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Abstract—Python has become a dominant programming lan-
guage for emerging areas like Machine Learning (ML), Deep
Learning (DL), and Data Science (DS). An attractive feature
of Python is that it provides easy-to-use programming interface
while allowing library developers to enhance performance of
their applications by harnessing the computing power offered
by High Performance Computing (HPC) platforms. Efficient
communication is key to scaling applications on parallel systems,
which is typically enabled by the Message Passing Interface
(MPI) standard and compliant libraries on HPC hardware.
mpi4py is a Python-based communication library that pro-
vides an MPI-like interface for Python applications allowing
application developers to utilize parallel processing elements
including GPUs. However, there is currently no benchmark suite
to evaluate communication performance of mpi4py—and Python
MPI codes in general—on modern HPC systems. In order to
bridge this gap, we propose OMB-Py—Python extensions to
the open-source OSU Micro-Benchmark (OMB) suite—aimed
to evaluate communication performance of MPI-based parallel
applications in Python. To the best of our knowledge, OMB-
Py is the first communication benchmark suite for parallel
Python applications. OMB-Py consists of a variety of point-to-
point and collective communication benchmark tests that are
implemented for a range of popular Python libraries including
NumPy, CuPy, Numba, and PyCUDA. Our evaluation reveals that
mpi4py introduces a small overhead when compared to native
MPI libraries. We plan to publicly release OMB-Py to benefit
the Python HPC community.

Index Terms—MPI, Python, mpi4py, OMB, Benchmarks, HPC

I. INTRODUCTION

A. Motivation

Message Passing Interface (MPI) is considered as the de
facto standard that defines communication operations for
exchanging data in parallel computing environments. The
MPI standard [1] defines multiple operations for various
communication purposes and provides bindings for C and
Fortran programming languages. However, other languages
like Python are dominant when it comes to application areas
like Machine Learning (ML), Deep Learning (DL), and Data
Science (DS) with compute-intensive tasks that requires opti-
mized communication for scalability. To use MPI with higher-
level programming languages like Python, a communication
wrapper library is needed to provide the necessary MPI-like

*This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, #2112606, and XRAC grant #NCR-130002.

bindings. A popular representative Python MPI-like library
is the mpi4py [2] package that has been used by a range
of applications and projects including HDF5 for Python [3],
Dask [4], mpi4py-fft [5], [6], yt [7], and the Visualization
Toolkit (VTK) [8].

Computationally intensive tasks are becoming more de-
manding every day; therefore, any gain in performance is
highly beneficial. To aid in maximizing efficiency, developers
must have the necessary tools to characterize the performance
of the systems they are working on. Micro-benchmarks play an
important role in understanding the behavior of critical points
in a system. Due to the myriad of interconnected components
in an HPC system, micro-benchmarks are instrumental to gain
insight into the impact of each of these components. In addi-
tion, MPI implementations offer a wide range of parameters
to achieve optimized performance depending on the system,
the underlying interconnects, the devices in communication,
and the executed applications. Micro-benchmarks packages
such as OSU Micro Benchmarks (OMB) [9] can be used to
evaluate the performance of MPI implementations on HPC
systems. mpi4py has been serving the Python HPC community
for well over a decade, yet there is no benchmark suite to
evaluate communication performance of mpi4py—and Python
MPI codes in general—on modern HPC systems.

B. Contributions

The mpi4py software currently only provides some basic
sample applications for MPI operations. In order to bridge
this gap, we propose OMB-Py—Python extensions to the
open-source OMB suite—aimed to evaluate communication
performance of MPI-based parallel applications in Python. To
the best of our knowledge, OMB-Py is the first communication
benchmark suite for parallel Python applications. OMB-Py
is aimed to evaluate performance of MPI using Python on
both CPUs and GPUs. Table I shows the supported features
of our proposed OMB-Py design compared to three MPI
benchmarks packages: 1) mpi4py sample applications [10],
2) Intel MPI Benchmarks (IMB) [11], and 3) Sandia MPI
Micro-Benchmark Suite (SMB) [12]. We use OMB-Py to
conduct performance evaluation to gain a better understanding
of MPI performance with Python on several HPC clusters.
We use OMB to evaluate MPI performance in C to provide a
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TABLE I
FEATURE COMPARISON BETWEEN THE PROPOSED OMB-PY DESIGN AND

OTHER MPI MICRO-BENCHMARK PACKAGES

OMB-Py
(Proposed
Design)

mpi4py Sample
Applications [2]

IMB
[13]

SMB
[12]

Point-to-Point 3 3 3 3
Blocking Collectives 3 Partially 3 7
Vector Variant
Blocking Collectives 3 Partially 3 7

Support for Python 3 3 7 7
Bytearray Buffers 3 7 7 7
Numpy Buffers 3 3 7 7
CuPy Buffers 3 7 7 7
PyCUDA Buffers 3 7 7 7

baseline for comparison. This paper makes the following key
contributions:

• Design and implementation of OMB-Py, a comprehensive
micro-benchmarks package to evaluate MPI performance
in Python. To the best of our knowledge, OMB-Py is the
first communication micro-benchmark for Python MPI
applications.

• Evaluation on four HPC systems using a variety of point-
to-point and collective communication tests for CPU and
GPU data-structures/libraries including NumPy, ByteAr-
rays, CuPy, Numba, and PyCUDA.

• Evaluation shows a small overhead in latency for MPI
operations in Python compared to C. For CPU-based
benchmarks, we observed 30% and 3% average overhead
in latency.

• Evaluation shows that CuPy and PyCUDA as GPU-aware
data buffers give the best MPI communication perfor-
mance compared to Numba which shows more overhead.
The latency overhead for communicating Numba-based
data was almost 2x compared to CuPy and PyCUDA.

• Analysis shows that 80%-90% of the overhead of mpi4py
over native MPI libraries comes from preparing the send
and receive buffers to link the Python objects in the
Cython layer.

• Planned release of the OMB-Py package with bench-
marks support for point-to-point and blocking collectives
MPI operations.

II. BACKGROUND

A. OSU Micro Benchmarks

OSU micro benchmarks (OMB) [9], [14] is a widely used
package to measure the performance of MPI implementations
on HPC systems with different configurations and hardware.
It offers a variety of benchmarks to report different MPI com-
munication metrics including point-to-point, blocking/non-
blocking collectives, one-sided MPI operations. It provides
users with a wide range of options to run customizable
tests like the number of iterations per test, message sizes,
communication devices, and more. OMB supports a variety
of different interfaces like ROCm and CUDA to run on ARM
and NVIDIA GPUs. This package is written in C so it can
call MPI operations directly.

B. MPI for Python

The MPI standard mainly defines official language bindings
for C and Fortran. A middleware (or wrapper) is needed as
a bridge between a high-level programming language like
Python and MPI implementations. There are a number of
implementations that enable Python to utilize MPI func-
tionalities like mpi4py [2], torch.distributed [15], pypar, and
pyMPI. mpi4py is one of the most widely used wrappers as it
offers continuous support and compatibility for newer MPI
and Python updates. It also supports a number of Python
objects as memory buffers for communication like built-in
Python arrays and bytearrays or third-party data structures like
NumPy arrays and mmap (memory-mapped file objects). More
recently, mpi4py added support for GPU-aware data structures
like CuPy, PyCUDA, and Numba. If a data structure is not
supported, the mpi4py library offers a variation of its functions
to serialize/unserialize the communicated Python object. This
is mainly referred to as “pickling” when an object is converted
into a byte stream and “unpickling” when it is converted back
to its original format. In mpi4py, the MPI methods that use
pickle are defined with a lower case first letter such as send(),
recv(), reduce(), allgather, etc. The direct buffer methods are
defined with upper case first letter such as Send(), Recv(),
Reduce(), Allgather(), etc.

III. PROPOSED DESIGN AND IMPLEMENTATION

The proposed design OMB-Py is aimed to evaluate perfor-
mance for MPI communication in the Python programming
language using Python objects for communication. We use
the mpi4py package which is widely used to provide Python
bindings for the MPI standard. Figure 1 shows the architectural
hierarchy of OMB-Py with MPI and HPC Platforms. As shown
in the figure, OMB-Py needs mpi4py to interact with the MPI
layer, whereas OMB can directly interact with MPI as it is
written in C.

Fig. 1. Architectural hierarchy of OMB-Py with mpi4py, MPI, and HPC
platforms.

A. Supported Benchmarks in OMB-Py

OMB-Py supports benchmarking for a series of MPI oper-
ations with a wide range of user options to run customizable
tests. Table II shows the point-to-point, blocking collectives,
and vector variants benchmarks to be supported in the first
release of OMB-Py. The package supports CPU benchmarking

2



TABLE II
POINT-TO-POINT, BLOCKING COLLECTIVES, AND VECTOR VARIANT
BLOCKING COLLECTIVES BENCHMARKS SUPPORTED BY OMB-PY

Supported Benchmarks

Point-to-Point Bi-directional bandwidth, bandwidth,
latency, multi latency

Blocking Collectives
Allgather, Allreduce, Alltoall,
barrier, bcast, gather,
reduce scatter, reduce, scatter

Vector Variant
Blocking Collectives Allgatherv, Alltoallv, Gatherv, Scatterv

using Python built-in bytearrays and NumPy [16] arrays as
data buffers, and GPU benchmarking by using GPU-aware
arrays including CuPy [17], PyCUDA [18], and Numba [19] as
data buffers. The package also supports mpi4py pickle method
to serialize communicated objects.

B. Proposed Pipeline for Benchmarking MPI Operations

In OMB-Py, we try to maintain the original OMB designs
as much as possible while writing the package in Python.
The purpose of a benchmark is to simulate the use of certain
operations in real applications and report the performance
accurately. The two main performance metrics in MPI are
latency (measured in microseconds) and bandwidth (measured
in GB/s). In OMB-Py, we isolate the MPI operation of interest
to avoid unnecessary Python commands or control structure
because these may considerably influence the performance
results. We also run the measured MPI operations for multiple
iterations and find the average, max, and min performance
across all participating processes.

C. Example: OMB-Py Latency Benchmark

Algorithm 1 shows a simple example in pseudocode which
measures the latency for blocking send/receive MPI operation
in a ping-pong fashion. The sender sends a message and wait
for a reply, and the receive receives the message and sends
back a reply with the same size.

The latency is averaged across multiple iterations for more
accuracy. The placement of MPI Barrier() at line 5 guar-
antees that both sender and receiver processes will start
their operations at the same time. This general pipeline is
followed throughout the different benchmarks; however, some
specifics will differ from benchmark to another depending
on the measured metric, communicated datatypes, number
of participating processes, and devices used to carry out
the communication. Moreover, with collective benchmarks
we need to find the average latency across all participating
processes; thus, we use MPI Reduce() to find that average
then report the latency.

D. CPU Memory Buffer Datatypes

While maintaining the benchmarking pipeline explained
earlier, there is still a number of design options for implement-
ing MPI benchmarks in Python. mpi4py supports both built-
in Python objects and third-part libraries as communication
buffers. For CPUs, we choose to add support for the following
data structures: 1) Built-in bytearrays and 2) NumPy arrays.

1 init MPI communication(...);
2 allocate(s buf, ...);
3 allocate(r buf, ...);
4 for size in message sizes do
5 MPI Barrier();
6 if myrank == 0 then
7 start time = current time();
8 for i: 1 ... max iterations do
9 MPI Send(s buf, size ...);

10 MPI Recv(r buf, size ...);
11 end
12 end time = current time();
13 latency = (start time - end time);
14 else
15 start time = current time();
16 for i: 1 ... max iterations do
17 MPI Recv(r buf, size ...);
18 MPI Send(s buf, size ...);
19 end
20 end time = current time();
21 latency = (start time - end time);
22 end
23 latency = latency / (2 * max iterations);
24 report latency();
25 end

Algorithm 1: Blocking Send/Recv Latency Benchmark

E. GPU Memory Buffer Datatypes

mpi4py recently added support for Python GPU-aware li-
braries as data buffers [20]. Those libraries have defined a pro-
tocol called CUDA Aware Interface (CAI) [21] which requires
CUDA array-like objects to add a new Python attribute that
contains a pointer to the GPU buffer address. This protocol
guarantees interoperability between different implementations
of the GPU-aware libraries in Python. For OMB-Py, we choose
to add support for three of these libraries as buffers for
GPU communication: 1) CuPy [17], 2) Numba [19], and 3)
PyCuda [18]. Similar to NumPy, each of these libraries allow
initializing different types of arrays and carry out complex
matrix operations. When mpi4py is built against CUDA-aware
MPI, those arrays can be passed to MPI operations calls.

F. User Options for OMB-Py

In this subsection, we explain the different options that
OMB-Py users modify to run custom tests.

• Device: can choose either CPU or GPU devices to run
the experiments on.

• Buffer: can choose from a list of Python objects to use
as buffers. The list includes: bytearrays, Numpy, CuPy,
PyCUDA, and Numba arrays.

• Message size: defines lower and upper limits for message
sizes to report performance for.

• Number of iterations: defines number of times the tested
MPI operation is executed. Reported performance num-
bers are the overall averages of all runs.
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• Number of warm-up iterations: defines the number of
times to run the MPI operation before starting the actual
test.

IV. EVALUATION

This section provides a comprehensive evaluation of the
proposed OMB-Py benchmarks on various HPC clusters. We
use MVAPICH2 [22] for the CPU tests and MVAPICH2-GDR
for the GPU-aware tests. We also use OMB benchmarks in C
as a point of reference to evaluate the benchmarks of OMB-
Py. First, we describe the different experimental environments
we used for evaluation. We present the evaluation results for
point-to-point and collective tests on CPU and then on GPU
using three GPU-aware Python memory buffers 1) CuPy [17],
2) PyCUDA [18], and 3) Numba [19] and compare them to the
OMB benchmarks performance. We evaluate the performance
of the pickle methods compared to direct buffers in mpi4py.

A. Experimental Setup

The CPU experiments are performed on four different
clusters. Here are the HPC clusters we used:

1) Frontera: Frontera is the largest NSF funded HPC
system. It is deployed and maintained at the Texas Advanced
Computing Center (TACC). On this cluster, we perform ex-
periments on up to 16 Intel x86 compute nodes that have the
Intel Xeon Platinum 8280 (Cascade Lake) processors. Each
node has two sockets with 28 cores per socket (56 per node)
at 2.70GHz frequency and 192GB of RAM per node. The
system is interconnected by Mellanox InfiniBand HDR and
HDR-100 interconnect.

2) Stampede2: Stampede2 is also at the Texas Advanced
Computing Center. On this cluster, we perform experiments
on up to 16 Skylake nodes with the Intel(R) Xeon(R) Platinum
8160 processors. Each node has two sockets with 24 cores per
socket (48 cores per node) and 2 physical threads per core at
2.70GHz frequency and 192GB of RAM per node. The system
is interconnected by Intel Omni-Path.

3) RI2: RI2 is an in-house cluster at The Ohio State
University. On this cluster, we perform experiments on up to 8
nodes equipped with Intel(R) Xeon(R) Gold 6132 processors
with two sockets. Each socket has 14 cores each (28 core per
node) at 2.40GHz frequency. This system is interconnected
using Mellanox SB7790 and SB7800 InfiniBand switches.

4) Bridges-2 (GPU): Bridges-2 is a supercomputer system
at the Pittsburgh Supercomputing Center. All GPU experi-
ments are performed on the Bridges-2 cluster. We use 16 GPUs
on 2 nodes. Nodes have Intel Xeon Gold 6248 “Cascade Lake”
with 40 cores (20 per socket) at 2.50GHz frequency with
512GB of RAM. Each node has eight NVIDIA Tesla V100-
32GB SXM2 GPUs. The system is interconnected by Mel-
lanox Infiniband and every node has two Mellanox ConnectX-
6 HDR Infiniband 200Gb/s Adapters.

B. Used Software Packages

For the CPU experiments on all four HPC systems, we
use MVAPICH2 2.3.6 [22] for MPI and OMB v5.8 [9] as a

point of reference. We also use mpi4py [2] v3.1.1 built against
MVAPICH2 as a wrapper for Python bindings with MPI. For
the GPU experiments, we use MVAPICH2-GDR 2.3.6 built
against CUDA 11.2 for MPI and OMB v5.8 as a point of
reference. We use mpi4py v3.1.1 built against CUDA 11.2
and MVAPICH2-GDR as a wrapper for Python bindings with
MPI.

C. Point-to-Point Intra-node Evaluation on CPU

This subsection provides intra-node CPU performance eval-
uation for the three experimental setups on Frontera, Stam-
pede2, and RI2.

1) Frontera: Figure 2 shows the intra-node latency curves
for OMB and OMB-Py for small message sizes on Frontera.
Both latency curves follow the same trend; however, OMB-Py
latency numbers have an average overhead of 0.44 microsec-
onds compared to OMB numbers. Figure 3 shows latency
numbers for the same benchmark but for larger message
sizes. Although the two curves for OMB and OMB-Py are
almost identical, there’s a relatively small overhead of 2.31
microseconds on average for this message size range.

Fig. 2. Intra-node CPU latency for small message sizes comparing OMB-Py
and OMB benchmarks on the Frontera cluster.

Fig. 3. Intra-node CPU latency for large message sizes comparing OMB-Py
and OMB benchmarks on the Frontera cluster.

2) Stampede2: Figure 4 shows the intra-node latency
curves for OMB and OMB-Py for small message sizes on
Stampede2. Both latency curves follow the same trend; how-
ever, OMB-Py latency numbers have an average overhead
of 0.41 microseconds compared to OMB numbers. Figure 5
shows latency numbers for the same benchmark but for larger
message sizes. Although the two curves for OMB and OMB-
Py are almost identical, there’s a relatively small overhead of
4.13 microseconds on average for this message size range.

Fig. 4. Intra-node CPU latency for small message sizes comparing OMB-Py
and OMB benchmarks on the Stampede2 cluster.
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Fig. 5. Intra-node CPU latency for large message sizes comparing OMB-Py
and OMB benchmarks on the Stampede2 cluster.

3) RI2: Figure 6 shows the intra-node latency curves for
OMB and OMB-Py for small message sizes on RI2. Both
latency curves follow the same trend; however, OMB-Py la-
tency numbers have an average overhead of 0.41 microseconds
compared to OMB numbers. Figure 7 shows latency numbers
for the same benchmark but for larger message sizes. Although
the two curves for OMB and OMB-Py are almost identical,
there’s a relatively small overhead of 1.76 microseconds on
average for this message size range.

Fig. 6. Intra-node CPU latency for small message sizes comparing OMB-Py
and OMB benchmarks on the RI2 cluster.

Fig. 7. Intra-node CPU latency for large message sizes comparing OMB-Py
and OMB benchmarks on the RI2 cluster.

Latency numbers on all three platforms follow the same
trend. OMB-Py always has an overhead compared to OMB.
This overhead is more noticeable in the smaller message size
range. For larger message sizes, the overhead is still there but
it is relatively smaller. For the rest of the CPU experiments,
we perform them mainly on the Frontera system.

D. Point-to-Point Inter-node Evaluation on CPU

In this section, we conduct evaluation for inter-node point-
to-point communication on the Frontera cluster. We present
latency and bandwidth numbers for OMB-Py and OMB.

1) Latency: Figure 8 shows the inter-node latency curves
for OMB and OMB-Py for small message sizes on Frontera.
Both latency curves follow the same trend; however, OMB-Py
latency numbers have an average overhead of 0.43 microsec-
onds compared to OMB numbers. Figure 9 shows latency
numbers for the same benchmark but for larger message sizes.
Although the two curves for OMB and OMB-Py are almost
identical, there’s a small overhead of 0.63 microseconds on
average for this message size range.

Fig. 8. Inter-node CPU latency for small message sizes comparing OMB-Py
and OMB benchmarks on the Frontera cluster.

Fig. 9. Inter-node CPU latency for large message sizes comparing OMB-Py
and OMB benchmarks on the Frontera cluster.

2) Bandwidth: Figure 10 shows the inter-node bandwidth
curves in GB/s for OMB and OMB-Py for small message sizes
on Frontera. Bandwidth for small message sizes (up to 32B)
looks similar; however, OMB-Py numbers start to have an
average overhead of 1.05GB/s for message sizes 512B to 8KB.
Figure 11 shows bandwidth numbers for the same benchmark
but for larger message sizes. For this message size range, the
OMB-Py overhead starts to shrink again to reach an average
overhead of 331MB/s only.

Fig. 10. Inter-node CPU bandwidth for small message sizes comparing OMB-
Py and OMB benchmarks on the Frontera cluster.

Fig. 11. Inter-node CPU bandwidth for large message sizes comparing OMB-
Py and OMB benchmarks on the Frontera cluster.

E. Collective Communication Evaluation on CPU

In this section, we expand on the Frontera results and
present numbers for the Allreduce and Allgather operations
on 16 nodes for both 1 process per node and 56 processes per
node (full subscription).

1) Allreduce 1 Process Per Node: Figure 12 shows the
Allreduce latency curves for OMB and OMB-Py for small
message sizes with 1 process per node on 16 nodes. OMB-Py
has an overhead of 0.93 microseconds for the small message
size range. Figure 13 shows numbers for the same benchmark
but for larger message sizes. The overhead for OMB-Py for the
large message size range is 14.13 microseconds on average.
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Fig. 12. Allreduce CPU latency for small message sizes comparing OMB-Py
and OMB benchmarks using 16 nodes and 1 process per node on the Frontera
cluster.

Fig. 13. Allreduce CPU latency for large message sizes comparing OMB-Py
and OMB benchmarks using 16 nodes and 1 process per node on the Frontera
cluster.

2) Allreduce 56 Processes Per Node (Full Subscription):
Figure 14 shows the Allreduce latency curves for OMB and
OMB-Py for small message sizes with 56 processes per node
(full subscription) on 16 nodes. OMB-Py has an overhead of
4.21 microseconds for the small message size range. Figure 15
shows numbers for the same benchmark but for larger message
sizes. OMB initializes MPI with THREAD SINGLE support
in osu latency; however, default MPI initialization in mpi4py
is THREAD MULTIPLE. This leads to over-subscription of
cores in 56 processes per node (full subscription) OMB-
Py experiment. Since Allreduce also has computation, over-
subscription of threads leads to degradation in large messages
for OMB-Py.

Fig. 14. Allreduce CPU latency for small message sizes comparing OMB-
Py and OMB benchmarks using 16 nodes and 56 processes per node on the
Frontera cluster.

Fig. 15. Allreduce CPU latency for large message sizes comparing OMB-
Py and OMB benchmarks using 16 nodes and 56 processes per node on the
Frontera cluster.

3) Allgather 1 Process Per Node: Figure 16 shows the
Allgather latency curves for OMB and OMB-Py for small
message sizes with 1 process per node on 16 nodes. OMB-Py
has an overhead of 0.92 microseconds for the small message
size range. Figure 17 shows numbers for the same benchmark
but for larger message sizes. The overhead for OMB-Py for

the large message size range is 23.4 microseconds on average.

Fig. 16. Allgather CPU latency for small message sizes comparing OMB-Py
and OMB benchmarks using 16 nodes and 1 process per node on the Frontera
cluster.

Fig. 17. Allgather CPU latency for large message sizes comparing OMB-Py
and OMB benchmarks using 16 nodes and 1 process per node on the Frontera
cluster.

4) Allgather 56 Processes Per Node (Full Subscription):
Figure 18 shows the Allgather latency curves for OMB and
OMB-Py for larger message sizes with 56 processes per node
(full subscription) on 16 nodes. OMB-Py has an overhead
that seems to increase with the message size. The overhead
starts with 8 microseconds for message size 1B and goes up
to 345 microseconds for message size 8KB. Figure 19 shows
numbers for the same benchmark but for larger message sizes.
The overhead for OMB-Py goes up to 41 milliseconds for
message size 32KB and it is 16 milliseconds on average for
this message size range.

Fig. 18. Allgather CPU latency for small message sizes comparing OMB-
Py and OMB benchmarks using 16 nodes and 56 processes per node on the
Frontera cluster.

Fig. 19. Allgather CPU latency for large message sizes comparing OMB-
Py and OMB benchmarks using 16 nodes and 56 processes per node on the
Frontera cluster.

F. Point-to-Point Evaluation on GPU

This subsection provides point-to-point GPU latency evalu-
ation on the Bridges-2 cluster of OMB-Py with three types
of GPU-aware data buffers and uses OMB benchmarks as
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baseline. The three GPU-aware data buffers are: 1) CuPy [17],
2) PyCUDA [18], and 3) Numba [19]. Figure 20 shows small
message sizes latency curves for OMB and the three data
buffers supported by OMB-Py. All OMB-Py numbers have
an overhead compared to OMB. CuPy and PyCUDA have
very similar numbers and overall perform better than Numba.
The average overheads are 4.33, 4.19, and 6.19 microseconds
over the OMB numbers for CuPy, PyCUDA, and Numba
respectively. Figure 21 shows latency numbers for the same
benchmark but with larger message sizes. Although the four
curves look almost identical, there is an average overhead of
8.67, 8.40, and 10.53 microseconds over the OMB numbers
for CuPy, PyCUDA, and Numba respectively.

Fig. 20. Latency on GPU for small message sizes comparing OMB-Py with
different data buffers and OMB on the Bridges-2 cluster.

Fig. 21. Latency on GPU for small message sizes comparing OMB-Py with
different data buffers and OMB on the Bridges-2 cluster.

G. Collective Communication Evaluation on GPU

This subsection provides a sample evaluation of collective
MPI communication on GPU the Bridges-2 cluster of OMB-Py
with three types of GPU-aware data buffers and using OMB
benchmarks as baseline. We chose the Allreduce and Allgather
operations to carry out this evaluation. This evaluation is
performed on 16 GPUs (2 nodes - 8 GPUs per node).

1) Allreduce Evaluation: Figure 22 shows small message
sizes Allreduce latency curves for OMB and the three data
buffers supported by OMB-Py. All OMB-Py numbers have
an overhead compared to OMB. CuPy and PyCUDA have
very similar numbers and overall perform better than Numba.
The average overheads are 8.19, 6.98, and 12.07 microseconds
over the OMB numbers for CuPy, PyCUDA, and Numba,
respectively. Figure 21 shows Allreduce latency numbers but
with larger message sizes. There is an average overhead of
11.42, 12.17, and 14.76 microseconds over the OMB numbers
for CuPy, PyCUDA, and Numba respectively.

2) Allgather Evaluation: Figure 24 shows small message
sizes Allgather latency curves for OMB and the three data

Fig. 22. Allreduce GPU latency for small message sizes comparing OMB-Py
with different buffers and OMB benchmarks on 16 GPUs (2 nodes - 8 GPUs
per node) on the Bridges-2 cluster.

Fig. 23. Allreduce GPU latency for large message sizes comparing OMB-Py
with different buffers and OMB benchmarks on 16 GPUs (2 nodes - 8 GPUs
per node) on the Bridges-2 cluster.

buffers supported by OMB-Py. The average overheads are
10.63, 12.64, and 9.15 microseconds over the OMB numbers
for CuPy, PyCUDA, and Numba respectively. Figure 21 shows
Allgather latency numbers but with larger message size. There
is an average overhead of 15.04, 16.99, and 19.36 microsec-
onds over the OMB numbers for CuPy, PyCUDA, and Numba
respectively.

Fig. 24. Allgather GPU latency for small message sizes comparing OMB-Py
with different buffers and OMB benchmarks on 16 GPUs (2 nodes - 8 GPUs
per node) on the Bridges-2 cluster.

Fig. 25. Allgather GPU latency for large message sizes comparing OMB-Py
with different buffers and OMB benchmarks on 16 GPUs (2 nodes - 8 GPUs
per node) on the Bridges-2 cluster.

H. OMB-Py Generality

In this section, we show numbers using two different MPI
libraries to demonstrate the generality of OMB-Py with regard
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to MPI implementations. The two libraries we use for this
experiment are 1) MVAPICH2 2.3.6 [22] and 2) Intel MPI
Library 19.0.9 [23]. The following CPU inter-node latency
and bandwidth tests are performed on the Frontera cluster. Fig-
ure 26 and 27 show numbers for OMB-Py using MVAPICH2
and Intel MPI for small and large message sizes. There is a
small difference in latency of 0.36 microseconds on average
for all message sizes. Figure 28 and 29 show the bandwidth
numbers for both implementations. The average difference is
856 MB/s for all message sizes.

Fig. 26. Inter-node CPU latency for small message sizes using OMB-Py with
MVAPICH2 and Intel MPI on Frontera.

Fig. 27. Inter-node CPU latency for large message sizes using OMB-Py with
MVAPICH2 and Intel MPI on Frontera.

Fig. 28. Inter-node CPU bandwidth for small message sizes using OMB-Py
with MVAPICH2 and Intel MPI on Frontera.

Fig. 29. Inter-node CPU bandwidth for large message sizes using OMB-Py
with MVAPICH2 and Intel MPI on Frontera.

I. Pickle Method Evaluation

In this section, we conduct latency and bandwidth eval-
uation for inter-node point-to-point communication on the
Frontera cluster using the mpi4py pickle method to serialize
the communicated objects. We compare against the direct
buffer method in mpi4py.

1) Latency: Figure 30 shows the inter-node latency curves
using the pickle method and direct buffers method for small
message sizes on Frontera. Both latency curves follow the
same trend; however, the pickle method has an average
overhead of 1.07 microseconds compared to the direct buffer

numbers. Figure 31 shows latency numbers for the same
benchmark but for larger message sizes. The two curves
start to diverge after message size 64KB with an increasing
overhead up to 1,510 microseconds for the pickle method.

Fig. 30. Inter-node CPU latency for small message sizes using OMB-Py to
compare the pickle method and direct buffer on the Frontera cluster.

Fig. 31. Inter-node CPU latency for large message sizes using OMB-Py to
compare the pickle method and direct buffer on the Frontera cluster.

2) Bandwidth: Figure 32 shows the inter-node bandwidth
curves in GB/s using the pickle method and the direct buffers
for small message sizes on Frontera. Bandwidth for small
message sizes (up to 1KB) looks similar; however, the pickle
method starts to have an increasing overhead up to 2.4GB/s
for message size 8KB. Figure 33 shows bandwidth numbers
for the same benchmark but for larger message sizes. For this
message size range the pickle method starts to catch up but
drops in performance again after message size 64KB.

Fig. 32. Inter-node CPU bandwidth for small message sizes using OMB-Py
to compare the pickle method and direct buffer on the Frontera cluster.

Fig. 33. Inter-node CPU bandwidth for large message sizes using OMB-Py
to compare the pickle method and direct buffer on the Frontera cluster.

V. DISCUSSION AND SUMMARY OF RESULTS

The evaluation shows an overall small overhead in latency
for MPI operations in Python compared to C. On the four
clusters we used for evaluation, we notice the same trend
for the OMB-Py and OMB numbers. The overhead across
the small message size range is almost constant. Table III
shows the average CPU overhead for the latency benchmark
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(intra-node and inter-node), and the Allreduce benchmark on
16 nodes on the Frontera cluster. Even though the overhead
increases with message size, it is more noticeable in small
message sizes since the latency is already small. The overhead
is relatively negligible for larger messages.

Table III also shows the average overhead using three dif-
ferent buffers (CuPy, PyCUDA, and Numba) on the Bridges-2
cluster. CuPy and PyCUDA give the best MPI communication
performance compared to Numba which shows more overhead
in both point-to-point and collective operations as shown in
Figures 20, 21, 22, and 23. The difference in overhead
depends on how each of these three implementations copy
data from/to the GPU. In order to determine the source of
overhead caused by the Python/Cython layer over the native
MPI libraries, we perform comprehensive profiling of the
mpi4py Allreduce function. The following analysis is done on
the Bridges-2 cluster using 16 GPUs (2 nodes - 8 GPUs per
node) using three types of GPU buffers (CuPy, PyCUDA, and
Numba). The mpi4py Allreduce function can be characterized
as consisting of two phases: 1) a staging phase to perform
checks and links of the Python send and receive buffers
in Cython, 2) an execution phase which mainly calls the
implementation of the MPI operation provided by the under-
lying MPI library. In the staging phase, arguments including
count and type of communicated objects are forwarded to two
functions (cro send and cro recv) in order to get pointers to
the send and receive buffers. These two functions account for
the majority of the overhead of the Cython code. 80% to 90%
of the overall overhead is spent on preparing the send and
receive buffers. Figure 34 shows the different sources that are
contributing to the overhead for different GPU buffers and
message sizes. We observe the following for each buffer type:

• CuPy: The average total overhead is 9.80 microseconds.
Preparing the receive buffer contributes to 49% on av-
erage across the different message sizes of the overall
overhead. 35% is spent on preparing the send buffer and
16% is spent on error checks and other miscellaneous
procedures performed in the Cython layer.

• Numba: The average total overhead is 13.42 microsec-
onds. Preparing the receive buffer contributes to 50% on
average across the different message sizes of the overall
overhead. 40% is spent on preparing the send buffer and
10% is spent on error checks and other miscellaneous
procedures.

• PyCUDA: The average total overhead is 9.57 microsec-
onds. Preparing the receive buffer contributes to 48% on
average across the different message sizes of the overall
overhead. 32% is spent on preparing the send buffer and
20% is spent on error checks and other miscellaneous
procedures.

Using the mpi4py pickle method shows an overhead of 1.07
microseconds for small message sizes and 1,510 microsec-
onds for large message sizes on average compared to using
direct buffers in the inter-node latency benchmark. This is
the expected behavior as serializing larger messages takes

TABLE III
AVERAGE OVERHEAD USING OMB-PY COMPARED TO OMB ON CPU AND

GPU (THREE DIFFERENT BUFFERS) USING LATENCY AND ALLREDUCE
BENCHMARKS.

Overhead (CPU) [us] Overhead (GPU) [us]Message
Size Intra Inter Allreduce CuPy PyCUDA Numba

Small 0.44 0.43 0.93 4.33 4.19 6.19
Large 2.31 0.63 14.13 8.67 8.40 10.53

longer time. Finally, we demonstrate the ability of OMB-Py to
support different MPI implementations by presenting numbers
for both the MVAPICH2 and Intel MPI libraries. OMB-Py
numbers collected with Intel MPI show larger latency of 0.36
microseconds on average for all message sizes compared to
numbers collected with MVAPICH2.

VI. RELATED WORK

In [14] Bureddy et al. develop OMB-GPU which is an
extension to the OMB library that enables the comparison
of MPI implementations on GPU clusters. They conduct
a comprehensive evaluation for GPU MPI communication
performance using several point-to-point and collective bench-
marks. However, Python support is not provided with this
package. In [24], [25], Dalcin et al. conduct performance
evaluation for MPI in Python using mpi4py and NumPy arrays
as data buffers. They report latency, bandwidth, and alltoall
numbers on CPUs comparing MPI in C to Python using
direct buffers and the pickle method. However, at the time
when those papers were released, the MPI-2 standard was still
mainly used and there was no support for GPU-aware MPI
communication in Python. In [26], Smith uses mpi4py and
NumPy to perform several tests to measure the performance
of distributed algorithms like Graph 500 in Python on HPC
systems. In [27] Wazir et all. implement using Python and
mpi4py a number of distributed algorithms like the Monte
Carlo’s method and prime number generator and measure the
gain in performance on a Raspberry PI cluster compared to
sequential execution.

VII. CONCLUSION

In this paper, we presented OMB-Py which is a micro-
benchmarks package that offers point-to-point and blocking
collective tests to evaluate the performance of MPI implemen-
tations on HPC systems using Python and mpi4py for MPI-
Python bindings. OMB-Py supports benchmarking for both
CPUs and GPUs as communication devices with a wide range
of user flags to run customizable tests. The proposed design
is evaluated against OMB as a baseline to characterize the
performance of MPI operations with Python. We conduct our
experiments on four HPC systems and we use three GPU-
aware data buffers (CuPy, PyCUDA, and Numba) in the GPU
evaluation. Additionally, we evaluate the performance of the
pickle methods in mpi4py compared to using direct buffers.
We gain the following insight by performing evaluation using
the proposed design: 1) Small overhead in latency for MPI
operations in Python compared to C, which is more noticeable
in small message sizes compared to large message sizes, 2)
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Fig. 34. Allreduce GPU overhead analysis using CuPy, Numba, and PyCUDA buffers on 16 GPUs (2 nodes - 8 GPUs per node) on the Bridges-2 cluster.

similar performance trends for MPI operations in Python on
the 3 CPU architectures we evaluated, 3) CuPy and PyCUDA
as GPU-aware Python data buffers give better MPI communi-
cation performance compared to Numba, 4) 80%-90% of the
overhead of mpi4py over native MPI libraries comes from
preparing the send and receive buffers to link the Python
objects in the Cython layer. Finally, we plan to publicly release
OMB-Py to benefit the Python and HPC community. To the
best of our knowledge, this is the first comprehensive MPI
micro-benchmarks package that supports Python.
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