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Published online: 04 September 2017 The metal-insulator transition (MIT) remains among the most thoroughly studied phenomena in solid
state physics, but the complexity of the phenomena, which usually involves cooperation of many
degrees of freedom including orbitals, fluctuating local moments, magnetism, and the crystal structure,
have resisted predictive ab-initio treatment. Here we develop ab-initio theoretical method for correlated
electron materials, based on Dynamical Mean Field Theory, which can predict the change of the crystal
structure across the MIT at finite temperature. This allows us to study the coupling between electronic,
magnetic and orbital degrees of freedom with the crystal structure across the MIT in rare-earth
nickelates. We predict the electronic free energy profile of the competing states, and the theoretical
magnetic ground state configuration, which is in agreement with neutron scattering data, but is
different from the magnetic models proposed before. The resonant elastic X-ray response at the K-edge,
which was argued to be a probe of the charge order, is theoretically modelled within the Dynamical
Mean Field Theory, including the core-hole interaction. We show that the line-shape of the measured
resonant elastic X-ray response can be explained with the “site-selective” Mott scenario without real
charge order on Ni sites.

. Metal-insulator transition (MIT) in transition metal oxides is usually associated with a large Hubbard Coulomb

: interaction U on transition metal ion, which strongly impedes electron motion, as it costs an energy U to add an
extra electron to any given site. Consequently electrons become localized on the transition metal ion, and hence
form a fluctuating moment, which possesses a large entropy that is being released at low temperature by emer-
gence of a long range magnetic order. But most MITs are much more complex than that, and require cooperation
of several degrees of freedom, including the subtle change of the crystal structure to tune the hybridization with
the oxygen, the modulation of the strength of the fluctuating moments and orbital occupations. In ab-initio mod-
eling, this requires one to optimize the crystal structure to the correlated electronic state as an external parameter
is varied.

The MIT in RNiO;! is accompanied by the structural transition in which the high-temperature metallic phase,
with the orthorhombic (Pbnm) structure (see Fig. 1a), is transformed to the low-temperature insulating phase
of monoclinic (P2,/n) structure. In the latter, the alternating NiO4 octahedra are expanded and compressed in
a rocksalt-pattern distortion (see Fig. 1e)>>. The transition is accompanied by the antiferromagnetic ordering,
which occurs simultaneously with the MIT in Nd and Pr compound (R=Nd, Pr) and at lower temperature for
the smaller rare-earth ions (R=Sm and beyond).

The structurally distorted monoclinic ground state is very susceptible to small changes of external parameters
and can be tuned by pressure’, strain*”, reduced dimensionality®® or by layering it in heterostructures'®~'2, hence
it has attracted a lot of attention recently.

The leading interpretation for the origin of the MIT is a charge disproportionation (CD) on the Ni sites,
in which Ni** ions disproportionate into sites with excessive and deficient charge (3d’3d” — 3d7+%3d7~%). Such
charge order would result in different energy positions of core levels on the two inequivalent Ni ions due to
electrostatic effect, which can be probed by the hard resonant elastic X-ray scattering (RXS) through measuring
the 1s to 4p transitions. In ref. 13 it was estimated that the charge order is approximately 26 ~ 0.42¢'?, based on
the 1s — 4p energy difference of around 0.9 eV for the two inequivalent Ni ions. Similar conclusion was reached
by numerous other resonant scattering techniques® -'7. This view has been challenged theoretically, since the
ab-initio calculations predict very small rearrangement of electronic charge across the transition'®*. On the other
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Figure 1. Energetics and magnetism of NdNiO;. (a) The crystal structure of the metallic NdNiO; stable above
T 2 200 K. (b) The electronic free energy of theoretical paramagnetic solution, and antiferromagnetic (AFM)
solution as a function of distortion (i.e., linear interpolating between two local minima). (c) Spectral function of
the paramagnetic metallic state stable at high T, (d) spectral function of a metastable state at 80% of distortion,
(e) distorted structure of the insulating state, (f) spectral function of the paramagnetic insulating solution at the
low T equilibrium structure, (g) spectral function of the AFM solution (h) magnetic moment of the two nickel
ions in the AFM state, (i) theoretically determined magnetic configuration of the ground state. The planes in (1,
0, 1) direction contain three types of Ni ions: the green (blue) planes contain Ni, atoms with magnetic moments
pointing up (down), while the yellow planes contain Ni, atoms which carry no magnetic moment.

hand, the weak coupling theories are supportive of this picture, but also emphasize the cooperation of charge and
spin-density wave, with the latter being the driving force of the MIT in NdNiO; and PrNiO,*"2%.

The alternative explanation posits that Ni experience a “negative charge transfer energy” and consequently
is found in a very different d® valence state with compensating holes on the oxygen sites?>?*. The compressed
octahedra contains Ni d® ion and two ligand holes and the three bind into net zero spin producing unusual
continuum of particle-hole excitations®’, while in the expanded octahedra Ni d® ion is in high-spin S=1 state**.
Theoretical studies which assume such negative charge transfer energy found a novel state dubbed “site-selective”
Mott phase*?. In this picture the Ni ions in the expanded octahedra undergo the usual Mott transition with two
holes on Ni giving rise to a very strong S = 1 local moment, while the electrons in the compressed octahedra bind
with the (primarily oxygen) states near the Fermi level, and the resulting bonding-antibonding gap opens up,
similarly to the band gap of a Kondo insulator®»%.

Although this very appealing picture is accumulating strong support, many fundamental questions remain:
(i) How to reconcile the RXS experiments, which require CD, with the picture of “site-selective” Mott transition.
(ii) In the seminal work on “site-selective” Mott transition?’, the physical d® valence was reached by adjusting
the onsite energy through an ad-hoc double-counting adjustment, in which Coulomb U in the interaction and
double-counting were different, in order to reach the “negative charge transfer energy” regime. Similarly, in clus-
ter calculations? the model parameters are chosen such that Ni is found in 3d® configuration. Since the exact
double-counting between the Dynamical Mean Field Theory and Density Functional Theory has been derived
recently?, the assumption of nickel 3d® valence can now be checked without resorting to any a-priori assumption
on Ni valence. (iii) The propagating vector of the antiferromagnetic order has been unambiguously determined
by the neutron scattering®, while the precise magnetic configurations was challenging to constrain, and different
experiments were interpreted in terms of conflicting models of collinear*”*! and non-collinear*? magnetic order.
On the other hand, the ab-initio electronic structure methods are not supportive of so far proposed models,
and suggest that ferromagnetic state is favored compared to proposed antiferromagnetic orders® %. iv) Many
experiments on the Pr and Nd compound® were interpreted in terms of an itinerant picture?> ! in which the
spin-density wave drives the MIT. An important question arises: is the magnetic long range order necessary for
the MIT in these systems, or, is the Neel order just a consequence of the MIT and it is just a way in which the
existing local moments release their entropy.
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Pbnm | Exp. DMFT-PARA GGA

Ni (0.000, 0.000, 0.500) | (0.000, 0.000, 0.500) | (0.000, 0.000, 0.500)
0, (0.216, 0.287,0.539) | (0.214,0.287,0.539) | (0.207,0.294, 0.547)
0, (0.569, 0.490,0.750) | (0.573,0.490, 0.750) | (0.591,0.477, 0.750)
Nd | (0.496,0.035,0.750) | (0.491,0.044,0.750) | (0.488,0.058,0.750)
(r = 1) 0.0056 0.0190

P21/n | Exp DMFT-AFM GGA+U

Ni, | (0.000,0.000,0.000) | (0.000,0.000,0.000) | (0.000,0.000,0.000)
Ni, | (0.000,0.000,0.500) | (0.000,0.000,0.500) | (0.000,0.000, 0.500)
0, (0.575,0.487,0.752) | (0.574,0.489,0.750) | (0.595,0.475, 0.755)
0, (0.214,0.276,0.527) | (0.209,0.285, 0.540) | (0.198,0.291, 0.549)
0, (0.719, 0.204,0.447) | (0.717,0.210,0.460) | (0.711,0.198, 0.452)
Nd | (0.493,0.039,0.750) | (0.493,0.044,0.750) | (0.489,0.056,0.750)
Jlo = ry)? 0.0091 0.0180

Table 1. Optimized atomic positions in the metallic and insulating state of NdNiO;. Experimental structure is
from ref. 2. The GGA and GGA + U structure is from ref. 33.

To address these issues, we use ab-initio theoretical method for correlated electron materials, based on
combination of dynamical mean field theory (DMFT) and density functional theory (DFT), in its real space
embedded form*, which avoids downfolding. To address the issue of Ni valence, we use recently derived exact
double-counting between the DFT and DMFT methods?. To successfully address the energetics of different com-
peting states and to determine the ground state of the system, it is crucial to theoretically determine the optimized
crystal structure, and for this we use recent implementation of forces within DFT-DMFT?¢.

We checked that within this theoretical approach LaNiO; remains paramagnetic metal at least down to 50 K
and does not show any sign of long range order, in agreement with experiment. On the other hand NdNiO; shows
the existence of three phases, the paramagnetic insulating, the antiferromagnetic insulating and the paramagnetic
metallic phase. In Fig. 1 we show the energetics of these phases as predicted by the theory. The paramagnetic
metallic phase is stable above 200 K. Its spectra is plotted in Fig. 1c. The crystal structure in this phase is fully
relaxed within the DFT-DMFT theory, and its predicted structural parameters are in excellent agreement with the
experiment (see Table 1). For comparison we show the GGA relaxation of the structure, which shows three times
larger disagreement with experiment. When the temperature is lowered to above 100K a first sign of structural
instability occurs, as shown in Fig. 1b. The electronic free energy curve of the paramagnetic phase develops a local
minimum in the P2,/n structure, where oxygen octahedra around Ni, sites are expanded, and octahedra around
Ni, sites are compressed. Using the technology to calculate forces®, we optimized the structural parameters in
this phase (see Supplementary chapter I). In the local minimum, the Mott gap opens up on Ni, atom, while Ni,,
through strong hybridization with the environment, splits bands such that the band gap opens at the Fermi
level, all consistent with the “site-selective” Mott transition scenario® (see Fig. 1f). Just slightly away from this
local minimum (80-90% distortion), the insulator breaks down and strongly incoherent metallic state appears
(Fig. 1d).

In the Pbnm structure (zero distortion in Fig. 1b,h) the fluctuating moments are present, but they are not
strong enough to allow for the long range magnetic order, hence the system resolves its excess entropy in the
Fermi liquid state at low temperature. Once the Ni, hybridization is reduced a bit due to small increase of the oxy-
gen octahedra (around 10% distortion), the correlations on Ni, become strong enough so that the static magnetic
moment appears (see Fig. 1h). These correlations are primarily driven by the strong Hund’s coupling on Ni ion,
which aligns two holes on the Ni, site, but the static ordered moment is only about 2/3 of the maximum moment
for spin S=1 state. The resulting magnetic configuration, predicted by the present theory, is displayed in Fig. 1i.
The magnetic unit cell quadruples, and the magnetic moment of Ni, ions in the parallel planes in (1, 0, 1) direction
are ferromagnetically aligned. The static moments on Ni, however remains exactly zero, as the fluctuating moment
on Ni, gets even reduced in the distorted (P2,/n) structure, and the strong bonding with the surrounding oxygen
concomitant with the appearance of the band gap, prevents any static moment on that site. Every second Ni plane
thus carries magnetic moment, and those Ni; planes couple antiferromagnetically. This ordering of moments
on Ni, sublattice coincides with the proposed model deduced from the neutron scattering® and resonant soft
X-ray diffraction®, but it differs from both models due to Ni, sites. In the proposed neutron-scattering model*
Ni, moments were arranged antiferromagnetically within a single (1, 0, 1) plane, while in soft X-ray diffraction
model*’, Ni, moments were arranged ferromagnetically, but 90 degrees rotated with respect to Ni; moments,
so that the resulting magnetic structure is non-collinear. The magnetic long-range solutions in the DFT-DMFT
theory can not sustain finite static moment on Ni,, and we show in chapter V of the Supplementary that the
theoretical magnetic configuration fits the neutron scattering data as good as the proposed model of ref. 30.
Our proposed magnetic configuration is also consistent with the inelastic neutron scattering result, which showed
that all Nd ions experience similar Weiss field*”.

Finally, the gain in free energy is considerable once the magnetic long range order is turned on, hence this
magnetic order displayed in Fig. 1i is the theoretical ground state of the displayed unit cell. Table 1 lists the
optimized structure in the magnetic state, which shows almost no difference as compared to the paramagnetic
structure in P2,/n symmetry (given in Supplementary chapter III). From Fig. 1b we can also conclude that
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Figure 2. Hybridization and charge of Ni ions. (a) Energy dependent hybridization function of the Ni, ion

at few values of the distortion parameter ¢ € (0, 1). (b) The integral of the hybridization function (in the
displayed energy window) as a function of distortion parameter 8. (c) The charge density on the two Ni atoms
corresponding to the e, orbitals and the entire 3d shell. (d) The difference of the charge between Ni, and Ni, in
the e, orbital, in the 3d shell, and in the entire muffin-tin sphere corresponding to Ni atoms.

the magnetism is not necessary for the metal-insulator transition, but in NdNiOj, this paramagnetic insulator
appears metastable, and energy gain due to long range magnetic order helps to stabilizes the insulating state. In
Supplementary material (chapter II) we show that for smaller rare earth ion (LuNiOj;) the paramagnetic insu-
lating state is stable at 100 K in the absence of magnetism. Magnetism is thus just an efficient way to release the
large entropy of fluctuating moment on Ni, sites, which are formed with a help of much stronger Hund’s coupling
mechanism.

While the large Hund’s coupling is essential for the appearance of strong local moments on Ni, sites, the MIT
in these materials is tuned by the reduced hybridization on Ni, sites, displayed in Fig. 2a and b. It decreases for
about 10% in the bond-disproportionate structure, and this is sufficient for a Mott localization of electrons on Ni,
site. Notice that the largest contribution to the hybridization comes from nickel-oxygen overlap, and its reduction
is mostly concentrated at the energy of the center of the oxygen states (see Fig. 2a around —3.5eV). On Ni, sites
however, the hybridization increases almost as much as it decreases on Ni, sites (see Fig. 2b), but because the
hybridized Ni, and oxygen states in this crystal structure form a band insulator, this increased overlap does not
collapse the insulating gap. On the basis of this calculation, we predict that the material would become a canonical
Mott insulator if hybridization on both sites gets as small as on Ni, in P2,/n structure, which might be possible to
achieve in some thin heterostructures of this material'2.

In Fig. 2¢ we display the electron charge on Ni ions versus distortion, as obtained by projecting the electron
charge to a muffin-tin sphere around each Ni atom of size ~2 a.u. We notice that there are approximately 2 eg
electrons on each site, and approximately 8 electrons in the 3d shell, which corresponds to Ni 3d® configuration,
as previously postulated in refs 25, 27 and 38, and hence our exact double-counting thus proves the correctness
of the negative charge transfer picture for these nickel compounds. We also notice that Ni, (Ni,) sites with large
(small) octahedra gain (loose) some eg electronic charge with structural distortion, and the difference of the
eg charge on the two Ni sites becomes of the order of 0.137 electrons in equilibrium P2,/n structure. However,
the electronic charge in the entire 3d shell differs only for ~0.1 electrons, and when all charge inside muffin-tin
sphere on Ni is counted, the charge difference is negligible. Moreover, if we were to construct a very low energy
model comprised of only the lowest energy bands, we would completely eliminate all Ni, states, as they are pushed
to high energy Hubbard bands, and we would conclude that all low energy holes come from Ni, sites. Hence, we
can conclude that the appearance of charge order depends on the type of model considered, and while there is
no real charge difference in the spheres around each Ni, the low energy models comprised on Ni eg-states only,
should allow for charge order.

The CD model was originally invented to explain the RXS results'®, which showed a strong energy dependent
signal at the weak nuclear Bragg peak (h, k, I), where h + k+ I is even, and [ is odd. If the scattering factor fof each
Ni atoms is approximated by a spherically symmetric quantity, the resonant part of the structure factor is directly
proportional to the difference fNi1 — fy;. (see Supplementary). A strong X-ray signal at the Ni resonance can

therefore be taken as a direct evidence of a very large difference between the two Ni atoms. In particular, for the
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Figure 3. Resonant Elastic X-ray scattering on Ni K-edge. (a) The spectral function of the 1s core state in the
presence of the fluctuating valence of the Ni 3d shell. (b) Ni 4p density of state. (c) the energy dependent matrix
of the scattering factor, where E means electron units (d,e) measured and computed X-ray scattering intensity at
the two Bragg peaks. Experimental data in (d) are reproduced from ref. 13 and in (e) from ref. 33.

X-ray K-edge measurement, this must mean that the energy difference between the core 1s state and the valence
4p states of the Ni ion is very different on the two inequivalent Ni sites. As the core energy is very sensitive to the
amount of the charge on Ni ion, it is generally accepted that the difference in the core energy comes from the
different charge accumulated on Ni, and Ni, ions. As our model predicts negligible total charge difference on the
two Ni sites, the X-ray scattering needs an alternative explanation.

In Fig. 3a and b we show the calculated spectral function for the Ni 1s core and 4p valence orbital. The 1s
spectra on Ni, ion is shifted up compared to Ni, for approximately 0.7 eV, and the 4p spectra is shifted in opposite
direction for approximately 0.8 eV, resulting in approximately 1.5eV difference in the 1s — 4p transition energy
on two inequivalent Ni atoms. Such energy difference can explain the occurence of the main peak in the RXS
intensity displayed in Fig. 3d,e, hence no charge order is needed for its explanation. However, the multiple peak
structure of the intensity can not be explained by only the single-particle effects and the structural distortion. The
4p states are very extended and do not appreciably overlap with the core 1s states, hence the Coulomb repulsion
between the two can be neglected. However, the Ni 1s and partially filled 3d orbitals have large overlap, therefore
the Coulomb repulsion between the two states is comparable to the Coulomb U among electrons in the 3d shell.
In this work, we included such core-hole interaction between the Ni 1s and Ni 3d states, which takes the form
AH=U,(n;,—2)(n;y — ns,). We took U,,=7eV, the same as U in the 3d shell. When such term is included in
the Hamiltonian, the core 1s orbital experiences different energy when the 3d shell is in different valence state.
As there are substantial valence fluctuations in this system with finite probability for Ni d” and d° valence, the
core state spectra is split into three peaks, roughly separated by U,,. Finally, the scattering factor on each Ni, is
computed by convoluting 1s and 4p spectra (see Supplementary chapter IV) and is displayed in Fig. 3c. The xy
and yz components vanish by the symmetry, and only diagonal and the xz components are finite. Moreover, the
xz component is one order of magnitude smaller than the diagonal components, as consistent with the fact that
the o — 7 intensity is two orders of magnitude smaller than o — o scattering intensity®> * (the off-diagonal com-
ponent would contribute to the scattering in o — 7 channel). Moreover, the diagonal components have a pre-peak
shoulder roughly U,, below the main peak, and second and third peak roughly U,;, and 2U,;, above the main peak,
all consequence of the core-hole interaction. Finally, computing the square of the total structure factor we arrive
at the X-ray intensity, displayed in Fig. 3d and e. This is directly compared with the experiment, and we notice
that reasonable agreement is achieved without any fitting parameter. We can thus conclude that the inequivalent
Ni-sites harboring “site-selective Mott transition” but no real charge order, can explain all important observation
in the rare-earth nickelates, including the magnetic long range order consistent with neutron scattering data, and
the resonant X-ray intensity in the weak nuclear Bragg peaks, which was previously assumed to be a proof of the
electronic charge order.
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