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Abstract—There has been sporadic interest in using Java for 

High Performance Computing (HPC) in the past. These earlier 
efforts have resulted in several Java Message Passing Interface 

(MPI) [1] libraries including mpiJava [2], FastMPJ [3], MPJ 

Express [4], and Java Open MPI [5]. In this paper, we present 

our efforts in designing and implementing Java bindings for 
the MVAPICH2 [6] library. The MVAPICH2 Java bindings 

(MVAPICH2-J) follow the same API as the Java Open MPI 

library. MVAPICH2-J also provides support for communicating 

direct New VO (NIO) ByteBuffers and Java arrays. Direct 
ByteBuffers reside outside JVM heaps and are not subject 

to the garbage collection. The library implements and utilizes a 

buffering layer to explicitly manage memory to avoid creating 

buffers every time a Java array message is communicated. In 
order to evaluate the performance of MVAPICH2-J and other 

Java MPI libraries, we also designed and implemented OMB-J 

that is a Java extension to the popular OSU Micro-Benchmarks 

suite (OMB) [7]. OMB-J currently supports a range of bench- 
marks for evaluating point-to-point and collective communication 

primitives. We also added support for communicating direct 

ByteBuffers and Java arrays. Our evaluations reveal that at 

the OMB-J level, ByteBuffers are superior in performance 
due to the elimination of extra copying between the Java and 

the Java Native Interface (JNI) layer. MVAPICH2-J achieves 

similar performance to Java Open MPI for ByteBuffers in 

point-to-point communication primitives that is evaluated using 
latency and bandwidth benchmarks. For Java arrays, there is a 

slight overhead for MVAPICH2-J due to the use of the buffering 

layer. For the collective communication benchmarks, we observe 

good performance for MVAPICH2-J. Where, MVAPICH2-J fairs 
better than Java Open MPI with ByteBuffers by a factor of 

6.2 and 2.76 for broadcast and allreduce, respectively, on average 

for all messages sizes. And, using Java arrays, 2.2 and 1.62 on 

average for broadcast and allreduce, respectively. The collective 
communication performance is dictated by the performance of 

the respective native MPI libraries. 

Index Terms—Java, MPI, MVAPICH2, OMB, HPC 

I. INTRODUCTION AND MOTIVATION 

The Message Passing Interface (MPI) standard [1] continues 

to dominate the landscape of High Performance Computing 

(HPC) applications as the community is edging closer towards 

exascale computing systems. MPI currently provides support 

for C and Fortran programming languages. However, there is 

also interest in using MPI compliant libraries from higher-level 

programming languages like Java and Python. Java has been 

powering most of the Big Data computing stacks including 

Apache Hadoop and Apache Spark. Similarly, Python is at 

fore-front of the recent AI uptake and is powering many 
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popular Deep Learning frameworks including PyTorch and 

TensorFlow. 

Historically, there has been interest in using MPI to scale 

parallel and distributed Java applications on HPC systems. 

There are good reasons for popularity of Java, which include 

portability, widespread adoption in the software industry and 

Big Data community, and advanced features like garbage 

collection. The interest in Java led to the creation of several 

Java MPI libraries including Open MPI Java bindings [5] 

(called Open MPI-J hereafter), mpiJava [2], MPJ Express [4], 

and FastMPJ [3]. Some of the libraries—like MPJ Express 

and FastMPJ—provided support for the MPI standard in 

pure Java while providing communication devices for high- 

speed networks like InfiniBand and others using Java Native 

Interface (JNI). Note that JNI allows Java programs to invoke 

functions and methods written in other languages including C. 

This approach, of implementing the MPI standard, is tedious 

and requires substantial development effort. On the other hand, 

the approach pioneered by mpiJava and adopted by Open 

MPI-J, is to keep the Java layer as minimal as possible and 

use JNI to invoke MPI methods implemented by “native” 

production-quality MPI libraries. This approach allows easier 

development and maintenance as well as high-performance for 

Java MPI libraries. Currently Open MPI-J and FastMPJ are 

the two well-maintained Java MPI libraries in the community. 

The open-source version of FastMPJ only supports pure Java 

communication devices and hence not used in the comparative 

evaluation in this paper. 

MVAPICH2 [6] is a production quality MPI library with 

support for high-speed RDMA networks like InfiniBand. This 

paper is an effort to produce initial prototype Java bindings for 

the MVAPICH2 library. Currently the Java bindings in MVA- 

PICH2 are provided by a limited sub-set of the MPI standard 

including i) blocking/non-blocking point-to-point functions, ii) 

blocking collective functions, and iii) blocking vectored col- 

lective functions. In addition, some supporting communicator 

and group management functions are also implemented. 

In the past, the Java MPI libraries have implemented a 

variety of APIs for application developers. These include the 

mpiJava 1.2 API, the MPJ API, and the Open MPI Java 

bindings API. MPJ Express and mpiJava libraries implement 

the mpiJava 1.2 API. FastMPJ supports both the mpiJava 1.2 

and the MPJ API. The Java Grande Forum——formed in late 
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90s——came up with an API called mpiJava 1.2. The MPJ 

API followed that and is a minor upgrade to the mpiJava 

1.2 API. The MPJ API is more inline with Java coding 

conventions. However, Open MPI-J adopted a custom API 

that is an extension of the MPJ API. The most important 

updates here include supporting communication to/from Java 

New I/O (NIO) ByteBuffers in addition to Java arrays. 

Also, the communication primitives in the Open MPI Java 

bindings do not provide support for communicating a sub-set 

of the ByteBuffer or array argument. This was possible in 

the mpiJava 1.2 and MPJ API through an offset argument to 

communication primitives. For the Java MVAPICH2 bindings, 

we have adopted the Open MPI Java API in order to facilitate 

end users. 

The MVAPICH2 Java bindings are also equipped with a 

number of test-cases adopted from the MPJ Express library. 

In addition, we have also produced a Java version of the OSU 

Micro-Benchmark (OMB) suite [7]|—we will refer to this as 

OMB-J. These are popular MPI benchmarks to evaluate perfor- 

mance of communication libraries using a variety of point-to- 

point and collective benchmarks. OMB-J currently has support 

for point-to-point, blocking collectives, and vectored blocking 

collective operations. OMB-J supports both the ByteBuffer 

and arrays API. 

One of the main challenges in implementing an efficient 

Java MPI library is to minimize the overhead incurred 

by copying data from Java to C. This copy is essential 

because all high-speed networks, like InfiniBand, provide 

communication libraries in the C language. This copy 

is also needed for designs when the Java MPI library 

interfaces with the native MPI library to communicate 

data. The mpiJava 1.2 and MPJ APIs provided support for 
communicating data to/from Java arrays of basic datatypes 

as well as arrays of Java objects. The Java Native Interface 

(JNI) allows invoking C functions from Java and provides 

two main ways of copying Java arrays of basic datatypes: 

1) Use JNI functions Get<Type>ArrayElements 

and Release<Type>ArrayElements—j<Type> 

refers to all basic datatypes in Java—to _ retrieve 

corresponding pointers to Java arrays, and 2) Use JNI 

utility functions GetPrimitiveArrayCritical 

and ReleasePrimitiveArrayCritical to obtain 

pointers to Java arrays in the C code. On modern Java 
Virtual Machines (JVMs) including OpenJDK and Oracle 

JDK that do not support “pinning”, the first approach 

incurs a copy from Java to C. The second method— 

of using the GetPrimitiveArrayCritical and 

ReleasePrimitiveArrayCritical pair of functions— 

does not incur data copying overhead. However, this method 

is not recommended because the JVM halts garbage collection 

between calls to GetPrimitiveArrayCritical and 

ReleasePrimitiveArrayCritical functions. This 

can possibly have a detrimental performance on_ the 

application. 

The Open MPI Java bindings provided an alternate approach 

to avoid data copying in Java MPI libraries by modifying 
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the user API. The Java NIO package introduced a new data- 

structure called ByteBuffers in Java. There are two types 

of ByteBuffers: 1) Direct and 2) Indirect or heap. Direct 

ByteBuffers, while costly to create and destroy, do not 

reside in the Java heap and hence are not subject to garbage 

collection. Because of this, direct ByteBuffers—when 

passed to JNI methods—do not incur copy and C methods are 

simply passed pointers to the original allocated memory. These 

are ideal for applications like Java MPI libraries that need 

to invoke JNI methods to call native communication or MPI 

libraries. On the other hand, indirect or heap ByteBuf fers 

are allocated on the JVM heap like normal Java objects and 

hence are subject to garbage collection. As a consequence, 

when indirect ByteBuffers are passed to JNI methods, 

modern JVMs make a copy of these to avoid stale or invalid 

pointers. Older APIs for Java MPI libraries—including the 

mpiJava 1.2 and MPJ API—only supported communicating 

data to/from arrays of basic Java datatypes and objects. 
However, the Java Open MPI library updated the API to 

be able to communicate data to/from direct ByteBuf fers. 

This mandates modifications and updates to parallel Java HPC 

applications. 

The MVAPICH2-J library also supports communicat- 

ing data to/from direct ByteBuffers. In order to sup- 

port communicating of arrays of Java datatypes and _ ar- 

rays, we utilize an internal buffering layer inspired by 

MPJ Express [4]. When communicating arrays of Java 

basic datatypes, it is possible to acquire pointer in 
the native code using Get<Type>ArrayElements or 

GetPrimitiveArrayCritical. Our buffering instead 

maintains a pool of direct ByteBuffers. The sender process 

copies data onto a direct ByteBuffer and a pointer to 
this buffer is retrieved in the JNI method call and used for 

communication along with the native MVAPICH2 library. 

We evaluate and present the performance of point-to-point 

and collective communication primitives for the MVAPICH2-J 

library along with Java Open MPI bindings using OMB-J. Our 

evaluation reveals that using ByteBuffers provide better 

performance compared to Java arrays at the OMB-J level. The 
point-to-point performance of MVAPICH2, as depicted by la- 
tency and bandwidth benchmarks, is comparable to Java Open 

MPI for the ByteBuffer API. There is a slight overhead 

in the performance while communicating Java arrays using 

MVAPICH2-J due to the internal buffering layer. This layer 

is needed to support communicating derived datatypes and 

Java arrays with non-blocking point-to-point functions. Open 

MPI-J does not support communicating Java arrays with non- 

blocking point-to-point functions. As a consequence, it was 

not possible to calculate bandwidth numbers for Java arrays 
in Open MPI-J. For the collective communication benchmarks, 

we present evaluation for broadcast and allreduce primitives. 
MVAPICH2-J outperforms Open MPI-J for the Byt eBuf fer 

API by a factor of 6.2 and 2.76 for broadcast and allreduce, 

respectively, on average for all messages sizes. For Java arrays, 

we observe 2.2x and 1.62x better performance than Open 

MPI-J—on average for all message sizes—for broadcast and
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allreduce, respectively. The performance advantage in collec- 

tive benchmarks is mainly due to performance differences in 

native MPI libraries. 

While our OMB-J evaluation concludes that the 

ByteBuffer API performs better than Java arrays. However, 

OMB-J only measures the communication performance and 

ignores the cost of copying user data onto ByteBuffers 

compared to Java arrays. To tackle this, we performed 

an experiment—detailed in Section VI-F—where we not 

only measure the communication time but also validate the 

contents of messages. This means that ByteBuffers and 

Java arrays are populated at the sender end and validated at 

the receiver end. We found that Java arrays perform better 

than direct ByteBuffers in this case. The reason is that 

it is faster to read/write data from Java arrays compared to 

ByteBuffers. 

A. Contributions 

This paper makes the following contributions: 

1) Design and implementation of MVAPICH2-J, which is a 

Java binding for the MVAPICH2 library with the design 

goal to keep the Java layer as minimal as possible 

MVAPICH2-J provides support for communicating user 

data to/from Java arrays and direct ByteBuffers. 

Direct ByteBuffers provide an option to acquire 

pointers to their storage in the JNI code making it 

possible to avoid data copying overhead incurred by Java 

arrays. 
In order to evaluate performance of MVAPICH2-J and 

other Java MPI libraries, we architect and implement 

a Java version of the popular OSU Micro-Benchmark 
(OMB) suite named OMB-J. OMB-J currently supports 
point-to-point primitives (latency, bandwidth, and_bi- 
bandwidth) and vectored and blocking collective com- 

munication primitives (latency). 

The paper conducts extensive benchmark level experi- 

ments of MVAPICH2-J against Java Open MPI using 

OMB-J. These evaluations are done on the TACC’s 

Frontera system. This includes latency and bandwidth 
comparisons for point-to-point communication primi- 

tives and latency comparisons for collectives (broadcast 

and allreduce). We also quantified the overhead of the 

Java layer for the buffering layer in our evaluation. 

The paper also reveals that while using ByteBuf fers 

led to better performance at the OMB-J level, this benefit 

might not translate to application-level benefits. This 

is due to slower read/write access to ByteBuffers 

compared to Java arrays. This contribution is detailed in 

Section VI-F. 

Rest of the paper is structured as follows. The background 
of our work is given in Section II. Section III details the design 
and implementation of our approach. The experimental results 

are presented in Section VI. The related work is discussed in 

Section VII, followed by a conclusion in Section VIII. 

2) 

3) 

4) 

5) 
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II. BACKGROUND 

A. Java for HPC 

After the emergence of the Java programming language 

in the late 1990s, there was an interest in using the Java 

programming language for HPC applications. This led to the 

emergence of many MPI libraries including mpiJava [2], MPJ 

Express [4], and FastMPJ [3]. While the adoption of Java has 

been relatively low for high-performance numerical codes, it 

has become a widely used language for Big Data computing 

and analytics. Some of the widely used Big Data frameworks 

like Apache Spark [8] and Apache Hadoop [9] are written 

in Java. There are also deep learning efforts written in Java 

such as DeepLearning4j (DL4J) [10], a suite for running Deep 

Learning training and inference workloads. 

B. ByteBuffers and Java Arrays 

The Java NIO package introduced the concept of non- 

blocking I/O to the language. In order to support net- 

working and storage I/O efficiently, the package also in- 

troduced new user defined datatypes called ByteBuffers 

in Java. These buffers provide a variety of put() and 

get () methods to copy data from Java arrays of all 

basic datatypes. There are type-specific buffers that in- 

clude CharBuffer, DoubleBuffer, FloatBuffer, 

IntBuffer, LongBuffer, and Short Buffer. The most 

relevant buffers for our work are ByteBuffers. The rea- 

son is because there are two types of ByteBuffers: 

1) direct and 2) non-direct or heap—as shown in Fig- 

ure 1. Direct ByteBuffers are created using the static 

allocateDirect() method. These are costly to create, 

however, these are not subject to garbage collection as they re- 

side outside the Java heap. These buffers are attractive for Java 
MPI libraries because it is possible to acquire a pointer to their 

memory using GetDirectBufferAddress () in the JNI 
C code. On the contrary, non-direct or heap ByteBuf fers 
are allocated using the static al Locate () method. These are 

normal Java objects that reside in the JVM heap and hence are 
subject to garbage collection. Similarly, Java arrays are also 

regular objects that reside in the JVM heap. 

C. APIs for Java MPI Libraries 

This sub-section provides a review of APIs for Java MPI 

libraries. Historically, the Java Grande Forum provided a 
platform for the Java HPC community to produce a widely 

accepted API. This forum proposed the mpiJava 1.2 and the 

MPJ API. mpiJava, MPJ Express, and FastMPJ were three 

Java MPI libraries that adopted these two APIs. A Java version 

of the popular NAS Parallel Benchmark [11]—named NPB- 

MPJ [12]—also uses mpiJava 1.2 and MPJ APIs. The MPJ API 

is a modest upgrade to the mpiJava 1.2 API mainly motivated 

by adopting Java naming conventions for functions. 

However, more recently, the Open MPI library introduced 

the support for Java bindings. Instead of going with existing 

APIs, the Java Open MPI library adopted a new API. Main 

reason was that the Java Open MPI library was MPI 3.0 

standard compliant, whereas, the older Java MPI APIs, like
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Figure 1. The Layout of Direct/Non-direct ByteBuffers and Java Arrays 
in the JVM. 

mpiJava 1.2 and MPJ, were only defined until MPI 1.2 

standard. On top of that, the Java Open MPI API introduced 

two major changes. The first change is that it supported 

communication to/from direct ByteBuffers on top of Java 

arrays. Secondly, the new API removed an offset argument 

to MPI communication primitives. When used with point- 

to-point communication methods, the offset field allowed 
communicating data from a sub-set of a Java array. This 

change mandates modifying Java HPC applications. Also, the 
Java Open MPI API does not allow using Java arrays with 

non-blocking communication primitives. 

Ill. THE PROPOSED DESIGN 

The design of the MVAPICH2-J library is inspired by 

the MPJ Express library as shown in Figure 2, The design 

depicts two communication device layers: the mp jdev and 

the xdev layers. In the context of MVAPICH2-J, only the 
mp jdev layer is relevant. The mp jdev is used to implement 

wrapper methods to native MPI libraries using JNI. The design 

philosophy is to keep the Java layer “as minimal as possible” 

for several reasons. This will help in easier development and 

maintenance of the Java MPI library. This is because the native 

implementation of MPI functionality can be re-used at the Java 

layer instead of re-implementing these in Java. Also, this will 

help in achieving optimal communication performance. Lastly, 

this will provide flexibility when porting newer systems and 

communication interconnects. 

IV. IMPLEMENTATION OF THE MVAPICH2-J 

This section presents implementation details of the 

MVAPICH2-J library. We begin this section with a discussion 

on the buffering layer, which is extensively used in the 

communication of Java arrays. Implementation details for Java 

arrays follow. Later, we present discussion on supporting com- 
munication to/from direct ByteBuf fers in the MVAPICH2- 

J library. Towards the end of this section, we present imple- 

mentation details of the collective communication routines, 

513 

  

  

Java MPI = 

+ 
Abstract MPJ Device (mpjdev) layer 

+ 

Thexdeviver [ype] 
$ 

Java Virtual Machine (JVM) 

t t t 
OS, Hardware, APIs, Drivers 

Figure 2. Layered Architecture of the Java Bindings for the MVAPICH2 
Library) 

  

    
  

        

  
        

A. The Buffering Layer 

MVAPICH2-J utilizes a buffering layer that is inspired 

by the MPJ Express library [13]. The primary motivation 

of this layer is to utilize direct ByteBuffers to assist 

with communication of Java arrays. Direct ByteBuffers 

are attractive because their pointers can be retrieved 

in the native JNI functions. Also, this implies copy- 

ing data to/from Java arrays onto ByteBuffers. How- 

ever, this extra copy is not avoidable when communi- 

cating Java arrays through the JVM documentation rec- 
ommended way of using Get<Type>ArrayElements 

and Release<Type>ArrayElements functions. The pro- 

posed buffering layer avoids the overhead of creating a 

ByteBuffer everytime a message comprising of Java arrays 

is communicated. 

The buffering layer dynamically maintains a pool of di- 

rect ByteBuffers—backend storage—that can be used to 
support communication of Java arrays. It is possible to use 

other backend storage including indirect ByteBuffers or 

native memory created by C programs using malloc() or 

calloc() system calls. A buffer provided to upper layers 

of the software is an mpjbuf buffer that internally uses a 

ByteBuffer for storing user data. 

Higher layers of the software, especially point-to-point com- 

munication primitives for Java arrays, use the buffering layer 

through an interface presented in Listing 1. These methods 

are encapsulated in the mpjbuf.Buffer class. The most 

important methods used for communicating Java arrays by 

point-to-point communication primitives are write () and 

read() methods. These methods allow copying data from 

Java arrays—of all basic datatypes—onto the mpjbuf buffer. 

Note that mpjbuf buffer utilizes direct ByteBuffers as 

backend storage mediums in our implementation. An mpjbuf 

buffer can possibly have multiple sections, each containing 

data from multiple Java arrays of the same different type. 

This is supported by functions like put Sect ionHeader () 

and getSectionHeader(). It is also possible to con-
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figure the section size and encoding through functions like 

setSectionSize() and setEncoding(). 

  

package mpjbuf ; I 

2 
3} public class Buffer { 

4 

5 

6 // Write and read Methods 

7 public void write(type [] source, 

8 int srcOff, 

9 int numEls) 

10 public void read(type [] dest, 

ul int dstoff, 

12 int numEls) 

B 

4 // Set and get section Headers 

15 public 
16 public 

void putSectionHeader (Type type) 
Type getSectionHeader () 

18 // Set and get section size 
19 public int setSectionSize() 

20 public int getSectionSize() 

21 
n // Set and get encoding 

a public void setEncoding (ByteOrder encoding) 

m4 public ByteOrder getEncoding() 
25 

%6 // Utility methods 

a public void commit () 
28 public void clear () 

29 public void free()   

  

Listing 1. The Functionality provided by the Buffering Layer [13] 

B. Point-to-point Communication for Java Arrays 

One — approach for implementing = communica- 

tion to/from Java arrays is to utilize the JNI 

methods like Get <Type>ArrayElements and 

Release<Type>ArrayElements where j<Type> 

refers to all basic datatypes in Java. These methods allow 

the native C JNI function to retrieve a “copy” of the original 

array in the native code. It is possible to avoid this copy in 

JVMs that support memory pinning. However most current 

JVMs do not support memory pinning and hence incur a 

copy. The JVM performs a copy because the Java buffer, 

specified by the user, is subject to garbage collection. When 
this happens, the address of the buffer inside the JVM heap 

is likely to change and hence any pointer passed to C code 

for Java buffer becomes invalid. To cater this, JVM simply 

copies the Java buffer for the invoked C code to use—this 

typically happens when the Get<Type>ArrayElements 

function is called. The copy back, from C to Java is done 

when the Release<Type>ArrayElements function 

is called. The overhead of this copy from Java-to-C 
and C-to-Java is not present when the JVM_ supports 
memory “pinning”. The address of the Java buffer does 

not change in JVM _ heap in this case. There are also 

a few drawbacks of this approach. The overhead of 

copying incurred by Get<Type>ArrayElements and 

Release<Type>ArrayElements functions for a subset 

of a Java array is the same as the full array. This was 

possible in the older mpiJava 1.2 and MPJ APIs where the 

communication primitives had an offset argument that 

could be used to specify the starting index of the array from 

where to send/receive data. However, the offset argument 

has been removed from the Java Open MPI bindings. The 

buffering layer—discussed in Section IV-A—allows us to 

avoid this since we copy only the subset of the data in the 
ByteBuffer. But since MVAPICH2-J follows the Java 

Open MPI bindings currently, it is not possible to demonstrate 

the effectiveness in sample benchmarks. However, this can 

be a useful feature for Java HPC applications if the offset 

argument is re-introduced in the API in future. Additionally, 

the buffering layer is useful for communicating derived 

datatypes since it is possible to copy scattered elements in 

the array onto consecutive location in the ByteBuffer. 

The Buffering 

Layer 

  

4) MVAPICH2 

MPI_Send([Pointer }) 

Figure 3. Communicating Java Arrays in the MVAPICH2-J Library. This 

is a four step process: 1) the Java side of MVAPICH2-J library gets a 
ByteBuffer from the buffering layer, 2) the user specified data is copied 

from Java arrays to ByteBuf fers, 3) the C JNT function acquires a pointer 

to the ByteBuffer, and 4) this acquired pointer is used to communicate 
data using native C MPT library’s communication primitives.) 

Figure 3 depicts the overall process of communicating Java 

arrays in the MVAPICH2-J library. While communicating Java 

arrays, the user Java HPC program allocates this array and uses 

it for computational purposes. Note that the current discussion 

is in the context of basic datatype arrays in Java. As mentioned 

earlier, the MVAPICH2-J library uses a buffering layer to 

support communicating Java arrays. The first step—indicated 

in Figure 3 in this process—is to acquire a ByteBuffer) 

from the buffering layer. The second step is to copy contents 

of Java arrays on this ByteBuffer. In the third step of 
Figure 3, the ByteBuffer is passed to the native JNI C 

code that can access this buffer using a pointer without the 

need to incur another copy. This pointer to the ByteBuf fer 
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is finally used in the fourth step to communicate data using 

native MPI library communication primitives. 

C. Point-to-point Communication for Direct ByteBuf fers 

The Java Open MPI library has introduced the support 

for communicating data to/from direct ByteBuffers. This 

functionality was not part of the mpiJava 1.2 and MPJ APIs. 

To recap, direct ByteBuffers allocate memory outside the 

JVM heap and hence have a constant memory address through- 

out their lifecycle unlike other Java objects. This movement 

of Java objects in the JVM heap is due to garbage collection. 

Hence, it is attractive to provide support for these kinds of 
buffering in our Java MPI library. 

Figure 4 depicts the overall process of communicating data 

directly from ByteBuffers in the MVAPICH2-J library. 

While communicating ByteBuffers, the user Java HPC 

program allocates this buffer and uses it either for compu- 

tational purposes directly or copies data from Java arrays. 

The buffering layer in the MVAPICH2-J library is not used 

while communicating user allocated ByteBuffers. The first 

step—indicated in Figure 4 in this process—is to pass a 

reference to this buffer to the Java code in the MVAPICH2-J 

library. The second step is to pass this reference to the JNI C 

code. Finally in the third step, the JNI code uses the pointer to 

the ByteBuf fer—allocated by the user directly—to invoke 

MPI communication primitives. 

  

(4) MVAPICH2 

MPI_Send([Pointer }) 

Figure 4, Communicating ByteBuf fers in the MVAPICH2-J Library. This 
is a three step process: 1) the user passes the reference to the ByteBuf fer 

to the MVAPICH2-J library, 2) the Java layer of the MVAPICH2-J library 
invokes JNI C methods with a reference to the ByteBuffer, and 3) the 

JNI C code uses a pointer to the buffer for communicating data using MPI 
primitives. 

D. Collective Communication 

MVAPICH2-J currently provides support for collective 

primitives—including vector variants. It is possible to commu- 

nicate both Java arrays and direct ByteBuffers with these 

operations. Like the point-to-point primitives, the buffering 

layer is used for Java arrays. Again, the idea is to keep the 

Java layer as minimal as possible and utilize all optimizations 

and advanced collective algorithms available in the native 

MVAPICH2 library. 

V. OSU MICRO-BENCHMARK (OMB) FOR JAVA BINDINGS 

The OSU Micro-Benchmark (OMB) [7] suite is a bench- 

marking tool—written in C—that is popularly used for eval- 

uating MPI communication libraries on HPC systems. The 

suite supports an extensive range of benchmarks, ranging from 

blocking/non-blocking point-to-point & collectives operations 

to one-sided operations. It also provides a set of flags for 

running custom tests, varying the message sizes, among other 

things. 

Each benchmark in OMB is designed to evaluate MPI oper- 

ations, mimicking real applications while accurately reporting 

performance. Performance is reported under two metrics, 

latency (in microseconds) and bandwidth (in MBps). 

OMB-J is designed with the aim of providing a bench- 

marking suite for Java MPI libraries that support NIO 

ByteBuffers along with Java arrays for communication. 

The suite currently has support for blocking/non-blocking 

point-to-point, blocking collective and vectored blocking col- 

lective operations. It also provides the ability to run custom 

tests as OMB does. 

A. Example: OMB-J Latency Benchmark 

Algorithm 1 shows a simple example of OMB-J’s latency 

benchmark using NIO direct ByteBuf fers. For Java arrays, 

the algorithm remains unchanged, where the only difference 

is the sender and receiver buffers are Java arrays. The latency 

benchmark reports the average latency by measuring the time 

a sender receives a response in a ping-pong fashion. 

  

Algorithm 1: Latency Benchmark Example 
  

1 latency = 0.0; 

2 MPI.COMM_WORLD.Init(...); 
3 sendBuffer = ByteBuffer.allocateDirect(maxMsgSize); 

4 recvBuffer = ByteBuffer.allocateDirect(maxMsgSize); 

s for size in maxMsgSize do 
6 for i:/ ... benchlters do 
7 if myrank == 0 then 

8 initTime = System.nanoTime(); 

9 MPIL.COMM_WORLD.send(sendBuffer, size ...); 

10 MPIL.COMM_WORLD.reev(recvBuffer, size ...); 
i latency = (System.nanoTime() - 

initTime)/(2.0"benchl ters” 1000); 
12 else 

13 MPIL.COMM_WORLD.reev(recvBuffer, size ...); 

14 MPIL.COMM_WORLD.send(recvBuffer, size ...); 
15 end 

16 end 
17 reportLatencyForMsgSize(latency); 

18 MPI.COMM_WORLD. barrier(); 
19 end 
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VI. PERFORMANCE EVALUATION USING OMB-J 

This section presents performance evaluation of point- 

to-point and collective communication primitives for the 

MVAPICH2-J library along with Java Open MPI bindings 

using OMB-J. For point-to-point, we present the evaluation 

results for latency and bandwidth benchmarks. As for col- 

lectives, we present the evaluation results for allreduce and 

broadcast (beast). 

A. Experimental Setup 

TACC Frontera: Located at the Texas Advanced Comput- 

ing Center (TACC), Frontera is a large HPC system that hosts 

8,368 Cascade Lake (CLX) compute nodes. Each compute 

node has two sockets, each carrying 28 cores (56 cores total) 
at 2.70GHz frequency. Each node has a total of 192GB of 

RAM. 
The following library versions were used for the experi- 

ments: MVAPICH2-X v2.3.6 [6] and Open MPI v4.1.2 [5] + 

UCX 1.13.0 [14]. 

B. Point-to-point Communication Evaluation: Intra-node 

Here we showcase the point-to-point intra-node evalua- 

tion for the two Java MPI communication libraries with 

ByteBuffers and Java arrays. The latency was measured 

with OMB-J’s version of the osu_latency benchmark 

which reports the average latency in microseconds. The band- 

width was measured with OMB-J’s osu_bw benchmark which 

reports the bandwidth in MBps. 
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Figure 5. Intra-node latency numbers for small message sizes. 
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Figure 6. Intra-node latency numbers for large message sizes. 

Starting with small messages (Figure 5), we can see that 

“MVAPICH2-J buffer” is outperforming “Open MPI-J buffer” 

by a factor of 2.46 on average. 

At the large message end (Figure 6), “MVAPICH2-J 

buffer” is performing similarly to “Open MPI-J buffer’. For 

“MVAPICH2-J arrays”, there is some overhead in the perfor- 

mance as a result of the buffering layer. 
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Figure 7. Intra-node bandwidth numbers for small message sizes. Bandwidth 

numbers for Open MPI-J arrays are not included because the library does not 

support Java arrays with non-blocking point-to-point operations. 
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Figure 8. Intra-node bandwidth numbers for large message sizes. Since Open 
MPT-J does not support Java arrays for non-blocking point-to-point operations, 

no bandwidth numbers were collected there. 

Figures 7 and 8 show the bandwidth numbers for small 

and large message sizes, respectively. Those figures don’t 

have numbers for “Open MPI-J arrays” due to Open MPI- 

J’s library not supporting communication of Java arrays using 

non-blocking point-to-point operations. In Figure 8, we can 

see that “MVAPICH2-J buffer” is picking up performance- 

wise with “Open MPI-J buffer”. 

C. Point-to-point Communication Evaluation: Inter-node 

In this subsection, we showcase the inter-node point-to- 
point evaluation for the two Java MPI communication libraries 

with ByteBuffers and Java arrays. The latency and band- 

width were measured using the same benchmarks as discussed 

in the previous subsection VI-B. 

From the latency numbers for small message sizes (Fig- 

ure 9), we can see that “MVAPICH2-J buffer” performs 

comparably to “Open MPI-J buffer”. 

For large messages (Figure 10), “MVAPICH2-J buffer” is 

also performing about the same as “Open MPI-J buffer”. For 
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Figure 9. Inter-node latency numbers for small message sizes. 
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Figure 10. Inter-node latency numbers for large message sizes. 

“MVAPICH2-J arrays”, we see that it picks up in performance 

compared with “Open MPI-J arrays”. 

Figure 11 shows the latency overheads between the na- 

tive libraries and their respective Java MPI libraries using 

direct ByteBuffers. The overheads are in the ballpark of 

| microsecond, with MVAPICH2-J having a smaller latency 

overhead compared to Open MPI-J. 
Figures 12 and 13 are bandwidth numbers for inter-node 

experiments. Here, again, we see that the figures do not 

have “Open MPI-J arrays” numbers due to the same reasons 

mentioned earlier in VI-B. 

For larger messages (Figure 13), we see that “MVAPICH2-J 
buffer” catches up in performance but still is slightly lagging 
behind “Open MPI-J buffer”. 
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Figure 11, Inter-node latency overhead between native and MVAPICH2-J 

library for direct ByteBuf fers. 
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Figure 12. Inter-node bandwidth numbers for small message sizes. 

    

  

100 
90 
80 
70 @MVAPICH2-J Buffer 

Boo Open MPI-J Buffer 
8 6 s#MVAPICH2-J Arrays 

0 
5 30 —_—— 

20 
10 

ee FS KF F SF LF SF 
Message Size (Bytes) 

Figure 13. LInter-node bandwidth numbers for large message sizes. 

D. Collective Communication Evaluation: Broadcast 

We present the latency numbers for the broadcast collective 

operation with the two Java MPI communication libraries us- 

ing ByteBuf fers and Java arrays. The latency was measured 
using the Java version of the OMB osu_bcast. benchmark 

which reports the average latency across all processes in 

microseconds. The benchmark uses MP I_Reduce as part of 

the latency calculation. The experiments were conducted on 4 

nodes with 64 processes in total—16 processes for each node. 

Figures 14 and 15 both present the latency numbers for 
the broadcast collective benchmark. For all message sizes, 

“MVAPICH2-J buffer” is outperforming “Open MPI-J buffer” 
by a factor of 6.2 on average, and “MVAPICH2-J arrays” is 

also outperforming “Open MPI-J arrays” by a factor of 2.2 on 
average. These performance benefits are due in large to the 

performance differences of the native libraries in place. 
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Figure 14, Broadcast latency numbers for small message sizes. 
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Figure 15. Broadcast latency numbers for large message sizes. 

E. Collective Communication Evaluation: Allreduce 

For this subsection, the latency numbers for allreduce are 

presented. The numbers were collected using the Java version 

of the OMB benchmark osu_allreduce. The benchmark 

reports the average latency in microseconds across all pro- 

cesses. We also ran the benchmark on 4 nodes with 64 

processes in total—16 processes each. 

For Figures 16 and 17, “MVAPICH2-J buffer” is performing 

better than “Open MPI-J buffer”, where over all message sizes, 

“MVAPICH2-J buffer” is fairing well by a factor of 2.76 on 

average compared to “Open MPI-J buffer’, and “MVAPICH2- 

J arrays” is outperforming “Open MPI-J arrays” by a factor 

of 1.62 on average. Again, these performance advantages are 

largely due to the underlying native MPI libraries and their 

performances. 
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Figure 16. Allreduce latency numbers for small message sizes. 
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Figure 17, Allreduce latency numbers for large message sizes. 
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Figure 18. Inter-node point-to-point latency numbers with data validation 

comparing the ByteBuffer API against Java arrays for MVAPICH2-J. 

F. Evaluation of the ByteBuffer API 

Figure 18 presents the latency numbers for the MVAPICH2- 

J library—for Java arrays versus Byt eBuf fers—measured 

using the OMB osu_latency benchmark. Here, we plan to 

evaluate the effectiveness of using ByteBuffers instead of 

Java arrays. In order to emulate the application-level behavior, 

we have enabled data validation for the OMB osu_latency 

benchmark. This means that Java arrays and ByteBuffers 

are populated, at sender, and later the data is validated at the 

receiver process. As the results depict in Figure 18, the latency 
for populating, communicating, and verifying ByteBuffers 
is outperformed by Java arrays after the message size of 256 
bytes. For the 4MB message size, Java arrays outperform 

ByteBuffers by 3x. 

G. Discussion 

The performance evaluation reveals that, overall, for col- 

lectives, allreduce and beast, MVAPICH2-J is performing 

better than Open MPI-J for both ByteBuffers and Java 

arrays. This is largely due to the performance differences 

in the native MPI libraries. We saw for point-to-point, la- 

tency and bandwidth, the performance of MVAPICH2-J with 

ByteBuffers is similar to that of Open MPI-J. There are 
overheads that exist when using Java arrays and that is in part 

due to the buffering layer. The buffering layer is needed by 

our library to support communicating derived datatypes and 
Java arrays using non-blocking point-to-point communication 

primitives. Java Open MPI does not support non-blocking 

point-to-point communication with Java arrays. At the OMB- 

J level, ByteBuffers perform better than Java arrays. This 

is not the case at the application level. A ByteBuffer is 

basically an array that is wrapped with a higher-level interface. 

Naturally, one would assume that this extra layer of abstraction 

wouldn’t incur any performance penalties. However, it appears 

that’s not the case as seen in Figure 18. As a result of the 

extra abstraction layer, reads and writes for ByteBuffers 

are slower. In Figure 11, we can see that Java based libraries 

under-perform when compared to native libraries. This is 

because Java is simply running more errands (i.e. GC) during 

the runtime of the application as opposed to C.
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VII. RELATED WORK 

Historically, there have been three approaches taken for 

writing Java MPI libraries. The first approach was to rely 

on Java alone in order to provide a fully portable solution. 

The second approach was to rely on native MPI libraries for 

communication using JNI. The first approach was followed by 

some MPI libraries. It proved out not to be practical almost 

all of the MPI features need to be re-implemented in this 

approach. The second approach was adopted by libraries like 

mpiJava [2] and Java Open MPI [5]. The third approach is 
a hybrid one where some MPI libraries have one or more 

device layers that allow providing pure Java as well as JNI- 

based communication devices—this is the approach taken by 

MPJ Express [4] and FastMPJ [3]. mpiJava and MPJ Express 

follow the mpiJava 1.2 API. FastMPJ has support for both 

mpiJava 1.2 and MPJ API. The Java Open MPI library follows 

its custom API that we attempt to follow in MVAPICH2-J. The 

design goal of MVAPICH2-J is to keep the Java layer as lean 

as possible and exploit the features and optimizations provided 

by the native MVAPICH2-J library. 

VII. CONCLUSION 

This paper presented our initial experiences of designing 

and implementing Java bindings—named MVAPICH2-J—for 

the production-quality MVAPICH2 library. MVAPICH2-J fol- 

lows the Java Open MPI library API that supports communi- 

cating data to/from Java arrays and ByteBuffers. The main 

idea for MVAPICH2-J is to utilize JNI and keep the Java layer 

as minimal as possible. We also implemented and utilized an 
internal buffering layer to facilitate communication of Java 

arrays. In order to evaluate performance of Java MPI libraries, 

we also designed and implemented OMB-J, which is a Java 
version of the popular OSU Micro-benchmarks (OMB) suite. 

OMB-J currently provides a variety of point-to-point and col- 

lective benchmarks with support for both ByteBuffers and 

Java arrays. Our evaluation reveals that using ByteBuffers 

provides better performance compared to Java arrays at the 

OMB.-J level. The point-to-point performance of MVAPICH2- 

J is comparable to Java Open MPI for the ByteBuf fer API. 

There is slight overhead in the performance while commu- 

nicating Java arrays using MVAPICH2-J due to the internal 
buffering layer that is needed to support communicating de- 

rived datatypes and Java arrays with non-blocking point-to- 
point functions. For the collective benchmarks, MVAPICH2-J 

outperforms OpenMPI-J for the ByteBuf fer API by a factor 

of 6.2 and 2.76 for broadcast and allreduce, respectively, on 

average for all messages sizes. For Java arrays, we observe 

2.2x and 1.62x better performance than Open MPI-J—on 

average for all message sizes—for broadcast and allreduce, 

respectively. These gains are mainly due to better performance 

of MVAPICH2 for collective communication routines. We also 

showed—somewhat surprisingly—that Java arrays perform 

better than direct ByteBuf fers when the time to populate 

and validate data was included for the point-to-point latency 

benchmark. The reason is that it is faster to read/write data 

from Java arrays compared to ByteBuffers. We plan to 

519 

release MVAPICH2-J along with OMB-J in the near future. 

We also plan to work with other stakeholders in the Java HPC 

community to come up with an agreed Java MPI API. 
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