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Abstract. The development and application of deep learning method-
ologies has grown within educational contexts in recent years. Perhaps
attributable, in part, to the large amount of data that is made avail-
able through the adoption of computer-based learning systems in class-
rooms and larger-scale MOOC platforms, many educational researchers
are leveraging a wide range of emerging deep learning approaches to
study learning and student behavior in various capacities. Variations of
recurrent neural networks, for example, have been used to not only pre-
dict learning outcomes but also to study sequential and temporal trends
in student data; it is commonly believed that they are able to learn high-
dimensional representations of learning and behavioral constructs over
time, such as the evolution of a students’ knowledge state while working
through assigned content. Recent works, however, have started to dis-
pute this belief, instead finding that it may be the model’s complexity
that leads to improved performance in many prediction tasks and that
these methods may not inherently learn these temporal representations
through model training. In this work, we explore these claims further in
the context of detectors of student affect as well as expanding on exist-
ing work that explored benchmarks in knowledge tracing. Specifically,
we observe how well trained models perform compared to deep learning
networks where training is applied only to the output layer. While the
highest results of prior works utilizing trained recurrent models are found
to be superior, the application of our untrained-versions perform compa-
rably well, outperforming even previous non-deep learning approaches.

Keywords: Deep Learning · LSTM · Echo State Network · Affect ·
Knowledge Tracing.

1 Introduction

The availability of large-scale education datasets, often comprised of large num-
bers of interactions between learners and educational technologies over time,
have coincided with an increase in applications of deep learning methodologies
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to study various aspects of student learning. The data collected from massive
open online courses (MOOCs), for example, researchers have been able to utilize
large, complex models to study student learning strategies as well as unproduc-
tive behavior such as attrition and dropout [6, 26, 21]. Even beyond MOOCs,
in K-12 classrooms, the adoption of educational technologies and learning plat-
forms such as Cognitive tutor [20] and ASSISTments [13], among many others,
have led to the recording and often public release of large datasets of anonymized
student interaction logs. The application of deep learning, collectively referring
to a growing variety of multi-layer neural network models, often require large
amounts of data to learn from, assuming, of course, that these models are in fact
well-structured to learn anything at all.

Due to the large number of learned parameters and often complex structure
of many deep learning approaches, many researchers and developers attribute
the success of these methods to their ability to learn rich high-dimensional rep-
resentations of input data. While it is possible to interpret and visualize what
is learned in some applications of deep learning, it is difficult to what is learned
within certain deep learning model structures including, for example, recurrent
neural networks (RNN) [25]; this also includes commonly applied variants of
RNN such as long short term memory (LSTM) [14] and gated recurrent unit
(GRU) [8] networks. These model structures are designed to learn dependencies
within time-series data, which is common in educational contexts.

Prior research that suggests, contrary to initial assumptions, that many re-
current models are not learning rich representations of data. In fact, it was
found that by randomizing network weights and only training the output layer
(referred to in this paper as “untrained” models), such models performed nearly
as well as their trained counterparts [24, 9], as will be discussed further in the
next section. This work seeks to build upon this prior research that has explored
this phenomenon in the context of knowledge tracing [9], to compare trained and
untrained recurrent models in another educational context, detecting student af-
fect, where deep learning recurrent models have similarly been applied in recent
years [3]. In addition, several related modeling approaches have been specifically
designed to utilized randomized, untrained components. This work additionally
explores the application of these approaches in educational contexts. Specifically,
this work will address the following research questions:

1. How does the application of untrained recurrent models compare to similar
trained models in detecting student affect?

2. Do the methods designed to utilize untrained components outperform other
approaches in detecting student affect?

3. Do trained and untrained recurrent models exhibit an overlapping set of
latent features within their hidden layers?

1.1 Representations within Recurrent Networks

While the application of recurrent networks, or one of several common variants,
has increased in recent years, it is important to examine the basic structure of
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Fig. 1. This example illustrates how a recurrent network can build sequence represen-
tations within its hidden layer by combining new inputs with previous network states.

these networks in order to better understand how such models could learn rich
knowledge representations. Consider, for example, the simplified network rep-
resentation depicted in Figure 1. Like most “deep” models, recurrent networks
are normally comprised of multiple layers of nodes representing values gener-
ated within the network structure. These values are calculated by multiplying
the node values of earlier layers by learned weights that are traditionally fully-
connected to all nodes in the subsequent layer. Unlike other network structures,
recurrent models are designed to be applied to time-series data, where the values
in the network’s input layer (bottom layer in the figure) are combined with the
previous hidden state (middle layer in the figure) for each time step. Intuitively,
it is assumed that the model may learn how to combine new information with
prior information within the series to make a more informed estimate for a given
task; the network structure may learn how long to keep information, when to
forget information, or certain conditions under which it should otherwise modify
its understanding of the given sequence. The changing values within the hidden
layer of the network contain and retain information from throughout the series.

How well these models are able to “understand” the given information, as
represented by the values within the recurrent hidden layer, is a matter of recent
speculation. It is precisely this question, as it applies to educational contexts,
that is to be explored further within this work.

2 Background

In view of the application of recurrent models in education, it is important to
better understand what applied models are learning from student data to un-
derstand how they can best be used to study various aspects of learning. Among
the most well-known examples of using models to study learning, for example, is
knowledge tracing [7]. In early models of knowledge tracing, interpretability was
a primary goal; while later research has disputed how interpretable, or rather how
identifiable traditional knowledge tracing models are [2, 10], the structure of the
models were built in alignment to learning theory. While the models themselves
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are trained by predicting short-term student performance across items within a
given knowledge component, the goal of these models was to build a representa-
tion of student knowledge and learning. With the development and high reported
performance of deep knowledge tracing (DKT) [19], questions were raised as to
whether the recurrent neural network at its core was learning a more complex
representation of student knowledge over time. Among a number of subsequent
works that explored how “deep” this method truly was, Yeung et al. [28] showed
that DKT’s representation of student knowledge contradicted traditional learn-
ing theory as well as common sense; the model seemed to believe that students
fluctuated frequently between states of knowledge and non-knowledge. While
the authors proposed a fix to this problem using a form of regularization during
model training, this work suggests that the model is able to perform well without
a strong grasp of how learning is likely to occur.

These works, however, are not the first to question whether recurrent mod-
els are able to learn rich representations within sequential and temporal data.
Wieting and Kiela [24] found that untrained recurrent models could perform
comparably well to trained versions in natural language processing tasks. It was
suggested that the applied models act as a type of sequence encoding, rather
than by embedding deeper contextual information; the models are able to learn
high-dimensional encodings of sequential data, but may be ignorant of the latent
constructs and other factors that explain the data. The findings by Wieting and
Kiela and subsequently Ding and Larson [9] who extended that work to further
explore deep knowledge tracing, raise questions as to how useful these models
are in educational contexts if they are not learning representations of deeper
constructs; it is important to emphasize that these works did incorporate model
training in the output layer of their compared models, so it is not the case that
no training is required, only that the deeper layers of the networks may not learn
composite features that align to latent factors in the data.

Prior work in applying recurrent models have explored how well such models
are able to learn effective features in the context of detecting student affect
and other learning behaviors [4]. In that work, the authors found that the use
of expert-engineered features, developed in alignment to learning theory, led to
higher predictive performance in a number of modeling tasks as compared to
allowing a machine learning model to learn from the raw data logs used by
the experts. The authors similarly identify an inherent difficulty within these
networks to learn from the data.

This does not mean, however, that these models cannot still be useful in
studying aspects of learning. Prior work has led to the development of sensor-free
models of student affect [3] developed from student interaction logs paired with
human-coded classroom observations [17, 18]. Utilizing LSTM networks, these
models have been successfully applied to study student affect even without the
ability to interpret the learned representations within the model [5]; even if it
is the case that many recurrent models are unable to learn deep representations
of latent constructs, this does not mean that the estimates produced by these
models cannot be useful to study learning (c.f. “discovery with models” [22].
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3 Methodology3

Although there are many advantages in utilizing interpretable models to study
learning, there are several practical benefits made possible if recurrent models
are truly “ignorant” to deeper representations within data. As has been found in
the prior works described in the previous section (i.e. [24, 9]), untrained variants
of recurrent models may perform comparably to similar trained models in sev-
eral applications. If this finding holds in other contexts, these models may have
increased potential for integration in a number of educational technologies and
settings by significantly reducing training times or potentially even the amount
of data needed to successfully fit such a model (needing to train only the output
layer would be equivalent, in most cases, to training a linear or logistic regression
model which traditionally requires fewer data samples to train).

In this work, we use student affect detection and knowledge tracing as two
example cases of comparison for trained and untrained recurrent models on
previously-published benchmark results ([4] and [27] for affect detection and
knowledge tracing, respectively). While Ding and Larson [9] did explore applica-
tions of untrained models in the context of knowledge tracing, this work further
expands upon this work by introducing two additional methods, Bag of Random
Embeddings [24] and Echo State Networks [24, 15], within educational contexts.

3.1 Affect and Knowledge Tracing Data

In this paper, we observe applications of these trained and untrained recurrent
network models within two publicly-available datasets collected within ASSIST-
ments [13]. ASSISTments is a free web-based learning platform used by primarily
middle-school teachers and students for mathematics homework and classwork.
Among a number of other features, the learning system allows teachers to as-
sign traditional “complete all problems” assignments as well as mastery-based
“skill builder” assignments. While working through problems, the system allows
students to make multiple attempts to answer problems and offers supports in
the form of on-demand hints and scaffolding problems. To support educational
research, the system has also released a number of publicly-available datasets
such as those utilized within this paper.

The first dataset observed in this work was released in [4], which was derived
from several prior works focused on the development of sensor-free detectors of
student affect (e.g. detectors that utilize only interaction logs without additional
sensors such as video). ASSISTments data was used to develop affect detectors
using expert-engineered features based on both theory and an iterative devel-
opment process [18]. Additional works subsequently experimented with different
features within a number of rule- and regression-based modeling methods [23]
before recurrent deep learning methods were explored [3].

The dataset itself is comprised of student interaction logs paired with human-
coded classroom observations of four states of student affect: engaged concen-
tration, boredom, confusion and frustration. Following [4], the data exists in

3 The code utilized by this work is made publicly available: https://osf.io/ubr2v/
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two forms, the first consisting of the 92 expert-engineered features used in prior
works, and second consisting of the raw action-level logs that were used to build
these features. While that work found that the use of expert-engineered fea-
tures led to superior model performance as compared to the raw features, we
explore both feature sets in this work utilizing untrained models to examine the
performance benefits of training these models.

The second dataset observed in this work has been previously used to examine
methods of knowledge tracing [27]. As described in Section 2, knowledge tracing
is among the most widely studied problems in learner analytics, AI in educa-
tion, and educational data mining communities. The original knowledge tracing
(KT) model [7] and its bayesian implementation (BKT), attempt to model stu-
dent latent knowledge using student performance metrics. The ASSISTments
knowledge tracing dataset used in this work was made publicly available in [27]
(specifically, the dataset refered to as “09-10 (c)” in that paper), after fixing sev-
eral identified errors in the original version of that dataset used in Piech et al.’s
original deep knowledge tracing paper [19]. This dataset is comprised of 275,459
math problems across 146 knowledge components answered by 4,217 students.

3.2 Leveraging Untrained Networks

This work explores the application of several untrained model structures. These
model structures were applied across both the affect and knowledge tracing
datasets, predicting the affect labels (as a multi-dimensional categorical out-
come, as was done in prior works) and next problem correctness, respectively.
As previously introduced, the terminology of “untrained” in the context of this
work (in alignment with prior works [24, 9]), refers to a partially-trained model.
In most machine learning contexts, especially those observing deep learning ap-
proaches, models are typically trained by randomizing the initial values of a set
of weights or coefficients that are then updated iteratively through an optimiza-
tion procedure [16]. Considering deep learning models, this process is believed
to help the model learn sets of features in lower layers of the network, with the
final output layer (often functionally equivalent to a linear or logistic regression)
then learning how to map those features to a set of outcomes. An “untrained”
method effectively skips the optimization procedure, relying on the randomized
weights to produce a large number of un-tuned features; in this process, a single
regression model can be trained using these un-tuned features to map them to
observed outcomes. This is an important distinction as this creates somewhat
of a misnomer in that these methods still rely on some degree of training, but
do not rely on training to “model” the data. These methods, as well as the
application procedure, is described in this section.

Bag of Random Embeddings The bag of random embeddings was the sim-
plest untrained network. This method is used to simply project the time series
data to a higher dimensional space. To create a bag of random embeddings for a
time series of f features and t time-steps, the approach projects the time series



Deep Learning or Deep Ignorance 7

into a n dimensional embedding by first creating a t by f matrix, referred to as
the time-series matrix, where each row in the matrix is the full set of features
from one time-step. Next, the approach generates an f by n matrix full of ran-
dom values, referred to as the projection matrix. The time-series matrix is then
multiplied by the projection matrix, resulting in a t by n matrix, referred to
as the embedding matrix. Finally, a pooling operation is applied across all the
time-steps in the embedding matrix, resulting in a final n dimensional vectorized
embedding of the initial time series.

Following the advice of [24], the random numbers of the projection matrix
were initialized between −1√

f
and 1√

f
. To find the best bag of random embed-

dings, all combinations of an n of 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512, and
both max and mean pooling, for five random seeds each were used to project the
time-series data before using a 5-fold cross-validated logistic regression to clas-
sify affect or predict next problem correctness, depending on the dataset. The
average performance of every fold of every random seed for each combination of
hyper-parameters was used to determine the best values.

Long Short-Term Memory Networks The Long Short-Term Memory Net-
work (LSTM) [14, 11] is a common recurrent network structure for modeling
time-series data. The LSTM network is a form of recurrent neural network that
in addition to utilizing information from its past state, is designed to learn when
to incorporate new information into its state and when to forget previous in-
formation. In this context, the value of the LSTM network is often viewed as
being in its internal state structure which incorporates a type of memory that
is designed to capture long- and short-term dependencies within the series (thus
its name). Even without training, the state of the LSTM network, if complex
enough, can capture useful, predictive information from the time-series in cer-
tain contexts [24]. To determine if an untrained LSTM network would be capable
of predicting either affect or next problem correctness, an LSTM network was
created with all combinations of zero through four hidden layers (i.e. additional
fully connected layers on top of the LSTM layer), and 1, 2, 4, 8, 16, 32, 64, 128,
256, and 512 nodes per layer, including the output layer, for five random seeds.
Each network’s output layer was given to a 5-fold cross-validated logistic regres-
sion and used to classify affect or predict next problem correctness. The average
performance of every fold of every random seed for each combination of hyper-
parameters was used to determine the best combination of hyper-parameters.

Echo State Networks Echo State networks are similar to recurrent networks
in that they have connections from forward nodes to their predecessors, but these
networks usually lack the formality of layers. Instead, an echo state network has
a reservoir of nodes that have many connections to many other nodes in the
reservoir. The input layer connects to any subset, or all of the nodes in the
reservoir, and the output layer receives the output from the reservoir nodes. The
weights in the reservoir are never trained, but the weights of the output layer are
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Table 1. Comparison of trained and untrained models applied to the affect dataset

Model Features Best Model AUC Kappa

Untrained Models
LSTM Network Raw n = 512, 0 added hidden 0.661 0.098
Bag of Random Emb. Raw n = 64, max pooling 0.631 0.066
Echo State Network Raw n = 512, 1 added hidden 0.673 0.121
LSTM Network Expert n = 512, 1 added hidden 0.701 0.152
Bag of Random Emb. Expert n = 64, mean pooling 0.741 0.128
Echo State Network Expert n = 512, 0 added hidden 0.694 0.127

Trained Models
LSTM (Botelho et al., 2019) Raw 0.695 0.041
LSTM (Botelho et al., 2019) Expert 0.760 0.172

[15]. The echo state network is designed to exploit the properties of a recurrent
network’s state similarly to how the previous section uses the state of an LSTM
network. Within the untrained weights of the reservoir lies the state of the echo
state network. This state is designed to capture the latent information of the
time-series data presented to it and when the output layer is trained.

To determine if an echo state network would be capable of predicting either
affect or next problem correctness, the output of each of the random LSTM
networks from the previous section was combined with the intermediate output
from every node in the network, essentially converting the LSTM network to
an echo state network. The outputs from every node were again used to classify
affect or predict next problem correctness in a logistic regression, which functions
as the output layer of the echo state network. The average performance of every
fold of every random seed for each combination of hyper-parameters was used
to determine the best combination of hyper-parameters.

4 Results

The results of our applied untrained models are compared to the results gener-
ated from trained models as reported in prior works utilizing the same respective
datasets used here. For consistency, these results are compared using the same
metrics as have been used in comparison in prior works; in regard to the affect
data, the AUC measure is calculated using the multi-class categorical evaluation
method as used in previous works [12].

The results of the untrained models applied in this work in comparison to the
trained models described in [4] are reported in Table 1. The highest-performing
of each model type is compared to the reported results of the prior work across
measures of AUC and Kappa (in alignment to that prior work). In this ta-
ble, it can be seen that the trained LSTM utilizing expert-engineered features
exhibits the highest model performance across both metrics. However, the un-
trained LSTM and Bag of Random Embedding models each perform comparably
close in regard to AUC and Kappa; these even outperform the trained LSTM
model utilizing the raw dataset.
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Table 2. Comparison of trained and untrained knowledge tracing models.

Model Best Model AUC

Untrained Models
LSTM Network n = 512, 0 added hidden 0.706
Bag of Random Emb. n = 512, mean pooling 0.692
Echo State Network n = 512, 0 added hidden 0.725
LSTM (Ding & Larson, 2019) 0.730

Trained Models
DKT (LSTM; Xiong et al., 2016) 0.750
BKT (Xiong et al., 2016) 0.630

Similarly, the results of the untrained models applied in this work in compar-
ison to previous results are reported in Table 2. In this table, we also compare
our untrained model results to the untrained model applied in [9]. Here, the
trained DKT model does exhibit the highest AUC performance, but the un-
trained LSTM as reported in [9] and Echo State Network applied in this study
perform comparably well. What is perhaps particularly worth noting, is that all
untrained recurrent models outperformed the BKT model.

5 Exploring Latent Feature Overlap

We have seen over the previous set of analyses that the untrained models per-
form comparably well to their trained counterparts. This raises several questions
including what, if anything, is being learned within the hidden layer of these
trained recurrent models (i.e. is there an overlap of latent features utilized by
these models). In addressing our third research question, we conduct a final anal-
ysis to explore the latent features represented by trained and untrained models
in detecting student affect.

In this analysis, we compare an LSTM-based model architecture as presented
in [3] as a basis of comparison. We train this method using one LSTM layer
consisting of 200 nodes feeding to a dense output layer of 4 nodes corresponding
to the four affective states, similar to those previously described. We train this
model and then extract the hidden layer from the network. Similarly, we generate
five untrained counterparts using the same model architecture differing only in
the number of nodes used in the hidden layer (using 200, 400, 600, 800, and 1000).
We similarly extract the hidden layers of these models corresponding with each
sample of the affect detection dataset.

We conduct an exploratory factor analysis (EFA) to identify latent constructs
represented by each set of hidden features. EFA is a common dimensionality re-
duction method that identifies latent factors, or features, that exist as the linear
combination of other features [1]. With this, we want to observe whether the fac-
tors that emerge from the trained model overlap, or are meaingfully correlated,
with the untrained model factors. If the trained model is not learning effectively
from the data, we would expect that there would be a large overlap in factors
when compared with the untrained models.
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Table 3. Number of factors and overlap between untrained and trained models.

Model EFA Factors
N Overlapping

Factors (Rho>0.6)

Trained LSTM (200) 31 —
Untrained LSTM (200) 35 5
Untrained LSTM (400) 50 1
Untrained LSTM (600) 74 5
Untrained LSTM (800) 91 4

Untrained LSTM (1000) 103 5

From our EFA, reported in Table 3, 31 features emerge from our trained
model, with an increasing number of factors emerging from larger untrained
dimensions (the number of factors were determined based on the number of fac-
tors with an eigenvalue greater than 1, following common practice). Using these
features, we conducted a complete pair-wise comparison of untrained factors to
trained model factors and computed a Spearman (Rho) ranked correlation for
each pairing. We then simply counted the number of factor pairs that exhibited
a Rho value greater than 0.6 as a measure of pseudo-overlapping feature sets.
From the table, it can be seen that despite the increasing number of emerging
factors, the number of overlapping factors remained relatively constant. This
suggests that, while the untrained models constructed large feature sets, these
were mostly uncorrelated with the trained model features.

6 Discussion

While it is surprising that the untrained models perform comparably well to their
trained counterparts, the results of our analyses suggest that the trained models
are learning effectively from the data; particularly from the EFA, we argue that
the learned features are not simply random combinations of features due to the
notable lack of overlap with the factors emerging from the untrained models.
This lack of overlap is unexpected given the comparable model performance,
suggesting that there are a small number of highly-predictive factors present.

In both affective and knowledge tracing contexts, the untrained models per-
form remarkably well, even outperforming other benchmarks (e.g. the trained
LSTM using the raw data in Table 1 and the BKT model in Table 2). This work
represents a step toward better understanding how deep learning models learn
from given data. It is difficult to conclude that our findings will generalize to all
recurrent models and applications, but the analyses conducted in this work in
conjunction with those presented in prior works [24, 9] have found similar results
across multiple contexts. It is the goal that this work will lead to further work
to better understand knowledge representations within deep learning models to
either better utilize them in various contexts, or to improve them so that they
may exhibit higher utility for the study of learning.

Following the results reported in this paper, it is important to clarify and
emphasize the contribution and potential impact of our findings. First, as the
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untrained models were found to be comparable to prior results across both ap-
plications observed in this paper, this finding aligns with prior research that
suggests that the trained recurrent models may not be learning deep represen-
tations. However, the lack of overlap between factors emerging from the trained
and untrained models suggests that the trained model is learning a distinctive
set of latent factors related to affect. This finding supports the use of such mod-
els to both detect affect, but also to better study the latent structures that
indicate affect and other learning constructs (i.e. these features are not simply
randomly generated or encoded features). With that said, the untrained models
may additionally provide utility. As the models perform well above chance and
other simple baselines, the estimates produced by these models may still highly
correlate with outcomes of interest and may be used to study learning.
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