2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) | 978-1-6654-9747-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/IPDPSW55747.2022.00091

2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Towards Java-based HPC using the MVAPICH?2
Library: Early Experiences

Kinan Al-Attar*, Aamir Shafi*, Hari Subramoni’ and Dhabaleswar K. Panda’
Department of Computer Science and Engineering
The Ohio State University, Columbus, Ohio
*Email: {alattar.2, shafi.16} @osu.edu
TEmail: {subramoni, panda} @cse.ohio-state.edu

Abstract—There has been sporadic interest in using Java for
High Performance Computing (HPC) in the past. These earlier
efforts have resulted in several Java Message Passing Interface
(MPI) [1] libraries including mpiJava [2], FastMP] [3], MP)
Express [4], and Java Open MPI [5]. In this paper, we present
our efforts in designing and implementing Java bindings for
the MVAPICH2 [6] library. The MVAPICH2 Java bindings
(MVAPICH2-)) follow the same APl as the Java Open MPI
library. MVAPICH2-] also provides support for communicating
direct New /0O (NIO) ByteBuffers and Java arrays. Direct
ByteBuffers reside outside JVM heaps and are not subject
to the garbage collection. The library implements and utilizes a
buffering layer to explicitly manage memory to avoid creating
buffers every time a Java array message is communicated. In
order to evaluate the performance of MVAPICH2-J and other
Java MPI libraries, we also designed and implemented OMB-J
that is a Java extension to the popular OSU Micro-Benchmarks
suite (OMB) [7]. OMB-J currently supports a range of bench-
marks for evaluating point-to-point and collective communication
primitives. We also added support for communicating direct
ByteBuffers and Java arrays. Our evaluations reveal that at
the OMB-] level, ByteBuffers are superior in performance
due to the elimination of extra copying between the Java and
the Java Native Interface (JNI) layer. MVAPICH2-J achieves
similar performance to Java Open MPI for ByteBuffers in
point-to-point communication primitives that is evaluated using
latency and bandwidth benchmarks. For Java arrays, there is a
slight overhead for MVAPICH2-]J due to the use of the buffering
layer. For the collective communication benchmarks, we observe
good performance for MVAPICH2-]J. Where, MVAPICH2-] fairs
better than Java Open MPI with ByteBuffers by a factor of
6.2 and 2.76 for broadcast and allreduce, respectively, on average
for all messages sizes. And, using Java arrays, 2.2x and 1.62x on
average for broadcast and allreduce, respectively. The collective
communication performance is dictated by the performance of
the respective native MPI libraries.

Index Terms—Java, MP1, MVAPICH2, OMB, HPC

I. INTRODUCTION AND MOTIVATION

The Message Passing Interface (MPI) standard [1] continues
to dominate the landscape of High Performance Computing
(HPC) applications as the community is edging closer towards
exascale computing systems. MPI currently provides support
for C and Fortran programming languages. However, there is
also interest in using MPI compliant libraries from higher-level
programming languages like Java and Python. Java has been
powering most of the Big Data computing stacks including
Apache Hadoop and Apache Spark. Similarly, Python is at
fore-front of the recent Al uptake and is powering many

popular Deep Learning frameworks including PyTorch and
TensorFlow.

Historically, there has been interest in using MPI to scale
parallel and distributed Java applications on HPC systems.
There are good reasons for popularity of Java, which include
portability, widespread adoption in the software industry and
Big Data community, and advanced features like garbage
collection. The interest in Java led to the creation of several
Java MPI libraries including Open MPI Java bindings [5]
(called Open MPI-J hereafter), mpiJava [2], MPJ Express [4],
and FastMPJ [3]. Some of the libraries—Ilike MPJ Express
and FastMPJ—provided support for the MPI standard in
pure Java while providing communication devices for high-
speed networks like InfiniBand and others using Java Native
Interface (JNI). Note that INI allows Java programs to invoke
functions and methods written in other languages including C.
This approach, of implementing the MPI standard, is tedious
and requires substantial development effort. On the other hand,
the approach pioneered by mpiJava and adopted by Open
MPI-J, is to keep the Java layer as minimal as possible and
use JNI to invoke MPI methods implemented by “native”
production-quality MPI libraries. This approach allows easier
development and maintenance as well as high-performance for
Java MPI libraries. Currently Open MPI-J and FastMPJ are
the two well-maintained Java MPI libraries in the community.
The open-source version of FastMPJ only supports pure Java
communication devices and hence not used in the comparative
evaluation in this paper.

MVAPICH2 [6] is a production quality MPI library with
support for high-speed RDMA networks like InfiniBand. This
paper is an effort to produce initial prototype Java bindings for
the MVAPICH2 library. Currently the Java bindings in MVA-
PICH2 are provided by a limited sub-set of the MPI standard
including i) blocking/non-blocking point-to-point functions, ii)
blocking collective functions, and iii) blocking vectored col-
lective functions. In addition, some supporting communicator
and group management functions are also implemented.

In the past, the Java MPI libraries have implemented a
variety of APIs for application developers. These include the
mpiJava 1.2 API, the MPJ API, and the Open MPI Java
bindings APL. MPJ Express and mpiJava libraries implement
the mpiJava 1.2 APL. FastMPJ supports both the mpiJava 1.2
and the MPJ API. The Java Grande Forum——formed in late

978-1-6654-9747-3/22/$31.00 ©2022 IEEE 510

DOI 10.1109/IPDPSW55747.2022.00091

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

90s——came up with an API called mpiJava 1.2. The MPJ
API followed that and is a minor upgrade to the mpilava
1.2 APL. The MPJ API is more inline with Java coding
conventions. However, Open MPI-J adopted a custom API
that is an extension of the MPJ API. The most important
updates here include supporting communication to/from Java
New I/O (NIO) ByteBuffers in addition to Java arrays.
Also, the communication primitives in the Open MPI Java
bindings do not provide support for communicating a sub-set
of the ByteBuffer or array argument. This was possible in
the mpiJava 1.2 and MPJ API through an offset argument to
communication primitives. For the Java MVAPICH2 bindings,
we have adopted the Open MPI Java API in order to facilitate
end users.

The MVAPICH2 Java bindings are also equipped with a
number of test-cases adopted from the MPJ Express library.
In addition, we have also produced a Java version of the OSU
Micro-Benchmark (OMB) suite [7]—we will refer to this as
OMB-J. These are popular MPI benchmarks to evaluate perfor-
mance of communication libraries using a variety of point-to-
point and collective benchmarks. OMB-J currently has support
for point-to-point, blocking collectives, and vectored blocking
collective operations. OMB-J supports both the ByteBuffer
and arrays APL

One of the main challenges in implementing an efficient
Java MPI library is to minimize the overhead incurred
by copying data from Java to C. This copy is essential
because all high-speed networks, like InfiniBand, provide
communication libraries in the C language. This copy
is also needed for designs when the Java MPI library
interfaces with the native MPI library to communicate
data. The mpiJava 1.2 and MPJ APIs provided support for
communicating data to/from Java arrays of basic datatypes
as well as arrays of Java objects. The Java Native Interface
(JNI) allows invoking C functions from Java and provides
two main ways of copying Java arrays of basic datatypes:
1) Use JNI functions Get<Type>ArrayElements
and Release<Type>ArrayElements—|<Type>
refers to all basic datatypes in Java—to retrieve
corresponding pointers to Java arrays, and 2) Use JNI
utility functions GetPrimitiveArrayCritical
and ReleasePrimitiveArrayCritical to obtain
pointers to Java arrays in the C code. On modern Java
Virtual Machines (JVMs) including OpenJDK and Oracle
JDK that do not support “pinning”, the first approach
incurs a copy from Java to C. The second method—
of wusing the GetPrimitiveArrayCritical and
ReleasePrimitiveArrayCritical pair of functions—
does not incur data copying overhead. However, this method
is not recommended because the JVM halts garbage collection
between calls to GetPrimitiveArrayCritical and
ReleasePrimitiveArrayCritical functions. This
can possibly have a detrimental performance on the
application.

The Open MPI Java bindings provided an alternate approach
to avoid data copying in Java MPI libraries by modifying

511

the user API. The Java NIO package introduced a new data-
structure called ByteBuffers in Java. There are two types
of ByteBuffers: 1) Direct and 2) Indirect or heap. Direct
ByteBuffers, while costly to create and destroy, do not
reside in the Java heap and hence are not subject to garbage
collection. Because of this, direct ByteBuffers—when
passed to JNI methods—do not incur copy and C methods are
simply passed pointers to the original allocated memory. These
are ideal for applications like Java MPI libraries that need
to invoke JNI methods to call native communication or MPI
libraries. On the other hand, indirect or heap ByteBuffers
are allocated on the JVM heap like normal Java objects and
hence are subject to garbage collection. As a consequence,
when indirect ByteBuffers are passed to JNI methods,
modern JVMs make a copy of these to avoid stale or invalid
pointers. Older APIs for Java MPI libraries—including the
mpilJava 1.2 and MPJ API—only supported communicating
data to/from arrays of basic Java datatypes and objects.
However, the Java Open MPI library updated the API to
be able to communicate data to/from direct ByteBuffers.
This mandates modifications and updates to parallel Java HPC
applications.

The MVAPICH2-J library also supports communicat-
ing data to/from direct ByteBuffers. In order to sup-
port communicating of arrays of Java datatypes and ar-
rays, we utilize an internal buffering layer inspired by
MPJ Express [4]. When communicating arrays of Java
basic datatypes, it is possible to acquire pointer in
the native code using Get<Type>ArrayElements or
GetPrimitiveArrayCritical. Our buffering instead
maintains a pool of direct Byt eBuf fers. The sender process
copies data onto a direct ByteBuffer and a pointer to
this buffer is retrieved in the JNI method call and used for
communication along with the native MVAPICH2 library.

We evaluate and present the performance of point-to-point
and collective communication primitives for the MVAPICH2-J
library along with Java Open MPI bindings using OMB-J. Our
evaluation reveals that using ByteBuffers provide better
performance compared to Java arrays at the OMB-J level. The
point-to-point performance of MVAPICH2, as depicted by la-
tency and bandwidth benchmarks, is comparable to Java Open
MPI for the ByteBuffer APL There is a slight overhead
in the performance while communicating Java arrays using
MVAPICH2-J due to the internal buffering layer. This layer
is needed to support communicating derived datatypes and
Java arrays with non-blocking point-to-point functions. Open
MPI-J does not support communicating Java arrays with non-
blocking point-to-point functions. As a consequence, it was
not possible to calculate bandwidth numbers for Java arrays
in Open MPI-J. For the collective communication benchmarks,
we present evaluation for broadcast and allreduce primitives.
MVAPICH2-J outperforms Open MPI-J for the ByteBuffer
API by a factor of 6.2 and 2.76 for broadcast and allreduce,
respectively, on average for all messages sizes. For Java arrays,
we observe 2.2x and 1.62x better performance than Open
MPI-J—on average for all message sizes—for broadcast and

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

allreduce, respectively. The performance advantage in collec-
tive benchmarks is mainly due to performance differences in
native MPI libraries.

While our OMB-J evaluation concludes that the
ByteBuf fer API performs better than Java arrays. However,
OMB-J only measures the communication performance and
ignores the cost of copying user data onto ByteBuffers
compared to Java arrays. To tackle this, we performed
an experiment—detailed in Section VI-F—where we not
only measure the communication time but also validate the
contents of messages. This means that ByteBuffers and
Java arrays are populated at the sender end and validated at
the receiver end. We found that Java arrays perform better
than direct ByteBuffers in this case. The reason is that
it is faster to read/write data from Java arrays compared to
ByteBuffers.

A. Contributions

This paper makes the following contributions:

1) Design and implementation of MVAPICH2-J, which is a
Java binding for the MVAPICH2 library with the design
goal to keep the Java layer as minimal as possible

2) MVAPICH2-J provides support for communicating user
data to/from Java arrays and direct ByteBuffers.
Direct ByteBuffers provide an option to acquire
pointers to their storage in the JNI code making it
possible to avoid data copying overhead incurred by Java
arrays.

3) In order to evaluate performance of MVAPICH2-J and
other Java MPI libraries, we architect and implement
a Java version of the popular OSU Micro-Benchmark
(OMB) suite named OMB-J. OMB-J currently supports
point-to-point primitives (latency, bandwidth, and bi-
bandwidth) and vectored and blocking collective com-
munication primitives (latency).

4) The paper conducts extensive benchmark level experi-
ments of MVAPICH2-J against Java Open MPI using
OMB-J. These evaluations are done on the TACC's
Frontera system. This includes latency and bandwidth
comparisons for point-to-point communication primi-
tives and latency comparisons for collectives (broadcast
and allreduce). We also quantified the overhead of the
Java layer for the buffering layer in our evaluation.

5) The paper also reveals that while using ByteBuffers
led to better performance at the OMB-J level, this benefit
might not translate to application-level benefits. This
is due to slower read/write access to ByteBuffers
compared to Java arrays. This contribution is detailed in
Section VI-F.

Rest of the paper is structured as follows. The background
of our work is given in Section II. Section I1I details the design
and implementation of our approach. The experimental results
are presented in Section VI. The related work is discussed in
Section VII, followed by a conclusion in Section VIIIL.

II. BACKGROUND

A. Java for HPC

After the emergence of the Java programming language
in the late 1990s, there was an interest in using the Java
programming language for HPC applications. This led to the
emergence of many MPI libraries including mpiJava [2], MP]
Express [4], and FastMPJ [3]. While the adoption of Java has
been relatively low for high-performance numerical codes, it
has become a widely used language for Big Data computing
and analytics. Some of the widely used Big Data frameworks
like Apache Spark [8] and Apache Hadoop [9] are written
in Java. There are also deep learning efforts written in Java
such as DeepLearning4j (DL4J) [10], a suite for running Deep
Learning training and inference workloads.

B. ByteBuffers and Java Arrays

The Java NIO package introduced the concept of non-
blocking I/O to the language. In order to support net-
working and storage /O efficiently, the package also in-
troduced new user defined datatypes called ByteBuffers
in Java. These buffers provide a variety of put () and
get () methods to copy data from Java arrays of all
basic datatypes. There are type-specific buffers that in-
clude CharBuffer, DoubleBuffer, FloatBuffer,
IntBuffer, LongBuffer, and ShortBuf fer. The most
relevant buffers for our work are ByteBuffers. The rea-
son is because there are two types of ByteBuffers:
1) direct and 2) non-direct or heap—as shown in Fig-
ure 1. Direct ByteBuffers are created using the static
allocateDirect () method. These are costly to create,
however, these are not subject to garbage collection as they re-
side outside the Java heap. These buffers are attractive for Java
MPI libraries because it is possible to acquire a pointer to their
memory using GetDirectBufferAddress () in the JNI
C code. On the contrary, non-direct or heap ByteBuffers
are allocated using the static allocate () method. These are
normal Java objects that reside in the JVM heap and hence are
subject to garbage collection. Similarly, Java arrays are also
regular objects that reside in the JVM heap.

C. APIs for Java MPI Libraries

This sub-section provides a review of APIs for Java MPI
libraries. Historically, the Java Grande Forum provided a
platform for the Java HPC community to produce a widely
accepted APIL. This forum proposed the mpilJava 1.2 and the
MPJ APIL. mpiJava, MPJ Express, and FastMPJ were three
Java MPI libraries that adopted these two APIs. A Java version
of the popular NAS Parallel Benchmark [11]—named NPB-
MPIJ [12]—also uses mpiJava 1.2 and MPJ APIs. The MPJ API
is a modest upgrade to the mpiJava 1.2 API mainly motivated
by adopting Java naming conventions for functions.

However, more recently, the Open MPI library introduced
the support for Java bindings. Instead of going with existing
APIs, the Java Open MPI library adopted a new API. Main
reason was that the Java Open MPI library was MPI 3.0
standard compliant, whereas, the older Java MPI APIs, like

512

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

-

Java Virtual Machine

Java Code
Heap Memory
Java Indirect Direct
Arrays ByteBuffer| {ByteBuffer|

Java Native Interface

C Code

Native Memory

1
|
T
I
]
i

Actual Memory

for Direct
ByteBuffers

Figure 1. The Layout of Direct/Non-direct ByteBuffers and Java Arrays
in the JVM.

mpiJava 1.2 and MPJ, were only defined until MPI 1.2
standard. On top of that, the Java Open MPI API introduced
two major changes. The first change is that it supported
communication to/from direct ByteBuffers on top of Java
arrays. Secondly, the new API removed an of fset argument
to MPI communication primitives. When used with point-
to-point communication methods, the offset field allowed
communicating data from a sub-set of a Java array. This
change mandates modifying Java HPC applications. Also, the
Java Open MPI API does not allow using Java arrays with
non-blocking communication primitives.

ITI. THE PROPOSED DESIGN

The design of the MVAPICH2-J library is inspired by
the MPJ Express library as shown in Figure 2. The design
depicts two communication device layers: the mp jdev and
the xdev layers. In the context of MVAPICH2-J, only the
mp jdev layer is relevant. The mp jdev is used to implement
wrapper methods to native MPI libraries using JNI. The design
philosophy is to keep the Java layer “as minimal as possible”
for several reasons. This will help in easier development and
maintenance of the Java MPI library. This is because the native
implementation of MPI functionality can be re-used at the Java
layer instead of re-implementing these in Java. Also, this will
help in achieving optimal communication performance. Lastly,
this will provide flexibility when porting newer systems and
communication interconnects.

IV. IMPLEMENTATION OF THE MVAPICH2-J

This section presents implementation details of the
MVAPICH2-J library. We begin this section with a discussion
on the buffering layer, which is extensively used in the
communication of Java arrays. Implementation details for Java
arrays follow. Later, we present discussion on supporting com-
munication to/from direct ByteBuf fers in the MVAPICH2-
J library. Towards the end of this section, we present imple-
mentation details of the collective communication routines.

513

Java MPI Library
[ram [collctves][_Grows _[c 3
v
Abstract MPJ Device (mpjdev) layer
| Native mpjdev | | Pure Java mpjdev |
)
The xdev layer l hybdev l
| ibdev | | smpdev | | niodev |
‘
Java Virtual Machine (JVM)
Java Native Java New I/O
Interface (NI I | A T I I (NIO)
! ' +
0S, Hardware, APIs, Drivers
[[vers]

)

&

Figure Layered Architecture of the Java Bindings for the MVAPICH2

Library)

A. The Buffering Layer

MVAPICH2-J utilizes a buffering layer that is inspired
by the MPJ Express library [13]. The primary motivation
of this layer is to utilize direct ByteBuffers to assist
with communication of Java arrays. Direct ByteBuffers
are attractive because their pointers can be retrieved
in the native JNI functions. Also, this implies copy-
ing data to/from Java arrays onto ByteBuffers. How-
ever, this extra copy is not avoidable when communi-
cating Java arrays through the JVM documentation rec-
ommended way of using Get<Type>ArrayElements
and Release<Type>ArrayElements functions. The pro-
posed buffering layer avoids the overhead of creating a
ByteBuffer everytime a message comprising of Java arrays
is communicated.

The buffering layer dynamically maintains a pool of di-
rect ByteBuf fers—backend storage—that can be used to
support communication of Java arrays. It is possible to use
other backend storage including indirect ByteBuffers or
native memory created by C programs using malloc () or
calloc () system calls. A buffer provided to upper layers
of the software is an mpjbuf buffer that internally uses a
ByteBuffer for storing user data.

Higher layers of the software, especially point-to-point com-
munication primitives for Java arrays, use the buffering layer
through an interface presented in Listing 1. These methods
are encapsulated in the mpijbuf.Buffer class. The most
important methods used for communicating Java arrays by
point-to-point communication primitives are write () and
read () methods. These methods allow copying data from
Java arrays—of all basic datatypes—onto the mpjbuf buffer.
Note that mpjbuf buffer utilizes direct ByteBuffers as
backend storage mediums in our implementation. An mpjbuf
buffer can possibly have multiple sections, each containing
data from multiple Java arrays of the same different type.
This is supported by functions like put Sect ionHeader ()
and getSectionHeader (). It is also possible to con-

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

figure the section size and encoding through functions like
setSectionSize () and setEncoding().

package mpjbuf ;

1
2
3l public class Buffer {
4
5

6 // Write and read Methods

7 public void write(type [] source,
8 int srcOff,

9 int numEls)

10 public void read(type [] dest,

1 int dstOff,

12 int numEls)

1

14 // Set and get section Headers

15 public void putSectionHeader (Type type)
16 public Type getSectionHeader ()

17

18 // Set and get section size

19 public int setSectionSize ()

20 public int getSectionSize ()

21

n // Set and get encoding

n public void setEncoding (ByteOrder encoding)
2 public ByteOrder getEncoding()

25

2% // Utility methods

27 public void commit ()

20 public void clear()

2 public void free()

Listing 1. The Functionality provided by the Bulfering Layer [13]

B. Point-to-point Communication for Java Arrays

One approach for implementing communica-
tion to/from Java arrays is to utilize the JNI
methods like Get<Type>ArrayElements and
Release<Type>ArrayElements where i<Type>
refers to all basic datatypes in Java. These methods allow
the native C JNI function to retrieve a “copy” of the original
array in the native code. It is possible to avoid this copy in
JVMs that support memory pinning. However most current
JVMs do not support memory pinning and hence incur a
copy. The JVM performs a copy because the Java buffer,
specified by the user, is subject to garbage collection. When
this happens, the address of the buffer inside the JVM heap
is likely to change and hence any pointer passed to C code
for Java buffer becomes invalid. To cater this, JVM simply
copies the Java buffer for the invoked C code to use—this
typically happens when the Get<Type>ArrayElements
function is called. The copy back, from C to Java is done
when the Release<Type>ArrayElements function
is called. The overhead of this copy from Java-to-C
and C-to-Java is not present when the JVM supports
memory “pinning”. The address of the Java buffer does
not change in JVM heap in this case. There are also
a few drawbacks of this approach. The overhead of
copying incurred by Get<Type>ArrayElements and
Release<Type>ArrayElements functions for a subset

of a Java array is the same as the full array. This was
possible in the older mpiJava 1.2 and MPJ APIs where the
communication primitives had an offset argument that
could be used to specify the starting index of the array from
where to send/receive data. However, the of fset argument
has been removed from the Java Open MPI bindings. The
buffering layer—discussed in Section IV-A—allows us to
avoid this since we copy only the subset of the data in the
ByteBuffer. But since MVAPICH2-]J follows the Java
Open MPI bindings currently, it is not possible to demonstrate
the effectiveness in sample benchmarks. However, this can
be a useful feature for Java HPC applications if the offset
argument is re-introduced in the API in future. Additionally,
the buffering layer is useful for communicating derived
datatypes since it is possible to copy scattered elements in
the array onto consecutive location in the ByteBuffer.

Java HPC Program

MVAPICHZ-J (Java)

1

1

|

I

The Buffering :
Layer :
1

1

1

‘_ MVAP,’iCHZ-J (JNI C Code)

Figure 3. Communicating Java Arrays in the MVAPICH2-J Library. This
is a four step process: 1) the Java side of MVAPICH2-J library gets a
ByteBuffer [rom the buffering layer, 2) the user specified data is copied
from Java arrays to ByteBuf fers, 3) the C INI function acquires a pointer
to the ByteBuffer, and 4) this acquired pointer is used to communicate
data using native C MPT library’s communication primitives.)

Figure 3 depicts the overall process of communicating Java
arrays in the MVAPICH2-J library. While communicating Java
arrays, the user Java HPC program allocates this array and uses
it for computational purposes. Note that the current discussion
is in the context of basic datatype arrays in Java. As mentioned
earlier, the MVAPICH2-J library uses a buffering layer to
support communicating Java arrays. The first step—indicated
in Figure 3 in this process—is to acquire a ByteBuffer)
from the buffering layer. The second step is to copy contents
of Java arrays on this ByteBuffer. In the third step of
Figure 3, the ByteBuffer is passed to the native JNI C
code that can access this buffer using a pointer without the
need to incur another copy. This pointer to the ByteBuffer

514

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

is finally used in the fourth step to communicate data using
native MPI library communication primitives.

C. Point-to-point Communication for Direct ByteBuffers

The Java Open MPI library has introduced the support
for communicating data to/from direct ByteBuffers. This
functionality was not part of the mpiJava 1.2 and MPJ APIs.
To recap, direct ByteBuffers allocate memory outside the
JVM heap and hence have a constant memory address through-
out their lifecycle unlike other Java objects. This movement
of Java objects in the JVM heap is due to garbage collection.
Hence, it is attractive to provide support for these kinds of
buffering in our Java MPI library.

Figure 4 depicts the overall process of communicating data
directly from ByteBuffers in the MVAPICH2-J library.
While communicating ByteBuffers, the user Java HPC
program allocates this buffer and uses it either for compu-
tational purposes directly or copies data from Java arrays.
The buffering layer in the MVAPICH2-J library is not used
while communicating user allocated ByteBuf fers. The first
step—indicated in Figure 4 in this process—is to pass a
reference to this buffer to the Java code in the MVAPICH2-J
library. The second step is to pass this reference to the JNI C
code. Finally in the third step, the JNI code uses the pointer to
the ByteBuf fer—allocated by the user directly—to invoke
MPI communication primitives.

The Buffering
Layer

@ MVAPICH2
MPI_Send([Pointer)

Figure 4. Communicating ByteBuf fers in the MVAPICH2-J Library. This
is a three step process: 1) the user passes the reference to the ByteBuffer
to the MVAPICH2-J library, 2) the Java layer of the MVAPICH2-J library
invokes JNI C methods with a reference to the ByteBuffer, and 3) the
INI C code uses a pointer to the buffer for communicating data using MPI
primitives.

D. Collective Communication

MVAPICH2-J currently provides support for collective
primitives—including vector variants. It is possible to commu-

nicate both Java arrays and direct ByteBuffers with these
operations. Like the point-to-point primitives, the buffering
layer is used for Java arrays. Again, the idea is to keep the
Java layer as minimal as possible and utilize all optimizations
and advanced collective algorithms available in the native
MVAPICH2 library.

V. OSU MICRO-BENCHMARK (OMB) FOR JAVA BINDINGS

The OSU Micro-Benchmark (OMB) [7] suite is a bench-
marking tool—written in C—that is popularly used for eval-
uating MPI communication libraries on HPC systems. The
suite supports an extensive range of benchmarks, ranging from
blocking/non-blocking point-to-point & collectives operations
to one-sided operations. It also provides a set of flags for
running custom tests, varying the message sizes, among other
things.

Each benchmark in OMB is designed to evaluate MPI oper-
ations, mimicking real applications while accurately reporting
performance. Performance is reported under two metrics,
latency (in microseconds) and bandwidth (in MBps).

OMB-J is designed with the aim of providing a bench-
marking suite for Java MPI libraries that support NIO
ByteBuffers along with Java arrays for communication.
The suite currently has support for blocking/non-blocking
point-to-point, blocking collective and vectored blocking col-
lective operations. It also provides the ability to run custom
tests as OMB does.

A. Example: OMB-J Latency Benchmark

Algorithm 1 shows a simple example of OMB-J’s latency
benchmark using NIO direct ByteBuf fers. For Java arrays,
the algorithm remains unchanged, where the only difference
is the sender and receiver buffers are Java arrays. The latency
benchmark reports the average latency by measuring the time
a sender receives a response in a ping-pong fashion.

Algorithm 1: Latency Benchmark Example

1 latency = 0.0;

2 MPL.COMM_WORLD.Init(...);

3 sendBuffer = ByteBuffer.allocateDirect(maxMsgSize);
4 recvBuffer = ByteBuffer.allocateDirect(maxMsgSize);
s for size in maxMsgSize do

6 for i:/l ... benchlters do

7 if myrank == 0 then

8 initTime = System.nanoTime();

9 MPLCOMM_WORLD.send(sendBuffer, size ...);

10 MPL.COMM_WORLD.recv(recvBuffer, size ...);

1 latency = (System.nanoTime() -
initTime)/(2.0*benchlters™ 1000);

12 else

13 MPL.COMM_WORLD.recv(recvBuffer, size ...);

14 MPL.COMM_WORLD.send(recvBuffer, size ...)

15 end

16 end

17 reportLatencyForMsgSize(latency);
18 MPL.COMM_WORLD.barrier();
19 end

515

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

VI. PERFORMANCE EVALUATION USING OMB-J

This section presents performance evaluation of point-
to-point and collective communication primitives for the
MVAPICH2-J library along with Java Open MPI bindings
using OMB-J. For point-to-point, we present the evaluation
results for latency and bandwidth benchmarks. As for col-
lectives, we present the evaluation results for allreduce and
broadcast (bcast).

A. Experimental Setup

TACC Frontera: Located at the Texas Advanced Comput-
ing Center (TACC), Frontera is a large HPC system that hosts
8,368 Cascade Lake (CLX) compute nodes. Each compute
node has two sockets, each carrying 28 cores (56 cores total)
at 2.70GHz frequency. Each node has a total of 192GB of
RAM.

The following library versions were used for the experi-
ments: MVAPICH2-X v2.3.6 [6] and Open MPI v4.1.2 [5] +
UCX 1.13.0 [14].

B. Point-to-point Communication Evaluation: Intra-node

Here we showcase the point-to-point intra-node evalua-
tion for the two Java MPI communication libraries with
ByteBuffers and Java arrays. The latency was measured
with OMB-J's version of the osu_latency benchmark
which reports the average latency in microseconds. The band-
width was measured with OMB-J’s osu_bw benchmark which
reports the bandwidth in MBps.

45 *«MVAPICH2-J Arrays
4 +MVAPICH2-J Buffer
35 #0pen MPI-J Arrays
g 3 «Open MPI-J Buffer
@25
g 2
15
T r—————
05
0
N

IR A I R O &
Message Size (Bytes)

Figure 5. Intra-node latency numbers for small message sizes.

1800
1600 *MVAPICH2-J Arrays
1400 +MVAPICH2-J Buffer
#0pen MPI-J Arrays
»§ 1200 «0Open MPI-) Buffer
<1000
E 800
600
400
200

A \,@" .,’4* b\'*- ®o®®

Message Size (Bytes)

Figure 6. Intra-node latency numbers for large message sizes.

Starting with small messages (Figure 5), we can see that
“MVAPICH2-J buffer” is outperforming “Open MPI-J buffer”
by a factor of 2.46 on average.

At the large message end (Figure 6), “MVAPICH2-J
buffer” is performing similarly to “Open MPI-J buffer”. For
“MVAPICH2-J arrays”, there is some overhead in the perfor-
mance as a result of the buffering layer.

100
920
80 #MVAPICH2-J Buffer
70 «0Open MPI-J Buffer
g 60 +«MVAPICH2-J Arrays
S50
40
30

o o———tgr——g -
SR BRI I I
Message Size (Bytes)
Figure 7. Intra-node bandwidth numbers for small message sizes. Bandwidth

numbers for Open MPI-J arrays are not included because the library does not
support Java arrays with non-blocking point-to-point operations.

140
120
~100
2
880
SMVAPICH2-J Buffer
260 «+Open MPI-J Buffer
+MVAPICH2-J Arrays
& 40

20N

A A I
Message Size (Bytes)
Figure 8. Intra-node bandwidth numbers for large message sizes. Since Open

MPI-J does not support Java arrays for non-blocking point-to-point operations,
no bandwidth numbers were collected there.

Figures 7 and 8 show the bandwidth numbers for small
and large message sizes, respectively. Those figures don’t
have numbers for “Open MPI-J arrays” due to Open MPI-
J’s library not supporting communication of Java arrays using
non-blocking point-to-point operations. In Figure 8, we can
see that “MVAPICH2-J buffer” is picking up performance-
wise with “Open MPI-J buffer”.

C. Point-to-point Communication Evaluation: Inter-node

In this subsection, we showcase the inter-node point-to-
point evaluation for the two Java MPI communication libraries
with ByteBuf fers and Java arrays. The latency and band-
width were measured using the same benchmarks as discussed
in the previous subsection VI-B.

From the latency numbers for small message sizes (Fig-
ure 9), we can see that “MVAPICH2-J buffer” performs
comparably to “Open MPI-J buffer”.

For large messages (Figure 10), “MVAPICH2-J buffer” is
also performing about the same as “Open MPI-J buffer”. For

516

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

6
s «MVAPICH2-J Arrays
+MVAPICH2-J Buffer
#0pen MPI-J Arrays
T 4 +Open MPI-J Buffer
g3
8
©
<2 ~
1 ==
0
DL S P

Message Size (Bytes)

Figure 9. Inter-node latency numbers for small message sizes.

1800
1600 *MVAPICH2-J Arrays
1400 +MVAPICH2-J Buffer
#Open MPI-J Arrays
3 1200 *Open MPI-J Buffer
<1000
_? 800
3
600
400
0 /
0
KT N A A Y

Message Size (Bytes)

Figure 10. Inter-node latency numbers for large message sizes.

“MVAPICH2-J arrays”, we see that it picks up in performance
compared with “Open MPI-J arrays”.

Figure 11 shows the latency overheads between the na-
tive libraries and their respective Java MPI libraries using
direct ByteBuffers. The overheads are in the ballpark of
I microsecond, with MVAPICH2-J having a smaller latency
overhead compared to Open MPI-J.

Figures 12 and 13 are bandwidth numbers for inter-node
experiments. Here, again, we see that the figures do not
have “Open MPI-J arrays” numbers due to the same reasons
mentioned earlier in VI-B.

For larger messages (Figure 13), we see that “MVAPICH2-]
buffer” catches up in performance but still is slightly lagging
behind “Open MPI-J buffer”.

“©-MVAPICH2-J Buffer Overhead ,?
08 ©Open MPI-J Buffer Overhead 4
_ H
306 ,,'
"
"
EO.A i
A
P
*]
0.2 "“~y’a‘0-o ll '
“vo- 0-.._*_,,}_,._0_’?_3__ -.:\ \‘v,o:,'o-i
0
~*‘°@4e¢3&*¢¢¢¢¢w¢y
02

Message Size (Bytes)

Figure 11. Inter-node latency overhead between native and MVAPICH2-J
library for direct ByteBuffers.

Authorized licensed use limited to: The Ohio State University. Downloaded

100

: SMVAPICH2-J Buffer

2% «Open MPI-J Buffer
g 60 «MVAPICH2-J Arrays
‘5350
S 40
£ 30
320

10

0 ¥

N9 s %"b"""*(‘?f}:b&*'ﬁ"*‘#

Message Size (Bytes)

Figure 12. Inter-node bandwidth numbers for small message sizes.

100

90 ——
80

70 *MVAPICH2-J Buffer
260 «Open MPI-J Buffer
50 «MVAPICH2-J Arrays
240

%0 /—/_*—‘
20

10

0

N N B . R R

Message Size (Bytes)

Figure 13. Inter-node bandwidth numbers for large message sizes.

D. Collective Communication Evaluation: Broadcast

We present the latency numbers for the broadcast collective
operation with the two Java MPI communication libraries us-
ing ByteBuf fersand Java arrays. The latency was measured
using the Java version of the OMB osu_bcast benchmark
which reports the average latency across all processes in
microseconds. The benchmark uses MPI_Reduce as part of
the latency calculation. The experiments were conducted on 4
nodes with 64 processes in total—16 processes for each node.

Figures 14 and 15 both present the latency numbers for
the broadcast collective benchmark. For all message sizes,
“MVAPICH2-J buffer” is outperforming “Open MPI-J buffer”
by a factor of 6.2 on average, and “MVAPICH2-J arrays” is
also outperforming “Open MPI-J arrays” by a factor of 2.2 on
average. These performance benefits are due in large to the
performance differences of the native libraries in place.

45
40 *MVAPICH2-J Arrays

38 +MVAPICH2-J Buffer

#0pen MPI-J) Arrays

~30 «Open MPI-J Buffer
]
=25

20

15

10

5

0

N "*’ﬁ"t?.;ﬁ’,t?‘;"'&'ﬂ'u*'#'

Message Size (Bytes)

Figure 14. Broadcast latency numbers for small message sizes.

517

on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

*+MVAPICH2-J Arrays
16000 +MVAPICH2-J Buffer
14000 #Open MPI-J Arrays

«+Open MPI-J Buffer

& g gt

(\'d. "? ‘;fﬂ- \‘p @9 “p
Message Size (Bytes)

Figure 15. Broadcast latency numbers for large message sizes.

E. Collective Communication Evaluation: Allreduce

For this subsection, the latency numbers for allreduce are
presented. The numbers were collected using the Java version
of the OMB benchmark osu_allreduce. The benchmark
reports the average latency in microseconds across all pro-
cesses. We also ran the benchmark on 4 nodes with 64
processes in total—16 processes each.

For Figures 16 and 17, “MVAPICH2-J buffer” is performing
better than “Open MPI-J buffer”, where over all message sizes,
“MVAPICH2-J buffer” is fairing well by a factor of 2.76 on
average compared to “Open MPI-J buffer”, and “MVAPICH2-
J arrays” is outperforming “Open MPI-J arrays” by a factor
of 1.62 on average. Again, these performance advantages are
largely due to the underlying native MPI libraries and their
performances.

80
70 «MVAPICH2-J Arrays
+MVAPICH2-J Buffer
60 #O0pen MPI-J Arrays
§50 «0Open MPI-J Buffer
g40

£
" g

0

L K A P

Message Size (Bytes)

Figure 16. Allreduce latency numbers for small message sizes.

30000

o S
g I
7 15000
=/10000

5000

AR A

Message Size (Bytes)

Figure 17. Allreduce latency numbers for large message sizes.

518

18000
16000

14000 «MVAPICH2-J Arrays

+MVAPICH2-J Buffer

Latency (us)
g

o \d‘ @}*‘ q‘f* \‘p “Q
Message Size (Bytes)

Figure 18. Inter-node point-to-point latency numbers with data validation
comparing the ByteBuf fer APl against Java arrays for MVAPICH2-J.

F. Evaluation of the ByteBuffer API

Figure 18 presents the latency numbers for the MVAPICH2-
J library—for Java arrays versus ByteBuf fers—measured
using the OMB osu_latency benchmark. Here, we plan to
evaluate the effectiveness of using ByteBuffers instead of
Java arrays. In order to emulate the application-level behavior,
we have enabled data validation for the OMB osu_latency
benchmark. This means that Java arrays and ByteBuffers
are populated, at sender, and later the data is validated at the
receiver process. As the results depict in Figure 18, the latency
for populating, communicating, and verifying ByteBuffers
is outperformed by Java arrays after the message size of 256
bytes. For the 4MB message size, Java arrays outperform
ByteBuffers by 3x.

G. Discussion

The performance evaluation reveals that, overall, for col-
lectives, allreduce and bcast, MVAPICH2-J is performing
better than Open MPI-J for both ByteBuffers and Java
arrays. This is largely due to the performance differences
in the native MPI libraries. We saw for point-to-point, la-
tency and bandwidth, the performance of MVAPICH2-J with
ByteBuffers is similar to that of Open MPI-J. There are
overheads that exist when using Java arrays and that is in part
due to the buffering layer. The buffering layer is needed by
our library to support communicating derived datatypes and
Java arrays using non-blocking point-to-point communication
primitives. Java Open MPI does not support non-blocking
point-to-point communication with Java arrays. At the OMB-
J level, ByteBuf fers perform better than Java arrays. This
is not the case at the application level. A ByteBuffer is
basically an array that is wrapped with a higher-level interface.
Naturally, one would assume that this extra layer of abstraction
wouldn’t incur any performance penalties. However, it appears
that’s not the case as seen in Figure 18. As a result of the
extra abstraction layer, reads and writes for ByteBuffers
are slower. In Figure 11, we can see that Java based libraries
under-perform when compared to native libraries. This is
because Java is simply running more errands (i.e. GC) during
the runtime of the application as opposed to C.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

VII. RELATED WORK

Historically, there have been three approaches taken for
writing Java MPI libraries. The first approach was to rely
on Java alone in order to provide a fully portable solution.
The second approach was to rely on native MPI libraries for
communication using JNI. The first approach was followed by
some MPI libraries. It proved out not to be practical almost
all of the MPI features need to be re-implemented in this
approach. The second approach was adopted by libraries like
mpilJava [2] and Java Open MPI [5]. The third approach is
a hybrid one where some MPI libraries have one or more
device layers that allow providing pure Java as well as JNI-
based communication devices—this is the approach taken by
MPJ Express [4] and FastMPJ [3]. mpiJava and MPJ Express
follow the mpiJava 1.2 APIL. FastMPJ has support for both
mpilJava 1.2 and MPJ API. The Java Open MPI library follows
its custom API that we attempt to follow in MVAPICH2-J. The
design goal of MVAPICH2-J is to keep the Java layer as lean
as possible and exploit the features and optimizations provided
by the native MVAPICH2-J library.

VIII. CONCLUSION

This paper presented our initial experiences of designing
and implementing Java bindings—named MVAPICH2-J—for
the production-quality MVAPICH2 library. MVAPICH2-J fol-
lows the Java Open MPI library API that supports communi-
cating data to/from Java arrays and ByteBuf fers. The main
idea for MVAPICH2-J is to utilize JNI and keep the Java layer
as minimal as possible. We also implemented and utilized an
internal buffering layer to facilitate communication of Java
arrays. In order to evaluate performance of Java MPI libraries,
we also designed and implemented OMB-J, which is a Java
version of the popular OSU Micro-benchmarks (OMB) suite.
OMB-J currently provides a variety of point-to-point and col-
lective benchmarks with support for both ByteBuffers and
Java arrays. Our evaluation reveals that using ByteBuffers
provides better performance compared to Java arrays at the
OMB-J level. The point-to-point performance of MVAPICH2-
J is comparable to Java Open MPI for the ByteBuf fer APL
There is slight overhead in the performance while commu-
nicating Java arrays using MVAPICH2-J due to the internal
buffering layer that is needed to support communicating de-
rived datatypes and Java arrays with non-blocking point-to-
point functions. For the collective benchmarks, MVAPICH2-J
outperforms OpenMPI-J for the ByteBuf fer API by a factor
of 6.2 and 2.76 for broadcast and allreduce, respectively, on
average for all messages sizes. For Java arrays, we observe
2.2x and 1.62x better performance than Open MPI-J—on
average for all message sizes—for broadcast and allreduce,
respectively. These gains are mainly due to better performance
of MVAPICH2 for collective communication routines. We also
showed—somewhat surprisingly—that Java arrays perform
better than direct ByteBuf fers when the time to populate
and validate data was included for the point-to-point latency
benchmark. The reason is that it is faster to read/write data
from Java arrays compared to ByteBuffers. We plan to

519

release MVAPICH2-J along with OMB-J in the near future.
We also plan to work with other stakeholders in the Java HPC
community to come up with an agreed Java MPI API.

IX. ACKNOWLEDGEMENT

This research is supported in part by NSF grants #1818253,
#1854828, #1931537, #2007991, #2018627, #2112606, and
XRAC grant #NCR-130002.

REFERENCES

[1] The MPI Forum, “The Message Passing Interface (MPI) 4.0 Standard,”
urlhttps://www.mpi-forum.org/docs/mpi-4.0/mpid0-report.pdf, 2021,
Accessed: March 19, 2022.

B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox,
“MPJ: MPI-like message passing for Java” Concurrency: Practice
and Experience, vol. 12, no. 11, pp. 1019-1038, 2000. [Online].
Available: {https://onlinelibrary.wiley.com/doi/abs/10.1002/1096-9128\
%28200009\ %2912\ %3A11\%3C1019\%3A\%3AAID-CPES18\
%3E3.0.C0\%3B2-G}

R. R. Expésito, G. L. Taboada, S. Ramos, J. Tourifio, and
R. Doallo, “Low-latency Java communication devices on RDMA-
enabled networks.” Concurrency and Computation: Practice and
Lxperience, vol. 27, no. 17, pp. 4852-4879, 2015. |Onlinc|. Available:
https://onlinelibrary.wilcy.com/doi/abs/10.1002/cpe.3473

A. Shafi, B. Carpenter, and M. Baker, “Nested parallelism for multi-
corc HPC systems using Java,” Journal of Parallel and Distributed
Computing, vol. 69, no. 6, pp. 532-545, 2009. |Onlinc|. Available:
hutps://www.sciencedirect.com/science/article/pii/S074373 1509000252
O. Vega-Gisbert, J. L. Roman, and J. M. Squyres, “Design
and implementation of Java bindings in Open MPL" Parallel
Computing, vol. 59, pp. 1-20, 2016. [Online]. Available: https:
/lwww.sciencedirect.com/science/article/pii/SO1678 19116300758

D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The
MVAPICH project: Transforming research into high-performance
MPT library for HPC community,” Journal of Computational
Science, vol. 52, p. 101208, 2021. |Onlinc|. Available: https:
Nlwww.sciencedirect.com/science/article/pii/S 1877750320305093

The MVAPICH2 Development Team, “Ohio Micro-Benchmarks
(OMB),” urlhttps://mvapich.csc.ohio-state.cdu/benchmarks/, 2021, Ac-
cessed: March 19, 2022,

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Pranklin, A. Ghodsi,
1. Gonzalez, S. Shenker, and . Stoica, “Apache spark: A unified engine
for big data processing,” Commun. ACM, vol. 59, no. 11, p. 56-65, oct
2016. |Online|. Available: https://doi.org/10.1145/2934664

Apache Software FFoundation, “Apache Hadoop,”
hutps://hadoop.apache.org, 2022, Accessed: March 19, 2022,
Skymind Global Limited, “DeepLearningdj (DL4J).”
https://decplearning4j.konduit.ai/, 2022, Accessed: March 19, 2022,
D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,
R. Fatoohi, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga, “The nas parallel benchmarks,”
Int. J. High Perform. Comput. Appl., vol. 5, no. 3, p. 63-73, sep 1991.
|Online]. Available: https://doi.org/10.1177/109434209 100500306

D. A. Mallén, G. L. Taboada, J. Tourifio, and R. Doallo, “Npb-mpj: Nas
parallel benchmarks implementation for message-passing in java,” in
2009 17th Euromicro International Conference on Parallel, Distributed
and Network-based Processing, 2009, pp. 181-190.

M. Baker, B. Carpenter, and A. Shafi, “A Buffering Layer To Support
Derived Types and Proprietary Networks for Java HPC." Scalable
Computing: Practice and Experience, vol. 8, no. 4, pp. 348-358,
2007. [Online]. Available: https://www.scpe.org/index.php/scpe/article/
view/430/93

P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,
Y. Ttigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss, Y. Shahar,
S. Potluri, D. Rossetti, D. Becker, D. Poole, C. Lamb, S. Kumar,
C. Stunkel, G. Bosilca, and A. Bouteiller, “Ucx: An open source
framework for hpe network apis and beyond,” pp. 40-43, Aug 2015.

2]

131

(4]

151

16]

(71

(8]

9 url-

[10] url-

(1

[12]

[13]

[14]

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

