
Hy-Fi: Hybrid Five-Dimensional Parallel
DNN Training on High-Performance

GPU Clusters

Arpan Jain(B), Aamir Shafi, Quentin Anthony, Pouya Kousha,
Hari Subramoni, and Dhableswar K. Panda

The Ohio State University, Columbus, OH 43210, USA
{jain.575,shafi.16,anthony.301,kousha.2}@osu.edu,

{subramon,panda}@cse.ohio-state.edu

Abstract. Recent advances in High Performance Computing (HPC)
enable Deep Learning (DL) models to achieve state-of-the-art perfor-
mance by exploiting multiple processors. Data parallelism is a strategy
that replicates the DL model on each processor, which is impossible
for models like AmoebaNet on NVIDIA GPUs. Layer parallelism avoids
this limitation by placing one or more layers on each GPU, but still
cannot train models like AmoebaNet on high-resolution images. We pro-
pose Hy-Fi: Hybrid Five-Dimensional Parallelism; a system that takes
advantage of five parallelism dimensions—data, model, spatial, pipeline,
and bi-directional parallelism—which enables efficient distributed train-
ing of out-of-core models and layers. Hy-Fi also proposes communication-
level optimizations to integrate these dimensions. We report up to 2.67×
and 1.68× speedups over layer and pipeline parallelism, respectively. We
demonstrate Hy-Fi on up to 2, 048 GPUs on AmoebaNet and ResNet
models. Further, we use Hy-Fi to enable DNN training on high-resolution
images, including 8,192× 8,192 and 16,384× 16,384.

Keywords: DNN · Model-parallelism · Distributed training · Hybrid
parallelism · MPI · GPU

1 Introduction

In the last decade, Deep Learning (DL) has emerged as a viable approach to prac-
tice Artificial Intelligence (AI) in emerging disciplines including object recogni-
tion/detection, speech recognition, language translation, and emotion recogni-
tion. A typical DL model is capable of “learning” non-linear mathematical rela-
tionships between the input data and the corresponding output during train-
ing on sufficiently large datasets—this knowledge is later used to make pre-
dictions with new and unseen data. One of the main driving forces behind
the success of complex and large-scale Deep Neural Networks (DNNs) is the
availability of compute resources offered by modern High Performance Comput-
ing (HPC) hardware. Current state-of-the-art models like AmoebaNet [22] and
c© Springer Nature Switzerland AG 2022
A.-L. Varbanescu et al. (Eds.): ISC High Performance 2022, LNCS 13289, pp. 109–130, 2022.
https://doi.org/10.1007/978-3-031-07312-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07312-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-07312-0_6


110 A. Jain et al.

GPT3 have become complex and computationally expensive—due to a large
number of parameters—and cannot be trained on a single processing element
(for e.g. a GPU). This fundamental limitation on training state-of-the-art DNNs
is resolved by exploiting parallel and distributed training on HPC hardware.
One popular and easy-to-use parallelization strategy for distributed DNN train-
ing is data parallelism [1]. This technique accelerates training by creating model
replicas on multiple processing elements—including GPUs—and performs DNN
training by dividing the input data into multiple batches. Each processing ele-
ment is assigned a unique set of data, called a batch, which is used to perform
parallel training steps, this assignment is followed by a synchronization step
using an allreduce operation. This step incurs communication overhead in order
to accumulate the gradients across all processing elements and ensure weights
are synchronized after each training step.

While data parallelism offers near-linear scaling [3,17] for distributed DNN
training, it incurs significant memory overhead since the entire model is repli-
cated on each GPU. It therefore requires the entire model to fit inside the mem-
ory of a single GPU, which is not always possible especially for emerging large
models. Even at the finest granularity of a training sample, most of the current
state-of-the-art models like AmoebaNet [22] and GPT3 models cannot fit inside
the memory of a single GPU; these models are hence known as out-of-core DNNs
or models. The memory requirement of a DNN depends on its size (number of
parameters) and the size of the input image. For this reason, a DL model that
is trainable on a single GPU for a small-sized images may not be trainable on a
single GPU for high-resolution (large-sized) images. This means that due to the
inability to store a DL model replica on a single GPU, the data parallelism app-
roach is only limited to the training of modestly-sized DNNs on low-resolution
images like Cifar-100 (32 × 32 pixels) and ImageNet (244 × 244 pixels).

However, in modern scientific applications, image sizes can range from 512 ×
512 pixels to 2,048× 2,048 pixels [6]. For example, the 2D mesh-tangling problem
represents hydraulic simulation and can be formulated as semantic image segmen-
tation. The input data in mesh-tangling can range from 1,024× 1,024 pixels to
2,048× 2,048 pixels. In digital pathology, the advent of high-resolution scanners
has led to the adoption of digital whole slide imaging (WSI) for diagnostic pur-
poses. A typical application of WSI is measuring the degree of a tumor grade for
diseases such as cancer. The detection problem [19] can be formulated as a classi-
fication task in which the input is a WSI and output is the presence or absence of
cancer. Normally, WSIs are very high-resolution images.

To address this fundamental limitation of data parallelism, layer-parallelism—
also known as inter-layer model-parallelism—is proposed in the literature [5] to
enable training of the out-of-core DNNs. Here, the DNN is divided into smaller
partitions, each consisting of one or more layers, that can fit inside a single GPU’s
memory.This approach—referred to as basicmodel-parallelism—has inherent scal-
ing issues [10,11]. The reason is as follows: A DNN essentially is a directed acyclic
graph where each node corresponds to a layer. As part of the forward pass, each
layer takes inputs/activations from the previous layer and gives output to the
next layer making this an inherently sequential process. This data dependency



Hy-Fi 111

serializes parallel processing of layers in a DNN since only one GPU does the
computation at any given time. In addition to basic model-parallelism, pipeline-
parallelism [12] and sub-graph parallelism [13] are also instances of the inter-
layer model-parallelism approach. A variant of model-parallelism is to exploit
parallelism within layers. This approach is sometimes called intra-layer model-
parallelism. Here, a single layer is divided across multiple GPUs. An instance
of this technique is spatial parallelism, which partitions the images across multi-
ple GPUs thereby distributing the layer. Hybrid parallelism combines data- and
model-parallelism but also suffers from data dependency limitations.

1.1 Motivation

Several approaches have been proposed in the literature to address some of the
limitations of model parallelism. However, most studies are performed for low-
resolution images that exhibit different characteristics [12]. Compared to low
resolution images, high-resolution images results in higher activation memory
and larger tensors, which results in a larger communication overhead (Fig. 1).

Fig. 1. The emerging need for integrated spatial and
model parallelism solution as suggested in [14]

These approaches inc-
lude pipeline, spatial, and
bi-directional parallelism.
Pipeline parallelism such
as the schemes proposed
in [10,12,21] exploits par-
allelism within training
samples and accelerates
the performance of model
parallelism. However, pip-
eline parallelism is only
possible when the model
is trainable with batch
size >1, which is typically
impossible with high-
resolution images due to memory constraints. There have been efforts to exploit
pipeline parallelism for large-sized images [14] but they still require a single layer
to fit inside the GPU—such layers are called out-of-core layers. Spatial paral-
lelism, on the other hand, has performance issues due to high communication
overhead and the inability to accelerate low-resolution images that are common
in the latter half of DNNs. Bi-directional parallelism exploits the memory and
compute available between the backward and forward passes of the first and
second training iterations. It trains the model from both directions in order to
use these potentially-wasted resources [14]. Therefore, existing solutions [12,14]
limit the ability to train DNNs on very high-resolution images, which affects the
DNN’s accuracy and prohibits the training of complex DNNs.

To summarize, spatial parallelism distributes images across multiple GPUs,
layer parallelism distributes the model, pipeline parallelism parallelizes the



112 A. Jain et al.

samples in a batch, and bi-directional parallelism employs memory-aware solu-
tions to enhance the performance.

This paper focuses on efficiently utilizing distributed training for very high-
resolution images that appear in real-world applications. These have unique
requirements from the underlying DL training framework. Digital pathology,
for example, uses a tiling mechanism to train Tall Cell Variant (TCV) clas-
sifiers on very high-resolution images, limiting the structural information and
local/global context. Based on this, we seek to solve the following application-
level requirements in this paper: 1) Enabling training on very high-resolution
images, 2) Ability to train the model with any batch size on the same number of
resources, and 3) provide speedup and support new emerging applications like
TCV classifier. To address these requirements for training large-sized images,
several design and system-level challenges need to be solved:

– How to efficiently integrate spatial, layer, pipeline, bi-directional, and data
parallelism?

– How to reduce the communication overhead in an integrated distributed DNN
training system?

– Can different distribution layouts improve the performance for spatial paral-
lelism and reduce the communication overhead?

– How to enable the training of out-of-core models and out-of-core layers?
– Can the integration of spatial, layer, pipeline, data, and bi-directional paral-

lelism achieve scalability similar to data parallelism?

Table 1. Features offered by Hy-Fi compared to existing frameworks

Studies Features

Out-of-
core
model
training
(max
batch size
= 1)

Out-of-core
layer training

Out-of-core
batch size

Memory
-aware
solution

Pipelining
support

Bidirectional
training

Optimized
communication
for bi-directional
training

Hybrid
parallelism

Multi-node
support

Speedup
for
out-of-core
BS
training

Speedup
for CNN

Basic model
parallelism
(layer
parallelism)

✔ ✕ ✕ ✕ ✕ ✕ N/A ✕ ✔ ✕ ✔

Pipeline
parallelism
(Gpipe [12])

✕ ✕ ✕ ✕ ✔ ✕ N/A ✔ ✔ ✕ ✔

GEMS [14] ✔ ✕ ✔ ✔ ✔ ✔ ✕ ✔ ✔ ✔ ✔

TorchGipe [16] ✔ ✕ ✔ ✔ ✔ ✕ N/A ✕ ✕ ✔ ✔

PipeDream [10] ✔ ✕ ✕ ✕ ✔ ✕ N/A ✔ ✔ ✕ ✔

LBANN (spa-
tial [6]/domain
parallelism [8])

✔ ✔ ✕ ✕ ✕ ✕ N/A ✔ ✔ ✕ ✔

FlexFlow [15] ✔ ✔ ✕ ✕ ✕ ✕ N/A ✔ ✔ ✕ ✔

Mesh-
TensorFlow [23]

✔ ✔ ✕ ✕ ✕ ✕ N/A ✔ ✔ ✕ ✔

Megatron [24] ✔ ✕ ✕ ✕ ✕ ✕ N/A ✔ ✔ ✕ ✕

SUPER [13] ✕ ✕ ✕ ✕ ✕ ✕ N/A ✔ ✔ ✕ ✕

Proposed
Hy-Fi ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔



Hy-Fi 113

1.2 Contributions

In this section, we highlight the major contributions of this study. To the best
of our knowledge, no state-of-the-art distributed DNN training system supports
out-of-core models, layers, and batch size with memory-efficient designs. Table 1
compares related data, model, pipeline, and spatial parallelism studies against
the proposed Hy-Fi system. Section 6 provides an in-depth comparison of related
studies. Major contributions of this study are as follows:

– We propose, design, and evaluate Hy-Fi: an integrated memory-efficient sys-
tem that uses five dimensions of parallelism and provides scalable training.

– We overcome the limitations of individual parallelization techniques—spatial,
layer, and bi-directional parallelism—by proposing communication optimiza-
tions and efficiently integrating all five dimensions of parallelism (spatial,
layer, pipeline, bi-directional, and data) to use in tandem.

– Hy-Fi offers up to 2.02× speedup over pure layer parallelism and 1.44×
speedup over pure pipeline parallelism for the spatial parallelism dimen-
sion. Using memory-efficient bi-directional parallelism, we increase speedup
to 2.67× over pure layer parallelism and 1.68× over pure pipeline parallelism.

– We show near-linear scaling (94.5%) for distributed DNN training using Hy-Fi
on 2,048 Volta V100 GPUs.

– We enable the training of next-generation deep learning models on very high-
resolution images (8,192× 8,192 and 16,384× 16,384 pixels) and show up to
1.47× speedup over spatial parallelism.

2 Challenges in Exploiting Different Parallelism
Dimensions in Distributed DNN Training

We highlight the challenges in implementing a multi-dimensional DNN train-
ing framework like Hy-Fi which has several communication optimizations and
enables training on very high-resolution images.

Challenge-1: Halo Exchange in PyTorch
Spatial parallelism requires the halo exchange to implement distributed convo-
lution and pooling layers. A halo exchange involves communication in different
directions and differs in message size (Fig. 3). The message size and communi-
cation pattern depends on several parameters such as the kernel size, spatial
parallelism size, partition position in the distributed image, and the number of
neighbors, which exacerbates the challenge of implementing a halo exchange. A
halo exchange can be implemented using non-blocking point-to-point communi-
cation provided by CUDA-aware MPI libraries, but they need to be synchronized
with asynchronous execution in PyTorch [20] to ensure data validation.

Challenge-2: Exploitation of Different Parallelism Dimension
The proposed framework must be designed in a modular and user-transparent
fashion to exploit different parallelism dimensions in tandem. Further, the sys-
tem should be robust enough to take advantage of all parallelism dimensions



114 A. Jain et al.

whenever possible. Spatial, layer, pipeline, bi-directional, and hybrid data par-
allelism offer compute parallelization in different dimensions and a potential to
accelerate training of CNN. Hence, every parallelization dimension should be
efficiently implemented and integrated with others in order to fully exploit the
benefits of all the strategies in tandem.

Challenge-3: Scaling Integrated Hybrid Training Solutions
Training CNNs on high-resolution images is a compute-intensive task and
requires a large numbers of GPUs to make it feasible. Hence, the proposed
solution must be scalable to thousands of GPUs, which requires hybrid data
parallelism. Integrating data parallelism into a multi-dimension parallelization
framework like Hy-Fi is a non-trivial task since each parallelization dimen-
sion combines data parallelism differently. For example, spatial parallelism uses
allreduce operations to synchronize weights across the distributed input, layer
parallelism distributes the model and needs sub-communicators to implement
hybrid parallelism, and bi-directional parallelism introduces extra replicas for
data parallelism. Hence, designing a scalable solution exploiting multiple paral-
lelism dimensions is a challenging task.

3 Limitations in Existing Approaches for Model
Parallelism

We provide an overview of various existing model-parallelism approaches and
discuss their limitations.

3.1 Layer Parallelism

The simplest model-parallelism scheme consists of placing DNN partitions (con-
sisting of one or more layers) on separate GPUs before applying distributed
forward and backward passes. These distributed forward and backward passes
are implemented with simple Send and Recv operations. Layer parallelism has
two primary drawbacks: 1) Under-utilization of resources and 2) A complex
implementation compared to data parallelism. Given that only a single GPU
can operate at once, layer parallelism suffers from poor scalability. Since DL
frameworks do not provide distributed back-propagation implementations, layer
parallelism is often challenging to implement. Manually partitioning a DNN is
challenging in itself because not all layer connections preserve a simple ordering
(e.g. skip or residual connections).

3.2 Pipeline Parallelism

Pipelining divides the input batch into smaller batches called micro-batches, the
number of which we call parts. The goal of pipeline parallelism is to reduce under-
utilization by overlapping micro-batches, which allows multiple GPUs to proceed
with compute within the forward and backward passes. Pipeline parallelism has



Hy-Fi 115

two primary drawbacks; 1) batch size limits the length of the pipeline, and 2)
performance is poor compared to data or hybrid Parallelism. Pipelining also
wastes GPU resources when the pipeline is not full. The only case with a full
pipeline occurs when the number of parts equals the number of DNN splits and
the batch size equals the pipeline length. These issues worsen at scale due to
the pipelining bubble [12]. Further, it is not possible to use pipelining when the
largest batch size is 1. Due to the above limitations, there is a need to further
optimize both layer and pipeline parallelism.

3.3 Memory-Aware Synchronized Training (Bi-directional
Parallelism)

Both basic and pipelining model parallelism suffer from under-utilization of
resources. After completing the forward and backward passes for a given model
partition, each GPU has free memory and compute resources available, which
can be utilized to perform the forward and backward passes of a new model.
GEMS-MAST [14] uses this free memory and compute resources by training a
replica of the same DNN in an inverted manner. This design is called GEMS-
Master. We call this bi-directional parallelism in the rest of the paper.

4 Proposed Hybrid Five-Dimensional Parallelism System

4.1 Spatial Parallelism

Fig. 2. High-level overview of proposed Hybrid Five-Dimensional Parallelism (Hy-Fi)
where L# represents layer number. It shows the integration of different parallelism
dimensions in Hy-Fi.



116 A. Jain et al.

Fig. 3. Halo exchange in spatial paral-
lelism. The input image is partitioned into
four regions, and each region is given to the
different processes. To calculate the convo-
lution operation at X location, the value of
nearby pixels is required.

In spatial parallelism, the convolu-
tion layer is replicated across multi-
ple GPUs, and image parts are parti-
tioned across replicas. Specifically, the
level of granularity in layer parallelism
is a layer, while in spatial parallelism
it is neurons. Convolution and Pool-
ing layers can be distributed across
multiple GPUs to work on the dif-
ferent regions of the image. Hence,
unlike layer parallelism, this approach
enables simultaneous computation on
multiple GPUs while facilitating the
training of the out-of-core convolution
layer. There are two significant issues
with the spatial parallelism approach; 1) Extra Communication is necessary and
2) Complex implementation. Spatial parallelism requires a halo exchange (shown
in Fig. 3) at every convolution and pooling layer to compute the result for the
pixels present on the boundary of image parts [6]. Parameters like stride, fil-
ter size, and padding affect the size of the halo exchange, which increases any
spatial parallelism implementation’s complexity compared to layer parallelism.
In the backward pass, allreduce is required to synchronize the weights of the
convolution layer for every process performing spatial parallelism (Fig. 2).

To tackle communication overhead in spatial parallelism, we propose two
optimization strategies.

Layout Optimization. Distribution layout plays an important role in the num-
ber of send/recv operations in a halo exchange. There are many ways to partition
an image among processes. A common approach is to partition the image into
square patches as shown in Fig. 4(a). This approach is known as a square lay-
out. We investigate vertical and horizontal layouts for spatial parallelism. In a
vertical layout, the image is partitioned along the width dimension. Similarly,
in a horizontal layout, the image is partitioned along the height dimension. In a

Fig. 4. Image distribution strategies



Hy-Fi 117

square layout, the maximum number of send/recv operations is 8. For example,
process P6 will send/recv data from P1, P2, P3, P5, P7, P9, P10, and P11.
However in horizontal and vertical layouts, the maximum number of send/recv
operations is limited to 2 (can be inferred from Fig. 4(b) and 4(c)). Peculiar pro-
cess placement in vertical and horizontal layout helps in reducing the inter-node
communication by placing adjacent processes on the same node, which is not
possible in a square layout. These factors help in reducing the communication.

Halo-D2: Reduced Communication Operations. A halo exchange is requi-
red at each layer in spatial parallelism in order to apply convolution/pooling
operation in basic spatial parallelism. The main objective of the convolution
operation is to produce an output of the same width and height. Normally in
CNNs, several convolution operations of kernel size 3 are stacked together to
efficiently implement a large kernel size [25]. This approach leads to several halo
exchanges since it’s required at every layer. We reduced the number of blocking
communication operations by exchanging more pixels around the border. Spatial
parallelism avoids the repeated computation on the border by exchanging data at
every layer. However, in our evaluation, we found that the convolution operation
takes the same time for images with a few more pixels due to the massively
parallel computation provided by GPUs. For example, the computation time for
a 256× 256 image was the same as a 260× 260 image. Therefore, by exchanging
more data at one layer, we can avoid more halo exchanges in subsequent layers.
Figure 5 shows an example of spatial parallelism with Halo-D2.

Fig. 5. Motivation for Halo-D2. Instead of exchanging only required data at every layer,
additional data is exchanged to eliminate the need of exchanging data for subsequent
layers.



118 A. Jain et al.

Fig. 6. Proposed spatial parallelism + layer parallelism design. CNN is sliced into four
partitions. Spatial parallelism is applied to the 1st partition, and layer parallelism is
used for the rest of the partitions.

4.2 Spatial Parallelism + Layer Parallelism

Due to the increased communication overhead, spatial parallelism is more suit-
able for large images, which makes this approach inappropriate for the latter
half of CNNs where the image input size is usually few pixels. Layer parallelism
can be used to compute this latter half. Figure 6 shows a combination of spatial
parallelism and layer parallelism for a CNN partitioned into four partitions on
layer granularity. Spatial parallelism is applied to the first model partition, and
layer parallelism is applied to the other three model partitions.

Fig. 7. Spatial and layer parallelism combined with pipeline parallelism. The combina-
tion of spatial and layer parallelism fail to exploit the parallelism within batches that
can be used by pipeline parallelism to utilize more than one GPU at any given time.



Hy-Fi 119

4.3 Pipeline Parallelism

Spatial and Layer parallelism exploits parallelism within a layer and model. How-
ever, they fail to exploit parallelism within batches. Figure 7 shows the compu-
tational view of spatial and layer parallelism for the model shown in Fig. 6. As
shown in the figure, compute is available between forward and backward pass.
However, previous strategies fail to exploit this compute when the batch size is
greater than 1. We use pipeline parallelism to exploit a third dimension of paral-
lelism using micro-batches. Figure 7 shows the integration of pipeline parallelism
with Spatial and Layer parallelism to exploit parallelism within batches, which
improves the overall performance.

Fig. 8. Bi-directional with spatial and layer parallelism. A naive integration limits the
performance because of blocking allreduce operations at the end. The available compute
can be used to eliminate allreduce operation.

4.4 Spatial + Bidirectional Parallelism

To further improve the performance of spatial, layer, and pipeline parallelism,
we explore a fourth dimension of parallelism i.e. the direction of forward and
backward pass. By using bi-directional parallelism, we are able to overlap com-
putation with different batches and therefore improve performance. This dimen-
sion is suitable when a DL researcher wants to train their model with larger
batch size than the maximum feasible batch size (the maximum batch size is
limited by GPU memory). Bi-directional parallelism increases the performance
when the batch size is not possible under traditional parallelization strategies.
In this section, we integrate first three dimension of parallelism with a fourth
dimension (Bidirectional parallelism). Figure 8 shows the need for communica-
tion optimizations in the integration of spatial, layer, and pipeline parallelism
with bi-directional parallelism.

Communication Optimization for Integration with Spatial Parallelism.
To remove the necessary allreduce operation at the end, we use send/recv oper-
ations to communicate parameters and gradients of replica1 during the dotted



120 A. Jain et al.

bubble in Fig. 8. We divide our design into two steps: 1) Parameters exchange
and 2) Gradient exchange.

Parameters Exchange: In this step, we assume that the first model replica
has the latest DL model parameters and the second model replica does not have
the latest parameters since we are not using an allreduce operation at the end
to synchronize the training. Therefore, we will send the latest parameters from
model replica 1 to model replica 2 during the first bubble.

Gradients Exchange: In an allreduce operation, gradients are averaged across
all model replicas to synchronize the training and make sure parameters remain
the same for all replicas. Since we are updating only the last replica, we need the
gradients of the previous replica in order to synchronize the training and update
replica 2 to the latest parameters. The second bubble in Fig. 8 can be used to
exchange these gradients from replica 1 to replica 2.

After the first iteration of a parameter and gradient exchange, model replica
2 becomes the replica with the latest parameters. Therefore, the next forward
and backward iteration will complete on model replica 2 first. Figure 9 shows
two iterations of our proposed communication optimization.

Fig. 9. Two iterations of communication optimized Hy-Fi master (spatial, layer,
pipeline, and bi-directional)

4.5 Hybrid Data Parallelism

To scale proposed designs to a large number of GPUs, we exploit a fifth dimension
of parallelism: data parallelism. We create clusters of GPUs, where each cluster
implements the first four dimensions of parallelism in Hy-Fi and synchronizes
each replica’s parameters via allreduce operations. The integration with data
parallelism allows our proposed design to scale to a large number of GPUs and
provides better scaling efficiency.

Implementation Details: Our implementation of Hy-Fi is inspired by the
pipeline parallelism fundamentals and APIs presented in the HyParFlow sys-
tem [2]. For communication, we have used PyTorch’s distributed module and
created a wrapper communication class to create required communicators in
proposed hybrid data parallelism (Sect. 4.5) and spatial parallelism (Sect. 4.1).



Hy-Fi 121

A model generator class is created to divide the model into partitions. Trainer
class is created for every parallelism dimension to implement distributed forward
and backward pass. For spatial parallelism, a wrapper class around Conv2D class
is implemented to realize proposed designs for Halo communication.

5 Performance Evaluation

5.1 Evaluation Platform

All the experiments were conducted on LLNL/Lassen, which is an OpenPOWER
system equipped with POWER9 processors and 4 NVIDIA Volta V100 GPUs.
Each node of the cluster is a dual-socket machine, and each socket is equipped
with 22-core IBM POWER9 processors and 2 NVIDIA Volta V100 GPUs with
16 GB HBM2. NVLink is used to connect GPU-GPU and GPU-Processor.

Softwares: Pytorch v1.7 and MVAPICH2-GDR 2.3.5.

Deep Neural Networks: We defined ResNet variants from Keras exam-
ples/applications in PyTorch and used the AmoebaNet model from TorchG-
pipe [16].

5.2 Evaluation Setup and Performance Metrics

We use images per sec as the main performance metric in this paper. Other
terms and legends used in this performance evaluation are explained below.

– Images per sec: Number of images processed in training per sec.
– BS: Batch Size
– LP: Layer Parallelism (or Model-Parallelism Basic)
– Pipeline: Pipeline Parallelism.
– SP and SP-Opt: Hy-Fi’s Spatial Parallelism and its optimized version (Lay-

out Optimization and Halo-D2).
– SP-#: Hy-Fi’s Spatial Parallelism with # Layout (Sq: Square, Hor: Horizon-

tal, and Ver: Vertical)
– SP-#-D2: Hy-Fi’s Spatial Parallelism with # Layout and Halo-D2 optimiza-

tion.
– Master-#: Hy-Fi with four parallelism dimensions (Spatial, Layer, Pipeline,

and Bi-Directional). # is the number of replications in Bi-Directional’s Master
design.

– Master-#-Opt: Master-# with communication optimization.

5.3 Evaluation Methodology

In this section, we describe the evaluation methodology used to conduct experi-
ments and show Hy-Fi’s benefits. Broadly, our experiments can be divided into
four categories; 1) Performance analysis of different dimensions of parallelism in



122 A. Jain et al.

Hy-Fi and their optimizations (Sect. 5.4 and 5.5) 2) Scaling Hy-Fi on a large num-
ber of GPUs (Sect. 5.6), 3) Comparison against existing frameworks (Sect. 5.7),
and 4) Enabling training of very high-resolution images and speedup using Hy-
Fi (Sect. 5.8). We use two variants of AmoebaNet and ResNet-218 v2 model.
AmoebaNet-f214 and AmoebaNet-f416 have 18 cells and the number of initial
filters is 214 and 416, respectively. AmoebaNet model variants are evaluated
on 2,048× 2,048 images. AmoebaNet-f214 is used since it can be trained on 8
GPUs with BS 2, making pipeline parallelism possible. AmoebatNet-f416 on
2,048× 2,048 and ResNet-218-v2 on 1,024× 1,024 can only be trained with BS
= 1 on 8 GPUs, which makes pipeline parallelism impossible.

5.4 Performance Benefits of Spatial Parallelism

We start by demonstrating the benefits of Layout and Halo-D2 optimizations for
Hy-Fi spatial parallelism and compare Hy-Fi’s spatial parallelism with layer par-
allelism and pipeline-parallelism in the literature. Figure 10(a) shows the effect of
number of fused layers in Halo-D2 (Sect. 4.1). The number of fused layers deter-
mines both the size of a halo exchange and how many layers can be skipped for
a halo exchange. For the ResNet-218v2 model, we found that Halo-D2 gives the
best performance for 4 fused layers. Proposed Halo-D2 optimization increases
the training performance by up to 4.8%. Figure 10(b) shows the performance
comparison of different proposed optimizations on spatial parallelism and com-
pares them to LP. Hy-Fi’s spatial parallelism is 1.94× faster than LP without
optimizations for spatial parallelism.

By combining layout and Halo-D2 optimizations, we are able to improve the
performance to 2.04×. Figure 11(a) and Fig. 11(b) show the performance com-
parison of spatial parallelism optimizations, LP, and pipeline parallelism (when
possible). For AmoebaNet-f214, we use the first three dimensions of parallelism
in Hy-Fi (spatial, model, and pipeline) when a batch size greater than 1 is
possible. Hy-Fi is 2.2× faster than LP and 1.44× faster than existing pipeline
parallelism. The proposed optimizations to spatial parallelism increases the per-
formance improvement from 1.98× to 2.2×.

(a) Effect of number of fused layers
in Halo-D2 for different layouts

(b) Performance comparison of LP
and spatial parallelism optimiza-
tions

Fig. 10. ResNet-218v2 on 8 GPUs using 1,024× 1,024 images



Hy-Fi 123

(a) AmoebaNet-f214 (b) AmoebaNet-f416

Fig. 11. Performance comparison of LP and different spatial parallelism optimizations
for AmoebaNet on 8 GPUs using 2,048× 2,048 images

5.5 Improving Performance Using Bi-directional Parallelism

The first three dimensions of parallelism do not exploit the free memory and
compute resources available between training steps. Therefore we integrate bi-
directional parallelism and increases its performance by removing the blocking
allreduce operation at the end (Sect. 4.4). This enables the training of larger
batch sizes on the same number of resources and improves the throughput,
which was impossible earlier because of memory requirements. Figure 12 demon-
strates the benefits of a fourth dimension of parallelism (GEMS-MASTER) in
Hy-Fi. We compare our designs against existing layer and pipleine parallelism.
Bi-directional parallelism uses a number of replications to stack more batches
before the weight update. Therefore, we show performance improvements for up
to 16 replications. The improvement in performance was negligible after 16 repli-
cations. In Fig. 12(a), we improve the performance from 2.04× to 2.67× using bi-
directional parallelism. For AmoebaNet-f214 (Fig. 12(b)) and AmoebaNet-f416
(Fig. 12(c)), we show speedup improvement from 2.05× to 2.56× and from 1.56×
to 1.78×. Using our proposed communication optimization (Sect. 4.4), we are
able to improve speedup for replications = 1 from 2.28× to 2.34× and from
1.63× to 1.68× for AmoebaNet-f214 and AmobaNet-f416. For the ResNet-218v2
model, we observed that the improvement in speedup is 1.01× because of a small
number of parameters compared to the AmoebaNet model, which translated into
negligible allreduce time. As we tack more and more compute in MASTER by
increasing the number of replications and batch size, the percentage of allreduce
time decreases. Therefore, we see smaller and smaller speedup improvement for
the communication optimization approach. However, we found that the commu-
nication optimized design always gave better performance than basic integration
and proposed communication optimization improves the overall training perfor-
mance by up to 7%. Therefore, Hy-Fi improves the performance for smaller batch
sizes and enables researchers to use it without compromising on throughput.



124 A. Jain et al.

1, 024 × 1, 024 images 2, 048 × 2, 048 images
(a) ResNet218-v2 on (b) AmoebaNet-f214on (c) AmoebaNet-f416 on

2, 048 × 2, 048 images

Fig. 12. Performance comparison of Hy-Fi’s 4th dimension of parallelism (bi-
directional) with and without communication optimization

5.6 Hybrid Parallelism

We demonstrate the proposed Hy-Fi system’s scalability (Fig. 17) by scaling four
CNNs. This experiment uses all five dimensions of parallelism and respective
optimizations to scale Hy-Fi to 2,048 GPUs. All four evaluated Hy-Fi designs
(Sp-Opt, Master-1-Opt, and Master-16-Opt) achieve near-linear speedup. For
Hy-Fi’s Master-1-Opt, we achieve 246× speedup for ResNet, 244× speedup for
AmoebaNet-f214, and 242× speedup for AmoebaNet-f416 on 2,048 GPUs. The
ideal speedup is 128× for 1,024 GPUs and 256× for 2,048 GPUs since models
are partitioned across 8 GPUs. VGG16 achieves 199× speedup on 1,024 GPUs.
The near-linear scaling of proposed designs can be attributed to the proposed
communication optimization in Hy-Fi and its efficient implementation. Instead
of doing allreduce operation twice in bi-directional parallelism, we do allreduce
once in our proposed communication optimization (Fig. 13).

(a) ResNet218-v2 on 1, 024 × 1, 024 im-
ages

(b) AmoebaNet-f214 on 2, 048 × 2, 048
images

(c) AmoebaNet-f416 on 2, 048 × 2, 048
images

(d) VGG16 on 4, 096 × 4, 096 images

Fig. 13. Scaling Hy-Fi’s optimized designs with all 5 parallelism dimensions on 2,048
GPUs



Hy-Fi 125

5.7 Hy-Fi vs Existing Frameworks

Comparison with TorchGPipe. We compare Hy-Fi against TorchGPipe for
two primary reasons; 1) TorchGPipe has an efficient implementation of pipeline
parallelism in PyTorch and 2) TorchGpipe has memory-level optimizations to
enable the training of out-of-core batch sizes. Since TorchGpipe does not have
multi-node support, we reduced the number of cells and initial filters in the
AmoebaNet-f214 model to enable training on 4 GPUs. Figure 14(a) compares
TorchGpipe’s layer and pipeline parallelism implementations with ours and
shows the benefits of Hy-Fi (1.2×) on the same batch size. It further validates
the efficiency of our baseline implementation for layer and pipeline parallelism.
Figure 14(b) compares the maximum performance attainable by both frame-
works for any batch size and shows up to 1.06× speedup for Hy-Fi.

(a) Performance for Batch Size = 2 (b) Maximum Performance with
any Batch Size

Fig. 14. Performance comparison of Hy-Fi and TorchGpipe for AmoebaNet on 4 GPUs
using 2,048× 2,048 images

Comparison with Mesh-TensorFlow and GEMS. To the best of our knowl-
edge, there is no distributed training framework in PyTorch that implements
spatial parallelism. Therefore, we use Mesh-TensorFlow since it is implemented
in TensorFlow (TensorFlow and PyTorch are the two most popular DL frame-
works). Since GEMS [14] conducted experiments on the same system, we use
their Mesh-TensorFlow and GEMS numbers to compare our proposed designs.

Fig. 15. Comparison with Mesh-
TensorFlow and GEMS for ResNet-
110 on 4 GPUs using 1,024× 1,024
images

Figure 15 compares Hy-Fi against state-
of-the-art Mesh-TensorFlow and GEMS
frameworks. We show 1.13× and 1.4×
speedup for Hy-Fi over GEMS and Mesh-
TensorFlow, respectively. We attempted to
compare results with the FlexFlow frame-
work, but encountered a number of issues
with their PyTorch plugin. First, at the time
of writing, many of the advanced operators/-
modules in the Amoebanet PyTorch model
are not interpretable by the base FlexFlow
model transformation function. Further, we



126 A. Jain et al.

were unable to train on out-of-core batch sizes due to a conflict with the mem-
ory managers of FlexFlow and Legion [4] (which FlexFlow uses for intra-node
communication).

5.8 Next-Generation DNN Designs on Very High-Resolution
Images Using Hy-Fi

Today, Deep learning researchers develop models restricted by the number of
layers for high-resolution images such as 8,192× 8,192 and 16,384× 16,384. Layer
parallelism can be used to train out-of-core models, yet requires a single layer to
fit inside a GPU’s memory, which is a limitation for very high-resolution images.
For example, a single channel 16,384× 16,384 image consumes around 1GB of
memory with FP32 representation. This makes the training impossible for CNNs
using very high-resolution images. To illustrate the possibility of training models
on very high-resolution images, we stress-test the proposed Hy-Fi system by
training the AmoebaNet-f214 model on 8,192× 8,192 and 16,384× 16,384 very
high-resolution images. Figure 16(a) and Fig. 16(b) demonstrate the benefits of
Hy-Fi for both enabling the training entirely, and further accelerating it.

(a) AmoebaNet-f214 on 8, 192 ×
8, 192 images

(b) AmoebaNet-f214 on 16, 384 ×
16, 384 images

Fig. 16. Enabling and accelerating training on very high-resolution images

At least 16 GPUs are needed to train the AmoebaNet-f214 model on
8,192× 8,192 images (Fig. 16(a)); therefore, we use spatial parallelism on 16
GPUs for convolution and pooling layers and layer parallelism on 1 GPU for
the classification module in the AmoebaNet model. By using the optimizations
in Hy-Fi’s spatial parallelism (Sect. 4.1) and bi-directional parallelism (Sect. 4.4),
we are able to further accelerate the training and achieve up to 1.476× speedup
compared to the basic spatial parallelism approach. Further, we accelerate the
training using strong scaling by increasing the number of GPUs to train the
model with the same batch size. We are able to achieve a 2.26× speedup
using strong scaling. In Fig. 16(b), we enable and accelerate the training for
16,384× 16,384 images and achieve up to 1.47× speedup compared to basic spa-
tial parallelism.



Hy-Fi 127

5.9 Verifying the Correctness of Hy-Fi

We have extended the PyTorch and implemented distributed training from
scratch to support proposed designs. Therefore, it is important to show that
Hy-Fi trains the model in the same number of epochs using proposed designs to
give confidence to DL researchers. We trained ResNet-218 v2 CNN for a subset
of Cifar-10 and Places-365 datasets. First, we provide results for the Cifar-10
dataset as it can be trained on a single GPU without distributed DNN train-
ing. Figure 17(a) shows trend of loss function for 100 epochs The objective of
this experiment is to showcase the correctness of Hy-Fi’s proposed designs with
respect to sequential out-of-the-box training provided by PyTorch.

Figure 17(b) and Fig. 17(c) show trend of loss and accuracy functions for 30
epochs when training ResNet-218 v2 model on a dataset with larger image sizes
(512× 512). It cannot be trained on a single GPU as the model becomes out-of-
core for 512×512 image size. We note that DNN training is a stochastic process;
therefore, there can be variations in few epochs whether we use sequential train-
ing or distributed DNN training. However, the overall trend should remain the
same. We ran these experiments multiple times to ensure that the loss function
trend presented here is reproducible.

(a) On a subset of Cifar-10
dataset

(b) On a subset of Places-
365 dataset (Loss)

(c) On a subset of Places-
365 dataset (Acc)

Fig. 17. Verifying the correctness of proposed designs in Hy-Fi by training ResNet-218
v2 on multiple datasets

6 Related Work

The growth of scientific and medical applications requiring massive data sample
sizes [7] has led deep learning researchers to explore new parallelism techniques
that train on such images without high accuracy and efficiency. Krizhevsky’s
work pioneered basic model parallelism techniques in [18]. GPipe [12] employs
pipeline parallelism to enable the training of extremely large models like Amoe-
baNet [22]. Further, PipeDream [10] expands upon GPipe’s pipelining idea by
introducing pipeline parallelism, which combines inter-batch and intra-batch
parallelism to increase overlap among GPUs. Torchgpipe [16] combined the
overall design of GPipe (pipeline parallelism) with some of the eager execution
and memory-aware enhancements of HyPar-Flow into a distributed PyTorch DL



128 A. Jain et al.

framework. GEMS [14] introduced memory-aware partition overlap for out-of-
core models on GPUs, but does not support spatial parallelism. Spatial par-
allelism, however, is a more recent addition to model parallel techniques [9].
LBANN introduced spatial convolutions split across nodes in [6]. However, spa-
tial parallelism support in LBANN doesn’t include pipelining nor bidirectional
training as in the GEMS design. FlexFlow [15] searches through all paralleliza-
tion strategies with simulation algorithms and highlights different DNN par-
allelism dimensions. We attempted to compare our work with FlexFlow but
ran into issues with the framework when handling large images on our system.
Mesh-TensorFlow (MTF) [23] is a framework for distributed DNN training which
partitions tensors across a processor mesh. We summarize these related studies
and their features in Table 1.

7 Conclusion

Convolutional Neural Networks (CNNs) are making breakthroughs in the com-
puter vision area, but are hard to train on very high-resolution images due to
memory and compute constraints. In this paper, we present Hy-Fi - an integrated
hybrid five-dimensional distributed DNN training system that uses different par-
allelism dimensions in tandem and accelerates training for very high-resolution
images. Hy-Fi uses novel communication and compute optimizations for differ-
ent parallelism dimensions and efficiently integrates these dimensions to speed
up training. The proposed design is evaluated with state-of-the-art deep learning
models like AmoebaNet and ResNet. We report up to 2.02× speedup over layer
parallelism and 1.44× speedup over pipeline parallelism using our optimized
spatial, layer, and pipeline parallelism. Further, we improve speedup using opti-
mized memory-aware designs to 2.67× over layer parallelism and 1.68× over
pipeline parallelism. We scale our designs to 2,048 GPUs and show up to 94.5%
scaling efficiency. In the end, we demonstrate training on very high-resolution
images and report up to 1.47× speedup over basic spatial parallelism. We believe
that Hy-Fi will pave a way forward for solving complex and compute-intensive
problems in scientific, digital pathology, and artificial intelligence areas.

Acknowledgement. This research is supported in part by NSF grants 1818253,
1854828, 1931537, 2007991, 2018627, 2112606, and XRAC grant NCR-130002.

References

1. Awan, A.A., Hamidouche, K., Hashmi, J.M., Panda, D.K.: S-Caffe: co-designing
MPI runtimes and Caffe for scalable deep learning on modern GPU clusters. In:
Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pp. 193–205. ACM, New York (2017)

2. Awan, A.A., Jain, A., Anthony, Q., Subramoni, H., Panda, D.K.: HyPar-Flow:
exploiting MPI and Keras for scalable hybrid-parallel DNN training using Tensor-
Flow (2019)



Hy-Fi 129

3. Awan, A.A., Subramoni, H., Panda, D.K.: An in-depth performance characteriza-
tion of CPU- and GPU-based DNN training on modern architectures. In: Proceed-
ings of the Machine Learning on HPC Environments, MLHPC 2017, pp. 8:1–8:8.
ACM, New York (2017)

4. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, SC 2012.
IEEE Computer Society Press (2012)

5. Ben-Nun, T., Hoefler, T.: Demystifying parallel and distributed deep learning: an
in-depth concurrency analysis. CoRR abs/1802.09941 (2018)

6. Dryden, N., Maruyama, N., Benson, T., Moon, T., Snir, M., Essen, B.V.: Improv-
ing strong-scaling of CNN training by exploiting finer-grained parallelism. CoRR
abs/1903.06681 (2019). http://arxiv.org/abs/1903.06681

7. Farrell, S., et al.: Novel deep learning methods for track reconstruction (2018)
8. Gholami, A., Azad, A., Jin, P., Keutzer, K., Buluc, A.: Integrated model, batch,

and domain parallelism in training neural networks. In: Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures, SPAA 2018, pp.
77–86. ACM, New York (2018). https://doi.org/10.1145/3210377.3210394

9. Gholami, A., Azad, A., Jin, P., Keutzer, K., Buluc, A.: Integrated model, batch,
and domain parallelism in training neural networks. In: Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures, pp. 77–86 (2018)

10. Harlap, A., et al.: PipeDream: fast and efficient pipeline parallel DNN training.
CoRR abs/1806.03377 (2018). http://arxiv.org/abs/1806.03377

11. Huang, Y., et al.: GPipe: efficient training of giant neural networks using pipeline
parallelism. CoRR abs/1811.06965 (2018). http://arxiv.org/abs/1811.06965

12. Huang, Y., et al.: GPipe: efficient training of giant neural networks using pipeline
parallelism. In: NeurIPS (2019)

13. Jain, A., et al.: SUPER: SUb-graph parallelism for transformers. In: 35th IEEE
International Parallel and Distributed Processing Symposium (IPDPS), May 2021

14. Jain, A., et al.: GEMS: GPU-enabled memory-aware model-parallelism system for
distributed DNN training. In: 2020 SC 2020: International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), pp. 621–635.
IEEE Computer Society (2020)

15. Jia, Z., Zaharia, M., Aiken, A.: Beyond data and model parallelism for deep neural
networks. CoRR abs/1807.05358 (2018). http://arxiv.org/abs/1807.05358

16. Kim, C., et al.: torchgpipe: on-the-fly pipeline parallelism for training giant models
(2020)

17. Kousha, P., et al.: Designing a profiling and visualization tool for scalable and in-
depth analysis of high-performance GPU clusters. In: 2019 IEEE 26th International
Conference on High Performance Computing, Data, and Analytics (HiPC), pp. 93–
102 (2019). https://doi.org/10.1109/HiPC.2019.00022

18. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks.
CoRR abs/1404.5997 (2014). http://arxiv.org/abs/1404.5997

19. Lee, S., et al.: Interactive classification of whole-slide imaging data for cancer
researchers. Cancer Res. 81(4), 1171–1177 (2021). https://doi.org/10.1158/0008-
5472.CAN-20-0668. https://cancerres.aacrjournals.org/content/81/4/1171

20. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)
21. Petrowski, A., Dreyfus, G., Girault, C.: Performance analysis of a pipelined back-

propagation parallel algorithm. IEEE Trans. Neural Netw. 4(6), 970–981 (1993).
https://doi.org/10.1109/72.286892

http://arxiv.org/abs/1903.06681
https://doi.org/10.1145/3210377.3210394
http://arxiv.org/abs/1806.03377
http://arxiv.org/abs/1811.06965
http://arxiv.org/abs/1807.05358
https://doi.org/10.1109/HiPC.2019.00022
http://arxiv.org/abs/1404.5997
https://doi.org/10.1158/0008-5472.CAN-20-0668
https://doi.org/10.1158/0008-5472.CAN-20-0668
https://cancerres.aacrjournals.org/content/81/4/1171
https://doi.org/10.1109/72.286892


130 A. Jain et al.

22. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. CoRR abs/1802.01548 (2018)

23. Shazeer, N., et al.: Mesh-TensorFlow: deep learning for supercomputers. In:
Advances in Neural Information Processing Systems, vol. 31. Curran Associates,
Inc. (2018)

24. Shoeybi, M., Patwary, M.A., Puri, R., LeGresley, P., Casper, J., Catanzaro, B.:
Megatron-LM: training multi-billion parameter language models using model par-
allelism. ArXiv abs/1909.08053 (2019)

25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

http://arxiv.org/abs/1409.1556

	Hy-Fi: Hybrid Five-Dimensional Parallel DNN Training on High-Performance GPU Clusters
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Challenges in Exploiting Different Parallelism Dimensions in Distributed DNN Training
	3 Limitations in Existing Approaches for Model Parallelism
	3.1 Layer Parallelism
	3.2 Pipeline Parallelism
	3.3 Memory-Aware Synchronized Training (Bi-directional Parallelism)

	4 Proposed Hybrid Five-Dimensional Parallelism System
	4.1 Spatial Parallelism
	4.2 Spatial Parallelism + Layer Parallelism
	4.3 Pipeline Parallelism
	4.4 Spatial + Bidirectional Parallelism
	4.5 Hybrid Data Parallelism

	5 Performance Evaluation
	5.1 Evaluation Platform
	5.2 Evaluation Setup and Performance Metrics
	5.3 Evaluation Methodology
	5.4 Performance Benefits of Spatial Parallelism
	5.5 Improving Performance Using Bi-directional Parallelism
	5.6 Hybrid Parallelism
	5.7 Hy-Fi vs Existing Frameworks
	5.8 Next-Generation DNN Designs on Very High-Resolution Images Using Hy-Fi
	5.9 Verifying the Correctness of Hy-Fi

	6 Related Work
	7 Conclusion
	References




