2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC) | 978-1-6654-1016-8/21/$31.00 ©2021 IEEE | DOI: 10.1109/HIPC53243.2021.00041

2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC)

Towards Architecture-aware Hierarchical
Communication Trees on Modern HPC Systems

Bharath Ramesh, Jahanzeb Magbool Hashmi, Shulei Xu, Aamir Shafi, Mahdieh Ghazimirsaeed,
Mohammadreza Bayatpour, Hari Subramoni, Dhabaleswar K. Panda
Department of Computer Science and Engineering
The Ohio State University
Columbus, USA
{ramesh.113, hashmi.29, xu.2452, shafi.16, ghazimirsaeed.3, bayatpour.1, subramoni.l, panda.2} @osu.edu

Abstract—Modern HPC systems built with emerging multi-
/many-core architectures have high core-counts and deep memory
hierarchies. It is challenging to design communication libraries on
these systems with the conventional wisdom of using OS processes
as the basic building block to build communication algorithms.
Instead, the next generation of communication libraries should
treat hardware as the “first-class citizen” and utilize the un-
derlying topology as the basic building block. Driven by this
overarching principle, we present a framework for Optimized
Shared Memory Processing (OSMP) and communication for
these platforms. An abstract representation of the underlying
hardware topology is maintained by OSMP in the form of a
topology tree, which is later exploited by runtime libraries to
execute communication operations in a topology-aware manner.
This can be done by simply traversing the topology tree with
an existing communication primitive as the base-case. OSMP
does not mandate any changes to the original communication
algorithm. We focus on collective operations such as barrier,
reduction, and broadcast as candidate communication patterns.
We demonstrate the efficacy of OSMP by decoupling the im-
plementation of collective algorithms and system topology and
evaluate it on four state-of-the-art multi-'many-core architectures
: Intel Cascade Lake, AMD Rome, ARM A64fx and IBM
POWERY. Results show that even the basic algorithms can be
made topology-aware by exploiting OSMP. This provides sig-
nificant benefits over state-of-the-art algorithm implementations
for intra-node communication. Using various micro-benchmarks
and applications, we demonstrate that our proposed designs
can achieve up to 7.8x improvements at the micro-benchmark
level, and 15% for applications over state-of-the-art intra-node
collective communication designs employed by production MPI
libraries.

Index Terms—Multi-Core, Many-Core, NUMA, Cache Coher-
ence, SMP, SMP topology, Shared Memory, MPI

I. INTRODUCTION

The next generation of HPC systems are mainly driven
by emerging multi-/many-core processor architectures, which
allow them to offer higher core-density, deeper memory hi-
erarchies, and diverse architectural features. The adoption
of multi-/many-core hardware is becoming widespread at an
increasing pace. An evidence of this is the recently launched
SDSC’s Expanse system equipped with dual 64-core (AMD
Rome) processors—offering an impressive 128 cores in a

*This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, #2112606, and XRAC grant #NCR-130002

single node. This trend towards the adoption of multi-/many-
core processors is expected to continue as the HPC community
is edging closer towards the exascale systems like Aurora [1]
and Frontier [2]. This uptake also puts the burden of scaling
user applications on communication runtime libraries as intra-
node optimizations are likely to dominate much of the system
optimizations. These optimizations are vital to maintain the
dominance of the Message Passing Interface (MPI) standard as
the defacto parallel programming API over other alternatives.
The hybrid programming model—also known as MPI+X (X
being any shared memory model)—might offer competitive
alternative although it requires modifying user applications
that is a major hindrance in its adoption. Pure shared memory
approaches like OpenMP [3], however, are attractive on these
newly emerging platforms especially for “long tail” of science
applications—these represent small-sized scientific workloads
that result in significant scientific discoveries.

The communication libraries, such as MPI, OpenSHMEM,
and others, expose an OS process to applications as a logical
processing element (PE) and provide it a numeric identifier—
also called a process rank. These applications, in turn, use
these processes as basic functional units to construct parallel
algorithms (e.g., near-neighbor communication in stencils) and
higher-level communication primitives (e.g., MPI collectives).
While this abstraction—of representing PEs as processes with
ranks—provides a powerful mechanism to implement high-
level algorithms, the performance of such algorithms on
modern HPC systems is dependent on the topology of the
underlying architecture. For instance, on an architecture with
two sockets within the system, an algorithm that performs
a gather-at-root operation by iteratively receiving data from
every non-root process would perform well if all processes
are within the socket but not if processes are spread out
across sockets. Also, high-level algorithms could rely on the
assumption that processes with rank numbers closer to each
other also have lower core-to-core latency, which need not
be the case. While binding processes to cores appropriately
using topology detection tools such as hwloc [4] could be a
potential solution to this problem, different algorithms and/or
applications would require different process-to-core bindings
to perform efficiently, which adds to the complexity. This

2640-0316/21/$31.00 ©2021 IEEE 272
DOI 10.1109/HiPC53243.2021.00041

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:54:58 UTC from IEEE Xplore. Restrictions apply.

brings us to the question: Can we define a set of abstractions
that can offer the convenience of defining algorithms at a
high-level whilst treating hardware as the first-class citizen?

The performance of inter-process communication (IPC)
depends on the core-to-core communication latency between
threads/processes running on the physical cores of the sys-
tem and any unfavorable communication pattern can lead to
performance penalties. In order to address this performance
limitation, topology-aware design patterns are proposed in
the literature [5], [6]. Parallel applications typically rely on
an underlying communication runtime such as MPI to per-
form communication operations as efficiently as possible.
The MPI standard provides support for virtual topologies
including graph and cartesian topologies [7]. This provides an
opportunity for application developers to utilize these virtual
topologies and create MPI communicators to efficiently or-
chestrate their communication patterns on a given architecture.
However, this approach requires application developers to
have a deep understanding of the underlying architecture and
mandates changes to the code, which is undesirable.

In the context of communication runtimes such as MPI,
collective communication algorithms exhibit various commu-
nication patterns. For example, a ring-based MPI_Allreduce
algorithm has different communication characteristics than
a recursive-doubling based algorithm. Past work has shown
that redesigning MPI collectives using topology-aware design
patterns yield significant performance benefits for scientific
applications [5], [6]. The broad idea is to orchestrate collective
algorithms in such a way that the memory accesses are
localized and cross-link (expensive) traffic is minimized. For
instance, a NUMA-aware MPI reduction will first accumulate
result from the ranks residing on local NUMA domains
before reducing the data from ranks on different NUMA
domains. However, due to lack of modularity in MPI libraries,
introducing new topology-aware design-patterns for newer
architectures requires significant effort. This leads us to the
next question: Can we design a framework that provides
highly efficient topology-aware implementations of commu-
nication operations that can be integrated with existing
communication runtimes as well as be used standalone by
applications with minimal changes to code?

II. MOTIVATION

We motivate the need for architecture-aware designs—and
hence our work—by demonstrating the lack of adaptability
of MPI (and other programming models) to emerging multi-
/many-core architectures. First, we use the osu_allreduce
benchmark from OSU Micro-benchmarks [8] to evaluate the
performance of two different allreduce algorithms namely; 1)
reduce-scatter-allgather, and 2) recursive-doubling. Figure 1
presents the results on a dual-socket AMD EPYC 7742 (Rome)
system. The idea here is to emphasize the sensitivity of these
two allreduce algorithms—or communication patterns—to dif-
ferent process-to-core mapping policies on a modern multi-
/many-core HPC system, showing a discrepancy between the
topology and the high-level implementation of the algorithms.

273

4500 14000

Linear — Linear —

gggg Numa - - 7 12000 1~ Numa --- j
’%7 3000 Scatter — / ’g 10000 |- Scatter —= A
2 / = /e
> 2500 > 8000 ,
£ 2000 /f 2 6000
& 1500 4 T 4000 ’
= 1000 = - o

- o* 2000 =
) ———— L
8K 32K 128K 512 8K 32K 128K 512

Msg size (bytes) Msg size (bytes)

(a) Reduce Scatter (b) Recursive Doubling

Figure 1: Performance of reduce-scatter-allgather and recursive-
doubling based MPI_Allreduce for 64 processes on AMD Rome
using Linear, Numa and Scatter mapping policies in MVAPICH2

As it can be seen, the linear policy works best for the
recursive-doubling algorithm in Figure 1(b). However, this
trend is completely reversed in Figure 1(a) where linear
shows close to worst performance while numa policy domi-
nates others by showing significantly better performance. This
clearly depicts that the performance of high-level algorithms
and applications is not guaranteed to perform well on newly
emerging multi-/many-core architectures. The reason is that
the conventional wisdom of designing such algorithms and
applications by decoupling algorithmic details—by relying on
the abstract notion of ranks—from underlying architecture is
not sustainable and will not lead to highly efficient algorithms
on future multi-/many-core HPC systems.

Next, we evaluate the performance of osu_allreduce by
using a two-phase MPI_Allreduce algorithm; a hierarchical
reduction phase followed by a hierarchical broadcast phase.
We consider two different views of the topology in the algo-
rithm: A “socket-level” view and a “numa-level” view. The
“socket-level” algorithm orchestrates the hierarchical reduc-
tion operation by performing it for all processes within each
socket in parallel followed by a reduction between designated
leader processes on each socket. On the other hand, the
“numa-level” algorithm performs a reduction for all processes
sharing a NUMA domain, followed by a reduction amongst
leader processes across NUMA domains. The broadcast phase
for both algorithms is essentially a mirror of the hierarchical
reduction operations.

Figure 2 shows the performance comparison of the two
schemes for a job size of 48 processes ordered in a way that
there are 12 processes per socket (6 per NUMA domain). We
observe that the “socket-level” algorithm performs better than
the “numa-level” algorithm, showing a non-trivial dependence
between the implementation of the algorithm, the number of
processes involved and the underlying architecture. However,
the performance trends may certainly change for future emerg-
ing architectures, which might have different characteristics
for NUMA domains/sockets or add additional levels to the
hierarchy. This would generally require re-designing existing
algorithms to adapt to new changes, which is undesirable
and complex. We propose abstracting the topology as an
internal communication tree that represents a virtual hierarchy
of the architecture, and designing a base-case algorithm that
can be applied on each level of the tree. By decoupling the

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:54:58 UTC from IEEE Xplore. Restrictions apply.

topology and the implementation of the algorithm, efficient
communication operations can be implemented for emerging
multi-/many-core architectures with minimal changes in the
runtimes/applications by simply building an architecture-aware
virtual tree and executing the base-case algorithm.

16
socket-level —

14 ¢ numa-level — >
ig/ 12
> 10
8 8 /
i)
8 6

4

2

4 16 64 256 1K

Msg size (bytes)

Figure 2: Performance of a direct reduce followed by broadcast
implementation of MPI_Allreduce for 48 processes on an Intel Xeon
Gold 6348H (Cooper Lake) CPU.

III. CONTRIBUTIONS

This paper revisits intra-node communication on emerging
multi-/many-core HPC systems and proposes a framework
called OSMP for optimized shared memory based commu-
nication on such systems.

The core principle of OSMP is to treat hardware as a
“first-class” citizen. OSMP creates generalized, hierarchical,
and architecture-aware communication trees—a fundamental
building-block to abstract underlying hardware topology—for
efficient communication. These communication trees group
together hardware resources based on locality domains in-
cluding cores, last-level-caches (LLCs), NUMA nodes, and
sockets. A fundamental contribution of OSMP is that it makes
developing complex high-level communication algorithms a
simple and straightforward task. This can be accomplished
by simply traversing the communication tree and executing
the base algorithm—specified by the user—on each level of
the tree.

OSMP is generic and can support any communication
pattern, however, in order to demonstrate the efficacy of our
proposed solution, we focus on collective communication pat-
terns, specifically Barrier, Reduce, Broadcast, and Allreduce.
We choose MPI as a candidate runtime and show how it can
exploit OSMP for collective communication. Other runtimes
have not been included in the paper for brevity. Our proposed
design is able to reduce the intra-node communication latency
of various MPI collectives by up to 7.8x and improve the
performance of different applications such as miniAMR by
up to 13% and AMG by up to 15%.

As a summary, this paper makes the following key contri-
butions:

1) Identify and highlight that the conventional wisdom of
designing high-level communication operations—by ab-
stracting processes as a basic functional unit—leads to
performance degradation on the newly emerging multi-
/many-core processors HPC systems.

274

2) Design and implement OSMP with a fundamental con-
struct called communication tree that abstracts the un-
derlying architecture and topology of the system. This
structure has support for virtual topologies on systems
with a flat memory hierarchy and/or high core-count.
Orchestrate architecture-aware high-level collective com-
munication operations, including existing ones, using
OSMP by simply traversing the communication tree and
specifying base algorithms.

Demonstrate the efficacy of OSMP by integrating it
within an MPI library.

Conduct performance evaluation of OSMP against state-
of-the-art MPI libraries on four emerging architectures—
Intel Cascade Lake, AMD Rome, ARM A64fx and
IBM POWERSY using OSU Micro-Benchmarks (OMB)
and several applications.

3)

4)

5)

IV. OVERVIEW OF THE PROPOSED FRAMEWORK

In this section, we provide a high-level overview of various
design elements of our proposed framework, OSMP. We aspire
for the following design goals: 1) modularity, 2) architecture-
awareness, and 3) high-level abstractions. A high-level layered
view of the OSMP framework is depicted in Figure 3. Rest of
this section provide details for design components of OSMP.

‘ HPC Applications ‘

H
Communication Runtimes
‘ MPI ‘ ‘ OpenSHMEM ‘ ‘ SHARP ‘
i H H

OSMP
[Abstract API for Collectives and Groups |

Communication
Primitives

‘ Core Groups ‘ Topology Tree ‘

Low-level Memory ‘ ‘

‘ Shared Memory Module ‘ Memory Segments i

}

‘ Modern HPC Clusters with Multi-/Many-core Processors ‘

Figure 3: Architectural Overview of the OSMP Framework.

A. Programming Model

Remote Memory Access (RMA) is a popular programming
model for designing communication primitives on modern
SMP systems as it offers direct load/store semantics on remote
PE’s memory. On the other hand, send/recv based model
employed by communication libraries such as MPI makes
it easier to reason the performance trends due to explicit
communication, however, the underlying implementations also
use RMA like memory mapping based designs e.g., shared
memory. OSMP uses posix shared memory as the backend for
inter-process communication and uses a RMA like model and
supports put/get and atomic operations on remote memories.
While the OSMP designs are flexible enough to support MPI-
like explicit communication semantics as well, we only focus
on RMA semantics to keep the discussion focused.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:54:58 UTC from IEEE Xplore. Restrictions apply.

B. Topology Tree

The topology module is primarily responsible for abstract-
ing the machine topology within the node and building a tree
composed of cores that share local memory in each level of
the intra-node hierarchy. A hierarchical tree is built during
the initialization stage of OSMP and later used throughout the
execution of the program. Different communication algorithms
can be executed in a hierarchical manner by simply traversing
the tree in a top-down or bottom-up fashion. The traversal or-
der and direction depends on the nature of the communication
algorithm. For example, the broadcast operation requires top-
down traversal while the reduce operation requires bottom-up
traversal.

C. Shared Memory Module

The memory module is responsible for all operations per-
taining to memory such as allocating memory regions, low
level memory ordering operations, memory copies and others.
The memory operations are carried out using the RMA model,
as discussed earlier. This module interfaces with the topology
module by creating these shared-memory regions at each level
in the hierarchy. Architecture specific read/write barriers (e.g.,
memory fences) and other memory operations are used to
ensure correctness on weak-consistency architectures such as
ARM and POWER. All the data-structures as well as memory
operations used within the OSMP library are cache-aligned.

D. Communicating Core Groups

OSMP groups the set of active cores within the same
memory domains and encapsulate them into abstract represen-
tation called communicating core groups. This is analogous to
communicators in MPL. Each level in the tree is represented as
a group of cores with shared memory segments. Each group
designates a leader core for co-ordination/communication
above and below the current level of the tree.

E. Communication Primitives

Basic communication primitives are the implementation of
a given communication algorithm e.g., collective operations
such as reduce, allreduce, barrier, and broadcast, that are
executed on a group of core at a given level of the tree.
This essentially decouples the communication operation and
its corresponding architecture-aware implementation relieving
the application developers from dealing with the diversity of
many-core architectures. For instance, a basic implementation
of a gather operation where one process (the root) reads
from shared memory in a loop and others write to shared
memory can be made topology-aware by executing the same
algorithm at each level of a given topology tree. This shifts
the focus of algorithm developers to just having a “base-case”
implementation after which our framework can tune itself to
deduce the right algorithm to use at each level based on the
hardware topology.

275

V. DESIGN AND IMPLEMENTATION

This section describes specific implementation details of
OSMP. It is modular by design and can be dynamically linked
with other communication runtimes such as MPIL.

A. Abstracting Topology Tree

OSMP tries to abstract out the topology of the machine
in the topology object, which is dynamically generated at
runtime and built using the hardware locality (hwloc) [4]
library. While hwloc has its own framework to get the topology
objects, OSMP only considers metadata useful for orchestrat-
ing communication operations. Our proposed library’s focus is
more towards building architecture-aware tree-based commu-
nication operations, with hwloc playing a role only in querying
hardware information. The topology object is queried by
one process, and broadcast using XML to other process for
efficiency reasons. After querying the topology from hwloc,
we start building an internal representation of the tree using
a pre-defined hierarchy object which contains information
about various memory domains in the topology. Each memory
domain object contains a bitmap of the cores that belong to
that memory domain, the group of processes that participate in
operations at that memory domain, and other metadata. Finally,
we assign memory domain objects for the abstract core object
pertaining to the process from the bottom level to the top level.
For instance, on a system with a hierarchy levels containing the
machine, socket and NUMA nodes, the abstract core object’s
“leaf” memory domain will point to the abstract NUMA object
it belongs to and the “root” will point to the abstract global
memory domain for the machine.

B. Creating shared-memory segments

OSMP relies on a multi-process paradigm for executing
communication operations. We create shared-memory regions
to facilitate group communication operations. OSMP generates
a shared-memory region using the mmap system call for each
process group formed described in sectionV-C. The file name
is kept unique for each process group by having a composite
key containing the index of the memory domain the process
belongs to (representing a horizontal relationship), the level in
which the memory domain exists in the hierarchy (representing
a vertical relationship) and job specific information. The per-
memory domain shared-memory segment is logically divided
for each communication operation. As a first version, we
implement four widely used collective operations namely
barrier, broadcast, allreduce and reduce. Each collective op-
eration has its own abstract object, which contains flags for
synchronization of processes as well as a pointer to the data
segments where applicable. All memory allocations are cache-
aligned with synchronization flags given adequate padding to
ensure they are cache-line sized to avoid false sharing. A first-
touch is then performed on all allocated memory segments to
avoid page faults during the execution of collective algorithms.
Each process group contains a pointer to the shared-memory
segment to facilitate inter-process communication within the
group.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:54:58 UTC from IEEE Xplore. Restrictions apply.

C. Grouping cores in the topology

The topology of the system is obtained at a global level.
OSMP maintains an active set of cores and filters out the
topology by removing the set of cores that are not currently
being used in a specific OSMP context. After filtering the
topology and grouping memory domains together, there must
be an explicit grouping of processes within each level in
the hierarchy so that the group of processes can perform
communication operations. After generating the topology de-
scribed in section V-A, we get the abstract core object for
a given process and start from the “leaf” memory domain
for that core and go all the way up to the root. At the
“leaf” level, every process calls a grouping function with its
core ID, level in the hierarchy and the index of the memory
domain the process resides in at that level. In subsequent
levels in the hierarchy that are higher than the leaf, only a
designated leader from each memory domain participates in
group creation. This is done for convenient implementation of
collective algorithms that can be composed of smaller version
of themselves. However, the grouping method is flexible and
can be modified to form an arbitrary group of processes within
the node.

D. Designing basic communication primitives

OSMP provides basic implementations of collective
communications—as exemplars—for barrier, broadcast, re-
duce. These primitives can be considered as ‘“base-cases”,
intended to be executed by process groups in conjunction with
the topology tree maintained by OSMP. Each process gets its
abstract core object, traverses its list of memory domains,
and executes the algorithm with process groups defined at
each memory domain. The traversal can be either be bottom-
up—for the likes of reduce—or top-down—for the likes of
broadcast. Appropriate read and write barriers are placed to
ensure correctness on processors with out-of-order execution
support.

Figure 4 shows how a gather operation can be orchestrated
on the topology built by OSMP on a dual socket AMD EPYC
processor, with 2 sockets, 4 NUMA nodes per socket and 4
LLCs per NUMA. Each step is denoted as a yellow circle, with
the iteration number inside it. In step 1, all processes sharing
a CCX memory domain perform a gather to a designated
root process in their respective CCX domain. In step 2, the
designated leaders perform a gather operation using shared-
memory regions created at the NUMA level. Step 3 involves
a gather operation on all leader processes within each socket
and finally, in step 4, one leader from each socket performs
a gather to the root. Thus, a simple direct implementation
is easily applied to the topology shown, thereby bringing in
architecture awareness without any changes to the algorithms’
base-case.

E. Orchestrating a topology-aware barrier using OSMP

Consider a basic implementation of a barrier algorithm
involving 2 phases, arrival and notify. In the arrival phase,
a root process waits for all other processes to set a flag. The

276

notify phase involves the root setting a flag and other processes
waiting on that flag. This is shown in Algorithms 1 and 2,
respectively. The algorithm is written in a generic manner
by considering a set of monotonically increasing logical IDs
called ranks. The intention here is for the algorithm devel-
oper to only consider implementing a base-case algorithm,
and offloading the job of making it architecture aware to
the OSMP runtime. The “ranks” passed on to the base-case
implementation are the logical ID of a core in the group
created at a certain level in the hierarchy.

Algorithm 1: Naive base-case algorithm implementation
for barrier arrival
Input : G — Communication group
Output: All processes signal their arrival to logical rank 0
Function: barrier_arrival (G)
begin
logical_rank < get_logical_rank_in_group(G)
if 1ogical_rank = 0 then
for j < 1 to get_group_size(G) do
| wait_for_arrival (3J);
end
end

else
| mark_process_arrived(logical_rank) ;

end

end

Algorithm 2: Naive base-case algorithm implementation
for barrier notify

Input : G — Communication group
Output: Logical rank 0 notifies all other processes
Function: barrier_notify (G)
begin
logical_rank <— get_logical_rank_in_group(G)
if logical rank = O then

for j < 1 to get_group_size(G) do

| mark_process_notified(7J);

end
end
else

| wait_for_notification(logical_rank);

end

end

Algorithm 3 shows how the arrival and notify functions
are made architecture aware by traversing the automatically
generated topology tree exposed by OSMP . It only takes
around 10-20 lines of code to orchestrate base-case algorithms
in an efficient architecture topology-aware manner.

VI. VIRTUAL HIERARCHIES

OSMP supports building virtual hierarchies in cases where a
1:1 tree of the architecture’s topology is relatively inefficient.
One example where this can happen is in processors with
shallow memory hierarchies like the Intel Xeon (Cascade
Lake) processors. This feature is useful in order to eliminate
bottlenecks in parallelism due to having too many processes
on one memory domain. This section provides details on how

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:54:58 UTC from IEEE Xplore. Restrictions apply.

Level 2

Level 1
(System)

(Socket)
s @ 0 0@ 0 20© @@
@ @ (NUMA)
Level 4
® 0000 o000 ‘...(CCX) o000 o000 o000 O0000
||| x| x|/ [x x| x| x| x x| x| x| x x| x| x| x X x| x| x x| x| x| x x| x| x| x x| x| x| x
x|/l x})aux| x x| x| x| x x| x| x| x x| x| x| x X x| x| x x| x| x| x x| x|/ x| x x| x| x| x
XXXXxxxx x| x| x| x xXXXLstxxx x| x| x| x x| x|/ x| x x| x| x| x
X X X X X X X X X X X X X X X X (ceve) X X X X X X X X X X X X X X X
ore
Cores 0-15 Cores 16-31 Cores 32-47 Cores 48-63 Cores 64-79 Cores 80-95 Cores 96-111 Cores 112-127

Figure 4: Sample Topology tree built by the OSMP framework for dual-socket AMD EPYC 7742 (Rome) 64-core processors.

Algorithm 3: Using OSMP to make the base-case imple-
mentation architecture topology aware

Input : 7" — Abstracted topology of the machine

Input : global_rank — Logical rank of a process

Output: An Inter-process Barrier is executed

begin

core < get_core_object(T, global_rank)

domain < last_level_memory_domain(core)

while domain # () do

comm_group < get_comm_group(domain)

if comm_group_valid(comm_group) then
| barrier_arrival (comm_group)

end

domain ¢— parent(domain)

end

domain <— top_level_memory_domain(core)

while domain # () do

comm_group <— get_comm_group(domain)

if comm_group_valid(comm_group) then
| barrier_notify (comm_group)

end

domain <4 child(domain)

end
end

OSMP optimizes hierarchical execution of base communica-
tion primitives.

A. Topology Trees with Virtual Hierarchies

The strategy to represent memory domains in a hierarchical
data-structure such as a tree, and later use it for orchestrating
communication primitives is an effective one. However, this
leads to performance degradation on HPC systems built with
shallow memory hierarchies such as TACC Frontera that
is equipped with dual-core Intel Cascade Lake processors
with 28 cores per socket. In the context of a topology tree
without virtual hierarchies, a reduce implementation would
require one root process to read through all vectors written to
shared memory by all other non-root (27) processes leading to
contention and generating more work for the root. There are
opportunities to exploit more parallelism—that OSMP makes
use of—through virtual hierarchies. This kind of support

271

can be provided in traditional messaging libraries, but would
require significant effort. OSMP is able to support virtual
hierarchies to make a system with shallow hierarchy look
“deeper” than it actually is. Using this approach, instead of
running a reduction on 28 processes on a socket, we can
further split the socket into 2 virtual hierarchical domains (with
14 cores each) and execute the algorithm hierarchically. Here,
the factor 2 by which a domain is split is called degree and
can be configured at runtime.

Level 0
(System) ©)
Level 1
(Socket/
NUMA)
X X X X X X X X
Level 3 X X XX X X X X
. X X X X X X X X
Vlrtua'l 9 XX XX X X X X
Domain xx || xx x| x| x| x
X X X X X X X X
X X X X X X X X

Cores 28-55

Cores 0-27

Cores 28-55

Cores 0-27

a) degree=2 b) degree=4

Figure 5: Sample Topology trees built by the OSMP framework
for dual-socket Intel Xeon Platinum 8280 (Cascade Lake) 28-core
processors. a) Topology tree with a virtual hierarchy/domain at level
3 (degree=2), and b) Topology tree with a virtual hierarchy/domain
at level 3 (degree=4).

An example of a topology tree built by OSMP for a dual-
socket Intel Xeon Platinum 8280 (Cascade Lake) 28-core
processor is shown in Figure 5. The topology tree consists
of 3 levels including system, sockets/NUMA domains, and
virtual hierarchies. This Xeon processor has a shallow mem-
ory hierarchy, which means that all 28 cores on the socket
are on the same NUMA domain and also share LLC. The
example in Figure 5 splits the socket memory domain into
two configurations: a) 2 virtual domains (degree 2), and b) 4

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:54:58 UTC from IEEE Xplore. Restrictions apply.

MVAPICH2 (default) ——
MPI+OSMP ——
MPI+OSMP (degree-2) —

[MPI+OSMP (degree-4) —= 1
PI+OSMP (degree-7) - == J

e

g

N W A~ O

e —

Latency (us)

32 128
Msg size (bytes)

512

Figure 6: Average latency of MPI_Allreduce comparing OSMP used
within a production MPI library with and without virtual domains
and the default implementation in MVAPICH2 on a dual-socket Intel
Xeon Platinum 8280 (Cascade Lake) 28-core processor. We observe
that splitting the last memory domain (sockets) by 7 (MPI+OSMP
with degree-7) shows the best results.

virtual domains (degree 4). A gather operation is orchestrated
in the same way as explained in section V-D.

B. Performance Benefits of Virtual Topologies

Figure 6 shows the performance gains obtained for the
MPI_Allreduce operation by creating virtual domains on a
dual-socket Intel Xeon Platinum 8280 (Cascade Lake) pro-
cessor. OSMP-default is slightly better than the default im-
plementation in MVAPICH2 (which uses the same algorithm)
due to architecture specific optimizations, and the latency gets
better as we increase the number of virtual domains due to
the inherent parallelization of compute operations as well as
exploitation of locality between cores that are close to each
other.

VII. EXPERIMENTAL EVALUATION

In this section, we choose MPI as the candidate runtime and
provide an in-depth performance evaluation when comparing
our proposed designs with state-of-the-art designs employed
by production MPI libraries.

We evaluate our designs on four different state-of-the-art
architectures. The AMD Rome system consists of dual-socket
AMD EPYC 7742 64-core CPUs, the TACC Frontera system
consists of dual-socket Intel Xeon Platinum 8280 Cascade
Lake CPUs, the Lassen system consists of dual-socket 44-
core IBM POWERY9 CPUs and the Ookami system consists
of four-socket Fujitsu A64fx ARM-based CPUs. The detailed
configuration of these systems is shown in Table I.

On each system, we compare the performance of our design
against a tuned version of the MVAPICH2-2.3.4 MPI library
and a state-of-the-art vendor-specific MPI library (HPC-X
v2.7.0 on the AMD Rome system, Intel MPI 2019 Update
7 on TACC Frontera, IBM Spectrum MPI 10.3.1.03rtmO on
Lassen and Open MPI 4.0.3rc4 on Ookami). For comparisons
at the benchmark level, we use the OSU Micro-Benchmark
(OMB) suite [8], with the latency reported being an average
of 1000 iterations over 5 runs. For all our experiments, we
use the default set of parameters for each MPI library. For
application level evaluations, we use miniAMR [9], AMG [10]
and OpenFOAM V7[11].

278

Table I: Hardware specification of different tested clusters

Specification AMD Rome TACC Frontera Lassen Ookami
Processor Family ~ AMD EPYC Intel Cascade Lake IBM POWER Fujitsu
Processor Model EPYC 7742 Xeon Platinum 8280 POWER9 A64fx

Clock Speed 3.4 GHz 2.7 GHz 3.8 GHz 2.2GHz
Sockets 2 2 2 4

Cores Per socket 64 28 22 12

NUMA nodes 8 2 6 4

CCX Per NUMA 4 N/A N/A N/A

RAM (DDR4) 512 GB 192 GB 256 GB 256 GB
Interconnect IB-HDR(200G) IB-HDR(100G) IB-EDR (100G) IB-HDR(200G)

A. Micro-Benchmark Evaluation

In this section, we present results using the OSU Micro-
Benchmarks (OMB) suite [8] for select MPI collective op-
erations. We compare the performance of state-of-the-art MPI
libraries and a version of a production MPI library integrated
with a tuned version of OSMP (referred to as MPI+OSMP
in the result graphs). We report the average latency in micro-
seconds for MPI_Allreduce, MPI_Barrier and MPI_Bcast op-
erations. For MPI_Reduce, we report the maximum latency
amongst all processes since the average latency might not be
the representative of the performance of this collective. We
present results for two cases : One in which all processes use
cores on the same memory domain, and the other in which
processes use up all cores in the node.

1) Reduce: The performance of MPI_Reduce is shown
in Figure 7. On AMD Rome, we observe up to 7x im-
provements for MPI+OSMP over MVAPICH2 default and
20% improvements over HPC-X. The benefits of MPI+OSMP
increase as the message size increases. This is due to the fact
that architecture-level optimizations play a larger role as the
message size increases. More specifically, locality and paral-
lelization of compute operations are vital to performance when
performing reduction on larger vectors. On the Intel Cascade
Lake (TACC Frontera) system, we observe improvements of
up to 3x over the base-line of MVAPICH2 and up to 30%
improvements over Intel-MPI. On the POWERY system, we
observe up to 7.1x improvement over MVAPICH2 and up
to 3.2x over Spectrum-MPI. Similar trends are observed on
the ARM system, with up improvements of up to 4.7x over
MVAPICH?2 and up to 3.9x over OpenMPIL.

2) Bcast: Figure 8 shows the performance of MPI_Bcast.
On TACC Frontera, we observe up to 2xX improvements
over both Intel MPI as well as the MVAPICH2 baseline.
On AMD Rome, we observe a speed up of up to 6X when
compared to HPC-X and up to 2X over MVAPICH2 default.
On the POWERY system, we observe up to 7.8x improve-
ment over Spectrum-MPI and up to 4x over MVAPICH2.
On the ARM system, we observe improvements of up to
2.6x over MVAPICH2 and up to 3.3x over OpenMPIL. The
results demonstrate the effectiveness of using virtual domains,
especially for operations like Bcast which involve multiple
processes accessing a buffer at the same time.

3) Allreduce: The performance of MPI_Allreduce is shown
in Figure 9. Our Allreduce implementation is essentially a
reduce followed by a broadcast, so the trends are largely
the same as what we observe with MPI_Reduce. On AMD
Rome, we observe up to 3x improvements for MPI+OSMP

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:54:58 UTC from IEEE Xplore. Restrictions apply.

14

MPI+OSMP —+— MPI+OSMP ——

10 MVAPICH2 —— 12 MVAPICH2 —— A
> IntelMPI —— Z10 IntelMPl ——
28 e
Q Q
w 4 ® / A
© © 4
| -

: 7 =

0 0

4 16 64 256 1K 4 16 64 256 1K

Message Size (bytes)

(b) Cascade Lake-56ppn

Message Size (bytes)

(a) Cascade Lake-28ppn

? [MPoSMP — 49 [prosmp — Iy
8 FMVAPICH2 — 35 [MVAPICH2 ——
7 HPCX —— 30 | HPCX —
/ g2 /
85 815
S, P S0 g
N Lo
1 L 51 ——
0 0
4 16 64 256 1K 4 16 64 256 1K

Message Size (bytes)

(c) Rome-16ppn

Message Size (bytes)

(d) Rome-128ppn

@
S

MVAPICH2 —— MVAPICH2 ——
10 Spectrum-MPI —— 25 Spectrum-MP| —+—
> MPI+OSMP —— = MPI+OSMP ——
28 320
> / g /
o 6 o'15
= / c /
£ £10
-) W 4 s /\7$74,_,/'/ /
A~ e S S ————
0 0
4 16 64 256 1K 4 16 64 256 1K
Message Size (bytes) Message Size (bytes)
(e) POWER9-16ppn (f) POWER9-40ppn
12 MVAPICH2 —— :(5] MVAPICH2 ——
OpenMP| —— OpenMP| ——
714 [MPI+OSMP —— 535 [MPI+OSMP ——
312 330 7
=10 =25
28 74 220
g ¢ e 85 e
T N P S ———
=4 =10
2 L 5 |
"
0 0
4 16 64 256 1K 4 16 64 256 1K

Message Size (bytes)
(h) ARM-48ppn

Message Size (bytes)

(g) ARM-16ppn

Figure 7: Performance of MPI+OSMP and state-of-the-art libraries
for MPI_Reduce on the Intel Cascade Lake, AMD Rome, IBM
POWERY9 and ARM A64fx architectures up to a message size of
2K bytes for different process counts.

over MVAPICH?2 default and up to 1.6x improvements over
HPC-X. On the Intel Cascade Lake (TACC Frontera) system,
we observe improvements of up to 2x over MVAPICH2 and
up to 25% over Intel MPI. On the POWERY system, we
observe up to 2.18 x improvement over Spectrum-MPI and up
to 2.3x over MVAPICH2. On the ARM system, we observe
improvements of up to 2x over MVAPICH2 and up to 2.3x
over OpenMPL.

4) Barrier: Figure 10 shows the performance of the
MPI_Barrier operation on the Intel Cascade Lake and AMD
Rome architectures. On the Intel Cascade Lake system,
MPI+OSMP outperforms default MVAPICH?2, which uses the
same algorithm, by up to 20%. MPI+OSMP performs similar
to Intel MPI for up to 28 processes. However, we observe a
degradation in performance when compared to Intel MPI at
full subscription (56 processes per node). We attribute this to
the baseline algorithm being sub-optimal in case of OSMP. On
the AMD Rome system, we observe up to 4x improvement

279

25 IvPIOSMP 4 [WProswMP —
MVAPICH2 —— 3.5 'MVAPICH2 ——
7 IntelMPI —— g 3 IntelMPl ——
<15 Z 25 A
2 g 2 o
g 1 8 15
© WJ / © / /
= = 1
05 —
[05 1|
0 0
4 16 64 256 1K 4 16 64 256 1K

Message Size (bytes)
(b) Cascade Lake-56ppn

Message Size (bytes)
(a) Cascade Lake-28ppn

1'2 MPI+OSMP —— g MPI+OSMP ——
-0 'MVAPICH2 —— MVAPICH2 ——
5 14 HPC-X —— -7 HPC-X ——
312 36
S S 35 a
c 08 c4
2 0 >4 2, el
© - ©
LIy — L
02 et P S
0 0
4 16 64 256 1K 4 16 64 256 1K
Message Size (bytes) Message Size (bytes)
(c) Rome-16ppn (d) Rome-128ppn
35 MVAPICH2 —— 42 MVAPICH2 ——
3 | Spectrum-MPI —— . Spectrum-MP| ——
& MPHOSMP —— -+ | = 4 MPI+OSMP —+—
2 25 Vs 2 35
E 2 [, — g 25
S 157 sy '
T o T 1v? e e
05 A 05 e
0 o
4 16 64 256 1K 4 16 64 256 1K
Message Size (bytes) Message Size (bytes)
(e) POWERY-16ppn (f) POWER9-40ppn
7 9
MVAPICH2 —— g [MVAPICH2 ——
6 OpenMPIl —— OpenMPI ——
Z5 [MPHOSMP —— / 57 [MPI+OSMP ——
E] 36
* m// 25 Fppmm
§3 / §; \’/*‘*/*‘*/H*M/
T2 i =3 g
| e ———————
1 1
0 0
4 16 64 256 1K 4 16 64 256 1K

Message Size (bytes)
(g) ARM-16ppn

Message Size (bytes)
(h) ARM-48ppn

Figure 8: Performance of MPI+OSMP and state-of-the-art libraries
for MPI_Bcast on the Intel Cascade Lake, AMD Rome, IBM
POWERY and ARM A64fx architectures for different process counts.

over default MVAPICH2. MPI+OSMP shows up to 10% better
performance when compared to HPC-X with 64 processes.

B. Application Evaluation

In this section, we present results for three applications :
MiniAMR, AMG and OpenFOAM on different architectures.
Timings for applications that use reduction collectives are
generally dominated by compute and other point-to-point
operations that induce skews within MPI, which might not
be representative of the actual communication performance
benefits that OSMP provides for these collective operations.

1) MiniAMR: MiniAMR is a proxy application which
explores the performance of finite difference or volume codes
that use Adaptive Mesh Refinement (AMR) [9]. It applies a
stencil calculation on a unit cube computational domain, which
is divided into blocks. We evaluate the performance with
miniAMR on Cascade Lake (in Figure 11(a)) and Rome (in
Figure 11(b)) architectures for varying number of processes.
We compare our OSMP design with MVAPICH2 and Intel

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:54:58 UTC from IEEE Xplore. Restrictions apply.

7 [POSMP "2 IpioSMP

6 FMVAPICH2 —+— 10 [MVAPICH2 —+
T | InteMPI —— - IntelMPI —— /
g Ss
>4 >
§3 / / g 6 / /
EZ %/ § 4 _‘_//7

M ’/
1 // 2
0 0

®

32 128 512 2K

@

32 128 512 2K

Message Size (bytes)
(b) Cascade Lake-56ppn

Message Size (bytes)
(a) Cascade Lake-28ppn

5 vprrosmp — 2 [WprosMP —
5 [MVAPICH2 —— MVAPICH2 ——
> HPC-X —— 22 HPC-X —— /\/
sS4 =)
z <15
33 / / 3 /
3 7_;%// 3 /// /
1 5 e
0 0
8 32 128 512 2K 8 32 128 512 2K
Message Size (bytes) Message Size (bytes)
(c) Rome-16ppn (d) Rome-128ppn
MVAPICH2 —— 12 MVAPICH2 ——
6 Spectrum-MP| —— 10 Spectrum-MP| ——
=, MPI+OSMP_—— — MPI+OSMP —— /
s o EX) / /
3t Py 36
53 § v ~
S g4
[e e s S = ,o—o—o—M
1 2
0 0
4 16 64 256 1K 4 16 64 256 1K
Message Size (bytes) Message Size (bytes)
(e) POWERY-16ppn (f) POWERY9-40ppn
12 MVAPICH2 —— % (vAPICHZ ——
OpenMPI —— 20 OpenMPIl ——
214 [MPI+OSMP —— 520 MPI+OSMP ——
212 i 2
g0 7 g S
c 8 A c
8ol Lo L ————
© 6> T ©
I e e) —
2
0 0
4 16 64 286 1K 4 16 64 256 1K

Message Size (bytes)
(h) ARM-48ppn

Message Size (bytes)
(g) ARM-16ppn

Figure 9: Performance of MPI+OSMP and state-of-the-art libraries
for MPI_Allreduce on the Intel Cascade Lake, AMD Rome, IBM
POWERY and ARM A64fx architectures up to a message size of 2K
bytes for different process counts.

--- @ MPI+OSMP -
@ MVAPICH2
B Inte]MPI

-..H MPI+OSMP
E MVAPICH2
B HPCx B

Latency (us)
Latency (us)

56 16 32

No. of Processes

(b) Rome

64 128

8 28 32
No. of Processes

(a) Cascade Lake

Figure 10: Performance of MPI+OSMP and state-of-the-art libraries
for MPI_Barrier on Intel Cascade Lake and AMD Rome architectures
for different process counts.

280

MPI or HPC-X on each system, respectively. As seen in
Figure 11(a), we observe 5% improvements over MVAPICH2
and about 40% improvements over Intel MPI on the TACC
Frontera system. Similarly, Figure 11(b) demonstrates that
OSMP based designs show up to 13% improvements over
MVAPICH2 and up to 6% improvements over HPC-X on the
AMD EPYC Rome architecture. The general trend follows
what we observed in benchmark-level evaluation—as the us-
age of processes/cores increases—our proposed designs tend
to show better performance.

Execution Time (sec)
Execution Time (sec)

No. of Processes

(b) Rome

No. of Processes

(a) Frontera

Figure 11: Performance comparison on Rome and Frontera systems
for miniAMR.

2) AMG: AMG is an algebraic multigrid solver for linear
systems arising from unstructured grids domain [12]. We
evaluate AMG using a weak-scaling problem set at varying
process counts on a single node of Frontera and Rome, and
compare the total execution time of our proposed design
against default MVAPICH2 (without OSMP) and Intel MPI
/ HPC-X. Figure 12(a) shows performance comparison of
OSMP, MVAPICH2 and Intel MPI on the TACC Frontera
(Cascade Lake CPU) system. We observe that OSMP shows
up to 15% improvement over MVAPICH2 and up to 5%
improvement over Intel MPI.

W MPLOSMP
E° MVAPICHZ
W HPC-X

Execution Time (sec)
Execution Time (sec)

16 64
No. of Processes

(b) Rome

No. of Processes

(a) Frontera

Figure 12: Performance comparison on Rome and Frontera systems
for AMG.

3) OpenFOAM: OpenFOAM is a computational fluid dy-
namics (CFD) application. The profiling of MPI version of the
code revealed MPI_Allreduce as one of the collective commu-
nication primitive being used by the application. We evaluated
the performance of OpenFOAM v7 on TACC Frontera and
compared the performance of OSMP and default MVAPICH2.
As seen in Figure 13, the proposed designs achieve up to 5%
improvements over MVAPICH2 for 32 and 56 processes.

VIII. RELATED WORK

In this paper, we build on our existing work [13], [14],
[15] to optimize shared memory intra-node communication

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:54:58 UTC from IEEE Xplore. Restrictions apply.

200

E MVAPICH2

150 -

100 |-

50|

Execution Time (sec)

28

32
No. of Processes

Figure 13: Performance of OpenFOAM v7 on TACC Frontera

56

on emerging multi-/many-core systems. Goglin et al. [16] pro-
posed an interface to exploit underlying hardware topology by
building matching hierarchical communicators. This approach
requires modifications to the MPI standard. Chatzopoulos et
al. [17] addressed the conflicting requirements of portability
and efficiency on multi-core processors by abstracting the
topology of multi-cores using determinism of cache-coherence
protocols and latency measurements between cores. Benefits
of this technique were demonstrated on five processors using
a variety of applications including MapReduce library and
mergesort algorithm. Niethammer et al. [18] proposed de-
signs to enable hardware topology-aware cartesian mapping
of processes. They visualized cartesian grids into three levels
of hierarchy and try to minimize communication across the
most expensive links. Kaeste et al. [19] proposed a library
called Smelt that provides machine-aware tree abstractions for
multi-core processors in order to enable efficient broadcast
communication. Similar to Chatzopoulos et al. [17], they ex-
tract topology information through a set of micro-benchmarks
and conducting analysis of results.Another unique aspect of
this work is that they attempt to not only enable efficient
communication but also reduce lag between communicating
processes. Ma et al. [5] optimized communication in the MPI
library by extracting hardware information and building tuning
tuning rules for different CPU architectures, types, cache size,
and locality. While significant research has been done in
the broader area, none of them offer an architecture-aware
hierarchical framework that delivers better performance and
highly convenient abstractions for applications as well as a
range of communication runtimes including MPL.

I[X. CONCLUSION AND FUTURE WORK

Future HPC systems are likely to be equipped with multi-
/many-core processor architectures with higher core counts and
deeper/complex memory hierarchies. These systems present
challenges to applications and communication runtime li-
braries alike. The conventional wisdom of designing communi-
cation primitives using processes as the fundamental building
block leads to performance penalties. This paper tackles this
issue by designing and implementing OSMP, which is a
library that abstracts the topology of a system and builds
communication trees that form the basis for architecture-aware
core-to-core communication. We orchestrate communication
primitives—picking common collective communication oper-
ations as exemplars—in an architecture-aware manner using
the topology tree and existing base-case algorithms. We fur-

281

ther demonstrate the performance benefits of building virtual
topologies on systems with shallow memory hierarchies. Our
proposed designs show up to 7.8 improvement at the micro-
benchmark level, and 15% improvement for application over
state-of-the-art MPI libraries. In the future, we plan to explore
the impact of topology trees on kernel-assisted collective
functions and inter-node communication operations.

REFERENCES

Aurora Supercomputer, http://aurora.alcf.anl.gov.

Frontier Supercomputer, https://www.amd.com/en/products/frontier.

L. Dagum and R. Enon, “OpenMP: An Industry Standard API for
Shared-Memory Programming,” Computational Science & Engineering,
IEEE, vol. 5, no. 1, pp. 46-55, 1998.

F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst, “hwloc: A Generic Framework
for Managing Hardware Affinities in HPC Applications,” in 2010
18th Euromicro Conference on Parallel, Distributed and Network-based
Processing. 1EEE, 2010, pp. 180-186.

T. Ma, G. Bosilca, A. Bouteiller, and J. J. Dongarra, “Locality and
topology aware intra-node communication among multicore cpus,” in
Recent Advances in the Message Passing Interface, R. Keller, E. Gabriel,
M. Resch, and J. Dongarra, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 265-274.

Ma, Teng and Bosilca, George and Bouteiller, Aurelien and Goglin,
Brice and Squyres, Jeffrey M and Dongarra, Jack J, “Kernel-assisted
Collective Intra-node MPI Communication among Multi-core and Many-
core CPUSs,” in Parallel Processing (ICPP), 2011 International Confer-
ence on. 1EEE, 2011, pp. 532-541.

The MPI Forum Working Group, http://mpi-forum.org/.

OSU Micro-benchmarks, http://mvapich.cse.ohio-state.edu/benchmarks/.
Sasidharan, Aparna and Snir, Marc, “MiniAMR: A Miniapp for Adaptive
Mesh Refinement,” Tech. Rep., 2016.

Lawrence Livermore National Security, “Algebraic multigrid bench-
mark,” https://github.com/LLNL/AMG/tree/master.

The OpenFOAM Foundation, https://openfoam.org/.

AMG ECP Proxy Application, https://computing.llnl.gov/projects/co-
design/amg2013.

J. M. Hashmi, S. Xu, B. Ramesh, M. Bayatpour, H. Subramoni, and
D. K. D. Panda, “Machine-agnostic and Communication-aware Designs
for MPI on Emerging Architectures,” in 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 1EEE, 2020,
pp. 32-41.

J. M. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D.
K. Panda, “FALCON: Efficient Designs for Zero-Copy MPI Datatype
Processing on Emerging Architectures,” in 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 1EEE, 2019,
pp. 355-364.

J. M. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and
D. K. Panda, “Designing Efficient Shared Address Space Reduction
Collectives for Multi-/Many-cores,” in 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 1EEE, 2018, pp.
1020-1029.

B. Goglin, E. Jeannot, F. Mansouri, and G. Mercier, “Hardware topology
management in mpi applications through hierarchical communicators,”
Parallel Computing, vol. 76, pp. 70 — 90, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819118301480

G. Chatzopoulos, R. Guerraoui, T. Harris, and V. Trigonakis,
“Abstracting Multi-Core Topologies with MCTOP,” in Proceedings
of the Twelfth European Conference on Computer Systems,
ser. EuroSys ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 544-559. [Online]. Available:
https://doi.org/10.1145/3064176.3064194

C. Niethammer and R. Rabenseifner, “An MPI Interface for Application
and Hardware Aware Cartesian Topology Optimization,” in Proceedings
of the 26th European MPI Users’ Group Meeting, 2019, pp. 1-8.

S. Kaestle, R. Achermann, R. Haecki, M. Hoffmann, S. Ramos, and
T. Roscoe, “Machine-aware Atomic Broadcast Trees for Multicores,”
in 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), 2016, pp. 33-43.

(5]

(6l

[14]

[15]

[16]

[17]

[18]

[19]

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:54:58 UTC from IEEE Xplore. Restrictions apply.

