
2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Towards Java-based HPC using the MVAPICH2

Library: Early Experiences

Kinan Al-Attar*, Aamir Shafi*, Hari Subramoni' and Dhabaleswar K. Panda!
Department of Computer Science and Engineering

The Ohio State University, Columbus, Ohio

*Email: {alattar.2, shafi.16}@osu.edu
Email: {subramoni, panda} @cse.ohio-state.edu

Abstract—There has been sporadic interest in using Java for

High Performance Computing (HPC) in the past. These earlier
efforts have resulted in several Java Message Passing Interface

(MPI) [1] libraries including mpiJava [2], FastMPJ [3], MPJ

Express [4], and Java Open MPI [5]. In this paper, we present

our efforts in designing and implementing Java bindings for
the MVAPICH2 [6] library. The MVAPICH2 Java bindings

(MVAPICH2-J) follow the same API as the Java Open MPI

library. MVAPICH2-J also provides support for communicating

direct New VO (NIO) ByteBuffers and Java arrays. Direct
ByteBuffers reside outside JVM heaps and are not subject

to the garbage collection. The library implements and utilizes a

buffering layer to explicitly manage memory to avoid creating

buffers every time a Java array message is communicated. In
order to evaluate the performance of MVAPICH2-J and other

Java MPI libraries, we also designed and implemented OMB-J

that is a Java extension to the popular OSU Micro-Benchmarks

suite (OMB) [7]. OMB-J currently supports a range of bench-
marks for evaluating point-to-point and collective communication

primitives. We also added support for communicating direct

ByteBuffers and Java arrays. Our evaluations reveal that at

the OMB-J level, ByteBuffers are superior in performance
due to the elimination of extra copying between the Java and

the Java Native Interface (JNI) layer. MVAPICH2-J achieves

similar performance to Java Open MPI for ByteBuffers in

point-to-point communication primitives that is evaluated using
latency and bandwidth benchmarks. For Java arrays, there is a

slight overhead for MVAPICH2-J due to the use of the buffering

layer. For the collective communication benchmarks, we observe

good performance for MVAPICH2-J. Where, MVAPICH2-J fairs
better than Java Open MPI with ByteBuffers by a factor of

6.2 and 2.76 for broadcast and allreduce, respectively, on average

for all messages sizes. And, using Java arrays, 2.2 and 1.62 on

average for broadcast and allreduce, respectively. The collective
communication performance is dictated by the performance of

the respective native MPI libraries.

Index Terms—Java, MPI, MVAPICH2, OMB, HPC

I. INTRODUCTION AND MOTIVATION

The Message Passing Interface (MPI) standard [1] continues

to dominate the landscape of High Performance Computing

(HPC) applications as the community is edging closer towards

exascale computing systems. MPI currently provides support

for C and Fortran programming languages. However, there is

also interest in using MPI compliant libraries from higher-level

programming languages like Java and Python. Java has been

powering most of the Big Data computing stacks including

Apache Hadoop and Apache Spark. Similarly, Python is at

fore-front of the recent AI uptake and is powering many

978-1-6654-9747-3/22/$3 1.00 ©2022 IEEE
DOI 10.1109/IPDPS W55747.2022.00091

popular Deep Learning frameworks including PyTorch and

TensorFlow.

Historically, there has been interest in using MPI to scale

parallel and distributed Java applications on HPC systems.

There are good reasons for popularity of Java, which include

portability, widespread adoption in the software industry and

Big Data community, and advanced features like garbage

collection. The interest in Java led to the creation of several

Java MPI libraries including Open MPI Java bindings [5]

(called Open MPI-J hereafter), mpiJava [2], MPJ Express [4],

and FastMPJ [3]. Some of the libraries—like MPJ Express

and FastMPJ—provided support for the MPI standard in

pure Java while providing communication devices for high-

speed networks like InfiniBand and others using Java Native

Interface (JNI). Note that JNI allows Java programs to invoke

functions and methods written in other languages including C.

This approach, of implementing the MPI standard, is tedious

and requires substantial development effort. On the other hand,

the approach pioneered by mpiJava and adopted by Open

MPI-J, is to keep the Java layer as minimal as possible and

use JNI to invoke MPI methods implemented by “native”

production-quality MPI libraries. This approach allows easier

development and maintenance as well as high-performance for

Java MPI libraries. Currently Open MPI-J and FastMPJ are

the two well-maintained Java MPI libraries in the community.

The open-source version of FastMPJ only supports pure Java

communication devices and hence not used in the comparative

evaluation in this paper.

MVAPICH2 [6] is a production quality MPI library with

support for high-speed RDMA networks like InfiniBand. This

paper is an effort to produce initial prototype Java bindings for

the MVAPICH2 library. Currently the Java bindings in MVA-

PICH2 are provided by a limited sub-set of the MPI standard

including i) blocking/non-blocking point-to-point functions, ii)

blocking collective functions, and iii) blocking vectored col-

lective functions. In addition, some supporting communicator

and group management functions are also implemented.

In the past, the Java MPI libraries have implemented a

variety of APIs for application developers. These include the

mpiJava 1.2 API, the MPJ API, and the Open MPI Java

bindings API. MPJ Express and mpiJava libraries implement

the mpiJava 1.2 API. FastMPJ supports both the mpiJava 1.2

and the MPJ API. The Java Grande Forum——formed in late

510

20
22

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 W
or

ks
ho

ps
 (I

PD
PS

W
) |

 9
78

-1
-6

65
4-

97
47

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IP

DP
SW

55
74

7.
20

22
.0

00
91

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

90s——came up with an API called mpiJava 1.2. The MPJ

API followed that and is a minor upgrade to the mpiJava

1.2 API. The MPJ API is more inline with Java coding

conventions. However, Open MPI-J adopted a custom API

that is an extension of the MPJ API. The most important

updates here include supporting communication to/from Java

New I/O (NIO) ByteBuffers in addition to Java arrays.

Also, the communication primitives in the Open MPI Java

bindings do not provide support for communicating a sub-set

of the ByteBuffer or array argument. This was possible in

the mpiJava 1.2 and MPJ API through an offset argument to

communication primitives. For the Java MVAPICH2 bindings,

we have adopted the Open MPI Java API in order to facilitate

end users.

The MVAPICH2 Java bindings are also equipped with a

number of test-cases adopted from the MPJ Express library.

In addition, we have also produced a Java version of the OSU

Micro-Benchmark (OMB) suite [7]|—we will refer to this as

OMB-J. These are popular MPI benchmarks to evaluate perfor-

mance of communication libraries using a variety of point-to-

point and collective benchmarks. OMB-J currently has support

for point-to-point, blocking collectives, and vectored blocking

collective operations. OMB-J supports both the ByteBuffer

and arrays API.

One of the main challenges in implementing an efficient

Java MPI library is to minimize the overhead incurred

by copying data from Java to C. This copy is essential

because all high-speed networks, like InfiniBand, provide

communication libraries in the C language. This copy

is also needed for designs when the Java MPI library

interfaces with the native MPI library to communicate

data. The mpiJava 1.2 and MPJ APIs provided support for
communicating data to/from Java arrays of basic datatypes

as well as arrays of Java objects. The Java Native Interface

(JNI) allows invoking C functions from Java and provides

two main ways of copying Java arrays of basic datatypes:

1) Use JNI functions Get<Type>ArrayElements

and Release<Type>ArrayElements—j<Type>

refers to all basic datatypes in Java—to _ retrieve

corresponding pointers to Java arrays, and 2) Use JNI

utility functions GetPrimitiveArrayCritical

and ReleasePrimitiveArrayCritical to obtain

pointers to Java arrays in the C code. On modern Java
Virtual Machines (JVMs) including OpenJDK and Oracle

JDK that do not support “pinning”, the first approach

incurs a copy from Java to C. The second method—

of using the GetPrimitiveArrayCritical and

ReleasePrimitiveArrayCritical pair of functions—

does not incur data copying overhead. However, this method

is not recommended because the JVM halts garbage collection

between calls to GetPrimitiveArrayCritical and

ReleasePrimitiveArrayCritical functions. This

can possibly have a detrimental performance on_ the

application.

The Open MPI Java bindings provided an alternate approach

to avoid data copying in Java MPI libraries by modifying

S11

the user API. The Java NIO package introduced a new data-

structure called ByteBuffers in Java. There are two types

of ByteBuffers: 1) Direct and 2) Indirect or heap. Direct

ByteBuffers, while costly to create and destroy, do not

reside in the Java heap and hence are not subject to garbage

collection. Because of this, direct ByteBuffers—when

passed to JNI methods—do not incur copy and C methods are

simply passed pointers to the original allocated memory. These

are ideal for applications like Java MPI libraries that need

to invoke JNI methods to call native communication or MPI

libraries. On the other hand, indirect or heap ByteBuf fers

are allocated on the JVM heap like normal Java objects and

hence are subject to garbage collection. As a consequence,

when indirect ByteBuffers are passed to JNI methods,

modern JVMs make a copy of these to avoid stale or invalid

pointers. Older APIs for Java MPI libraries—including the

mpiJava 1.2 and MPJ API—only supported communicating

data to/from arrays of basic Java datatypes and objects.
However, the Java Open MPI library updated the API to

be able to communicate data to/from direct ByteBuf fers.

This mandates modifications and updates to parallel Java HPC

applications.

The MVAPICH2-J library also supports communicat-

ing data to/from direct ByteBuffers. In order to sup-

port communicating of arrays of Java datatypes and _ ar-

rays, we utilize an internal buffering layer inspired by

MPJ Express [4]. When communicating arrays of Java

basic datatypes, it is possible to acquire pointer in
the native code using Get<Type>ArrayElements or

GetPrimitiveArrayCritical. Our buffering instead

maintains a pool of direct ByteBuffers. The sender process

copies data onto a direct ByteBuffer and a pointer to
this buffer is retrieved in the JNI method call and used for

communication along with the native MVAPICH2 library.

We evaluate and present the performance of point-to-point

and collective communication primitives for the MVAPICH2-J

library along with Java Open MPI bindings using OMB-J. Our

evaluation reveals that using ByteBuffers provide better

performance compared to Java arrays at the OMB-J level. The
point-to-point performance of MVAPICH2, as depicted by la-
tency and bandwidth benchmarks, is comparable to Java Open

MPI for the ByteBuffer API. There is a slight overhead

in the performance while communicating Java arrays using

MVAPICH2-J due to the internal buffering layer. This layer

is needed to support communicating derived datatypes and

Java arrays with non-blocking point-to-point functions. Open

MPI-J does not support communicating Java arrays with non-

blocking point-to-point functions. As a consequence, it was

not possible to calculate bandwidth numbers for Java arrays
in Open MPI-J. For the collective communication benchmarks,

we present evaluation for broadcast and allreduce primitives.
MVAPICH2-J outperforms Open MPI-J for the Byt eBuf fer

API by a factor of 6.2 and 2.76 for broadcast and allreduce,

respectively, on average for all messages sizes. For Java arrays,

we observe 2.2x and 1.62x better performance than Open

MPI-J—on average for all message sizes—for broadcast and

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

allreduce, respectively. The performance advantage in collec-

tive benchmarks is mainly due to performance differences in

native MPI libraries.

While our OMB-J evaluation concludes that the

ByteBuffer API performs better than Java arrays. However,

OMB-J only measures the communication performance and

ignores the cost of copying user data onto ByteBuffers

compared to Java arrays. To tackle this, we performed

an experiment—detailed in Section VI-F—where we not

only measure the communication time but also validate the

contents of messages. This means that ByteBuffers and

Java arrays are populated at the sender end and validated at

the receiver end. We found that Java arrays perform better

than direct ByteBuffers in this case. The reason is that

it is faster to read/write data from Java arrays compared to

ByteBuffers.

A. Contributions

This paper makes the following contributions:

1) Design and implementation of MVAPICH2-J, which is a

Java binding for the MVAPICH2 library with the design

goal to keep the Java layer as minimal as possible

MVAPICH2-J provides support for communicating user

data to/from Java arrays and direct ByteBuffers.

Direct ByteBuffers provide an option to acquire

pointers to their storage in the JNI code making it

possible to avoid data copying overhead incurred by Java

arrays.
In order to evaluate performance of MVAPICH2-J and

other Java MPI libraries, we architect and implement

a Java version of the popular OSU Micro-Benchmark
(OMB) suite named OMB-J. OMB-J currently supports
point-to-point primitives (latency, bandwidth, and_bi-
bandwidth) and vectored and blocking collective com-

munication primitives (latency).

The paper conducts extensive benchmark level experi-

ments of MVAPICH2-J against Java Open MPI using

OMB-J. These evaluations are done on the TACC’s

Frontera system. This includes latency and bandwidth
comparisons for point-to-point communication primi-

tives and latency comparisons for collectives (broadcast

and allreduce). We also quantified the overhead of the

Java layer for the buffering layer in our evaluation.

The paper also reveals that while using ByteBuf fers

led to better performance at the OMB-J level, this benefit

might not translate to application-level benefits. This

is due to slower read/write access to ByteBuffers

compared to Java arrays. This contribution is detailed in

Section VI-F.

Rest of the paper is structured as follows. The background
of our work is given in Section II. Section III details the design
and implementation of our approach. The experimental results

are presented in Section VI. The related work is discussed in

Section VII, followed by a conclusion in Section VIII.

2)

3)

4)

5)

512

II. BACKGROUND

A. Java for HPC

After the emergence of the Java programming language

in the late 1990s, there was an interest in using the Java

programming language for HPC applications. This led to the

emergence of many MPI libraries including mpiJava [2], MPJ

Express [4], and FastMPJ [3]. While the adoption of Java has

been relatively low for high-performance numerical codes, it

has become a widely used language for Big Data computing

and analytics. Some of the widely used Big Data frameworks

like Apache Spark [8] and Apache Hadoop [9] are written

in Java. There are also deep learning efforts written in Java

such as DeepLearning4j (DL4J) [10], a suite for running Deep

Learning training and inference workloads.

B. ByteBuffers and Java Arrays

The Java NIO package introduced the concept of non-

blocking I/O to the language. In order to support net-

working and storage I/O efficiently, the package also in-

troduced new user defined datatypes called ByteBuffers

in Java. These buffers provide a variety of put() and

get () methods to copy data from Java arrays of all

basic datatypes. There are type-specific buffers that in-

clude CharBuffer, DoubleBuffer, FloatBuffer,

IntBuffer, LongBuffer, and Short Buffer. The most

relevant buffers for our work are ByteBuffers. The rea-

son is because there are two types of ByteBuffers:

1) direct and 2) non-direct or heap—as shown in Fig-

ure 1. Direct ByteBuffers are created using the static

allocateDirect() method. These are costly to create,

however, these are not subject to garbage collection as they re-

side outside the Java heap. These buffers are attractive for Java
MPI libraries because it is possible to acquire a pointer to their

memory using GetDirectBufferAddress () in the JNI
C code. On the contrary, non-direct or heap ByteBuf fers
are allocated using the static al Locate () method. These are

normal Java objects that reside in the JVM heap and hence are
subject to garbage collection. Similarly, Java arrays are also

regular objects that reside in the JVM heap.

C. APIs for Java MPI Libraries

This sub-section provides a review of APIs for Java MPI

libraries. Historically, the Java Grande Forum provided a
platform for the Java HPC community to produce a widely

accepted API. This forum proposed the mpiJava 1.2 and the

MPJ API. mpiJava, MPJ Express, and FastMPJ were three

Java MPI libraries that adopted these two APIs. A Java version

of the popular NAS Parallel Benchmark [11]—named NPB-

MPJ [12]—also uses mpiJava 1.2 and MPJ APIs. The MPJ API

is a modest upgrade to the mpiJava 1.2 API mainly motivated

by adopting Java naming conventions for functions.

However, more recently, the Open MPI library introduced

the support for Java bindings. Instead of going with existing

APIs, the Java Open MPI library adopted a new API. Main

reason was that the Java Open MPI library was MPI 3.0

standard compliant, whereas, the older Java MPI APIs, like

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

Java Virtual Machine

Java Code

 L
I

!
t Java Native Interface

J
T

T
I

!
t

C Code

Native Memory

Figure 1. The Layout of Direct/Non-direct ByteBuffers and Java Arrays
in the JVM.

mpiJava 1.2 and MPJ, were only defined until MPI 1.2

standard. On top of that, the Java Open MPI API introduced

two major changes. The first change is that it supported

communication to/from direct ByteBuffers on top of Java

arrays. Secondly, the new API removed an offset argument

to MPI communication primitives. When used with point-

to-point communication methods, the offset field allowed
communicating data from a sub-set of a Java array. This

change mandates modifying Java HPC applications. Also, the
Java Open MPI API does not allow using Java arrays with

non-blocking communication primitives.

Ill. THE PROPOSED DESIGN

The design of the MVAPICH2-J library is inspired by

the MPJ Express library as shown in Figure 2, The design

depicts two communication device layers: the mp jdev and

the xdev layers. In the context of MVAPICH2-J, only the
mp jdev layer is relevant. The mp jdev is used to implement

wrapper methods to native MPI libraries using JNI. The design

philosophy is to keep the Java layer “as minimal as possible”

for several reasons. This will help in easier development and

maintenance of the Java MPI library. This is because the native

implementation of MPI functionality can be re-used at the Java

layer instead of re-implementing these in Java. Also, this will

help in achieving optimal communication performance. Lastly,

this will provide flexibility when porting newer systems and

communication interconnects.

IV. IMPLEMENTATION OF THE MVAPICH2-J

This section presents implementation details of the

MVAPICH2-J library. We begin this section with a discussion

on the buffering layer, which is extensively used in the

communication of Java arrays. Implementation details for Java

arrays follow. Later, we present discussion on supporting com-
munication to/from direct ByteBuf fers in the MVAPICH2-

J library. Towards the end of this section, we present imple-

mentation details of the collective communication routines,

513

Java MPI =

+
Abstract MPJ Device (mpjdev) layer

+

Thexdeviver [ype]
$

Java Virtual Machine (JVM)

t t t
OS, Hardware, APIs, Drivers

Figure 2. Layered Architecture of the Java Bindings for the MVAPICH2
Library)

A. The Buffering Layer

MVAPICH2-J utilizes a buffering layer that is inspired

by the MPJ Express library [13]. The primary motivation

of this layer is to utilize direct ByteBuffers to assist

with communication of Java arrays. Direct ByteBuffers

are attractive because their pointers can be retrieved

in the native JNI functions. Also, this implies copy-

ing data to/from Java arrays onto ByteBuffers. How-

ever, this extra copy is not avoidable when communi-

cating Java arrays through the JVM documentation rec-
ommended way of using Get<Type>ArrayElements

and Release<Type>ArrayElements functions. The pro-

posed buffering layer avoids the overhead of creating a

ByteBuffer everytime a message comprising of Java arrays

is communicated.

The buffering layer dynamically maintains a pool of di-

rect ByteBuffers—backend storage—that can be used to
support communication of Java arrays. It is possible to use

other backend storage including indirect ByteBuffers or

native memory created by C programs using malloc() or

calloc() system calls. A buffer provided to upper layers

of the software is an mpjbuf buffer that internally uses a

ByteBuffer for storing user data.

Higher layers of the software, especially point-to-point com-

munication primitives for Java arrays, use the buffering layer

through an interface presented in Listing 1. These methods

are encapsulated in the mpjbuf.Buffer class. The most

important methods used for communicating Java arrays by

point-to-point communication primitives are write () and

read() methods. These methods allow copying data from

Java arrays—of all basic datatypes—onto the mpjbuf buffer.

Note that mpjbuf buffer utilizes direct ByteBuffers as

backend storage mediums in our implementation. An mpjbuf

buffer can possibly have multiple sections, each containing

data from multiple Java arrays of the same different type.

This is supported by functions like put Sect ionHeader ()

and getSectionHeader(). It is also possible to con-

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

figure the section size and encoding through functions like

setSectionSize() and setEncoding().

package mpjbuf ; I

2
3} public class Buffer {

4

5

6 // Write and read Methods

7 public void write(type [] source,

8 int srcOff,

9 int numEls)

10 public void read(type [] dest,

ul int dstoff,

12 int numEls)

B

4 // Set and get section Headers

15 public
16 public

void putSectionHeader (Type type)
Type getSectionHeader ()

18 // Set and get section size
19 public int setSectionSize()

20 public int getSectionSize()

21
n // Set and get encoding

a public void setEncoding (ByteOrder encoding)

m4 public ByteOrder getEncoding()
25

%6 // Utility methods

a public void commit ()
28 public void clear ()

29 public void free()

Listing 1. The Functionality provided by the Buffering Layer [13]

B. Point-to-point Communication for Java Arrays

One — approach for implementing = communica-

tion to/from Java arrays is to utilize the JNI

methods like Get <Type>ArrayElements and

Release<Type>ArrayElements where j<Type>

refers to all basic datatypes in Java. These methods allow

the native C JNI function to retrieve a “copy” of the original

array in the native code. It is possible to avoid this copy in

JVMs that support memory pinning. However most current

JVMs do not support memory pinning and hence incur a

copy. The JVM performs a copy because the Java buffer,

specified by the user, is subject to garbage collection. When
this happens, the address of the buffer inside the JVM heap

is likely to change and hence any pointer passed to C code

for Java buffer becomes invalid. To cater this, JVM simply

copies the Java buffer for the invoked C code to use—this

typically happens when the Get<Type>ArrayElements

function is called. The copy back, from C to Java is done

when the Release<Type>ArrayElements function

is called. The overhead of this copy from Java-to-C
and C-to-Java is not present when the JVM_ supports
memory “pinning”. The address of the Java buffer does

not change in JVM _ heap in this case. There are also

a few drawbacks of this approach. The overhead of

copying incurred by Get<Type>ArrayElements and

Release<Type>ArrayElements functions for a subset

of a Java array is the same as the full array. This was

possible in the older mpiJava 1.2 and MPJ APIs where the

communication primitives had an offset argument that

could be used to specify the starting index of the array from

where to send/receive data. However, the offset argument

has been removed from the Java Open MPI bindings. The

buffering layer—discussed in Section IV-A—allows us to

avoid this since we copy only the subset of the data in the
ByteBuffer. But since MVAPICH2-J follows the Java

Open MPI bindings currently, it is not possible to demonstrate

the effectiveness in sample benchmarks. However, this can

be a useful feature for Java HPC applications if the offset

argument is re-introduced in the API in future. Additionally,

the buffering layer is useful for communicating derived

datatypes since it is possible to copy scattered elements in

the array onto consecutive location in the ByteBuffer.

The Buffering

Layer

4) MVAPICH2

MPI_Send([Pointer })

Figure 3. Communicating Java Arrays in the MVAPICH2-J Library. This

is a four step process: 1) the Java side of MVAPICH2-J library gets a
ByteBuffer from the buffering layer, 2) the user specified data is copied

from Java arrays to ByteBuf fers, 3) the C JNT function acquires a pointer

to the ByteBuffer, and 4) this acquired pointer is used to communicate
data using native C MPT library’s communication primitives.)

Figure 3 depicts the overall process of communicating Java

arrays in the MVAPICH2-J library. While communicating Java

arrays, the user Java HPC program allocates this array and uses

it for computational purposes. Note that the current discussion

is in the context of basic datatype arrays in Java. As mentioned

earlier, the MVAPICH2-J library uses a buffering layer to

support communicating Java arrays. The first step—indicated

in Figure 3 in this process—is to acquire a ByteBuffer)

from the buffering layer. The second step is to copy contents

of Java arrays on this ByteBuffer. In the third step of
Figure 3, the ByteBuffer is passed to the native JNI C

code that can access this buffer using a pointer without the

need to incur another copy. This pointer to the ByteBuf fer

514

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

is finally used in the fourth step to communicate data using

native MPI library communication primitives.

C. Point-to-point Communication for Direct ByteBuf fers

The Java Open MPI library has introduced the support

for communicating data to/from direct ByteBuffers. This

functionality was not part of the mpiJava 1.2 and MPJ APIs.

To recap, direct ByteBuffers allocate memory outside the

JVM heap and hence have a constant memory address through-

out their lifecycle unlike other Java objects. This movement

of Java objects in the JVM heap is due to garbage collection.

Hence, it is attractive to provide support for these kinds of
buffering in our Java MPI library.

Figure 4 depicts the overall process of communicating data

directly from ByteBuffers in the MVAPICH2-J library.

While communicating ByteBuffers, the user Java HPC

program allocates this buffer and uses it either for compu-

tational purposes directly or copies data from Java arrays.

The buffering layer in the MVAPICH2-J library is not used

while communicating user allocated ByteBuffers. The first

step—indicated in Figure 4 in this process—is to pass a

reference to this buffer to the Java code in the MVAPICH2-J

library. The second step is to pass this reference to the JNI C

code. Finally in the third step, the JNI code uses the pointer to

the ByteBuf fer—allocated by the user directly—to invoke

MPI communication primitives.

(4) MVAPICH2

MPI_Send([Pointer })

Figure 4, Communicating ByteBuf fers in the MVAPICH2-J Library. This
is a three step process: 1) the user passes the reference to the ByteBuf fer

to the MVAPICH2-J library, 2) the Java layer of the MVAPICH2-J library
invokes JNI C methods with a reference to the ByteBuffer, and 3) the

JNI C code uses a pointer to the buffer for communicating data using MPI
primitives.

D. Collective Communication

MVAPICH2-J currently provides support for collective

primitives—including vector variants. It is possible to commu-

nicate both Java arrays and direct ByteBuffers with these

operations. Like the point-to-point primitives, the buffering

layer is used for Java arrays. Again, the idea is to keep the

Java layer as minimal as possible and utilize all optimizations

and advanced collective algorithms available in the native

MVAPICH2 library.

V. OSU MICRO-BENCHMARK (OMB) FOR JAVA BINDINGS

The OSU Micro-Benchmark (OMB) [7] suite is a bench-

marking tool—written in C—that is popularly used for eval-

uating MPI communication libraries on HPC systems. The

suite supports an extensive range of benchmarks, ranging from

blocking/non-blocking point-to-point & collectives operations

to one-sided operations. It also provides a set of flags for

running custom tests, varying the message sizes, among other

things.

Each benchmark in OMB is designed to evaluate MPI oper-

ations, mimicking real applications while accurately reporting

performance. Performance is reported under two metrics,

latency (in microseconds) and bandwidth (in MBps).

OMB-J is designed with the aim of providing a bench-

marking suite for Java MPI libraries that support NIO

ByteBuffers along with Java arrays for communication.

The suite currently has support for blocking/non-blocking

point-to-point, blocking collective and vectored blocking col-

lective operations. It also provides the ability to run custom

tests as OMB does.

A. Example: OMB-J Latency Benchmark

Algorithm 1 shows a simple example of OMB-J’s latency

benchmark using NIO direct ByteBuf fers. For Java arrays,

the algorithm remains unchanged, where the only difference

is the sender and receiver buffers are Java arrays. The latency

benchmark reports the average latency by measuring the time

a sender receives a response in a ping-pong fashion.

Algorithm 1: Latency Benchmark Example

1 latency = 0.0;

2 MPI.COMM_WORLD.Init(...);
3 sendBuffer = ByteBuffer.allocateDirect(maxMsgSize);

4 recvBuffer = ByteBuffer.allocateDirect(maxMsgSize);

s for size in maxMsgSize do
6 for i:/ ... benchlters do
7 if myrank == 0 then

8 initTime = System.nanoTime();

9 MPIL.COMM_WORLD.send(sendBuffer, size ...);

10 MPIL.COMM_WORLD.reev(recvBuffer, size ...);
i latency = (System.nanoTime() -

initTime)/(2.0"benchl ters” 1000);
12 else

13 MPIL.COMM_WORLD.reev(recvBuffer, size ...);

14 MPIL.COMM_WORLD.send(recvBuffer, size ...);
15 end

16 end
17 reportLatencyForMsgSize(latency);

18 MPI.COMM_WORLD. barrier();
19 end

515

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

VI. PERFORMANCE EVALUATION USING OMB-J

This section presents performance evaluation of point-

to-point and collective communication primitives for the

MVAPICH2-J library along with Java Open MPI bindings

using OMB-J. For point-to-point, we present the evaluation

results for latency and bandwidth benchmarks. As for col-

lectives, we present the evaluation results for allreduce and

broadcast (beast).

A. Experimental Setup

TACC Frontera: Located at the Texas Advanced Comput-

ing Center (TACC), Frontera is a large HPC system that hosts

8,368 Cascade Lake (CLX) compute nodes. Each compute

node has two sockets, each carrying 28 cores (56 cores total)
at 2.70GHz frequency. Each node has a total of 192GB of

RAM.
The following library versions were used for the experi-

ments: MVAPICH2-X v2.3.6 [6] and Open MPI v4.1.2 [5] +

UCX 1.13.0 [14].

B. Point-to-point Communication Evaluation: Intra-node

Here we showcase the point-to-point intra-node evalua-

tion for the two Java MPI communication libraries with

ByteBuffers and Java arrays. The latency was measured

with OMB-J’s version of the osu_latency benchmark

which reports the average latency in microseconds. The band-

width was measured with OMB-J’s osu_bw benchmark which

reports the bandwidth in MBps.

45 “*MVAPICH2-J Arrays
4 MVAPICH2-J Buffer

3.5 Open MPI-J Arrays
g 3 Open MPI-J Buffer

Rs
g
8 2

16

1

0.5

0

su TOHKA HS PM ee eS

Message Size (Bytes)

Figure 5. Intra-node latency numbers for small message sizes.

1800

1600 MVAPICH2-J Arrays

1400 +MVAPICH2-J Buffer

Open MPI-J Arrays
1200

3 Open MPI-J Buffer

= 1000

i 800

600

400

200

eg & & rou er ef
Message Size (Bytes)

Figure 6. Intra-node latency numbers for large message sizes.

Starting with small messages (Figure 5), we can see that

“MVAPICH2-J buffer” is outperforming “Open MPI-J buffer”

by a factor of 2.46 on average.

At the large message end (Figure 6), “MVAPICH2-J

buffer” is performing similarly to “Open MPI-J buffer’. For

“MVAPICH2-J arrays”, there is some overhead in the perfor-

mance as a result of the buffering layer.

100

@MVAPICH2-J Buffer

Open MPI-J Buffer

@MVAPICH2-J Arrays

Ba
nd

wi
dt

h
(G
bp
s)

ce
s
8
S
S
S
S
S
S
B
S
S

x. %v 2
Message Size (Bytes)

Figure 7. Intra-node bandwidth numbers for small message sizes. Bandwidth

numbers for Open MPI-J arrays are not included because the library does not

support Java arrays with non-blocking point-to-point operations.

@MVAPICH2-J Buffer

Open MPI-J Buffer

MVAPICH2-J Arrays

0

Fe KF SF FF Gg L YF
Message Size (Bytes)

Figure 8. Intra-node bandwidth numbers for large message sizes. Since Open
MPT-J does not support Java arrays for non-blocking point-to-point operations,

no bandwidth numbers were collected there.

Figures 7 and 8 show the bandwidth numbers for small

and large message sizes, respectively. Those figures don’t

have numbers for “Open MPI-J arrays” due to Open MPI-

J’s library not supporting communication of Java arrays using

non-blocking point-to-point operations. In Figure 8, we can

see that “MVAPICH2-J buffer” is picking up performance-

wise with “Open MPI-J buffer”.

C. Point-to-point Communication Evaluation: Inter-node

In this subsection, we showcase the inter-node point-to-
point evaluation for the two Java MPI communication libraries

with ByteBuffers and Java arrays. The latency and band-

width were measured using the same benchmarks as discussed

in the previous subsection VI-B.

From the latency numbers for small message sizes (Fig-

ure 9), we can see that “MVAPICH2-J buffer” performs

comparably to “Open MPI-J buffer”.

For large messages (Figure 10), “MVAPICH2-J buffer” is

also performing about the same as “Open MPI-J buffer”. For

516

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

6

5 sMVAPICH2-J Arrays

+MVAPICH2-J Buffer

Open MPI-J Arrays

3 4 Open MPI-J Buffer

o3
2s

5
2

1

0

x 4% STOPS HP Mtge eS
Message Size (Bytes)

Figure 9. Inter-node latency numbers for small message sizes.

1800

1600 “MVAPICH2-J Arrays
4400 -MVAPICH2-J Buffer

Open MPI-J Arrays

; 1200 Open MPI-J Buffer

5

& sr a & eo rol Rd a Ro

Message Size (Bytes)

Figure 10. Inter-node latency numbers for large message sizes.

“MVAPICH2-J arrays”, we see that it picks up in performance

compared with “Open MPI-J arrays”.

Figure 11 shows the latency overheads between the na-

tive libraries and their respective Java MPI libraries using

direct ByteBuffers. The overheads are in the ballpark of

| microsecond, with MVAPICH2-J having a smaller latency

overhead compared to Open MPI-J.
Figures 12 and 13 are bandwidth numbers for inter-node

experiments. Here, again, we see that the figures do not

have “Open MPI-J arrays” numbers due to the same reasons

mentioned earlier in VI-B.

For larger messages (Figure 13), we see that “MVAPICH2-J
buffer” catches up in performance but still is slightly lagging
behind “Open MPI-J buffer”.

<MVAPICH2-J Buffer Overhead ?
08 ©Open MPI-J Buffer Overhead ’

}
’

Ss

a

La
te

nc
y

(u
s)

Ss

>

>»
..

.
“
-
S
t
e
e
.

‘

02 Lo. en : ome 0-6,
& . Bo. nae" ofo-6
+ -o ~ @ -o- =o 9B ma Se 97

’ Ys x ‘

SYMTOMS PP + i gt oh gh gh

02 Message Size (Bytes)

0

Figure 11, Inter-node latency overhead between native and MVAPICH2-J

library for direct ByteBuf fers.

100

. MVAPICH2-J Buffer
70 Open MPI-J Buffer

z 60 s#MVAPICH2-J Arrays

250
340

$ 20
8 29

10
0
STH THHAHS HS PM st tH eS

Message Size (Bytes)

Figure 12. Inter-node bandwidth numbers for small message sizes.

100
90
80
70 @MVAPICH2-J Buffer

Boo Open MPI-J Buffer
8 6 s#MVAPICH2-J Arrays

0
5 30 —_——

20
10

ee FS KF F SF LF SF
Message Size (Bytes)

Figure 13. LInter-node bandwidth numbers for large message sizes.

D. Collective Communication Evaluation: Broadcast

We present the latency numbers for the broadcast collective

operation with the two Java MPI communication libraries us-

ing ByteBuf fers and Java arrays. The latency was measured
using the Java version of the OMB osu_bcast. benchmark

which reports the average latency across all processes in

microseconds. The benchmark uses MP I_Reduce as part of

the latency calculation. The experiments were conducted on 4

nodes with 64 processes in total—16 processes for each node.

Figures 14 and 15 both present the latency numbers for
the broadcast collective benchmark. For all message sizes,

“MVAPICH2-J buffer” is outperforming “Open MPI-J buffer”
by a factor of 6.2 on average, and “MVAPICH2-J arrays” is

also outperforming “Open MPI-J arrays” by a factor of 2.2 on
average. These performance benefits are due in large to the

performance differences of the native libraries in place.

45

40 MVAPICH2-J Arrays

35 +MVAPICH2-J Buffer

Open MPI-J Arrays

30 Open MPI-J Buffer
~25

20

x. % HD OM PP Pr Sk S ak &

Message Size (Bytes)

Figure 14, Broadcast latency numbers for small message sizes.

517

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

18000
sMVAPICH2-J Arrays

16000 MVAPICH2-J Buffer

14000 ®Open MPI-J Arrays

F 12000 Open MPI-J Buffer

10000

3 8000

6000

4000

2000

SF FF & ve
Message Size (Bytes)

Figure 15. Broadcast latency numbers for large message sizes.

E. Collective Communication Evaluation: Allreduce

For this subsection, the latency numbers for allreduce are

presented. The numbers were collected using the Java version

of the OMB benchmark osu_allreduce. The benchmark

reports the average latency in microseconds across all pro-

cesses. We also ran the benchmark on 4 nodes with 64

processes in total—16 processes each.

For Figures 16 and 17, “MVAPICH2-J buffer” is performing

better than “Open MPI-J buffer”, where over all message sizes,

“MVAPICH2-J buffer” is fairing well by a factor of 2.76 on

average compared to “Open MPI-J buffer’, and “MVAPICH2-

J arrays” is outperforming “Open MPI-J arrays” by a factor

of 1.62 on average. Again, these performance advantages are

largely due to the underlying native MPI libraries and their

performances.

80

70 MVAPICH2-J Arrays
+MVAPICH2-J Buffer

60 Open MPI Arrays
@s50 Open MPI-J Buffer

» To HEHE SY
Message Size (Bytes)

Figure 16. Allreduce latency numbers for small message sizes.

30000

memo pera ae
goo Smarr
e 15000

= 10000

5000

$e ee ge ot £ &
Message Size (Bytes)

Figure 17, Allreduce latency numbers for large message sizes.

518

s#MVAPICH2-J Arrays

+MVAPICH2-J Buffer

La
te

nc
y

(u
s)

re FFL LS
Message Size (Bytes)

Figure 18. Inter-node point-to-point latency numbers with data validation

comparing the ByteBuffer API against Java arrays for MVAPICH2-J.

F. Evaluation of the ByteBuffer API

Figure 18 presents the latency numbers for the MVAPICH2-

J library—for Java arrays versus Byt eBuf fers—measured

using the OMB osu_latency benchmark. Here, we plan to

evaluate the effectiveness of using ByteBuffers instead of

Java arrays. In order to emulate the application-level behavior,

we have enabled data validation for the OMB osu_latency

benchmark. This means that Java arrays and ByteBuffers

are populated, at sender, and later the data is validated at the

receiver process. As the results depict in Figure 18, the latency
for populating, communicating, and verifying ByteBuffers
is outperformed by Java arrays after the message size of 256
bytes. For the 4MB message size, Java arrays outperform

ByteBuffers by 3x.

G. Discussion

The performance evaluation reveals that, overall, for col-

lectives, allreduce and beast, MVAPICH2-J is performing

better than Open MPI-J for both ByteBuffers and Java

arrays. This is largely due to the performance differences

in the native MPI libraries. We saw for point-to-point, la-

tency and bandwidth, the performance of MVAPICH2-J with

ByteBuffers is similar to that of Open MPI-J. There are
overheads that exist when using Java arrays and that is in part

due to the buffering layer. The buffering layer is needed by

our library to support communicating derived datatypes and
Java arrays using non-blocking point-to-point communication

primitives. Java Open MPI does not support non-blocking

point-to-point communication with Java arrays. At the OMB-

J level, ByteBuffers perform better than Java arrays. This

is not the case at the application level. A ByteBuffer is

basically an array that is wrapped with a higher-level interface.

Naturally, one would assume that this extra layer of abstraction

wouldn’t incur any performance penalties. However, it appears

that’s not the case as seen in Figure 18. As a result of the

extra abstraction layer, reads and writes for ByteBuffers

are slower. In Figure 11, we can see that Java based libraries

under-perform when compared to native libraries. This is

because Java is simply running more errands (i.e. GC) during

the runtime of the application as opposed to C.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

VII. RELATED WORK

Historically, there have been three approaches taken for

writing Java MPI libraries. The first approach was to rely

on Java alone in order to provide a fully portable solution.

The second approach was to rely on native MPI libraries for

communication using JNI. The first approach was followed by

some MPI libraries. It proved out not to be practical almost

all of the MPI features need to be re-implemented in this

approach. The second approach was adopted by libraries like

mpiJava [2] and Java Open MPI [5]. The third approach is
a hybrid one where some MPI libraries have one or more

device layers that allow providing pure Java as well as JNI-

based communication devices—this is the approach taken by

MPJ Express [4] and FastMPJ [3]. mpiJava and MPJ Express

follow the mpiJava 1.2 API. FastMPJ has support for both

mpiJava 1.2 and MPJ API. The Java Open MPI library follows

its custom API that we attempt to follow in MVAPICH2-J. The

design goal of MVAPICH2-J is to keep the Java layer as lean

as possible and exploit the features and optimizations provided

by the native MVAPICH2-J library.

VII. CONCLUSION

This paper presented our initial experiences of designing

and implementing Java bindings—named MVAPICH2-J—for

the production-quality MVAPICH2 library. MVAPICH2-J fol-

lows the Java Open MPI library API that supports communi-

cating data to/from Java arrays and ByteBuffers. The main

idea for MVAPICH2-J is to utilize JNI and keep the Java layer

as minimal as possible. We also implemented and utilized an
internal buffering layer to facilitate communication of Java

arrays. In order to evaluate performance of Java MPI libraries,

we also designed and implemented OMB-J, which is a Java
version of the popular OSU Micro-benchmarks (OMB) suite.

OMB-J currently provides a variety of point-to-point and col-

lective benchmarks with support for both ByteBuffers and

Java arrays. Our evaluation reveals that using ByteBuffers

provides better performance compared to Java arrays at the

OMB.-J level. The point-to-point performance of MVAPICH2-

J is comparable to Java Open MPI for the ByteBuf fer API.

There is slight overhead in the performance while commu-

nicating Java arrays using MVAPICH2-J due to the internal
buffering layer that is needed to support communicating de-

rived datatypes and Java arrays with non-blocking point-to-
point functions. For the collective benchmarks, MVAPICH2-J

outperforms OpenMPI-J for the ByteBuf fer API by a factor

of 6.2 and 2.76 for broadcast and allreduce, respectively, on

average for all messages sizes. For Java arrays, we observe

2.2x and 1.62x better performance than Open MPI-J—on

average for all message sizes—for broadcast and allreduce,

respectively. These gains are mainly due to better performance

of MVAPICH2 for collective communication routines. We also

showed—somewhat surprisingly—that Java arrays perform

better than direct ByteBuf fers when the time to populate

and validate data was included for the point-to-point latency

benchmark. The reason is that it is faster to read/write data

from Java arrays compared to ByteBuffers. We plan to

519

release MVAPICH2-J along with OMB-J in the near future.

We also plan to work with other stakeholders in the Java HPC

community to come up with an agreed Java MPI API.

IX. ACKNOWLEDGEMENT

This research is supported in part by NSF grants #1818253,

#1854828, #1931537, #2007991, #2018627, #2112606, and
XRAC grant #NCR-130002.

REFERENCES

[1] The MPI Forum, “The Message Passing Interface (MPI) 4.0 Standard,”
urlhttps://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf, 2021,

Accessed: March 19, 2022.

B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox,
“MPJ: MPI-like message passing for Java,’ Concurrency: Practice

and Experience, vol. 12, no. 11, pp. 1019-1038, 2000. [Online].

Available: {https://onlinelibrary.wiley.com/doi/abs/10. 1002/1096-9128\
%28200009\,%2912\%3A11\%3C1019\%3A \%3A AID-CPES18\
%3E3.0.CO\ %3B2-G}
R. R. Expésito, G. L. Taboada, S. Ramos, J. Tourifio, and

R. Doallo, “Low-latency Java communication devices on RDMA-
enabled networks.” Concurrency and Computation: Practice and

Experience, vol. 27, no. 17, pp. 4852-4879, 2015. |Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10, 1002/epe.3473
A. Shafi, B. Carpenter, and M. Baker, “Nested parallelism for multi-

core HPC systems using Java,” Journal of Parallel and Distributed

Computing, vol. 69, no. 6, pp. 532-545, 2009. |Online]. Available:
https://www.sciencedirect.com/science/article/pii/S074373 1509000252

O. Vega-Gisbert, J. LE. Roman, and J. M. Squyres, “Design

and implementation of Java bindings in Open MPI,” Parallel
Computing, vol. 59, pp. 1-20, 2016. [Online]. Available: https:

/Iwww.sciencedirect.com/science/article/pii/S01678 19116300758

D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The
MVAPICH project: Transforming research into high-performance

MPT library for HPC community,” Journal of Computational

Science, vol. 52, p. 101208, 2021. |Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S 1877750320305093

The MVAPICH2 Development Team, “Ohio Micro-Benchmarks

(OMB),” urlhttps://mvapich.cse.ohio-state.cdu/benchmarks/, 2021, Ac-
cessed: March 19, 2022.

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,

X. Meng, J. Rosen, S. Venkataraman, M. J. Vranklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and T. Stoica, “Apache spark: A unified engine

for big data processing,” Commun, ACM, vol. 59, no. 11, p. 56-65, oct

2016. |Online]. Available: https://doi.org/10.1145/2934664

Apache Software Foundation, “Apache Hadoop,”
https://hadoop.apache.org, 2022, Accessed: March 19, 2022.
Skymind Global Limited, “DeepLearning4j = (DL4J),”
https://deeplearning4j.konduit.ai/, 2022, Accessed: March 19, 2022.
D. Bailey, FE. Barszez, J. Barton, D. Browning, R. Carter, L. Dagum,
R. Fatoohi, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga, “The nas parallel benchmarks,”

Int. J. High Perform, Comput. Appl., vol. 5, no. 3, p. 63-73, sep 1991.
{Online}. Available: https://doi.org/10.1177/109434209 100500306
D. A. Mallon, G. L. Taboada, J. Tourifio, and R. Doallo, “Npb-mpj: Nas
parallel benchmarks implementation for message-passing in java,” in

2009 17th Euromicro International Conference on Parallel, Distributed

and Network-based Processing, 2009, pp. 181-190.
M. Baker, B. Carpenter, and A. Shafi, “A Buffering Layer To Support

Derived Types and Proprietary Networks for Java HPC,” Scalable
Computing: Practice and Experience, vol. 8, no. 4, pp. 348-358,
2007. [Online]. Available: https://www.scpe.org/index.php/scpe/article/
view/430/93

P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,
Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss, Y. Shahar,

S. Potluri, D. Rossetti, D. Becker, D. Poole, C. Lamb, S. Kumar,
C. Stunkel, G. Bosilea, and A. Bouteiller, “Ucx: An open source

framework for hpe network apis and beyond,” pp. 40-43, Aug 2015.

[2]

[3]

[4]

IS]

16]

[7]

[8]

|9 url-

[10] url-

{11}

[12]

[13]

[14]

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:33:03 UTC from IEEE Xplore. Restrictions apply.

