

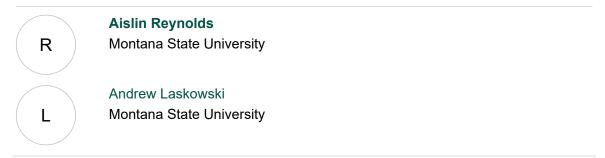
102-5 - SPATIO-TEMPORAL EVOLUTION OF THE TANGRA YUMCO RIFT, SOUTH-CENTRAL TIBET: INSIGHTS FROM ZIRCON (U-TH)/HE **THERMOCHRONOMETRY**

Monday, October 11, 2021

2:35 PM - 2:50 PM

Oregon Convention Center - B115/B116 (Hybrid Room)

Abstract


The Tangra Yumco (TYC) rift in south-central Tibet is one of the longest (~250 km) N-S striking rifts on the Plateau, providing an ideal natural laboratory to test dynamic models of extension through geologic mapping, zircon (U-Th)/He thermochronology (ZHe), and thermokinematic modeling. We utilize the ZHe method to determine spatio-temporal trends in extension onset and rates, which are compared to predictions for the following dynamic models: (1) removal of dense lithosphere, (2) weakening of Tibetan lithosphere, (3) decreasing horizontal collisional stress, and (4) increasing crustal thickness by underthrusting India. Most models constrain onset of extension to mid-Miocene time (~16-12 Ma), but struggle to reconcile an observed acceleration of extension rates ~5-10 Myr later. India underthrusting links rift acceleration to the northward propagation of India beneath Asia, but has been tested in only one locality. Relationships between fault displacement over time, age of extension onset, and timing and rates of exhumation may also reveal mechanisms of regional fault growth.

1 of 4 8/17/2021, 10:27 AM We present a 1:100,000 scale geologic map of ~2,000 km² in the southern TYC rift and new ZHe dates across key structural relationships. TYC is bounded by two approximately north striking high angle (~45-70°) active normal faults that alternate dominance along strike. Quaternary alluvial fan deposits in the central rift hanging wall display synthetic graben structures, whereas in northern and southern rift segments, a stepped sequence of high angle normal faults cut Quaternary deposits and likely sole into the rift-bounding faults at depth. Pervasive northeast dipping foliation is observed in the exhumed footwall granodiorite, with slip lineations and fault plane striations suggesting northeast directed oblique sinistral-normal slip. Seventy single-grain ZHe analyses yield dates between 25.72 Ma and 7.58 Ma, with median dates between ~23 Ma and ~8 Ma. Sample transects from the footwall indicate an older in the south (~20 Ma) to younger in the north (~8 Ma) trend in rift age along strike, in agreement with India underthrusting model predictions. This detailed work from the TYC rift may yield insights into fault growth mechanisms and dynamic processes driving changes in crustal thickness and topographic evolution during orogenesis.

Geological Society of America Abstracts with Programs. Vol 53, No. 6, 2021 doi: 10.1130/abs/2021AM-370895

© Copyright 2021 The Geological Society of America (GSA), all rights reserved.

Author

Ask a question or comment on this session (not intended for technical support questions).

Have a question or comment? Enter it here.

View Related

Session

102: T46. Rifts, Rifted Margins, Backarcs, and Spreading Ridges: Understanding Extensional Processes across Tectonic Settings and Time Scales II

Patricia Persaud, Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, Jolante van Wijk, Department of Earth & Environmental Science, New Mexico Tech, Socorro, NM, Abah Omale, BP, Houston, TX and Jackson Borchardt, Rice University, Houston, TX

2 of 4 8/17/2021, 10:27 AM

1:30 PM - 5:30 PM

Oregon Convention Center - B115/B116 (Hybrid Room)

Topical Sessions

Technical Programs

Similar

THE ORIGIN AND TECTONIC SIGNIFICANCE OF THE BASIN AND RANGE-RIO GRANDE RIFT BOUNDARY IN SOUTHERN NEW MEXICO, USA

RICKETTS, Jason, Department of Earth, Environmental and Resource Sciences, The University of Texas at El Paso, 500 W University Ave, El Paso, TX 79902, AMATO, Jeffrey, Dept. Geological Sciences, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 and GAVEL, Michelle M., Department of Geological Sciences, New Mexico State University, Las Cruces, NM 88003

EXAMINING DRIVERS FOR INTRAPLATE EXTENSION: INSIGHTS FROM THE RESERVE GRABEN IN THE COLORADO PLATEAU-RIO GRANDE RIFT-BASIN AND RANGE TRANSITION ZONE, NEW MEXICO

MARTIN, Samuel¹, AXEN, Gary¹, VAN WIJK, Jolante², KONING, Daniel J.³, HEIZLER, Matthew T.³ and WHITMAN, Connor¹, (1)Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, 801 Leroy Pl., Socorro, NM 87801, (2)Earth and Environmental Sciences Division, Los Alamos National Laboratory, MS D443, Los Alamos, NM 87544; Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, 801 Leroy Pl., Socorro, NM 87801, (3)New Mexico Bureau of Geology and Mineral Resources, New Mexico Institution of Mining and Technology, 801 Leroy Place, Socorro, NM 87801

MELTING OF MANTLE METASOMATIC PHASES DURING CRETACEOUS - CENOZOIC EXTENSION OF THE WEST ANTARCTIC RIFT SYSTEM: INSIGHTS FROM 1D GEODYNAMIC MODELING

MAYLE, Micah, Department of Geosciences, Colorado State University, Fort Collins, CO 80523 and HARRY, Dennis, Department of Geosciences, Colorado State University, Fort Collins, CO 80521

INSIGHTS INTO THE TECTONIC EVOLUTION OF THE SOUTHERN ALPINE FAULT FROM MAPPING, PETROGRAPHY, AND ZIRCON U-PB GEOCHRONOLOGY AT KAIPO RIVER, NEW ZEALAND

MERE, Andre, Earth & Planetary Science, University of California Riverside, 3401 Watkins Dr, Riverside, CA 92521, BARTH, Nicolas, 900 University Ave, Riverside, CA 92521-9800 and KYLANDER-CLARK, Andrew R.C., Earth Science, University of California, Santa Barbara, CA 93106

LONG-TERM LINK BETWEEN OROGRAPHIC PRECIPITATION AND ROCK EXHUMATION IN THE SOUTHERN ALPS OF NEW ZEALAND CONFIRMED BY DETRITAL ZIRCON (U-TH)/HE AND FISSION-TRACK DOUBLE-DATING AND RAMAN SPECTROSCOPY OF CARBONACEOUS MATERIAL IN THE WAIHO-1 BOREHOLE

THOMSON, Kelly¹, LANG, Karl¹, JIAO, Rouhong², GLOTZBACH, Christoph³, RING, Uwe⁴, KAMP, Peter⁵ and EHLERS, Todd³, (1)Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30318, (2)Earth and Ocean Sciences, University of

3 of 4 8/17/2021, 10:27 AM

Victoria, 9882 Ring Rd, Victoria, BC V8P 3E6, Canada, (3)Department of Geosciences, University of Tübingen, Tübingen, 72074, Germany, (4)Department of Geological Sciences, Stockholm University, Stockholm, SE-106 91, Sweden, (5)School of Science, The University of Waikato, Hamilton, 3240, New Zealand

4 of 4