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Abstract—Modern HPC systems built with emerging multi-
/many-core architectures have high core-counts and deep memory
hierarchies. It is challenging to design communication libraries on
these systems with the conventional wisdom of using OS processes
as the basic building block to build communication algorithms.
Instead, the next generation of communication libraries should
treat hardware as the “first-class citizen” and utilize the un-
derlying topology as the basic building block. Driven by this
overarching principle, we present a framework for Optimized
Shared Memory Processing (OSMP) and communication for
these platforms. An abstract representation of the underlying
hardware topology is maintained by OSMP in the form of a
topology tree, which is later exploited by runtime libraries to
execute communication operations in a topology-aware manner.
This can be done by simply traversing the topology tree with
an existing communication primitive as the base-case. OSMP
does not mandate any changes to the original communication
algorithm. We focus on collective operations such as barrier,
reduction, and broadcast as candidate communication patterns.
We demonstrate the efficacy of OSMP by decoupling the im-
plementation of collective algorithms and system topology and
evaluate it on four state-of-the-art multi-/many-core architectures
: Intel Cascade Lake, AMD Rome, ARM A64fx and IBM
POWER9. Results show that even the basic algorithms can be
made topology-aware by exploiting OSMP. This provides sig-
nificant benefits over state-of-the-art algorithm implementations
for intra-node communication. Using various micro-benchmarks
and applications, we demonstrate that our proposed designs
can achieve up to 7.8× improvements at the micro-benchmark
level, and 15% for applications over state-of-the-art intra-node
collective communication designs employed by production MPI
libraries.

Index Terms—Multi-Core, Many-Core, NUMA, Cache Coher-
ence, SMP, SMP topology, Shared Memory, MPI

I. INTRODUCTION

The next generation of HPC systems are mainly driven

by emerging multi-/many-core processor architectures, which

allow them to offer higher core-density, deeper memory hi-

erarchies, and diverse architectural features. The adoption

of multi-/many-core hardware is becoming widespread at an

increasing pace. An evidence of this is the recently launched

SDSC’s Expanse system equipped with dual 64-core (AMD

Rome) processors—offering an impressive 128 cores in a

*This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, #2112606, and XRAC grant #NCR-130002

single node. This trend towards the adoption of multi-/many-

core processors is expected to continue as the HPC community

is edging closer towards the exascale systems like Aurora [1]

and Frontier [2]. This uptake also puts the burden of scaling

user applications on communication runtime libraries as intra-

node optimizations are likely to dominate much of the system

optimizations. These optimizations are vital to maintain the

dominance of the Message Passing Interface (MPI) standard as

the defacto parallel programming API over other alternatives.

The hybrid programming model—also known as MPI+X (X

being any shared memory model)—might offer competitive

alternative although it requires modifying user applications

that is a major hindrance in its adoption. Pure shared memory

approaches like OpenMP [3], however, are attractive on these

newly emerging platforms especially for “long tail” of science

applications—these represent small-sized scientific workloads

that result in significant scientific discoveries.

The communication libraries, such as MPI, OpenSHMEM,

and others, expose an OS process to applications as a logical

processing element (PE) and provide it a numeric identifier—

also called a process rank. These applications, in turn, use

these processes as basic functional units to construct parallel

algorithms (e.g., near-neighbor communication in stencils) and

higher-level communication primitives (e.g., MPI collectives).

While this abstraction—of representing PEs as processes with

ranks—provides a powerful mechanism to implement high-

level algorithms, the performance of such algorithms on

modern HPC systems is dependent on the topology of the

underlying architecture. For instance, on an architecture with

two sockets within the system, an algorithm that performs

a gather-at-root operation by iteratively receiving data from

every non-root process would perform well if all processes

are within the socket but not if processes are spread out

across sockets. Also, high-level algorithms could rely on the

assumption that processes with rank numbers closer to each

other also have lower core-to-core latency, which need not

be the case. While binding processes to cores appropriately

using topology detection tools such as hwloc [4] could be a

potential solution to this problem, different algorithms and/or

applications would require different process-to-core bindings

to perform efficiently, which adds to the complexity. This
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brings us to the question: Can we define a set of abstractions
that can offer the convenience of defining algorithms at a
high-level whilst treating hardware as the first-class citizen?

The performance of inter-process communication (IPC)

depends on the core-to-core communication latency between

threads/processes running on the physical cores of the sys-

tem and any unfavorable communication pattern can lead to

performance penalties. In order to address this performance

limitation, topology-aware design patterns are proposed in

the literature [5], [6]. Parallel applications typically rely on

an underlying communication runtime such as MPI to per-

form communication operations as efficiently as possible.

The MPI standard provides support for virtual topologies

including graph and cartesian topologies [7]. This provides an

opportunity for application developers to utilize these virtual

topologies and create MPI communicators to efficiently or-

chestrate their communication patterns on a given architecture.

However, this approach requires application developers to

have a deep understanding of the underlying architecture and

mandates changes to the code, which is undesirable.

In the context of communication runtimes such as MPI,

collective communication algorithms exhibit various commu-

nication patterns. For example, a ring-based MPI Allreduce

algorithm has different communication characteristics than

a recursive-doubling based algorithm. Past work has shown

that redesigning MPI collectives using topology-aware design

patterns yield significant performance benefits for scientific

applications [5], [6]. The broad idea is to orchestrate collective

algorithms in such a way that the memory accesses are

localized and cross-link (expensive) traffic is minimized. For

instance, a NUMA-aware MPI reduction will first accumulate

result from the ranks residing on local NUMA domains

before reducing the data from ranks on different NUMA

domains. However, due to lack of modularity in MPI libraries,

introducing new topology-aware design-patterns for newer

architectures requires significant effort. This leads us to the

next question: Can we design a framework that provides
highly efficient topology-aware implementations of commu-
nication operations that can be integrated with existing
communication runtimes as well as be used standalone by
applications with minimal changes to code?

II. MOTIVATION

We motivate the need for architecture-aware designs—and

hence our work—by demonstrating the lack of adaptability

of MPI (and other programming models) to emerging multi-

/many-core architectures. First, we use the osu allreduce
benchmark from OSU Micro-benchmarks [8] to evaluate the

performance of two different allreduce algorithms namely; 1)

reduce-scatter-allgather, and 2) recursive-doubling. Figure 1

presents the results on a dual-socket AMD EPYC 7742 (Rome)

system. The idea here is to emphasize the sensitivity of these

two allreduce algorithms—or communication patterns—to dif-

ferent process-to-core mapping policies on a modern multi-

/many-core HPC system, showing a discrepancy between the

topology and the high-level implementation of the algorithms.
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Figure 1: Performance of reduce-scatter-allgather and recursive-
doubling based MPI Allreduce for 64 processes on AMD Rome
using Linear, Numa and Scatter mapping policies in MVAPICH2

As it can be seen, the linear policy works best for the

recursive-doubling algorithm in Figure 1(b). However, this

trend is completely reversed in Figure 1(a) where linear
shows close to worst performance while numa policy domi-

nates others by showing significantly better performance. This

clearly depicts that the performance of high-level algorithms

and applications is not guaranteed to perform well on newly

emerging multi-/many-core architectures. The reason is that

the conventional wisdom of designing such algorithms and

applications by decoupling algorithmic details—by relying on

the abstract notion of ranks—from underlying architecture is

not sustainable and will not lead to highly efficient algorithms

on future multi-/many-core HPC systems.

Next, we evaluate the performance of osu allreduce by

using a two-phase MPI Allreduce algorithm; a hierarchical

reduction phase followed by a hierarchical broadcast phase.

We consider two different views of the topology in the algo-

rithm: A “socket-level” view and a “numa-level” view. The

“socket-level” algorithm orchestrates the hierarchical reduc-

tion operation by performing it for all processes within each

socket in parallel followed by a reduction between designated

leader processes on each socket. On the other hand, the

“numa-level” algorithm performs a reduction for all processes

sharing a NUMA domain, followed by a reduction amongst

leader processes across NUMA domains. The broadcast phase

for both algorithms is essentially a mirror of the hierarchical

reduction operations.

Figure 2 shows the performance comparison of the two

schemes for a job size of 48 processes ordered in a way that

there are 12 processes per socket (6 per NUMA domain). We

observe that the “socket-level” algorithm performs better than

the “numa-level” algorithm, showing a non-trivial dependence

between the implementation of the algorithm, the number of

processes involved and the underlying architecture. However,

the performance trends may certainly change for future emerg-

ing architectures, which might have different characteristics

for NUMA domains/sockets or add additional levels to the

hierarchy. This would generally require re-designing existing

algorithms to adapt to new changes, which is undesirable

and complex. We propose abstracting the topology as an

internal communication tree that represents a virtual hierarchy

of the architecture, and designing a base-case algorithm that

can be applied on each level of the tree. By decoupling the
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topology and the implementation of the algorithm, efficient

communication operations can be implemented for emerging

multi-/many-core architectures with minimal changes in the

runtimes/applications by simply building an architecture-aware

virtual tree and executing the base-case algorithm.
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Figure 2: Performance of a direct reduce followed by broadcast
implementation of MPI Allreduce for 48 processes on an Intel Xeon
Gold 6348H (Cooper Lake) CPU.

III. CONTRIBUTIONS

This paper revisits intra-node communication on emerging

multi-/many-core HPC systems and proposes a framework

called OSMP for optimized shared memory based commu-

nication on such systems.
The core principle of OSMP is to treat hardware as a

“first-class” citizen. OSMP creates generalized, hierarchical,

and architecture-aware communication trees—a fundamental

building-block to abstract underlying hardware topology—for

efficient communication. These communication trees group

together hardware resources based on locality domains in-

cluding cores, last-level-caches (LLCs), NUMA nodes, and

sockets. A fundamental contribution of OSMP is that it makes
developing complex high-level communication algorithms a
simple and straightforward task. This can be accomplished
by simply traversing the communication tree and executing
the base algorithm—specified by the user—on each level of
the tree.

OSMP is generic and can support any communication

pattern, however, in order to demonstrate the efficacy of our

proposed solution, we focus on collective communication pat-

terns, specifically Barrier, Reduce, Broadcast, and Allreduce.

We choose MPI as a candidate runtime and show how it can

exploit OSMP for collective communication. Other runtimes

have not been included in the paper for brevity. Our proposed

design is able to reduce the intra-node communication latency

of various MPI collectives by up to 7.8× and improve the

performance of different applications such as miniAMR by

up to 13% and AMG by up to 15%.
As a summary, this paper makes the following key contri-

butions:

1) Identify and highlight that the conventional wisdom of

designing high-level communication operations—by ab-

stracting processes as a basic functional unit—leads to

performance degradation on the newly emerging multi-

/many-core processors HPC systems.

2) Design and implement OSMP with a fundamental con-

struct called communication tree that abstracts the un-

derlying architecture and topology of the system. This

structure has support for virtual topologies on systems

with a flat memory hierarchy and/or high core-count.

3) Orchestrate architecture-aware high-level collective com-

munication operations, including existing ones, using

OSMP by simply traversing the communication tree and

specifying base algorithms.

4) Demonstrate the efficacy of OSMP by integrating it

within an MPI library.

5) Conduct performance evaluation of OSMP against state-

of-the-art MPI libraries on four emerging architectures—

Intel Cascade Lake, AMD Rome, ARM A64fx and

IBM POWER9 using OSU Micro-Benchmarks (OMB)

and several applications.

IV. OVERVIEW OF THE PROPOSED FRAMEWORK

In this section, we provide a high-level overview of various

design elements of our proposed framework, OSMP. We aspire

for the following design goals: 1) modularity, 2) architecture-

awareness, and 3) high-level abstractions. A high-level layered

view of the OSMP framework is depicted in Figure 3. Rest of

this section provide details for design components of OSMP.

Figure 3: Architectural Overview of the OSMP Framework.

A. Programming Model

Remote Memory Access (RMA) is a popular programming

model for designing communication primitives on modern

SMP systems as it offers direct load/store semantics on remote

PE’s memory. On the other hand, send/recv based model

employed by communication libraries such as MPI makes

it easier to reason the performance trends due to explicit

communication, however, the underlying implementations also

use RMA like memory mapping based designs e.g., shared

memory. OSMP uses posix shared memory as the backend for

inter-process communication and uses a RMA like model and

supports put/get and atomic operations on remote memories.

While the OSMP designs are flexible enough to support MPI-

like explicit communication semantics as well, we only focus

on RMA semantics to keep the discussion focused.
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B. Topology Tree

The topology module is primarily responsible for abstract-

ing the machine topology within the node and building a tree

composed of cores that share local memory in each level of

the intra-node hierarchy. A hierarchical tree is built during

the initialization stage of OSMP and later used throughout the

execution of the program. Different communication algorithms

can be executed in a hierarchical manner by simply traversing

the tree in a top-down or bottom-up fashion. The traversal or-

der and direction depends on the nature of the communication

algorithm. For example, the broadcast operation requires top-

down traversal while the reduce operation requires bottom-up

traversal.

C. Shared Memory Module

The memory module is responsible for all operations per-

taining to memory such as allocating memory regions, low

level memory ordering operations, memory copies and others.

The memory operations are carried out using the RMA model,

as discussed earlier. This module interfaces with the topology

module by creating these shared-memory regions at each level

in the hierarchy. Architecture specific read/write barriers (e.g.,

memory fences) and other memory operations are used to

ensure correctness on weak-consistency architectures such as

ARM and POWER. All the data-structures as well as memory

operations used within the OSMP library are cache-aligned.

D. Communicating Core Groups

OSMP groups the set of active cores within the same

memory domains and encapsulate them into abstract represen-

tation called communicating core groups. This is analogous to

communicators in MPI. Each level in the tree is represented as

a group of cores with shared memory segments. Each group

designates a leader core for co-ordination/communication

above and below the current level of the tree.

E. Communication Primitives

Basic communication primitives are the implementation of

a given communication algorithm e.g., collective operations

such as reduce, allreduce, barrier, and broadcast, that are

executed on a group of core at a given level of the tree.

This essentially decouples the communication operation and

its corresponding architecture-aware implementation relieving

the application developers from dealing with the diversity of

many-core architectures. For instance, a basic implementation

of a gather operation where one process (the root) reads

from shared memory in a loop and others write to shared

memory can be made topology-aware by executing the same

algorithm at each level of a given topology tree. This shifts

the focus of algorithm developers to just having a “base-case”

implementation after which our framework can tune itself to

deduce the right algorithm to use at each level based on the

hardware topology.

V. DESIGN AND IMPLEMENTATION

This section describes specific implementation details of

OSMP. It is modular by design and can be dynamically linked

with other communication runtimes such as MPI.

A. Abstracting Topology Tree

OSMP tries to abstract out the topology of the machine

in the topology object, which is dynamically generated at

runtime and built using the hardware locality (hwloc) [4]

library. While hwloc has its own framework to get the topology

objects, OSMP only considers metadata useful for orchestrat-

ing communication operations. Our proposed library’s focus is

more towards building architecture-aware tree-based commu-

nication operations, with hwloc playing a role only in querying

hardware information. The topology object is queried by

one process, and broadcast using XML to other process for

efficiency reasons. After querying the topology from hwloc,

we start building an internal representation of the tree using

a pre-defined hierarchy object which contains information

about various memory domains in the topology. Each memory

domain object contains a bitmap of the cores that belong to

that memory domain, the group of processes that participate in

operations at that memory domain, and other metadata. Finally,

we assign memory domain objects for the abstract core object

pertaining to the process from the bottom level to the top level.

For instance, on a system with a hierarchy levels containing the

machine, socket and NUMA nodes, the abstract core object’s

“leaf” memory domain will point to the abstract NUMA object

it belongs to and the “root” will point to the abstract global

memory domain for the machine.

B. Creating shared-memory segments

OSMP relies on a multi-process paradigm for executing

communication operations. We create shared-memory regions

to facilitate group communication operations. OSMP generates

a shared-memory region using the mmap system call for each

process group formed described in sectionV-C. The file name

is kept unique for each process group by having a composite

key containing the index of the memory domain the process

belongs to (representing a horizontal relationship), the level in

which the memory domain exists in the hierarchy (representing

a vertical relationship) and job specific information. The per-

memory domain shared-memory segment is logically divided

for each communication operation. As a first version, we

implement four widely used collective operations namely

barrier, broadcast, allreduce and reduce. Each collective op-

eration has its own abstract object, which contains flags for

synchronization of processes as well as a pointer to the data

segments where applicable. All memory allocations are cache-

aligned with synchronization flags given adequate padding to

ensure they are cache-line sized to avoid false sharing. A first-

touch is then performed on all allocated memory segments to

avoid page faults during the execution of collective algorithms.

Each process group contains a pointer to the shared-memory

segment to facilitate inter-process communication within the

group.
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C. Grouping cores in the topology

The topology of the system is obtained at a global level.

OSMP maintains an active set of cores and filters out the

topology by removing the set of cores that are not currently

being used in a specific OSMP context. After filtering the

topology and grouping memory domains together, there must

be an explicit grouping of processes within each level in

the hierarchy so that the group of processes can perform

communication operations. After generating the topology de-

scribed in section V-A, we get the abstract core object for

a given process and start from the “leaf” memory domain

for that core and go all the way up to the root. At the

“leaf” level, every process calls a grouping function with its

core ID, level in the hierarchy and the index of the memory

domain the process resides in at that level. In subsequent

levels in the hierarchy that are higher than the leaf, only a

designated leader from each memory domain participates in

group creation. This is done for convenient implementation of

collective algorithms that can be composed of smaller version

of themselves. However, the grouping method is flexible and

can be modified to form an arbitrary group of processes within

the node.

D. Designing basic communication primitives

OSMP provides basic implementations of collective

communications—as exemplars—for barrier, broadcast, re-

duce. These primitives can be considered as “base-cases”,

intended to be executed by process groups in conjunction with

the topology tree maintained by OSMP. Each process gets its

abstract core object, traverses its list of memory domains,

and executes the algorithm with process groups defined at

each memory domain. The traversal can be either be bottom-

up—for the likes of reduce—or top-down—for the likes of

broadcast. Appropriate read and write barriers are placed to

ensure correctness on processors with out-of-order execution

support.

Figure 4 shows how a gather operation can be orchestrated

on the topology built by OSMP on a dual socket AMD EPYC

processor, with 2 sockets, 4 NUMA nodes per socket and 4

LLCs per NUMA. Each step is denoted as a yellow circle, with

the iteration number inside it. In step 1, all processes sharing

a CCX memory domain perform a gather to a designated

root process in their respective CCX domain. In step 2, the

designated leaders perform a gather operation using shared-

memory regions created at the NUMA level. Step 3 involves

a gather operation on all leader processes within each socket

and finally, in step 4, one leader from each socket performs

a gather to the root. Thus, a simple direct implementation

is easily applied to the topology shown, thereby bringing in

architecture awareness without any changes to the algorithms’

base-case.

E. Orchestrating a topology-aware barrier using OSMP

Consider a basic implementation of a barrier algorithm

involving 2 phases, arrival and notify. In the arrival phase,

a root process waits for all other processes to set a flag. The

notify phase involves the root setting a flag and other processes

waiting on that flag. This is shown in Algorithms 1 and 2,

respectively. The algorithm is written in a generic manner

by considering a set of monotonically increasing logical IDs

called ranks. The intention here is for the algorithm devel-

oper to only consider implementing a base-case algorithm,

and offloading the job of making it architecture aware to

the OSMP runtime. The “ranks” passed on to the base-case

implementation are the logical ID of a core in the group

created at a certain level in the hierarchy.

Algorithm 1: Naı̈ve base-case algorithm implementation

for barrier arrival
Input : G — Communication group
Output: All processes signal their arrival to logical rank 0
Function: barrier_arrival(G)
begin

logical_rank ← get logical rank in group(G)
if logical_rank = 0 then

for j ← 1 to get group size(G) do
wait_for_arrival(j);

end
end
else

mark_process_arrived(logical_rank);
end

end

Algorithm 2: Naı̈ve base-case algorithm implementation

for barrier notify

Input : G — Communication group
Output: Logical rank 0 notifies all other processes
Function: barrier_notify(G)
begin

logical_rank ← get logical rank in group(G)
if logical_rank = 0 then

for j ← 1 to get group size(G) do
mark_process_notified(j);

end
end
else

wait_for_notification(logical_rank);
end

end

Algorithm 3 shows how the arrival and notify functions

are made architecture aware by traversing the automatically

generated topology tree exposed by OSMP . It only takes

around 10-20 lines of code to orchestrate base-case algorithms

in an efficient architecture topology-aware manner.

VI. VIRTUAL HIERARCHIES

OSMP supports building virtual hierarchies in cases where a

1:1 tree of the architecture’s topology is relatively inefficient.

One example where this can happen is in processors with

shallow memory hierarchies like the Intel Xeon (Cascade

Lake) processors. This feature is useful in order to eliminate

bottlenecks in parallelism due to having too many processes

on one memory domain. This section provides details on how
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Figure 4: Sample Topology tree built by the OSMP framework for dual-socket AMD EPYC 7742 (Rome) 64-core processors.

Algorithm 3: Using OSMP to make the base-case imple-

mentation architecture topology aware

Input : T — Abstracted topology of the machine
Input : global rank — Logical rank of a process
Output: An Inter-process Barrier is executed
begin

core ← get core object(T, global_rank)
domain ← last level memory domain(core)
while domain �= ∅ do

comm_group ← get comm group(domain)
if comm_group_valid(comm_group) then

barrier_arrival(comm_group)
end
domain ← parent(domain)

end
domain ← top level memory domain(core)
while domain �= ∅ do

comm_group ← get comm group(domain)
if comm_group_valid(comm_group) then

barrier_notify(comm_group)
end
domain ← child(domain)

end
end

OSMP optimizes hierarchical execution of base communica-

tion primitives.

A. Topology Trees with Virtual Hierarchies

The strategy to represent memory domains in a hierarchical

data-structure such as a tree, and later use it for orchestrating

communication primitives is an effective one. However, this

leads to performance degradation on HPC systems built with

shallow memory hierarchies such as TACC Frontera that

is equipped with dual-core Intel Cascade Lake processors

with 28 cores per socket. In the context of a topology tree

without virtual hierarchies, a reduce implementation would

require one root process to read through all vectors written to

shared memory by all other non-root (27) processes leading to

contention and generating more work for the root. There are

opportunities to exploit more parallelism—that OSMP makes

use of—through virtual hierarchies. This kind of support

can be provided in traditional messaging libraries, but would

require significant effort. OSMP is able to support virtual

hierarchies to make a system with shallow hierarchy look

“deeper” than it actually is. Using this approach, instead of

running a reduction on 28 processes on a socket, we can

further split the socket into 2 virtual hierarchical domains (with

14 cores each) and execute the algorithm hierarchically. Here,

the factor 2 by which a domain is split is called degree and

can be configured at runtime.

Figure 5: Sample Topology trees built by the OSMP framework
for dual-socket Intel Xeon Platinum 8280 (Cascade Lake) 28-core
processors. a) Topology tree with a virtual hierarchy/domain at level
3 (degree=2), and b) Topology tree with a virtual hierarchy/domain
at level 3 (degree=4).

An example of a topology tree built by OSMP for a dual-

socket Intel Xeon Platinum 8280 (Cascade Lake) 28-core

processor is shown in Figure 5. The topology tree consists

of 3 levels including system, sockets/NUMA domains, and

virtual hierarchies. This Xeon processor has a shallow mem-

ory hierarchy, which means that all 28 cores on the socket

are on the same NUMA domain and also share LLC. The

example in Figure 5 splits the socket memory domain into

two configurations: a) 2 virtual domains (degree 2), and b) 4
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Figure 6: Average latency of MPI Allreduce comparing OSMP used
within a production MPI library with and without virtual domains
and the default implementation in MVAPICH2 on a dual-socket Intel
Xeon Platinum 8280 (Cascade Lake) 28-core processor. We observe
that splitting the last memory domain (sockets) by 7 (MPI+OSMP
with degree-7) shows the best results.

virtual domains (degree 4). A gather operation is orchestrated

in the same way as explained in section V-D.

B. Performance Benefits of Virtual Topologies

Figure 6 shows the performance gains obtained for the

MPI Allreduce operation by creating virtual domains on a

dual-socket Intel Xeon Platinum 8280 (Cascade Lake) pro-

cessor. OSMP-default is slightly better than the default im-

plementation in MVAPICH2 (which uses the same algorithm)

due to architecture specific optimizations, and the latency gets

better as we increase the number of virtual domains due to

the inherent parallelization of compute operations as well as

exploitation of locality between cores that are close to each

other.

VII. EXPERIMENTAL EVALUATION

In this section, we choose MPI as the candidate runtime and

provide an in-depth performance evaluation when comparing

our proposed designs with state-of-the-art designs employed

by production MPI libraries.

We evaluate our designs on four different state-of-the-art

architectures. The AMD Rome system consists of dual-socket

AMD EPYC 7742 64-core CPUs, the TACC Frontera system

consists of dual-socket Intel Xeon Platinum 8280 Cascade

Lake CPUs, the Lassen system consists of dual-socket 44-

core IBM POWER9 CPUs and the Ookami system consists

of four-socket Fujitsu A64fx ARM-based CPUs. The detailed

configuration of these systems is shown in Table I.

On each system, we compare the performance of our design

against a tuned version of the MVAPICH2-2.3.4 MPI library

and a state-of-the-art vendor-specific MPI library (HPC-X

v2.7.0 on the AMD Rome system, Intel MPI 2019 Update

7 on TACC Frontera, IBM Spectrum MPI 10.3.1.03rtm0 on

Lassen and Open MPI 4.0.3rc4 on Ookami). For comparisons

at the benchmark level, we use the OSU Micro-Benchmark

(OMB) suite [8], with the latency reported being an average

of 1000 iterations over 5 runs. For all our experiments, we

use the default set of parameters for each MPI library. For

application level evaluations, we use miniAMR [9], AMG [10]

and OpenFOAM V7[11].

Table I: Hardware specification of different tested clusters

Specification AMD Rome TACC Frontera Lassen Ookami

Processor Family AMD EPYC Intel Cascade Lake IBM POWER Fujitsu
Processor Model EPYC 7742 Xeon Platinum 8280 POWER9 A64fx
Clock Speed 3.4 GHz 2.7 GHz 3.8 GHz 2.2GHz
Sockets 2 2 2 4
Cores Per socket 64 28 22 12
NUMA nodes 8 2 6 4
CCX Per NUMA 4 N/A N/A N/A
RAM (DDR4) 512 GB 192 GB 256 GB 256 GB
Interconnect IB-HDR(200G) IB-HDR(100G) IB-EDR (100G) IB-HDR(200G)

A. Micro-Benchmark Evaluation

In this section, we present results using the OSU Micro-

Benchmarks (OMB) suite [8] for select MPI collective op-

erations. We compare the performance of state-of-the-art MPI

libraries and a version of a production MPI library integrated

with a tuned version of OSMP (referred to as MPI+OSMP

in the result graphs). We report the average latency in micro-

seconds for MPI Allreduce, MPI Barrier and MPI Bcast op-

erations. For MPI Reduce, we report the maximum latency

amongst all processes since the average latency might not be

the representative of the performance of this collective. We

present results for two cases : One in which all processes use

cores on the same memory domain, and the other in which

processes use up all cores in the node.

1) Reduce: The performance of MPI Reduce is shown

in Figure 7. On AMD Rome, we observe up to 7× im-

provements for MPI+OSMP over MVAPICH2 default and

20% improvements over HPC-X. The benefits of MPI+OSMP

increase as the message size increases. This is due to the fact

that architecture-level optimizations play a larger role as the

message size increases. More specifically, locality and paral-

lelization of compute operations are vital to performance when

performing reduction on larger vectors. On the Intel Cascade

Lake (TACC Frontera) system, we observe improvements of

up to 3× over the base-line of MVAPICH2 and up to 30%

improvements over Intel-MPI. On the POWER9 system, we

observe up to 7.1× improvement over MVAPICH2 and up

to 3.2× over Spectrum-MPI. Similar trends are observed on

the ARM system, with up improvements of up to 4.7× over

MVAPICH2 and up to 3.9× over OpenMPI.

2) Bcast: Figure 8 shows the performance of MPI Bcast.

On TACC Frontera, we observe up to 2× improvements

over both Intel MPI as well as the MVAPICH2 baseline.

On AMD Rome, we observe a speed up of up to 6X when

compared to HPC-X and up to 2X over MVAPICH2 default.

On the POWER9 system, we observe up to 7.8× improve-

ment over Spectrum-MPI and up to 4× over MVAPICH2.

On the ARM system, we observe improvements of up to

2.6× over MVAPICH2 and up to 3.3× over OpenMPI. The

results demonstrate the effectiveness of using virtual domains,

especially for operations like Bcast which involve multiple

processes accessing a buffer at the same time.

3) Allreduce: The performance of MPI Allreduce is shown

in Figure 9. Our Allreduce implementation is essentially a

reduce followed by a broadcast, so the trends are largely

the same as what we observe with MPI Reduce. On AMD

Rome, we observe up to 3× improvements for MPI+OSMP
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Figure 7: Performance of MPI+OSMP and state-of-the-art libraries
for MPI Reduce on the Intel Cascade Lake, AMD Rome, IBM
POWER9 and ARM A64fx architectures up to a message size of
2K bytes for different process counts.

over MVAPICH2 default and up to 1.6× improvements over

HPC-X. On the Intel Cascade Lake (TACC Frontera) system,

we observe improvements of up to 2× over MVAPICH2 and

up to 25% over Intel MPI. On the POWER9 system, we

observe up to 2.18× improvement over Spectrum-MPI and up

to 2.3× over MVAPICH2. On the ARM system, we observe

improvements of up to 2× over MVAPICH2 and up to 2.3×
over OpenMPI.

4) Barrier: Figure 10 shows the performance of the

MPI Barrier operation on the Intel Cascade Lake and AMD

Rome architectures. On the Intel Cascade Lake system,

MPI+OSMP outperforms default MVAPICH2, which uses the

same algorithm, by up to 20%. MPI+OSMP performs similar

to Intel MPI for up to 28 processes. However, we observe a

degradation in performance when compared to Intel MPI at

full subscription (56 processes per node). We attribute this to

the baseline algorithm being sub-optimal in case of OSMP. On

the AMD Rome system, we observe up to 4× improvement
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Figure 8: Performance of MPI+OSMP and state-of-the-art libraries
for MPI Bcast on the Intel Cascade Lake, AMD Rome, IBM
POWER9 and ARM A64fx architectures for different process counts.

over default MVAPICH2. MPI+OSMP shows up to 10% better

performance when compared to HPC-X with 64 processes.

B. Application Evaluation

In this section, we present results for three applications :

MiniAMR, AMG and OpenFOAM on different architectures.

Timings for applications that use reduction collectives are

generally dominated by compute and other point-to-point

operations that induce skews within MPI, which might not

be representative of the actual communication performance

benefits that OSMP provides for these collective operations.

1) MiniAMR: MiniAMR is a proxy application which

explores the performance of finite difference or volume codes

that use Adaptive Mesh Refinement (AMR) [9]. It applies a

stencil calculation on a unit cube computational domain, which

is divided into blocks. We evaluate the performance with

miniAMR on Cascade Lake (in Figure 11(a)) and Rome (in

Figure 11(b)) architectures for varying number of processes.

We compare our OSMP design with MVAPICH2 and Intel
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Figure 9: Performance of MPI+OSMP and state-of-the-art libraries
for MPI Allreduce on the Intel Cascade Lake, AMD Rome, IBM
POWER9 and ARM A64fx architectures up to a message size of 2K
bytes for different process counts.
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Figure 10: Performance of MPI+OSMP and state-of-the-art libraries
for MPI Barrier on Intel Cascade Lake and AMD Rome architectures
for different process counts.

MPI or HPC-X on each system, respectively. As seen in

Figure 11(a), we observe 5% improvements over MVAPICH2

and about 40% improvements over Intel MPI on the TACC

Frontera system. Similarly, Figure 11(b) demonstrates that

OSMP based designs show up to 13% improvements over

MVAPICH2 and up to 6% improvements over HPC-X on the

AMD EPYC Rome architecture. The general trend follows

what we observed in benchmark-level evaluation—as the us-

age of processes/cores increases—our proposed designs tend

to show better performance.
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Figure 11: Performance comparison on Rome and Frontera systems
for miniAMR.

2) AMG: AMG is an algebraic multigrid solver for linear

systems arising from unstructured grids domain [12]. We

evaluate AMG using a weak-scaling problem set at varying

process counts on a single node of Frontera and Rome, and

compare the total execution time of our proposed design

against default MVAPICH2 (without OSMP) and Intel MPI

/ HPC-X. Figure 12(a) shows performance comparison of

OSMP, MVAPICH2 and Intel MPI on the TACC Frontera

(Cascade Lake CPU) system. We observe that OSMP shows

up to 15% improvement over MVAPICH2 and up to 5%

improvement over Intel MPI.
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Figure 12: Performance comparison on Rome and Frontera systems
for AMG.

3) OpenFOAM: OpenFOAM is a computational fluid dy-

namics (CFD) application. The profiling of MPI version of the

code revealed MPI Allreduce as one of the collective commu-

nication primitive being used by the application. We evaluated

the performance of OpenFOAM v7 on TACC Frontera and

compared the performance of OSMP and default MVAPICH2.

As seen in Figure 13, the proposed designs achieve up to 5%

improvements over MVAPICH2 for 32 and 56 processes.

VIII. RELATED WORK

In this paper, we build on our existing work [13], [14],

[15] to optimize shared memory intra-node communication
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on emerging multi-/many-core systems. Goglin et al. [16] pro-

posed an interface to exploit underlying hardware topology by

building matching hierarchical communicators. This approach

requires modifications to the MPI standard. Chatzopoulos et

al. [17] addressed the conflicting requirements of portability

and efficiency on multi-core processors by abstracting the

topology of multi-cores using determinism of cache-coherence

protocols and latency measurements between cores. Benefits

of this technique were demonstrated on five processors using

a variety of applications including MapReduce library and

mergesort algorithm. Niethammer et al. [18] proposed de-

signs to enable hardware topology-aware cartesian mapping

of processes. They visualized cartesian grids into three levels

of hierarchy and try to minimize communication across the

most expensive links. Kaeste et al. [19] proposed a library

called Smelt that provides machine-aware tree abstractions for

multi-core processors in order to enable efficient broadcast

communication. Similar to Chatzopoulos et al. [17], they ex-

tract topology information through a set of micro-benchmarks

and conducting analysis of results.Another unique aspect of

this work is that they attempt to not only enable efficient

communication but also reduce lag between communicating

processes. Ma et al. [5] optimized communication in the MPI

library by extracting hardware information and building tuning

tuning rules for different CPU architectures, types, cache size,

and locality. While significant research has been done in

the broader area, none of them offer an architecture-aware

hierarchical framework that delivers better performance and

highly convenient abstractions for applications as well as a

range of communication runtimes including MPI.

IX. CONCLUSION AND FUTURE WORK

Future HPC systems are likely to be equipped with multi-

/many-core processor architectures with higher core counts and

deeper/complex memory hierarchies. These systems present

challenges to applications and communication runtime li-

braries alike. The conventional wisdom of designing communi-

cation primitives using processes as the fundamental building

block leads to performance penalties. This paper tackles this

issue by designing and implementing OSMP, which is a

library that abstracts the topology of a system and builds

communication trees that form the basis for architecture-aware

core-to-core communication. We orchestrate communication

primitives—picking common collective communication oper-

ations as exemplars—in an architecture-aware manner using

the topology tree and existing base-case algorithms. We fur-

ther demonstrate the performance benefits of building virtual

topologies on systems with shallow memory hierarchies. Our

proposed designs show up to 7.8× improvement at the micro-

benchmark level, and 15% improvement for application over

state-of-the-art MPI libraries. In the future, we plan to explore

the impact of topology trees on kernel-assisted collective

functions and inter-node communication operations.
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