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Abstract. HPC system users depend on profiling and analysis tools
to obtain insights into the performance of their applications and
tweak them. The complexity of modern HPC systems have necessitated
advances in the associated HPC tools making them equally complex with
various advanced features and complex user interfaces. While these inter-
faces are extensive and detailed, they require a steep learning curve even
for expert users making them harder to use for novice users. While users
are intuitively able to express what they are looking for in words or text
(e.g., show me the process transmitting maximum data), they find it
hard to quickly adapt to, navigate, and use the interface of advanced
HPC tools to obtain desired insights. In this paper, we explore the chal-
lenges associated with designing a conversational (speech/text) interface
for HPC tools. We use state-of-the-art AI models for speech and text
and adapt it for use in the HPC arena by retraining them on a new HPC
dataset we create. We demonstrate that our proposed model, retrained
with an HPC specific dataset, can deliver higher accuracy than the exist-
ing state-of-the-art pre-trained language models. We also create an inter-
face to convert speech/text data to commands for HPC tools and show
how users can utilize the proposed interface to gain insights quicker lead-
ing to better productivity.

To the best of our knowledge, this is the first effort aimed at designing
a conversational interface for HPC tools using state-of-the-art AI tech-
niques to enhance the productivity of novice and advanced users alike.

Keywords: Conversational AI · Performance tools · Speech
recognition · Natural language processing

1 Introduction and Motivation

Recently, High-Performance Computing (HPC) has been empowering advances
in Artificial Intelligence (AI) and Deep Learning (DL). Popular DL frameworks
such as TensorFlow [1] and PyTorch [26] are adopting high-performance mes-
saging libraries for scaling-out workloads on HPC platforms [29]. This trend has
resulted in AI practitioners and enthusiasts attempting to utilize HPC software
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and hardware resources for their applications. It is important for developers of
HPC software subsystems to make this transition smoother by enhancing the
productivity of HPC tools and libraries for the AI community where the exper-
tise in traditional HPC technologies varies significantly.

One area where new and expert HPC users often struggle, alike, is under-
standing the performance of their parallel workloads. Analyzing performance
bottlenecks for HPC and AI workload is a complicated task. This is, however,
critical to improve performance and push boundaries of the state-of-the-art solu-
tions. In this context, the challenge for traditional HPC software, tools, and
frameworks is to provide intuitive and simple—yet efficient—interfaces to HPC
software and hardware resources. The goal here is to reduce the steep learning
curves of HPC tools and libraries.

There are various tools in HPC for monitoring, analyzing, and characterizing
the performance of applications. Profiling tools can be categorized into user-level
profiling and system-level profiling based on their usage and provided privileges.
For example TAU [22], HPCToolkit [18], and mpiP [2] provide user-level pro-
filing insights while Prometheus [4], TACC STATS [11], and LDMS [9] give us
system-level monitoring insights. While HPC tool interfaces are comprehensive
and extensive, they require a steep learning curve for learning terminologies and
visual interfaces making them very hard to use for novice users with little HPC
experience (depicted in Fig. 1). Consider the example of NVIDIA-Nsight [6] or
TAU tools that give very detailed insights. Although their interfaces are excel-
lent, navigating and using their interfaces by using keyboard and mouse still
requires a lot of learning which includes referring to documentation and going
over tutorials and instructional videos - all of which takes time and reduces
overall productivity of end users.

This steep learning curve reduces the productivity of expert users while deter-
ring new HPC users to even try these tools that are important for identifying
and fixing performance bottlenecks. On the other side, most HPC tool users are
intuitively able to express what they are looking for in words or text. Unfortu-
nately, there is no user interface available to HPC tools that can accept such
forms of user input.

There are alternative interfaces that the user can utilize. Surveys of end users
done by firms like [5] and [7] indicate that users are more likely to use a conver-
sational AI interface as opposed to using older keyboard/mouse style inputs. For
example in mobile devices graphical user interface (GUI) exists but, over time
the users are more interested to perform daily tasks through Alexa or Siri or sim-
ilar conversational interfaces. This shows that once the capability is introduced
the users are likely to benefit from it as part of future interface expansion as
conversational interface is more intuitive. Unfortunately, no interface exists that
allows end-users to interact with state-of-the-art HPC tools using speech/text.

1.1 Contributions

In this paper, we take up this challenge and attempt to minimize the learning
curve and complexities needed to use state-of-the-art performance profiling tools.
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Our proposed solution, titled Conversational AI Interface (CAI) exploits
Automatic Speech Recognition (ASR) and Natural Language Understanding
(NLU)—using DL behind the scenes. CAI has a novel Conversational User Inter-
face (CUI) powered by AI/DL to provide relevant and contextual information
to end users. In CUI, while ASR models convert spoken language to text, NLU
classifies the text into an intent (the overall objective of the query like network
topology) and assigns slots (optional arguments to customize the given intent)
thereby allowing CAI to convert the conversational AI input to a format that
is understood by the profiling tool. Thus, CAI uses a combination of ASR and
NLU to realize a AI-based conversational interface for profiling tools that allows
users to interact with these tools using ❶ text and ❷ speech. Both of these novel
interfaces provide solutions to increase the productivity of users by reducing the
learning curve and hiding the complexity of advanced tool interfaces. Note that
the aim is not to replace existing GUI-based interfaces for HPC tools but to sup-
plement t hem and enhance the overall user experience. Further, to demonstrate
the feasibility of our approach, we take one HPC profiling tool, OSU INAM [8],
and create a conversational AI interface for it as a sample case study. Figure 1
depicts a high-level overview and motivation for CAI. As depicted in Fig. 1, we
believe such a solution will result in productivity benefits for novice and expert
users alike.

State of the Art Proposed

HPC Tool Users

Novice Expert

HPC Tool Users

Novice Expert

Text Speech
Proposed User Interac�on

Novice Tool User
Gains Insight

Experts Tool User
Gain Insight

Expected
Produc�vity
Benefits

for Novice Tool
Users

Values Visualiza�on Levels
Tool Naviga�on Interface

Scopes

Time to Learn Tool Interface
for Novice Tool User

Exis�ng User Interac�on
Keyboard Mouse

Touchpad

Values Visualiza�on Levels
Tool Naviga�on Interface

Scopes

Touch Screen Proposed Conversa�onal AI Conversion Layer

Ti
m
e
to

In
sig

ht
s

Time

Time to
Insights

Novice Tool User
Gains Insight

Experts Tool User
Gain Insight

Expected
Produc�vity Benefits
for Expert Tool Users

Fig. 1. Comparison HPC tool usage for state-of-the-art and CAI. Insight#1: On the
left side, there is a different overhead in getting performance insight for expert vs novice
users but the proposed designs would eliminate this overhead. Insight#2: By using text
or speech interface the response time for both users will be lower.

To summarize, the key contributions of this paper are as follows:

1. Proposed an AI-based conversational interface for HPC profiling tools that
allows users to interact using speech/text.
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2. Designed and created the first speech and text datasets that contain HPC
specific terminologies for training ASR and NLU models to be used by the
HPC community.

3. Fine-tuned Speech2Text and Wav2Vec ASR models with the proposed HPC
dataset to convert a speech command to a text command and trained Joint-
Bert and StackPropagation NLU models to understand the context of text
command.

4. Improved error rate for Speech2Text DL model from 64% to 2.8% for HPC
dataset and 27% to 12% for HPC+TIMIT dataset.

5. Reported 93% accuracy for intent classification and 0.8773 score (F1 score)
for slot detection using JointBert DL model for NLU on HPC dataset.

6. Compared the performance of DL inference on client/end user systems (e.g.
laptops, desktops) that use HPC profiling tools. Also, implemented a central-
ized server for inferring on an in-house HPC cluster to reduce the latency for
slower client/end user systems.

7. Implemented a simple web-based interface for a sample profiling tool and
provided visibility into the intermediate results to better understand the data
flow and final output.

8. Deployed and tested CAI and the CAI enhanced tool OSU INAM on a state-
of-the-art production HPC system and evaluated the ability of CAI to cor-
rectly interpret speech/text input from multiple different volunteer users and
display the correct visualization output from the HPC tool.

The rest of the paper is organized as follows: Sect. 2 describes the various
challenges we address in this paper. Section 3 provides background on relevant
technologies. Section 4 presents our design and implementation for CAI to enable
AI-powered conversational user interface for a selected HPC tool. Section 5 eval-
uates our proposed framework via different performance metrics. Section 6 covers
running CAI on client side versus centralized server deployment, trade-offs for
speech model selection, explainable flow of CAI, and extending our designs to
other HPC tools. Section 7 discusses the related work in the community. Section 8
concludes this paper.

2 Challenges in Exploiting Conversational AI for HPC
Tools

We highlight the AI-specific and System-specific challenges associated with cre-
ating a conversational AI interface for HPC tools in this section.

AI-Challenge-1 (AI-#1): Creating Text and Speech Dataset with HPC
Terminologies/Abbreviations—Each scientific field including HPC has its
own terminologies and abbreviations—like Central Processing Unit (CPU), Host
Channel Adapter (HCA)—that are typically well-understood in the community.
We will refer to these as HPC jargon in the rest of the paper. Currently, available
language datasets naturally do not provide coverage of HPC jargon. To develop
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NLU/ASR DL models, the first step is to create such textual and speech-based
datasets. To the best of our knowledge, these kinds of datasets do not exist today.

AI-Challenge-2 (AI-#2): Custom ASR Model for HPC—The perfor-
mance, in terms of accuracy, of existing off-the-shelf ASR models degrades when
the input contains HPC jargons. Figure 2 shows a real example of two sentences,
representing a typical interaction of a user with an HPC profiling tool, being
transformed to wrong texts by existing ASR models. Our evaluation of state-of-
the-art ASR models, presented later in Table 2, depict that the Word Error Rate
(WER) for such input data is 64.6 and 77.3. For natural languages, the WER is
2. This clearly motivates that need to retrain and fine-tune existing ASR models
for HPC-specific dataset.

Fig. 2. Real Output of Automatic Speech Recognition (ASR) by Speech2Text model
for two HPC phrases - By using original ASR model, HPC phrases on the left would
transform to wrong text (in red) on the right (Color figure online)

AI-Challenge-3 (AI-#3): Custom NLU Model for HPC—Existing off-
the-shelf NLU models do not have intents and slots required in HPC tools. In
fact, there is no existing model nor dataset for NLU for HPC. This motivates
the need to retrain off-the-shelf NLU models with hyper parameter tuning using
HPC dataset capable of performing well for this kind of input data.

System-Challenge-1 (Sys-#1): Defining Interface between Conversa-
tional AI and HPC Tools—A conversational AI interface to a tool requires
a layer that can translate and communicate the result of speech/text input from
the user to a format the tool understands. This involves labeling missing argu-
ments for specific user intents and proper mapping of these to the tool per-
formance insight features. User input can have multiple values with different
formats and the interface should correctly distinguish them. Considering that
HPC tools are written in variety of programming languages and have their own
framework, it is challenging to ascertain the communication interface, or stan-
dard, between the NLU module and the HPC profiling tool.

System-Challenge-2 (Sys-#2): Integration of Conversational AI to
HPC Tools—Another system specific challenge is the integration of NLU+ASR
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models into existing profiling tools. The conversational interface component
needs to be modular in order to accommodate better NLU and ASR models
in future without a significant revamp. Also, we plan to evaluate the automation
of this integration process for an existing profiling tool. A challenge here is to
ascertain and minimize the changes needed to enable the end-to-end pipeline.

3 Background

3.1 Deep Neural Networks Training

Deep neural networks (DNNs) are multi-layer variants of traditional Artificial
Neural Networks (ANNs). Each layer in DNN is a collection of basic mathe-
matical functions like weighted summation, called neurons. The forward pass is
used to make predictions that are compared with actual output to compute the
error. Errors are used to adjust the weights in the backward pass. This process
continues till set iterations or till there is a desired loss/convergence. One pass
over the entire dataset is known as an epoch, each model requires dozens or even
hundreds of epochs to converge.

3.2 Deep Learning Frameworks

Deep learning frameworks are the packages for easy development of the Deep
Learning models. They support building and training models for both GPUs
and CPUs with built-in libraries for model definition. PyTorch is a well-known
open-source Deep Learning framework with define-by-run approach. It provides
libraries for defining layers in deep learning models, which developers can use
while building their model and it handles the remaining work in training and
inferencing of the model.

3.3 OSU INAM

OSU INAM [23] is a HPC network communication profiling, monitoring, and
analysis tool designed to provide a holistic online and scalable insight for the
understanding of communication traffic on HPC interconnect and GPU through
tight integration with MPI runtime, job scheduler, and MPI-based application
[19]. INAM runs on one node in the cluster and remotely gathers information
from HPC layers in scalable manner [8]. It provides insight and profiling for var-
ious HPC users like administrators, software developers, and domain scientists.
INAM is capable of gathering and storing performance counters at sub-second
granularity for very large clusters (≈2,500 nodes). It supports gathering met-
rics from the PBS and SLURM job schedulers. INAM has been deployed at
various HPC clusters and downloaded more than 4,400 times from the project
website [23].
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4 Design and Implementation

In this Section, we elaborate our design and implementation to enable the con-
versational interface for HPC profiling tools. Our goal is to remain as modular as

Fig. 3. High level design and flow of trans-
forming HPC user query into performance
visualization

possible and integrate the proposed
conversational interface for an exist-
ing profiling tool (Reference deleted
to follow the double-blind policy).
Although we choose one HPC tool,
the design choices and implementa-
tions for NLU and ASR are portable
to other tools. However, the interface
and integration components require
some adjustment to port it to another
HPC profiling tool (refer to Sect. 6.4
for more info). Figure 3 shows the high
level perspective of our design compo-
nents that we describe in this section.

4.1 Terminologies and Performance Metrics

Terms and legends used in this paper are explained below.

– ASR: Automatic Speech Recognition
– NLU: Natural Language Understanding
– Intent: An intent is high-level goal that the user is trying to accomplish
– Slot: Optional arguments that customizes the intent.
– TIMIT Dataset: A publicly available speech dataset consisting of 8 major

American English dialects.
– HPC-ASR Dataset: An in-house ASR dataset created by us for HPC ter-

minologies.
– HPC-NLU Dataset: Slots and Intents dataset created by us for training

NLU models for HPC profiling tools.
– Speech Query: This is an audio that is passed to the ASR and NLU models

to generate the visualization. This is spoken by the user. It is one of the ways
in which the user can interact with CAI.

– Text Query: This is a text that is passed to the NLU model to generate the
visualization. This is typed by the user on the web UI. This is the other way
in which the user can interact with CAI.

– WER: Word Error Rate is the performance metric commonly used to evalu-
ate the ASR models. WER is a metric that works by comparing words in the
predicted text and the reference text.
The formula is as follow:
WER = (S+D+I)

N where “S” is the number of substitutions, “D” is the num-
ber of deletions, “I” is the number of insertions, “C” is the number of correct
words, and “N” is the number of words in the reference (N = S + D + C).
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– F1 score: The performance metrics used to evaluate the NLU models for the
slot accuracy and classification accuracy for intents.

F1score =
2 ∗ (precision ∗ recall)

Precision + Recall
Accuracy =

number of correct predictions

total number of predictions

4.2 Generating HPC Dataset for Speech and Text

To address AI-#1 (Sect. 2), we create an HPC dataset for text and speech con-
taining HPC terminology. For HPC-dataset, we generated basic queries and
labeled their slots and intents. Then, we developed synonyms for HPC terminolo-
gies (like CPU, Core, Processor, Central-processor, host-processor for CPU) and
English accents are covered by TIMIT. Then we used the synonyms to generate
combinations of queries and labeled their slots and intents in human-supervised
manner. Both HPC-NLU and HPC-ASR output has been human supervised.
The dataset contains four intents, each corresponding to common profiling tool
usages: 1) node usage, 2) net usage, 3) process usage, and 4) statistics. The
semantic label for each utterance is a dictionary with the intent and a number
of slots. An example of a command and its corresponding semantics is shown
in Fig. 13 under the slot detected box. The scripts are produced with a few
variations of phrases in HPC terminology for each of the intents and recorded
from 12 different people with 6 dialects by reading the scripts. The recordings
are denoised and verified through human supervision for all of the HPC-ASR
database. We labeled the intents and slots for the text in the dataset to create
HPC-NLU dataset. We randomly divide the HPC-NLU and HPC-ASR datasets
into two subgroups each, one for training (70% of total) and another for testing
(30% of total).

4.3 Fine-Tuning Automatic Speech Recognition (ASR) for HPC

To address AI-#2 (Sect. 2) we need a DL model which can understand the audio
and transcribe it to a meaningful sentence. We selected and trained two off-
the-shelf models - Wav2Vec [12] and Speech2Text [30] where the vanilla (base)
models were pre-trained on LibriSpeech ASR corpus, a dataset consisting of
approximately 1,000 h of English speech for ASR. The architecture of the models
is shown in Fig. 4. We train the models with hyper-parameters tuning on a
combination of our in-house HPC-ASR dataset and TIMIT [15]. The TIMIT
dataset is used to accommodate different dialects of users and enhance the speech
utterance. For Speech2Text and Wav2Vec models, the texts are lower-cased,
included with numbers, and tokenized using SentencePiece [20]. By using the
HPC dataset create in Sect. 4.2, our models are able to handle complex HPC
phrases for understanding HPC user query. Figure 5 shows the same example
in Sect. 2 being transformed to the correct text after fine-tuning Speech2Text
ASR model on HPC+TIMIT dataset. We tested our models in 4 configurations
in Sect. 5.3 of the base vanilla model, the model trained on HPC dataset, the
model trained on TIMIT dataset, and the model trained on a combination of
HPC and TIMIT datasets.
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Fig. 4. Architecture of models used for ASR in our proposed design.

Fig. 5. Real Output of customized Speech2Text model with the two HPC phrases in
Fig. 2 where the queries are transformed correctly

4.4 Designing a Natural Language Understanding (NLU) Scheme
for HPC Tools

To address AI-#3 (Sect. 2) we train a DL model which can understand and
extract the HPC-related information from the output of ASR as text or user’s
input. The important information to extract from the text is the intention of the
user, HPC keywords, and numeric or identity values in the text that have differ-
ent format. For example, the job number of “453” should not translate as “four
five three” or “five hundred and fifty three”. We trained two attention-based DL
models (StackPropagation and JointBert) on HPC-NLU dataset. Figure 6 shows
the architecture of StackPropogation and JointBert models for NLU. These mod-
els trained to perform intent detection and slot filling by taking a sentence as
a sequence of tokens and assign a label to each token. Based on the tokens the
models also detect the intention of the whole sentence. The output of NLU mod-
els is a list of Tokens with their assigned labels. This list enables us to extract the
required keywords and values, and intent helps in identifying the corresponding
visualization in the next modules.
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Fig. 6. Models used in CAI to understand the text query and predict intents and slots
for HPC profiling tools.

The models use manually labeled HPC terminology to to label the tokens
along with the values in the text. We followed prefix format for slot labels, this
way phrases that are set of tokens in sequence are understood as representing
the same entity (e.g. MPI process counter is labeled as B-process I-process as
these two tokens in the sequence represent the same entity). Using the intent,
slots labeled, and corresponding values for slots, we identify the task or request
in the sentence as discussed in Sect. 4.5.

4.5 Interface Between Conversational AI and HPC Tools

As mentioned in Sys-#1 (Sect. 2), we need to design an interface to map the
processed user query to the corresponding HPC tool visualization. NLU han-
dles and labels the existing slots and values for the given input based on the
speech/text query. The output of NLU is an intent and a list of label-value
pair for each word where the label is slot or utterance as shown in Fig. 13. The
interface layer should process the intent and corresponding slots to generate a
specific tool-related request to the HPC tool. Figure 7 shows the processing steps
for transition from NLU outcome to visualization in green. Each box is a sepa-
rate modules, implemented as a stand-alone python module shown in Fig. 7. We
walk through the interface in the order of the boxes in Fig. 7.
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Fig. 7. Detailed modules of interface and inter-
action for our design

Processing of Intent and
Slots: The first module han-
dles three tasks for processing
of intents and slots as follows:
First, the interface layer handles
missing slots and values as there
could be missing slots when the
user requests a profiling intent.
For example, if a user asks for
visualization of hardware coun-
ters but not specify the metric,
considering we have several hard-
ware counters then we assign uni-
cast counters by the default. Sec-
ond, this module handles incor-
rect slots and values for different
queries and guarantees that from the tools perspective all arguments for decision
making exist. Third, this module standardizes the format of different values like
time, date, and various HPC measurements. For example, the user can request
an insight for the last hour.

Visualization Mapper: This module decides on scope and level of visual-
ization including the chart types and which HPC tool visualization we should
select. The visualization level can be cluster, job, node, or process level. The
scope could be the time frame that the user is requesting. For making the map-
ping of request to the corresponding visualizations, the visualization mapper
needs input from available visualizations from the HPC profiling tool. Hence,
the visualization mapper transforms intents and slots into corresponding perfor-
mance visualizations. This encapsulates the time to train the user for navigating
through different pages and sections of the tool. The alternative design choice
would be to make the mapping at the tool level and pass the slots and intents to
the tool. Our decision to do the visualization mapping in the interface helps to
have fewer changes to the HPC profiler tool as fewer arguments would be passed
to the tool by handling the decision at this level.

URL Generation: By this step of CAI the corresponding visualization and
values are determined. The next step is to create a connection between the HPC
tool and our python-based components. HPC profiling tools and the interface
modules have different programming environments. The format and method to
communicate between HPC tools and DL components is critical as it imposes the
required changes to the HPC tool components to receive and process it. For our
paper, the HPC tool supports web access and there are controller in place to han-
dle different web pages and visualizations. Based on this, we decided to exploit
this option and generate a Uniform Resource Locator (URL) to interact with the
HPC tool. By passing the generated URL to the tool, the tool process the request
and direct it to the corresponding web page to show the visualization. All visual-
ization parameters required by the tool are merged into the URL as parameters
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separated by “&”. For example, the partial URL for viewing cluster utilization
for historical view of job ID 1456 is “/network?view = historic&jobid = 1456”.
All the mentioned interface modules run as a python server listening to incoming
voice/text requests from HPC tools to respond with appropiate URL.

4.6 Integration of Conversational AI to HPC Tools

In this section, we present our solution to address Sys-#2 that aims for inte-
gration of CAI interface into an existing profiling tool. By having a URL as
input that gives the arguments and visualization selection for our tool, we aim
to integrate The CAI Interface into the HPC profiler tool. Figure 7 shows the
processing steps for transition from NLU outcome to visualization in blue.

The modifications to the tool are as follows: 1) The tool needs to record the
voice and send it to CAI Interface 2) the tool needs to receive the URL respond
and process it. We aim to support Web UI to allow users to benefit from CAI
on different platforms and assures accessibility of CAI. For the second task, the
flow is as follows: The HPC controller is a Spring Boot controller to redirect the
response URLs to corresponding web pages inside the tool. Then, the web UI
generator adjusts the values and scopes based on the user parameters extracted
from URL for web page initialization. The Data Access Object generates the
query to retrieve the profiling data from the time-series database and pass to
visualization to plots the visualizations. The Data Access Object and Visual-
ization have not been changed. The only changes are required for the first two
components of the HPC tool controller and Web UI Generator. In the case that
the target HPC tool supports web-UI the changes are minimal.

5 Performance Evaluation

5.1 Evaluation Platform

We conducted our experiments on a 58-node cluster with a combination of nodes
of 28 Intel Xeon Broadwell CPU running at 2.40 GHz with NVIDIA Volta V100-
32 GB or Skylake CPU running at 2.60 GHz with K80 nodes GPUs. Each node
is equipped with a 35 MB L3 cache. The cluster is equipped with MT4119
ConnectX-5 HCAs and Interconnected using SB7790 InfiniBand EDR 100 Gb/s
Switches, each having 36 ports.
MPI Library: MVAPICH2 v2.3 [3]
Deep Learning Framework: PyTorch [26] is used to define and train DNNs
for ASR and NLU.
Deep Neural Networks: Speech2Text [30], Wav2Vec [12], JointBert [13], and
StackPropagation [27].
Datasets: LibriSpeech [25] and TIMIT [15], HPC-ASR Dataset, HPC-NLU
Dataset
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Table 1. Hardware details of evaluation platform used to conduct the experiments

Architecture Type Cores Speed (GHz) Label

Broadwell (Server) CPU 28 2.4 BDW

SkyLake (Server) CPU 28 2.6 SKX

K80 (Server) GPU 4992 (Dual socket) - K80

V100 (Server) GPU CUDA: 5120 Tensor: 640 - V100

Intel Core i5 8th gen (Surface Pro) CPU 4 1.8 Client-1

Intel Core i7 11th gen (HP Pavillion) CPU 4 2.8 Client-2

Intel Core i5 (MacBook Pro) CPU 4 1.4 Client-3

5.2 Experimental Methodology

In this section, we describe our evaluation methodology used to conduct exper-
iments. In Sect. 5.3, we first individually test the performance of pre-trained
vanilla ASR models (Speech2Text and Wav2Vec) on our HPC-ASR dataset and
the publicly available TIMIT dataset. Then, we fine-tune ASR models using
HPC-ASR and TIMIT training datasets to achieve better WER on the test set.
Then we train NLU models (JointBert and StackPropagation) from scratch using
our HPC-NLU dataset in Sect. 5.4 to predict the intents and slots for generating
appropriate visualizations for the given query. We used two types of validation
test, some new queries that did not exist in the training and the other queries
are synonym versions of training queries. In Sect. 5.5, we evaluate the perfor-
mance of both ASR and NLU models to get the end-to-end performance for a
speech query. Section 5.6 provides the overhead of deep learning inference for a
speech and text query for variable query length on client devices. To improve the
performance of deep learning inference for slow client devices, we transfer the
inference to a python server running on our in-house cluster with GPU nodes.
In Sect. 6.2, we compare the inference time and overall request time for client
and centralized python server running on RI2 cluster. In Sect. 6.3, we show the
explainability of our proposed conversational UI by providing a detailed flow of
information from speech to URL generation.

5.3 ASR Results

In these experiments, we evaluate the performance of pre-trained vanilla ASR
models (Speech2Text and Wav2Vec) on our HPC-ASR dataset and publicly
available TIMIT dataset. As discussed in Sect. 2, the existing ASR models are
not suitable for CAI conversational needs as models do not recognize HPC termi-
nologies. Our HPC-ASR dataset has HPC terminologies and the publicly avail-
able TIMIT dataset has different accents, which will make our proposed design
available to a wide range of speakers. Figure 8(a) and 8(b) show the fine-tuning
(training) of Speech2Text and Wav2vec on three combinations of two datasets
(training on HPC, TIMIT, and HPC+TIMIT datasets). Final test WER on
TIMIT and HPC test set is shown in Table 2.
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Table 2. Evaluation of Automatic Speech Recognition (ASR) models using Word Error
Rate (WER) - Lower WER is better

Train Dataset Dataset used for Test

HPC TIMIT
Speech2Text Wav2Vec

HPC

WER

HPC+Timit

WER

HPC

WER

HPC+Timit

WER

✗ ✗ 64.613 27.53 67.92 27.16

✗ ✓ 71.15 33.18 77.38 35.43

✓ ✗ 2.85 21.8 3.24 65.6

✓ ✓ 2.92 12.18 3.09 14.24

The first row of the table constitutes the base vanilla models which are pub-
licly available trained versions of speech2text and Wav2Vec (trained on Lib-
riSpeech). The lower WER shows that training on our HPC dataset increases
the accuracy of the models to HPC terminologies and combining our training
with the TIMIT dataset gives us a better-generalized model when comparing the
WER of the same row of the table for different test datasets. As WER depends
on the dataset being used, comparing the numbers on the same column shows
that using the HPC dataset leads to better (lower) WER. TIMIT dataset has
several accents; therefore, we see higher WER for the TIMIT+HPC dataset,
but it makes the ASR model more general and applicable to a wide variety
of users. Speech2text performs slightly better than Wav2Vec and hence we use
speech2text as the default ASR model.

Fig. 8. Training loss for ASR models fine-tuned on different combinations of HPC ASR
and TIMIT datasets. We show that both models are trained till the improvement in
training loss is negligible.
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5.4 NLU Results

Fig. 9. Training loss of JointBert and Stack-
Propogation models trained on HPC-NLU
dataset for NLU. We train models till the
improvement in training loss is negligible.

As discussed in Sects. 2 and 4.4,
no pre-trained NLU model is avail-
able for HPC profiling tools; there-
fore, we trained NLU models (Joint-
Bert and StackPropagation) from
scratch using our HPC-NLU dataset.
In this section, we evaluate the
accuracy of predicting intents and
filling slots for our trained NLU
models versus human-supervised and
labeled HPC-NLU dataset. The out-
put of the model is compared to
actual human-supervised HPC-NLU
output, that contains synonyms, to
calculate accuracy and F1-score.
Figure 9 shows the training of JointBert and StackPropagation on HPC-NLU
dataset. Table 3 shows the final test accuracy and F1 score for two StackProp-
agation and JointBert models on the HPC-NLU test set. These two models are
trained on the dataset to understand the text and detect the intent and slots in
it. We choose JointBert as our defualt model for NLU module as it gives better
accuracy for both intents and slots.

Table 3. Evaluation of natural language understanding deep learning models for label-
ing slots and intents - higher value is better

Model F1 Score for slots Intent Accuracy

StackPropagation 0.775 91.79%

JointBert 0.8773 93.36%

5.5 ASR + NLU Analysis

In this experiment, ASR and NLU modules are evaluated together as a pipeline
to see if a user provides a speech query how accurately can we detect and assign
slots and intents based on our models. Therefore, we use our trained NLU and
ASR models to calculate inference accuracy. Table 4 shows the results on end-
to-end inference. This shows the results of the chosen NLU model (JointBert)
based on the output of our trained ASR models. From Table 4 it can be seen
that the F1 score for slots is marginally better when Wav2Vec is used as the
ASR model and the intent accuracy is marginally better when speech2text is
used as the ASR model. In this work, we use Speech2Text with JointBert to
make inference for speech queries. In future, we will use ensemble methods to
get better accuracy by training multiple instances of the same model and taking
majority decision to allot intent and slots.
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Table 4. Evaluation of ASR+NLU pipeline with JointBert as the NLU model. Higher
value is better

ASR Model F1 Score for slots Intent Accuracy

Speech2Text 0.8295 92.92%

Wav2Vec 0.8349 92.47%

5.6 End-to-End Overhead

Fig. 10. Inference latency evaluation of ASR+
NLU models on client side for 15 different queries
consisting of different words

In this experiment, we aim to
evaluate the overhead of our full
pipeline: from user speech/text
input in Sect. 5.5) to generat-
ing URL and passing it to the
tool controller and Web UI gen-
erator. Since different visualiza-
tions vary in rendering time
and it is tool-specific imple-
mentation, the numbers do not
include the timing for rendering
visualizations. Figure 10 show-
cases the time taken to process
speech and text queries of vary-
ing lengths on an client device.
In general, it can be seen that the time taken to process speech increases with
an increase in the number of words in the query. This is expected as the ASR
model takes an input of the varying size and hence bigger inputs take more time.
The time taken to process a text query is more or less constant as the input size
of the NLU model is fixed.

6 Discussion

6.1 Trade-Offs for Converting Speech to Intent

In our design, we use speech-to-text (ASR) followed by text-to-command (NLU)
for processing user inputs and mapping them to the tool intents. The alternative
approach for speech processing is to directly use speech-to-intent models. In this
section, we discuss the trade-offs between the two approaches. We selected ASR
+ NLU approach since using speech-to-intent model proposes some problems.
By having Speech-to-intent model working then any changes require the whole
model to train again. In summary, our selection is due to the following reasons.
First, speech-to-intent model requires creating a speech and intent dataset for
all the tools and HPC applications and map each one to the output intent and
slots which will affect modularity and portability of CAI as it limits replacing
ASR and NLU models with state-of-the-art models for maintenance. Second, a
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different text-to-intent-model is required to be trained again for handling text
inputs. Third, the speech-to-intent models are still upcoming as we discuss in
related work section.

6.2 Comparison of Client-Side vs Server-Side Inference in CAI

In this section, we evaluate two choices of running CAI server on the client or
server. If the server is running on client then the inference will be processed on
the user computer to get the URL. In the other case, the inference will be done
by sending the user’s input to a centralized server.

(a) Speech Query (b) Text Query

Fig. 11. Overall inference time comparing client and server configurations. Note that
in Fig. 11(b) the transfer time for text is from client to server is and is thus hard to
see. However, it is included

Figure 11 shows the end-to-end inference time versus the number of words in
a query for both Speech Query and Text Query on Client devices and a Central
Server. The Speech query end-to-end inference time on client device includes
time taken by ASR to convert to transcript + time taken by NLU to extract
intents and slots. Similarly total inference time for Text query is the time taken
by NLU to extract intents and slots. End to end inference time for the server
has time taken for transfer from client to the server in addition to that of time
taken by client devices for both Text and Speech queries.

Table 5. Inference latency of CAI for user input processing comparing client versus
central server for 100 iterations - the client nodes have a “Client” label

Type of device Speech query (secs) Text query (secs)

Client-1 1.2914 0.1243

Client-2 0.7409 0.0994

Client-3 0.7949 0.1406

BDW 0.4361 0.0320

SKX 0.4279 0.0291

K-80 0.2825 0.0195

V-100 0.2791 0.0121
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Table 5 shows the inference time for speech query and text query on 3 Client
devices and Central server nodes like BDW, SKX, K-80, and V-100. Speech query
inference time includes time taken by ASR to convert to transcript + time taken
by NLU to extract intents and slots+ time taken by python server to generate
URL and for Text query, it is the time taken by NLU to extract intents and
slots+ time taken by python server to generate URL. The inference time on the
server is less compared to that of on client devices. We can see that the shortest
inference time is obtained on V100 nodes of the server.

6.3 Insights for Getting Explainable Flow of CAI

Fig. 12. Screenshot of developed UI for CAI
showing various methods of getting the user
input in different forms and presenting the
option to get flow insight shown in Fig. 13

It is important to show the clear
transition between components from
input (speech or text) to the final
output (visualization). Having this
insight implemented and transparent
to the user makes our pipeline pro-
cess more explainable as results of
the solution can be understood by
humans, to show which decision was
made based on the input provided
to each design module and enables
understanding the decision making
process.

Figure 12 shows the web UI for
the proposed approach where the
user can choose to get insights into
the flow of CAI by selecting text or
voice query box with “insights” then
the user gets Fig. 8 that shows the
step by step flow with details of each
step along with the performance visualization page. We can see that in the figure
how CAI converts “show me the virtual memory usage for job 727384” as a voice
to outputs for NLU and ASR including the intent and slots and finally make
the visualization selection based on intermediate values (dark green). The final
URL can be tested in the “URL Test”.
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Fig. 13. Screenshot of the flow of information in proposed approach. The numbers show
the latency of ASR and NLU modules and the final number in URL shows end-to-end
latency.

6.4 Integrating Other HPC Tools with CAI

In this Section, we describe the changes required to make CAI work with other
HPC tools. This can be used as take-away for integrating other HPC tools with
CAI. Note that either steps 4 or 5 need modifications to the tool as a tool can
be web-based (online) or stand-alone (offline) but not both.

1. If the tool uses tool-specific abbreviations and terminologies then the new
samples containing those words need to be added to HPC-ASR and HPC-
NLU dataset following step taken in Sect. 4.2 to add more intents and queries.
Otherwise, step 2 can be skipped.

2. Use updated dataset to fine-tune ASR Sect. 4.3 and NLU Sect. 4.4 models to
recognize new words in the queries.

3. Update interface layer of CAI to accommodate tool-specific variables and
visualization types to provide the visualization mapper (Sect. 4.5) knowledge
of different visualizations supported by the tool.

4. Web-based tool modifications: Tool needs to implement a unique URL for
each visualization chart so that CAI can customize the charts through URL
based on user’s input.

5. Offline tool modification: The tool needs to parse the URL to get the values
and pass them to the existing Data Access Object to fetch and visualize.
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7 Related Work

Several studies [21,24,28] exist in literature that use an end-to-end based app-
roach to convert the voice directly to intent and slots, combining ASR and NLU
into one model however the trade-off is discussed in Sect. 6.1. Another approach
is to combine ASR and NLU models to understand the context of speech sample.
Several state-of-the-art ASR models [10,12,30] have been proposed in literature
that provide good performance for publicly available dataset and common words
found in day-to-day conversation. However, we need to fine-tune these ASR mod-
els to recognize technical terms found computer science and HPC. Similarly, NLU
models [13,17,27,31,32] are trained for publicly available datasets like Air Travel
Information System (ATIS) [16] and SNIPS [14]. Hence, to develop a system for
HPC profiling tool, we need to generate our own dataset and retrain models
from scratch to get better accuracy. To the best of our knowledge, this is the
first work that develops a conversational AI-based interface for HPC profiling
tools.

8 Conclusion and Future Work

In this paper, we explored the challenges associated with designing a conversa-
tional (speech/text) interface for HPC tools. We used state-of-the-art AI models
for speech and text and adapted it for use in the HPC arena by retraining them
on new HPC datasets we created. We demonstrated that our proposed model,
retrained with an HPC specific dataset, delivers higher accuracy than the exist-
ing state-of-the-art pre-trained language models. We also created an interface to
convert speech/text data to commands for HPC tools and show how users can
utilize the proposed interface to gain insights quicker leading to better produc-
tivity. We also deployed and tested CAI and the CAI enhanced OSU INAM on
a state-of-the-art production HPC system and evaluated the ability of CAI to
correctly interpret speech/text input from multiple different volunteer users and
display the correct visualization output from the HPC tool. To the best of our
knowledge, this is the first effort aimed at designing a conversational interface
using state-of-the-art AI techniques to enhance the productivity of novice and
advanced users of HPC tools alike.

As part of future work, we plan on releasing various components developed
as part of this paper including 1) the HPC-ASR and HPC-NLU datasets, 2)
the retrained ASR and NLU models, 3) CAI, and 4) the enhanced OSU INAM
profiling tool with support for CAI. We also plan to extend CAI to other popular
profiling tools.
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