direc-
tions in space. This possibility also makes the correspondence
between the boundary anomaly and the bulk SSPT more
intricate.

We leave a systematic investigation of these questions for
future studies.

15The foliation structure of a theory with subsystem symmetries is
somewhat analogous to the tangential structure (e.g., the spin struc-
ture) in the discussion of ordinary global symmetries. For example,
various physical observables, such as the ground state degeneracy,
depend not only on the geometry, but also on the choice of a foliation
in systems with subsystem symmetries [49,50]. This is analogous to
the dependence on the choice of the spin structure in a fermionic the-
ory. In the ordinary correspondence between the boundary anomaly
and the bulk SPT, one assumes the tangential structure is stable in the
sense that it can be defined in all spacetime dimensions. It would be
interesting to understand the corresponding mathematical structure
for foliated manifolds. We thank Kantaro Ohmori for discussions on
this point.
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APPENDIX: ANOMALIES IN ORDINARY QUANTUM
FIELD THEORIES

In this Appendix, we will review several well-known ex-
amples of systems with ’t Hooft anomalies of ordinary global
symmetries, and the associated symmetry protected topolog-
ical (SPT) phases that cancel the anomalies via anomaly
inflow.

1. Anomalies ofU (1) symmetries

a. U (1) ×U (1) symmetry: 1+1d compact boson

Consider the 1+1d compact boson theory described by the
Euclidean Lagrangian

L(φ)
1+1 = β

2
[(∂τφ)2 + (∂xφ)2], (A1)

where φ is a compact scalar, i.e., φ ∼ φ + 2π . In the path
integral, we sum over winding configurations of φ. On a torus
of size 	τ , 	x, they obey the boundary conditions

φ(τ + 	τ , x) = φ(τ, x) + 2πwτ , wτ ∈ Z,

φ(τ, x + 	x ) = φ(τ, x) + 2πwx, wx ∈ Z. (A2)

The Lagrangian (A1) is invariant under the U (1) momen-
tum global symmetry that shifts

φ(τ, x) → φ(τ, x) + c, (A3)

where c is a constant. The Noether current for this symmetry
are

Jτ = iβ∂τφ, Jx = iβ∂xφ,

∂τ Jτ + ∂xJx = 0. (A4)

There is also a U (1) winding symmetry with Noether current

J̃τ = 1

2π
∂xφ, J̃x = − 1

2π
∂τφ,

∂τ J̃τ + ∂xJ̃x = 0. (A5)

A field configuration that carries a nontrivial winding charge
is φ = 2πx/	x, which satisfies the boundary condition (A2).

We can couple the theory to the background gauge fields
A = (Aτ ,Ax ) and Ã = (Ãτ , Ãx ) of the U (1) momentum and
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theU (1) winding symmetry. The Lagrangian after coupling is

L(φ)
1+1[A, Ã] = β

2
[(∂τφ − Aτ )2 + (∂xφ − Ax )2]

+ i

2π
[Ãτ (∂xφ − Ax ) − Ãx(∂τφ − Aτ )]. (A6)

It is not invariant under the gauge symmetry:

φ ∼ φ + α, A ∼ A + dα, Ã ∼ Ã + dα̃. (A7)

Instead, it is shifted by

L(φ)
1+1[A, Ã] → L(φ)

1+1[A, Ã] + i

2π
α̃(∂τAx − ∂xAτ ). (A8)

This signals an ’t Hooft anomaly of the U (1) ×U (1) global
symmetry.

Consider a 2+1d SPT protected by a U (1) ×U (1) global
symmetry described by the classical Euclidean Lagrangian16

L2+1[A, Ã] = i

2π
ÃdA

= i

2π
[Ãτ (∂xAy − ∂yAx ) − Ãx(∂τAy − ∂yAτ )

+ Ãy(∂τAx − ∂xAτ )], (A9)

where A = (Aτ ,Ax,Ay) and Ã = (Ãτ , Ãx, Ãy) are background
U (1) ×U (1) gauge fields with gauge symmetry,

A ∼ A + dα, Ã ∼ Ã + dα̃. (A10)

The Lagrangian (A9) is invariant under the gauge symmetry
up to a total derivative:

i

2π
d (α̃dA) = i

2π
{∂τ [α̃(∂xAy − ∂yAx )]

− ∂x[α̃(∂τAy − ∂yAτ )]

+ ∂y[α̃(∂τAx − ∂xAτ )]}. (A11)

On a manifold with boundary at y = 0, the anomaly inflow
cancels the anomaly (A8).

b. U (1) symmetry: 1+1d compact chiral boson

Consider the 1+1d compact chiral boson described by the
Euclidean action

S(ϕ)
1+1 = iN

4π

∮
dτdx ∂τϕ∂xϕ, (A12)

where N ∈ Z and ϕ is a compact scalar, i.e., ϕ ∼ ϕ + 2π .
More generally, one can add a velocity term (∂xϕ)2 to the
Lagrangian, but we will consider the special case when this
term is absent.

16In this Appendix, we will often expand the differential forms
in components to compare with the analogous expressions for the
subsystem symmetries in the main texts. We will often ignore the the
volume form, such as dτ ∧ dx ∧ dy, in these expressions.

On a torus of size 	τ , 	x, we sum over the winding config-
urations that obey the boundary conditions17

ϕ(τ + 	τ , x) = ϕ(τ, x),

ϕ(τ, x + 	x ) = ϕ(τ, x) + 2πwx, wx ∈ Z, (A13)

in the path integral. The theory has a gauge symmetry

ϕ(τ, x) ∼ ϕ(τ, x) + g(τ ), (A14)

where g(τ + 	τ ) = g(τ ).
The theory has a LU (1)/U (1) momentum global symme-

try that shifts [61,62]

ϕ(τ, x) → ϕ(τ, x) + f (x), (A15)

where f (x) is a map from S1 to U (1). In particular, f (x) can
wind with f (x + 	x ) = f (x) + 2πZ. The zero mode of f (x)
is not a global symmetry but a gauge symmetry included in
Eq. (A14). Because of this, the global symmetry has a U (1)
quotient. The symmetry is generated by the current

Jτ = − N

2π
∂xϕ, ∂τ Jτ = 0. (A16)

Although a constant shift of ϕ is a gauge symmetry, the
zero-mode charge Q = ∮

dx Jτ can be nontrivial since the
winding configuration ϕ = 2πx/	x carries a nontrivial charge
Q = −N .

We can couple the current Jτ to a U (1) background gauge
field A = (Aτ ,Ax ) [63]

S(ϕ)
1+1[Aτ ,Ax] = iN

4π

∮
dτdx(∂τϕ∂xϕ − 2Aτ ∂xϕ + AτAx ).

(A17)

Note that since the current only has the Jτ component, the
background gauge field Ax is not coupled to any current.
Here we include in the Lagrangian a classical counterterm
iN
4π
AτAx for later convenience. This does not affect the ’t Hooft

anomaly. The Lagrangian is not invariant under the gauge
symmetry,

ϕ ∼ ϕ + α, A ∼ A + dα. (A18)

Rather, it is shifted by

S(ϕ)
1+1[Aτ ,Ax] → S(ϕ)

1+1[Aτ ,Ax] − iN

4π

∮
dτdx α(∂τAx − ∂xAτ ).

(A19)

It signals an ’t Hooft anomaly.
This anomaly can be canceled by coupling the system

to a 2+1d U (1) SPT described by the classical Euclidean

17More generally, in the path integral, we can include configura-
tions that wind in the time direction. But using the gauge symmetry
(A14), we can always shift a winding configuration ϕ(τ, x) by a g(τ )
with opposite winding such that in the path integral we can restrict to
configurations that do not wind in the time direction.
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Lagrangian

L2+1[Aτ ,Ax,Ay] = − iN

4π
AdA

= − iN

4π
[Aτ (∂xAy − ∂yAx ) + Ax(∂yAτ

− ∂τAy) + Ay(∂τAx − ∂xAτ )]. (A20)

The Lagrangian is invariant under the gauge symmetry up to
a total derivative

− iN

4π
d (αdA) = − iN

4π
{∂τ [α(∂xAy − ∂yAx )]

− ∂x[α(∂τAy − ∂yAτ )]

+ ∂y[α(∂τAx − ∂xAτ )]}. (A21)

On a manifold with a y = 0 boundary, the anomaly inflow
cancels the anomaly (A19).

2. Anomalies of ZN symmetries

a. ZN × ZN one-form symmetry: 2+1d ZN gauge theory

The Euclidean Lagrangian of the 2+1d ZN gauge theory is
[64–66]

L2+1 = iN

2π
ÃdA, (A22)

where A = (Aτ ,Ax,Ay) and Ã = (Ãτ , Ãx, Ãy) are U (1) gauge
fields with gauge symmetry

A ∼ A + dα, Ã ∼ Ã + dα̃. (A23)

Their equations of motion constrain each other to be ZN gauge
fields. This theory describes the low energy physics of the ZN

toric code.
The theory (A22) has an electric ZN one-form global sym-

metry, and a magnetic ZN one-form global symmetry. The
electric one-form symmetry is generated by the Wilson loops
of Ã, W̃ (C̃) = exp(i

∮
C̃ Ã), and the charged operators are the

Wilson loops of A, W (C) = exp(i
∮
C A). However, the mag-

netic one-form symmetry is generated by the Wilson loops of
A, and the charged operators are the Wilson loops of Ã.

These operators satisfy

W (C)N = W̃ (C̃)N = 1,

W (C)nW̃ (C̃)m = e
2π i
N nmI (C,C̃)W̃ (C̃)mW (C)n, (A24)

where C and C̃ are restricted to curves in space, and I (C, C̃)
is their intersection number. The fact that the two symme-
try operators are charged under each other signals a mixed
’t Hooft anomaly between the two ZN one-form symme-
tries [28,43–45]. One consequence of this anomaly is that,
on a torus, the ZN gauge theory has N2 degenerate ground
states that live in the minimal representation of the operator
algebra (A24).

The Wilson linesW and W̃ are the worldlines of the electric
and magnetic anyons in the microscopic toric code. The non-
trivial braiding between the electric and the magnetic anyons
becomes the ’t Hooft anomaly of the emergent ZN × ZN one-
form global symmetry.

The anomaly can also be detected by coupling the theory
(A22) to background two-form gauge fields B and B̃ of the

ZN × ZN one-form global symmetry:

L2+1[B, B̃] = iN

2π
[Ã(dA − B) − AB̃] + iN

2π
φ̃dB + iN

2π
φdB̃,

(A25)

where B and B̃ are classical U (1) two-form gauge fields, and
φ̃ and φ are dynamical compact scalar fields that constrain B
and B̃ to be ZN two-form gauge fields. The dynamical gauge
symmetry (A23) acts on φ and φ̃ as

φ ∼ φ − α, φ̃ ∼ φ̃ − α̃. (A26)

The background one-form gauge symmetry acts as

A ∼ A + λ, B ∼ B + dλ,

Ã ∼ Ã + λ̃, B̃ ∼ B̃ + dλ̃, (A27)

where the one-form gauge parameters λ and λ̃ have their own
gauge symmetries

λ ∼ λ + dγ , λ̃ ∼ λ̃ + d γ̃ . (A28)

The Lagrangian (A25) is not invariant under the gauge sym-
metry (A27):

L2+1[B, B̃] → L2+1[B, B̃] − iN

2π
[λ̃B + λ(B̃ + dλ̃)]. (A29)

This signals an ’t Hooft anomaly of the ZN × ZN one-form
symmetry.

Consider a 3+1d SPT protected by the ZN × ZN one-form
symmetry described by the Lagrangian [44,47]

L3+1[B, B̃] = iN

2π
C̃dB + iN

2π
CdB̃ − iN

2π
BB̃, (A30)

where B and B̃ are U (1) two-form background gauge fields,
and C and C̃ are dynamical one-form gauge fields that con-
strain B̃ and B to be ZN two-form gauge fields. The gauge
symmetry is

C ∼ C + dχ + λ, B ∼ B + dλ,

C̃ ∼ C̃ + dχ̃ + λ̃, B̃ ∼ B̃ + dλ̃, (A31)

where the background one-form gauge parameters λ and λ̃

have their own gauge symmetries

λ ∼ λ + dγ , λ̃ ∼ λ̃ + d γ̃ . (A32)

The 3+1d SPT (A30) is the low-energy limit of a Walker-
Wang model [48].

The Lagrangian (A30) is invariant under the background
gauge symmetry (A31) up to total derivatives

L3+1[B, B̃] → L3+1[B, B̃] − iN

2π
d[λ̃B + λ(B̃ + dλ̃)].

(A33)

On a manifold with boundary at z = 0, the anomaly inflow
cancels the anomaly (A29).

b. ZN × ZN symmetry: Quantum mechanics of N degenerate
ground states

Consider the quantum mechanics of N degenerate ground
states. When the Euclidean time is noncompact, the theory is
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described by the Euclidean action

S0+1 = iN

2π

∫
dτ p(τ )q̇(τ ), (A34)

where N ∈ Z and p(τ ), q(τ ) are both circle-valued fields,

p(τ ) ∼ p(τ ) + 2π, q(τ ) ∼ q(τ ) + 2π. (A35)

If the time is compact with a periodicity 	τ , then the fields
p(τ ), q(τ ) can wind around the Euclidean time circle

p(τ + 	τ ) = p(τ ) + 2πnp, np ∈ Z,

q(τ + 	τ ) = q(τ ) + 2πnq, nq ∈ Z, (A36)

and all values of np, nq are summed over in the path integral.
As a result, the action (A34) is no longer well-defined unless
it is supplemented with a correction term [21,67–69]:

S0+1 = iN

2π

∫ τ∗+	τ

τ∗
dτ p(τ )q̇(τ ) − iNnpq(τ∗). (A37)

It is straightforward to see that the action (A37) is independent
of the reference Euclidean time τ∗, and is invariant (modulo
2π iZ) under the identifications (A35).

The action (A37) has a ZN × ZN global symmetry that
shifts

p(τ ) → p(τ ) + 2πmp

N
, mp ∈ Z,

q(τ ) → q(τ ) + 2πmq

N
, mq ∈ Z. (A38)

It is generated by U = eiq and V = eip, which satisfy

UN = VN = 1, UV = e
2π i
N VU . (A39)

Quantizing the action leads to a Hilbert space of N degener-
ated ground states, which are in the minimal representation
of this algebra. The nontrivial commutation relations in
Eq. (A39) mean that the Hilbert space transforms projec-
tively under the ZN × ZN symmetry. This implies an ’t Hooft
anomaly of the symmetry.

The anomaly can also be detected by coupling the system
to ZN × ZN background gauge fields:

S0+1[Aτ , Ãτ ] = iN

2π

∮
dτ [p(q̇ − Aτ ) + Ãτq]. (A40)

Here, we omit the correction terms, and restrict the
holonomies of the U (1) background gauge fields Aτ and Ãτ

to be ZN -valued.18 The background gauge symmetry acts as

q ∼ q + α, Aτ ∼ Aτ + α̇,

p ∼ p+ α̃, Ãτ ∼ Ãτ + ˙̃α. (A43)

The action (A40) is not invariant under the gauge symmetry
(A43),

S0+1[Aτ , Ãτ ] → S0+1[Aτ , Ãτ ] + iN

2π

∮
dτ (αÃτ − α̃Aτ − α̃α̇),

(A44)

which signals an ’t Hooft anomaly of the ZN × ZN global
symmetry.

Consider a 1+1d SPT protected by a ZN × ZN global
symmetry. The SPT is described by the Euclidean Lagrangian

L1+1[A, Ã] = iN

2π
[�̃dA + �dÃ − AÃ]

= iN

2π
[�̃(∂τAx − ∂xAτ ) + �(∂τ Ãx − ∂xÃτ )

− (Aτ Ãx − AxÃτ )], (A45)

where �̃ and � are dynamical compact scalar fields that
constrain the U (1) background gauge fields A = (Aτ ,Ax ) and
Ã = (Ãτ , Ãx ) to be ZN -valued. The gauge symmetry acts as

A ∼ A + dα, � ∼ � − α,

Ã ∼ Ã + dα̃, �̃ ∼ �̃ + α̃. (A46)

The Lagrangian (A45) is invariant under the gauge symmetry
up to total derivatives:

− iN

2π
d (αÃ − α̃A − α̃dα)

= − iN

2π
[∂τ (αÃx − α̃Ax − α̃∂xα) − ∂x(αÃτ

− α̃Aτ − α̃∂τα)]. (A47)

On a manifold with boundary at x = 0, the anomaly inflow
cancels the anomaly (A44).

3. Time-reversal andU (1) one-form symmetry: 1+1dU (1)
gauge theory

Consider the 1+1d U (1) Maxwell gauge theory with a θ -
term,

LMax
1+1 = 1

g2
E2
x + iθ

2π
Ex, (A48)

18We can impose these restrictions by adding to the action (A40)
the following terms:

i

2π

∮
dτ [χ̃ (ψ̇ − NAτ ) + χ ( ˙̃ψ − NÃτ )], (A41)

where χ, χ̃ are real-valued Lagrange multipliers, and ψ, ψ̃ are
circle-valued. The latter fields transform under the background gauge
symmetry (A43) as

ψ ∼ ψ + Nα, ψ̃ ∼ ψ̃ + N α̃. (A42)

Since these terms do not affect the anomaly, we omit them in
Eq. (A40).
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where Ex = ∂τAx − ∂xAτ is the electric field. The one-form
gauge field A = (Aτ ,Ax ) has the ordinary gauge symmetry:

A ∼ A + dα. (A49)

The θ -parameter has 2π periodicity because of flux quantiza-
tion

∮
dτdx Ex ∈ 2πZ.

The theory (A48) has a U (1) electric one-form symmetry
with Noether current

J[τx] = 2i

g2
Ex − θ

2π
,

∂τ J[τx] = 0, ∂xJ[τx] = 0. (A50)

At θ = 0, π , the theory also has a time-reversal symmetry:

(τ, x) → (−τ, x), (Aτ ,Ax ) → (−Aτ ,Ax ). (A51)

We can couple Eq. (A48) to the background two-form
gauge field B = B[τx] of the electric one-form symmetry:

LMax
1+1[B] = 1

g2
(Ex − B[τx] )

2 + iθ

2π
(Ex − B[τx] ). (A52)

The one-form background gauge symmetry is

A ∼ A + λ, B ∼ B + dλ, (A53)

where the one-form gauge parameter λ = (λτ , λx ) itself has a
gauge symmetry,

λ ∼ λ + dγ . (A54)

With a nontrivial B[τx], the time-reversal symmetry is unbro-
ken at θ = 0 but it is broken at θ = π with the anomalous

transformation

LMax
1+1[B] → LMax

1+1[B] + iB[τx]. (A55)

This signals a mixed ’t Hooft anomaly between the electric
one-form symmetry and the time reversal symmetry at θ = π

[56,57].
We can restore the time-reversal symmetry at θ = π by

coupling the system to a 2+1d SPT protected by the time-
reversal and the U (1) one-form symmetry. For simplicity,
we will assume the bulk manifold is orientable and refer the
readers to Ref. [57] for a more general discussion.

In the bulk, the U (1) one-form symmetry is coupled to a
two-form background gauge field B = (B[τx],B[τy],B[xy] ) with
gauge symmetry

B ∼ B + dλ, (A56)

where the one-form gauge parameter λ = (λτ , λx, λy) itself
has a gauge symmetry

λ ∼ λ + dγ . (A57)

The 2+1d SPT is described by the Euclidean Lagrangian

L2+1[B] = − i

2
dB = − i

2
(∂τB[xy] − ∂xB[τy] + ∂yB[τx] ).

(A58)

On a closed orientable manifold, the SPT is time-reversal
invariant because of flux quantization

∮
dB ∈ 2πZ. On a

manifold with boundary at y = 0, it is time-reversal invariant
up to a boundary term:

S2+1[B] → −S2+1[B] = S2+1[B] − i
∫
y=0

dτdxB[τx], (A59)

which cancels the anomalous time-reversal transformation
(A55) of the 1+1d U (1) Maxwell theory on the boundary.
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