
Designing Hierarchical Multi-HCA Aware Allgather in MPI
Tu Tran

tran.839@osu.edu
The Ohio State University
Columbus, Ohio, USA

Benjamin Michalowicz
michalowicz.2@osu.edu
The Ohio State University
Columbus, Ohio, USA

Bharath Ramesh
ramesh.113@osu.edu

The Ohio State University
Columbus, Ohio, USA

Hari Subramoni
subramoni.1@osu.edu

The Ohio State University
Columbus, Ohio, USA

Aamir Shafi
shafi.16@osu.edu

The Ohio State University
Columbus, Ohio, USA

Dhabaleswar K. Panda
panda@cse.ohio-state.edu
The Ohio State University
Columbus, Ohio, USA

ABSTRACT
To accelerate the communication between nodes, supercomputers
are now equipped with multiple network adapters per node, result-
ing in a "multi-rail" network. The second and third-placed systems
of the Top500 use two adapters per node; recently, the ThetaGPU
system at Argonne National Laboratory (ANL) uses eight adapters
per node. With such an availability of networking resources, it is a
non-trivial task to utilize all of them. The Message Passing Interface
(MPI) is a dominant model for high-performance computing clus-
ters. Not all MPI collectives utilize all resources, and this becomes
more apparent with advances in bandwidth and adapter count in a
given cluster.

In this work, we take up this task and propose hierarchical,
multi-HCA aware Allgather designs; Allgather is a communication-
intensive collective widely used in applications like matrix multi-
plication and other collectives. The proposed designs fully utilize
all the available network adapters within a node and provides high
overlap between inter-node and intra-node communication. At the
micro-benchmark level, our new schemes achieve performance
improvement for both single node and multiple node communica-
tion. We see inter-node improvements up to 62% and 61% better
than HPC-X and MVAPICH2-X for 1024 processes. The design for
inter-node communication also boosts the performance of Ring
Allreduce by 56% and 44% compared to HPC-X and MVAPICH2-X.
At the application level, the enhanced Allgather shows 1.98x and
1.42x improvement in a matrix-vector multiplication kernel when
compared to HPC-X and MVAPICH2-X, and Allreduce performs up
to 7.83% better in deep learning training against MVAPICH2-X.

KEYWORDS
MPI, Collectives, Network-aware, HCA-aware, Allgather, Allreduce

ACM Reference Format:
Tu Tran, Benjamin Michalowicz, Bharath Ramesh, Hari Subramoni, Aamir
Shafi, and Dhabaleswar K. Panda. 2022. Designing Hierarchical Multi-HCA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9445-1/22/08. . . $15.00
https://doi.org/10.1145/3547276.3548524

Aware Allgather in MPI. In 51th International Conference on Parallel Process-
ing Workshop (ICPP Workshops ’22), August 29-September 1, 2022, Bordeaux,
France. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3547276.
3548524

1 INTRODUCTION
Exascale computing is the next milestone after the presence of many
Petascale supercomputers, coming with the computing power of
1018 floating-point operations per second (FLOPS). The Exascale
Computing Project (ECP) [21] was initiated as a primary attempt
to pursue Exascale computing by the US government in 2016 due
to its huge potential of contributing to the American society and
the world through scientific discovery, energy assurance, economic
competitiveness, national security, pandemic simulations such as
COVID, etc. Consequently, individual compute nodes are getting
more and more powerful, with some being equipped with over 100
CPU cores, fast/high-throughputmemory, andmultiple accelerators
such as GPUs. Additionally, many compute nodes are connected
by low latency, high bandwidth interconnects such as InfiniBand.
To further increase bandwidth between compute nodes, supercom-
puters are now equipped with more than one network adapter per
node, resulting in a multi-rail network. Examples of such a system
are Frontier [11] and El Capitan [10], the first exascale computers
planned to debut in 2022 and 2023. With enormous computing ca-
pabilities, it is not a trivial task to fully harness such systems to
their fullest extent.

Among commonly used parallel programming models such as
shared memory, message passing, and partitioned global address
space (PGAS) [7, 40], the Message Passing Interface (MPI) standard
[20] is currently the de-facto parallel programming model on mod-
ern high-performance computing (HPC) clusters. In 2018, Bernholdt
et al. [4] surveyed the MPI usage in the ECP. Out of the 97 projects
active at the time of the survey, 77 responses were received, and
56 reported they were using MPI. In preparation for Exascale, MPI
has been continuously studied, analyzed, and improved ever since
2009 by the MPI community [2, 34]. The MPI standard defines two
main types of communication: point-to-point and collective. The
latter is communication-intensive, involves two or more processes
in a communicator, and contributes a significant part of the total
runtime of many HPC applications.

1.1 Motivation
In the Top500 [37] (accessed in November 2021), the current sec-
ond and third largest systems, namely Summit and Sierra, utilize

https://doi.org/10.1145/3547276.3548524
https://doi.org/10.1145/3547276.3548524
https://doi.org/10.1145/3547276.3548524


ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France Tran et al.

8K 16K 32K 64K 128K 256K 512K 1MB 2MB 4MB
0

5,000
10,000
15,000
20,000
25,000

Message size (bytes)

Ba
nd

w
id
th

(M
B/
s) Intra-node CMA Inter-node 1 HCA Inter-node 2 HCAs

Figure 1: Bandwidth comparison between intra-node and
inter-node communication

two adapters per node, and recently the ThetaGPU system [36]
at Argonne national laboratory equips eight adapters per node to
accelerate inter-node communication. Although HPC clusters are
getting more network resources for inter-node communication by
simply equipping more adapters, intra-node bandwidth roughly
stays the same unless a cluster is replaced by another CPU ar-
chitecture with a faster memory subsystem. Figure 1 shows the
bandwidth differences between intra-node communication using
CMA (Cross Memory Attach) and inter-node communication using
one and two HCAs at MPI-level between two processes. As shown
here, the bandwidth of inter-node communication with one HCA
is approximately equal to that of intra-node communication, with
inter-node bandwidth doubling when a second HCA is utilized. The
details of the experimental environment of all of the experiments in
this paper can be found in Section 5. As a result, existing collective
designs need to be revisited and augmented to be able to fully utilize
the additional network resources.

Broadly speaking, there are two categories of collective algo-
rithms: flat and two-level. Conventional flat algorithms [35], such
as Ring, do not differentiate intra-node and inter-node communica-
tion. For example, large messages inside an Allgather with more
than one process per node (PPN) are collected in a ring fashion.
In each communication step, a node sends data to its right peer
and receives it from its left; If there are N processes participat-
ing in an Allgather routine, there will be N − 1 communication
steps. Therefore, the communication will be bottlenecked by the
slowest links—intra-node transfers in this case. To further demon-
strate the issue, we performed an experiment with 2 nodes and 2
PPN performing an Allgather in a ring fashion on a cluster with 2
adapters per node. Figure 2 shows the timeline view of communica-
tion events extracted from Tuning and Analysis Utilities (TAU) [32]
and redrawn. The tracing capability from TAU allows us to present
when/where events happened along a global timeline as well as
when/where messages were sent. Another collective that employs
a ring algorithm for large messages is Allreduce. This collective has
been heavily studied and is still being continuously improved by
the academic community [3, 5, 12]; it is not only intensively used
in traditional HPC applications but is commonplace in the deep
learning (DL) world.

The second category is two-level [14], also referred to as single-
leader or multi-leader based designs. Within a node, processes
are divided into one or multiple groups, and each group contains
a designated leader. In the first phase, all processes share data
with group leaders. In the second phase, leaders from each node
perform a data exchange using a flat algorithm. Finally, The leaders

Proc 0

Proc 1

Proc 2

Proc 3

WR
Irecv Isend

Wait 
recv

A message 
from A to B

WR1 WS1 WR2 WS2 WR3 WS3

WR1 WR2 WR3

WR1 WS1 WR2 WS2 WR3 WS3

WR1 WR2 WR3

Step 1 Step 2 Step 3

WS Wait 
send

Figure 2: Allgather 2 Nodes, 2 PPN communication timeline
visualization

broadcast the result to their intra-node peers. In the multi-leader
based design proposed by Kandalla et al. [14], the communication
in the second phase is a blend of data exchanges between leaders
within and across nodes using conventional flat algorithms like
Ring; this can potentially lead to a bottleneck due to the difference
in intra-node and inter-node bandwidth. The bottleneck is clearly
demonstrated in Figure 2. The problemwill only get worse for multi-
rail networks; for instance, in the system we are measuring, inter-
node bandwidth is roughly twice that of intra-node. Besides that, the
authors clearly separated the communication phases. A phase starts
right after the previous one has finished while phases two (inter-
leader data exchange) and three (node-level data distribution) can
be overlapped. The work of Mamidala et al. [19] can be considered
as a single-leader design with overlap of inter-node and intra-node
communication. The design overcomes the two aforementioned
drawbacks of the multi-leader design. However, for inter-leader
data exchanges in phase two, only Recursive Doubling is used. In
this paper, we show that Ring can also be adopted in this case for
more overlap of network operations and intra-node shared memory
copies.

As a result, we ask the following questions:
• For pure intra-node communication, can we reduce
the latency by utilizing idle network adapters? If so,
how can we efficiently distribute the communication
workload between processes and adapters?

• For inter-node communicationwithmultiple processes
per node, can existing designs deliver goodperformance
onmulti-rail networks? If not, what are the sources of
bottlenecks and how can we resolve them?

1.2 Contributions
In this work, we propose a scalable and hierarchical multi-rail-
aware Allgather. This collective is a communication-intensive and
widely used operation in which every process broadcasts its data
(AlltoAll Broadcast). Allgather is an important collective used in
many applications such as lower and upper triangle factorization,
solving differential equations, linear algebra operations such as



Designing Hierarchical Multi-HCA Aware Allgather in MPI ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France

8K 16K 32K 64K 128K 256K 512K 1MB 2MB 4MB
0
40
80
120
160
200
240
280
320
360

Message size (bytes)

La
te
nc
y
(u
s)

Inter-node 1 HCA Inter-node 2 HCAs

Figure 3: Inter-node Latency Comparison on two processes
with One and Two HCAs

Bayesian Probabilistic Matrix Factorization [29, 39, 41], and matrix-
matrix/matrix-vector multiplication [8, 41]. The designs not only
fully utilize all of the available network adapters in a node but also
provide high overlap between inter-node and intra-node communi-
cation.

At the micro-benchmark level, our new schemes achieve up
to 62% improvement against HPC-X and 61% against MVAPICH2-
X. Furthermore, the design for inter-node communication boosts
the performance of Ring Allreduce by 56% and 44% compared to
HPC-X and MVAPICH2-X. At the application level, the enhanced
Allgather shows 1.98x and 1.42x improvement in a matrix-vector
multiplication kernel when compared to HPC-X and MVAPICH2-X,
and Allreduce performs up to 7.83% better in deep learning training
against MVAPICH2-X.

The rest of the paper is organized as follows. Section 2 gives
the background needed for this paper. In Section 3, we present our
multi-HCA aware schemes for Allgather. The performance models
of the the proposed designs are discussed in Section 4. Section 5
details the performance evaluation results for Allgather and shows
how it can improve Allreduce at microbenchmark and application
levels. Research work related to ours is presented in Section 6. Our
conclusions and thoughts for future work are presented in Section
7.

2 BACKGROUND
2.1 Multi-rail point-to-point level design
In 2004, Liu et al. [17] proposed a point-to-point design at MPI
level for Multirail InfiniBand clusters. This is one of the first works
that tackled the use of multiple network adapters to accelerate
inter-node communication. For small messages, messages are sent
through different rails in a round-robin fashion. This approach is
good for load balancing between different rails. As the message
size increase, the bandwidth usage of a rail will go up and eventu-
ally get saturated. A technique called striping will be used in this
case to overcome and lessen the bandwidth bottleneck. To clarify,
messages are broken into many chunks and sent across multiple
rails simultaneously. Figure 1 and 3 illustrate the bandwidth and
latency tests between to processes on two nodes at MPI level using
OSU micro-benchmark [22]. At 16 KB, the bandwidth of a rail is
saturated, and the striping technique applies to any messages with
size greater than this. As a result, the latency for large messages is
reduced by half.

2.2 Conventional flat Allgather designs
There are many conventional algorithms for Allgather, with the
most popular ones being Recursive Doubling (RD), Bruck’s, Ring,
and Direct Spread. In this paper, we focus on RD, Ring and Direct
Spread.

(1) Recursive Doubling (RD) executes in loд2(N ) steps, where
N is the number of processes. In step i , the distance between
any communicating processes is 2i−1, and the message size
increases by a factor of two after each step. For non-power-
of-two processes, RD requires additional steps to complete
the communication.

(2) In the Ring algorithm, data are exchanged along a virtual
ring of processes. In each step i , a process rank r sends the
data it has received in the previous step to its right peer
(rank r + 1) and receives from its left peer (rank r + 1). If
there are N processes participating in the communication,
the algorithm will take N − 1 steps to finish.

(3) In Direct Spread (dissemination) Allgather algorithm, each
process directly communicates with the source processes to
get the data instead of getting from through an intermediate
process the way Ring algorithm does. Specially, in step i, a
process rank r receives data directly from the process rank
(r − i)%N . This algorithm requires N − 1 steps to complete
like Ring for a communication of N processes

In summary, these algorithms were designed and optimized for
systems with a single processor or single communicating process
per node with homogeneous communication channels in terms of
latency and bandwidth. Recursive Doubling is good for short mes-
sages. Ring is better than Direct Spread due to the nearest-neighbor
communication pattern even though Ring has data dependencies
on other processes, and Direct Spread does not. They are both
well-suited for long messages.

2.3 Intra-node Communication Mechanisms
For intra-node communication, in the context of collective com-
munication, processes can exchange data by directly using point-
to-point operations like Send/Recv. However, this approach incurs
overheads caused by tag matching, handshaking via the rendezvous
protocol, etc.

Another approach is to use shared memory, which can eliminate
unnecessary overheads in the previous approach. However, two
copies are required for this method, one copy from the sender’s
buffer to the shared buffer and one copy from the shared buffer to
the recipient’s buffer, which results in a significant performance
degradation for large messages (usually >= 16KB). To avoid the
additional copy, kernel-assisted single-copies mechanisms such as
LiMiC [9], KNEM [18], and Cross Memory Attach (CMA) [6] are
deployed. While LiMiC and KNEM require some installations as
kernel modules, CMA is integrated inside newer versions of Linux
kernel and available to use.

2.4 Ring Allreduce
Allreduce is widely used in traditional HPC applications [16] and
emerging deep learning frameworks such as CNTK [30], Tensorflow
[1], and Horovod [31]. In 2019, Laguna et al. showed that it is mostly
used among MPI collectives [16]. Among the proposed algorithms



ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France Tran et al.

Step 1 Step 2 Step 3

0

2

1

3

0

2

1

3

0

2

1

3

(a) Direct Spread algorithm executes in 3 steps

done by a processor 

done by HCA0

done by HCA1

Step 2’

0

2

1

3

0

2

1

3

Step 1’

(b) The proposed MHA-intra executes in 2 steps. Step 1’ is step 2
overlapping with 1st half of step 1. Step 2’ is step 3 overlapping with
2nd half of step 1.

Figure 4: 4 processes performing Allgather: MHA-intra All-
gather with the aid of 2 HCAs comparing with Direct Spread

[3, 5, 12] and many others, Ring Allreduce proposed by Patarasuk
et al. [27] is proven to be bandwidth-optimal, which is particularly
suitable for large messages: all processes exchange data in a logical
ring manner, and the algorithm executes in two phases. In the
Reduce-Scatter phase, assuming there areN participating processes,
a logical ring communication is performed in N −1 iterations. After
that, an Allgather is performed, and as a result, each process will
have a complete reduction vector.

3 THE PROPOSED DESIGNS
3.1 A multi-HCA aware design for intra-node

communication
Allgather is a symmetric collective in which every process does the
same amount of work; to reduce the communication time, every
process needs to reduce the time it takes to complete its workload.
The proposed design is extended from the Direct Spread algorithm
mentioned in Section 2.2. Figure 4a illustrates the algorithm with
four processes participating in the communication. With idling
network adapters, each process can further accelerate the commu-
nication by assigning a fraction of their workload to them. Figure
4b demonstrates how using two available network adapters can
finish the communication in two steps instead of three, assuming a
processor and an adapter take roughly the same time to transfer a
message.

If each process assigns toomuch or too little workload to adapters,
the communication will be hampered by the component taking the
longest time to finish its task, either from processors or adapters. As
a result, we must make sure that appropriate amounts of workload
are handled by each process and adapter so that they can finish
roughly at the same time. Here a tuning algorithm is proposed to
find an optimal workload to offload to adapters. Figure 5 shows the
relationship between the offload size to adapters and the time it
takes to finish the communication. Based on the correlation, we
can easily find the optimal point by first measuring the time if

Latency

Offload size0

Offload all to HCAs

No offload

Optimal point

Figure 5: A chart showing the correlation between the of-
fload size to adapters and latency

all of the communication is done by adapters and processors stay
idle. After that, the offloaded workload is gradually decreased until
the intersection of the downward and upward trend lines of the
communication latency is found.

3.2 A hierarchical multi-HCA aware design for
inter-node and intra-node communication

The details of the proposed design for inter-node communication
with multiple processes per node, namely a hierarchical multi-HCA
aware design are as follows:

• Phase 1: Node-level data aggregation using the proposed
intra-node allgather in Section 3.1.

• Phase 2: Data transfers between group leaders with a single
process leader per node using either RD or Ring, depending
on message sizes. All processes within a node form a group,
and each group has a group leader.

• Phase 3: Node-level data distribution with group leaders
copying to shared memory and group members copying out.

To further elaborate, during the intra-node communication, usu-
ally done with processors performing memory copies, in phase
1, network adapters are idle, which leads to inefficient resource
utilization. The proposed intra-node allgather is used to have better
utilization of network resources. In phase 2, inter-leader data ex-
changes of N nodes can be done in logN steps with RD or (N − 1)
steps with Ring. Node-level data distribution in phase 3 can be
overlapped with phase 2 by using shared memory. As soon as, a
data chunk arrives in each step in phase 2, group leaders can copy it
into shared memory, and then increase a counter that indicates the
availability of a data chunk in each step. Non-leader processes check
the counter for the arrived chunk to copy out into their buffers. As
a result, network transfers and intra-node memory copies can be
overlapped, which is demonstrated in Figure 6.

For inter-leader data exchanges in phase 2, Ring can perform
better and deliver more overlap than RD, depending on message
size. Figure 7 depicts the case of 8 leaders corresponding to 8 nodes
with Ring outperforming RD due to higher overlap. For RD, The size
of data transferred in a current step is twice the one in the previous
step. This is why RD loses its overlapping capability. Specifically,
inter-node transfer of size D happens concurrently with intra-node
broadcast of size (D/2) instead of size D as in the case of Ring. In
addition, after the final data chunk has arrived, leader processes



Designing Hierarchical Multi-HCA Aware Allgather in MPI ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France

Node leader
Local proc 0

Local 
proc 1

Local 
proc L-1. . .

i

i
i + 1

. . . i

i Copy chunk i from 
local buffer to shared 
memory

i + 1

i + 1 . . . i + 1
i + 2

i + 2 . . . i + 2
i Internode transfer to 

get chunk i by HCA

i Copy chunk i from 
shared memory to local 
buffer

i + 2

i + 3

.

.

.

.

.

.

.

.
.
.

.

.
.
.

i - 1 . . . i - 1

.

.

.

.

.

.

.

.
.
.

.

.

Time

Figure 6: A timeline view of communication events of a node
during interleader data exchange and node-level data distri-
bution phases

Internode exchange 
to get chunk 1

Internode exchange 
to get chunk 2,3

Internode exchange 
to get chunk 4,5,6,7

Bcast chunk 1 through 
shared memory

Bcast chunk 2,3 
through shared 

memory

Bcast chunk 4,5,6,7
through shared 

memory

Internode exchange 
to get chunk 1

Bcast chunk 1 through 
shared memory

Internode exchange 
to get chunk 2

Internode exchange 
to get chunk 4

Internode exchange 
to get chunk 3

Internode exchange 
to get chunk 5

Internode exchange 
to get chunk 7

Internode exchange 
to get chunk 6

Bcast chunk 2 through 
shared memory

Bcast chunk 3 through 
shared memory

Bcast chunk 4 through 
shared memory

Bcast chunk 5 through 
shared memory

Bcast chunk 6 through 
shared memory

Bcast chunk 7 through 
shared memory

Benefit

Time

Recursive Doubling Ring

Figure 7: A comparison of Recursive Doubling and Ring al-
gorithms used in inter-leader data exchange phase

need to do one final broadcast of that chunk; the data size of the
final chunk of RD is 2(loд2(N )−1) times bigger than the one of Ring.
As the number of nodes goes higher, we see a better level of overlap
delivered by Ring when compared to RD. Figure 8 compares the
performance of Ring and RD used in the inter-leader data exchange
phase. We see that RD outperforms Ring for small message sizes.
Note that the message size shown in the figures is the message size
of each process contributing to the Allgather; the real transferred
message size by node leaders is PPN times bigger than this.

4 PERFORMANCE MODELS OF THE
MULTI-HCA AWARE DESIGNS

4.1 Modeling the Cost of MHA-intra Allgather
Assuming there are L processes participating in an Allgather, in
the MHA-intra algorithm, they first copy their data from send to
receive buffers if the operation is not an in-place operation. After
that, each process requests H HCAs to do d transfers, while it
does (L − 1 − d) intra-node transfers. d is the optimal number of
offloaded transfers to HCAs per process, depending on the number
of processes L and message size M ; For optimal communication,
we need to distribute the workload from processes to HCAs so that
they can approximately finish at the same time. As a result, the
following equation can be used to find d :

TC (M) ∗ (L − 1 − d) = TH (M) ∗ L ∗ d
⇒ d = (TC (M) ∗ (L − 1))/(TH (M) ∗ L +TC (M)) (1)

Designing Hierarchical Multi-HCA Aware Allgather in MPI ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France

Node leader
Local proc 0

Local 
proc 1

Local 
proc L-1. . .

i

i
i + 1

. . . i

i Copy chunk i from 
local buffer to shared 
memory

i + 1

i + 1 . . . i + 1
i + 2

i + 2 . . . i + 2
i Internode transfer to 

get chunk i by HCA

i Copy chunk i from 
shared memory to local 
buffer

i + 2

i + 3

.

.

.

.

.

.

.

.
.
.

.

.
.
.

i - 1 . . . i - 1

.

.

.

.

.

.

.

.
.
.

.

.

Time

Figure 6: A timeline view of communication events of a node
during interleader data exchange and node-level data distri-
bution phases

Internode exchange 
to get chunk 1

Internode exchange 
to get chunk 2,3

Internode exchange 
to get chunk 4,5,6,7

Bcast chunk 1 through 
shared memory

Bcast chunk 2,3 
through shared 

memory

Bcast chunk 4,5,6,7
through shared 

memory

Internode exchange 
to get chunk 1

Bcast chunk 1 through 
shared memory

Internode exchange 
to get chunk 2

Internode exchange 
to get chunk 4

Internode exchange 
to get chunk 3

Internode exchange 
to get chunk 5

Internode exchange 
to get chunk 7

Internode exchange 
to get chunk 6

Bcast chunk 2 through 
shared memory

Bcast chunk 3 through 
shared memory

Bcast chunk 4 through 
shared memory

Bcast chunk 5 through 
shared memory

Bcast chunk 6 through 
shared memory

Bcast chunk 7 through 
shared memory

Benefit

Time

Recursive Doubling Ring

Figure 7: A comparison of Recursive Doubling and Ring al-
gorithms used in inter-leader data exchange phase

need to do one final broadcast of that chunk; the data size of the
final chunk of RD is 2(𝑙𝑜𝑔2 (𝑁 )−1) times bigger than the one of Ring.
As the number of nodes goes higher, we see a better level of overlap
delivered by Ring when compared to RD. Figure 8 compares the
performance of Ring and RD used in the inter-leader data exchange
phase. We see that RD outperforms Ring for small message sizes.
Note that the message size shown in the figures is the message size
of each process contributing to the Allgather; the real transferred
message size by node leaders is 𝑃𝑃𝑁 times bigger than this.

4 PERFORMANCE MODELS OF THE
MULTI-HCA AWARE DESIGNS

4.1 Modeling the Cost of MHA-intra Allgather
Assuming there are 𝐿 processes participating in an Allgather, in
the MHA-intra algorithm, they first copy their data from send to
receive buffers if the operation is not an in-place operation. After
that, each process requests 𝐻 HCAs to do 𝑑 transfers, while it
does (𝐿 − 1 − 𝑑) intra-node transfers. 𝑑 is the optimal number of
offloaded transfers to HCAs per process, depending on the number
of processes 𝐿 and message size 𝑀 ; For optimal communication,
we need to distribute the workload from processes to HCAs so that
they can approximately finish at the same time. As a result, the
following equation can be used to find 𝑑 :

𝑇𝐶 (𝑀) ∗ (𝐿 − 1 − 𝑑) = 𝑇𝐻 (𝑀) ∗ 𝐿 ∗ 𝑑
⇒ 𝑑 = (𝑇𝐶 (𝑀) ∗ (𝐿 − 1))/(𝑇𝐻 (𝑀) ∗ 𝐿 𝑇𝐶 (𝑀)) (1)

256 512 1K 2K 4K 8K 16K 32K 64K 128
K

256
K

27
29
211
213
215
217

Message size (bytes)

La
te
nc
y
(u
s) RD Ring

(a) 16 Nodes, 32 PPN

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128
K
256

K
26
28
210
212
214
216
218

Message size (bytes)

La
te
nc
y
(u
s) RD Ring

(b) 32 Nodes, 32 PPN

Figure 8: Comparison of the RD and Ring Algorithms in the
Proposed Design During Inter-Leader Data Exchange

Table 1: Notations used in the cost models

Symbol Description
𝑁 Number of nodes
𝐿 Number of processes per node
𝑀 Message size
𝐻 Number of adapters
𝛼𝐶 Startup time per intra-node transfer
𝐵𝑊𝐶 Bandwidth of intra-node transfer
𝛼𝐻 Startup time per inter-node transfer
𝐵𝑊𝐻 Bandwidth of inter-node transfer
𝛼𝐿 Startup cost per local memory copy
𝐵𝑊𝐿 Bandwidth of local memoy copy
𝑇𝐶 (𝑀) Time to send an intra-node message of size M
𝑇𝐻 (𝑀) Time to send a message of size M using H

adapters
𝑇𝐿 (𝑀) Time to perform a memory copy of size M

In addition, a transfer of message𝑀 by 𝐻 adapters can be mod-
eled as𝑇𝐻 (𝑀) = 𝛼𝐻 𝑀/(𝐵𝑊𝐻 ∗𝐻 ). A local memory copy of size
𝑀 can be modeled as𝑇𝐿 (𝑀) = 𝛼𝐿 𝑀/𝐵𝑊𝐿 . An intra-node transfer
of message 𝑀 can be modeled as 𝑇𝐶 (𝑀) = 𝛼𝐶 (𝑀/𝐵𝑊𝐶 ) ∗ 𝑏, in
which 𝑏 is a number of concurrent accesses to memory. It is used to
model the congestion when memory bandwidth is saturated with
large messages. For small messages, 𝑏 has a value of one.

As a result, the MHA-intra Allgather can be estimated as follows:
𝑇𝑀𝐻𝐴−𝑖𝑛𝑡𝑟𝑎 (𝑀) = 𝑇𝐿 (𝑀)

𝑀𝑎𝑥{ (𝐿 − 1 − 𝑑) ∗𝑇𝐶 (𝑀),
𝐿 ∗ 𝑑 ∗𝑇𝐻 (𝑀) }

(2)

4.2 Modeling the Cost of MHA-inter Allgather
For MHA-inter Allgather, the communication happens in 3 phases.
In phase 1, data are shared with group leaders using MHA-intra
algorithm, then the cost is𝑇𝑀𝐻𝐴−𝑖𝑛𝑡𝑟𝑎 (𝑀), modeled in the previous
section. For phase 2, group leaders perform data exchange of size

Figure 8: Comparison of the RD and Ring Algorithms in the
Proposed Design During Inter-Leader Data Exchange

Table 1: Notations used in the cost models

Symbol Description
N Number of nodes
L Number of processes per node
M Message size
H Number of adapters
αC Startup time per intra-node transfer
BWC Bandwidth of intra-node transfer
αH Startup time per inter-node transfer
BWH Bandwidth of inter-node transfer
αL Startup cost per local memory copy
BWL Bandwidth of local memoy copy
TC (M) Time to send an intra-node message of size M
TH (M) Time to send a message of size M using H

adapters
TL(M) Time to perform a memory copy of size M

In addition, a transfer of messageM by H adapters can be mod-
eled asTH (M) = αH +M/(BWH ∗H ). A local memory copy of size
M can be modeled asTL(M) = αL +M/BWL . An intra-node transfer
of message M can be modeled as TC (M) = αC + (M/BWC ) ∗ b, in
which b is a number of concurrent accesses to memory. It is used to
model the congestion when memory bandwidth is saturated with
large messages. For small messages, b has a value of one.

As a result, the MHA-intra Allgather can be estimated as follows:

TMHA−intra (M) = TL(M)
+Max{ (L − 1 − d) ∗TC (M),

L ∗ d ∗TH (M) }
(2)

4.2 Modeling the Cost of MHA-inter Allgather
For MHA-inter Allgather, the communication happens in 3 phases.
In phase 1, data are shared with group leaders using MHA-intra



ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France Tran et al.

algorithm, then the cost is TMHA−intra (M), modeled in the previ-
ous section. For phase 2, group leaders perform data exchange of
size (M ∗ L), either using RD or Ring. While RD runs in logN steps
with data size doubled in every step, Ring executes in N − 1 steps
with data size of (M ∗ L). As a result, the cost for phase 2 is
Tphase2−RD (ML) = Tstep 1 +Tstep 2 + ... +Tstep loд(N )

= TH (M ∗ L) +TH (2 ∗M ∗ L)
+ ... +TH (loд(N ) ∗M ∗ L)
= αH ∗ loд(N ) + (N − 1) ∗ (M ∗ L)/(BWH ∗ H )

(3)

Tphase−2−Rinд(ML) = Tstep 1 +Tstep 2 + ... +Tstep (N−1)
= TH (M ∗ L) +TH (M ∗ L)
+ ... +TH (M ∗ L)
= αH ∗ (N − 1)
+ (N − 1) ∗ (M ∗ L)/(BWH ∗ H )

(4)

For the data distribution of node leaders in phase 3, the leaders
perform multiple broadcasts of size (M ∗ L) by first copying to
shared memory; then, its peers can copy out to their local buffers.
When copying out, all the peers cannot do it concurrently because
of memory congestion. As a result, the cost of copying out of (L−1)
processes is the cost of memory copy of one process times the
congestion factor cд(M,L−1), which is a function of (L−1) processes
accessing a shared region ofM bytes and thus can be empirically
measured. Consequently, a broadcast can be modeled as

Tintra bcast (M ∗ L)
= Tcopy in (M ∗ L) +Tcopy out (M ∗ L)
= (αL + (M ∗ L)/BWL)
+(αL + (M ∗ L)/BWL) ∗ cд(M ∗ L,L − 1)

(5)

When phase 2 overlaps with phase 3, an inter-node transfer to
get chunk i + 1 happens concurrently with an intra-node broadcast
of chunk i. Phase 2 ends when leaders receive the last chunk; then,
they can do a final broadcast to complete the communication. As a
result, MHA-inter Allgather can be modeled as follows:

TMHA−inter−RD (M)
= Tphase−1 +Tphase−2 +Tintra bcast (M ∗ L ∗ N /2)
, if Tintra bcast (M ∗ L) <= TH (2 ∗M ∗ L)
= TH (M ∗ L) + (N − 1) ∗Tintra bcast (M ∗ L),
, otherwise

(6)

TMHA−inter−Rinд(M)
= Tphase 1 +Tphase 2 +Tintra bcast (M ∗ L)
, if Tintra bcast (M ∗ L) <= TH (M ∗ L)
= TH (M ∗ L) + (N − 1) ∗Tintra bcast (M ∗ L),
, otherwise

(7)

4.3 Model Validation
To predict the performance of MHA-intra and MHA-inter Allgather,
we must first empirically obtain parameters in Table 1. For intra-
node communication, Equation (2) is used to estimate the cost of
MHA-intra. Figure 9 shows that the predicted latency is close to

ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France Tran et al.

algorithm, then the cost is TMHA−intra (M), modeled in the previ-
ous section. For phase 2, group leaders perform data exchange of
size (M ∗ L), either using RD or Ring. While RD runs in logN steps
with data size doubled in every step, Ring executes in N − 1 steps
with data size of (M ∗ L). As a result, the cost for phase 2 is
Tphase2−RD (ML) = Tstep 1 +Tstep 2 + ... +Tstep loд(N )

= TH (M ∗ L) +TH (2 ∗M ∗ L)
+ ... +TH (loд(N ) ∗M ∗ L)
= αH ∗ loд(N ) + (N − 1) ∗ (M ∗ L)/(BWH ∗ H )

(3)

Tphase−2−Rinд(ML) = Tstep 1 +Tstep 2 + ... +Tstep (N−1)
= TH (M ∗ L) +TH (M ∗ L)
+ ... +TH (M ∗ L)
= αH ∗ (N − 1)
+ (N − 1) ∗ (M ∗ L)/(BWH ∗ H )

(4)

For the data distribution of node leaders in phase 3, the leaders
perform multiple broadcasts of size (M ∗ L) by first copying to
shared memory; then, its peers can copy out to their local buffers.
When copying out, all the peers cannot do it concurrently because
of memory congestion. As a result, the cost of copying out of (L−1)
processes is the cost of memory copy of one process times the
congestion factor cд(M,L−1), which is a function of (L−1) processes
accessing a shared region ofM bytes and thus can be empirically
measured. Consequently, a broadcast can be modeled as

Tintra bcast (M ∗ L)
= Tcopy in (M ∗ L) +Tcopy out (M ∗ L)
= (αL + (M ∗ L)/BWL)
+(αL + (M ∗ L)/BWL) ∗ cд(M ∗ L,L − 1)

(5)

When phase 2 overlaps with phase 3, an inter-node transfer to
get chunk i + 1 happens concurrently with an intra-node broadcast
of chunk i. Phase 2 ends when leaders receive the last chunk; then,
they can do a final broadcast to complete the communication. As a
result, MHA-inter Allgather can be modeled as follows:

TMHA−inter−RD (M)
= Tphase−1 +Tphase−2 +Tintra bcast (M ∗ L ∗ N /2)
, if Tintra bcast (M ∗ L) <= TH (2 ∗M ∗ L)
= TH (M ∗ L) + (N − 1) ∗Tintra bcast (M ∗ L),
, otherwise

(6)

TMHA−inter−Rinд(M)
= Tphase 1 +Tphase 2 +Tintra bcast (M ∗ L)
, if Tintra bcast (M ∗ L) <= TH (M ∗ L)
= TH (M ∗ L) + (N − 1) ∗Tintra bcast (M ∗ L),
, otherwise

(7)

4.3 Model Validation
To predict the performance of MHA-intra and MHA-inter Allgather,
we must first empirically obtain parameters in Table 1. For intra-
node communication, Equation (2) is used to estimate the cost of
MHA-intra. Figure 9 shows that the predicted latency is close to

256
KB

512
KB 1MB 2MB 4MB 8MB 16M

B
26
28
210
212

Message size (bytes)

La
te
nc
y
(u
s) Actual Predicted

Figure 9: Validation of MHA-intra with 4 processes

ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France Tran et al.

(𝑀 ∗ 𝐿), either using RD or Ring. While RD runs in log𝑁 steps
with data size doubled in every step, Ring executes in 𝑁 − 1 steps
with data size of (𝑀 ∗ 𝐿). As a result, the cost for phase 2 is
𝑇𝑝ℎ𝑎𝑠𝑒2−𝑅𝐷 (𝑀𝐿) = 𝑇𝑠𝑡𝑒𝑝 1 𝑇𝑠𝑡𝑒𝑝 2 ... 𝑇𝑠𝑡𝑒𝑝 𝑙𝑜𝑔 (𝑁 )

= 𝑇𝐻 (𝑀 ∗ 𝐿) 𝑇𝐻 (2 ∗𝑀 ∗ 𝐿)
... 𝑇𝐻 (𝑙𝑜𝑔(𝑁 ) ∗𝑀 ∗ 𝐿)

= 𝛼𝐻 ∗ 𝑙𝑜𝑔(𝑁 ) (𝑁 − 1) ∗ (𝑀 ∗ 𝐿)/(𝐵𝑊𝐻 ∗ 𝐻 )
(3)

𝑇𝑝ℎ𝑎𝑠𝑒−2−𝑅𝑖𝑛𝑔 (𝑀𝐿) = 𝑇𝑠𝑡𝑒𝑝 1 𝑇𝑠𝑡𝑒𝑝 2 ... 𝑇𝑠𝑡𝑒𝑝 (𝑁−1)
= 𝑇𝐻 (𝑀 ∗ 𝐿) 𝑇𝐻 (𝑀 ∗ 𝐿)

... 𝑇𝐻 (𝑀 ∗ 𝐿)
= 𝛼𝐻 ∗ (𝑁 − 1)

(𝑁 − 1) ∗ (𝑀 ∗ 𝐿)/(𝐵𝑊𝐻 ∗ 𝐻 )

(4)

For the data distribution of node leaders in phase 3, the leaders
perform multiple broadcasts of size (𝑀 ∗ 𝐿) by first copying to
shared memory; then, its peers can copy out to their local buffers.
When copying out, all the peers cannot do it concurrently because
of memory congestion. As a result, the cost of copying out of (𝐿−1)
processes is the cost of memory copy of one process times the con-
gestion factor 𝑐𝑔(𝑀, 𝐿 − 1), which is a function of (𝐿 − 1) processes
accessing a shared region of𝑀 bytes and thus can be empirically
measured. Consequently, a broadcast can be modeled as

𝑇𝑖𝑛𝑡𝑟𝑎 𝑏𝑐𝑎𝑠𝑡 (𝑀 ∗ 𝐿)
= 𝑇𝑐𝑜𝑝𝑦 𝑖𝑛 (𝑀 ∗ 𝐿) 𝑇𝑐𝑜𝑝𝑦 𝑜𝑢𝑡 (𝑀 ∗ 𝐿)
= (𝛼𝐿 (𝑀 ∗ 𝐿)/𝐵𝑊𝐿)

(𝛼𝐿 (𝑀 ∗ 𝐿)/𝐵𝑊𝐿) ∗ 𝑐𝑔(𝑀 ∗ 𝐿, 𝐿 − 1)
(5)

When phase 2 overlaps with phase 3, an inter-node transfer to
get chunk i + 1 happens concurrently with an intra-node broadcast
of chunk i. Phase 2 ends when leaders receive the last chunk; then,
they can do a final broadcast to complete the communication. As a
result, MHA-inter Allgather can be modeled as follows:

𝑇𝑀𝐻𝐴−𝑖𝑛𝑡𝑒𝑟−𝑅𝐷 (𝑀)
= 𝑇𝑝ℎ𝑎𝑠𝑒−1 𝑇𝑝ℎ𝑎𝑠𝑒−2 𝑇𝑖𝑛𝑡𝑟𝑎 𝑏𝑐𝑎𝑠𝑡 (𝑀 ∗ 𝐿 ∗ 𝑁 /2)
, if 𝑇𝑖𝑛𝑡𝑟𝑎 𝑏𝑐𝑎𝑠𝑡 (𝑀 ∗ 𝐿) <= 𝑇𝐻 (2 ∗𝑀 ∗ 𝐿)

= 𝑇𝐻 (𝑀 ∗ 𝐿) (𝑁 − 1) ∗𝑇𝑖𝑛𝑡𝑟𝑎 𝑏𝑐𝑎𝑠𝑡 (𝑀 ∗ 𝐿),
, otherwise

(6)

𝑇𝑀𝐻𝐴−𝑖𝑛𝑡𝑒𝑟−𝑅𝑖𝑛𝑔 (𝑀)
= 𝑇𝑝ℎ𝑎𝑠𝑒 1 𝑇𝑝ℎ𝑎𝑠𝑒 2 𝑇𝑖𝑛𝑡𝑟𝑎 𝑏𝑐𝑎𝑠𝑡 (𝑀 ∗ 𝐿)
, if 𝑇𝑖𝑛𝑡𝑟𝑎 𝑏𝑐𝑎𝑠𝑡 (𝑀 ∗ 𝐿) <= 𝑇𝐻 (𝑀 ∗ 𝐿)

= 𝑇𝐻 (𝑀 ∗ 𝐿) (𝑁 − 1) ∗𝑇𝑖𝑛𝑡𝑟𝑎 𝑏𝑐𝑎𝑠𝑡 (𝑀 ∗ 𝐿),
, otherwise

(7)

4.3 Model Validation
To predict the performance of MHA-intra and MHA-inter Allgather,
we must first empirically obtain parameters in Table 1. For intra-
node communication, Equation (2) is used to estimate the cost of
MHA-intra. Figure 9 shows that the predicted latency is close to
the actual latency of MHA-intra, which means the proposed model
can estimate the trend properly. For inter-node communication,

256
KB

512
KB 1MB 2MB 4MB 8MB 16M

B
26
28
210
212

Message size (bytes)

La
te
nc
y
(u
s) Actual Predicted

Figure 9: Validation of MHA-intra with 4 processes

512 1KB 2KB 4KB 8KB 16K
B
32K

B
64K

B
128

KB
256

KB
512

KB 1MB
26
28
210
212
214
216

Message size (bytes)

La
te
nc
y
(u
s) Actual Predicted

Figure 10: Validation of MHA-inter with 8 nodes 32 PPN

equations (6) and (7) can be used to estimate the cost of MHA-
inter when the algorithm for inter-leader data exchange is RD and
Ring, respectively. In Figure 10, the predicted latency and the actual
latency reflect the tuned algorithm used in phase two between RD
and Ring. We can see that the estimated numbers from the proposed
model are are comparable with the measured numbers. As a result,
by using the two models, we can predict how much performance
can be improved for a communication pattern of 𝑁 nodes with 𝐿

PPN on a system of 𝐻 adapters.

5 PERFORMANCE EVALUATION
In this section, we first present the environment for evaluation and
then provide the results of experiments performed to evaluate the
performance of the proposed designs at the microbenchmark and
application levels.

5.1 Experimental environment
All of the experiments presented in this paper are conducted on
Thor cluster of HPC Advisory Council [13]. It consists of 32 nodes
equipped with dual-socket Intel® Xeon® 16-core CPUs E5-2697A
V4 @ 2.60 GHz (Broadwell), 1024 cores in total. Each node is
equipped with 2 ConnectX-6 HDR100 100Gb/s InfiniBand adapters
and 256GB DDR4 2400MHz RDIMMs. The operating system used
is Rocky Linux 8.5 (Green Obsidian), with kernel version 4.18.0-
348.12.2.el8_5.x86_64 and Mellanox OFED version 5.5-1.0.3.2.

On the software aspect, the proposed designs are compared with
two widely used MPI implementations in the scientific community,
namely MVAPICH2-X version 2.3 [23] and HPC-X version 2.10.0
[24]. MVAPICH2 delivers the best performance, scalability and fault
tolerance for high-end computing systems and servers using Infini-
Band, Omni-Path, Ethernet/iWARP, RoCE, Cray Slingshot 10, and
Rockport Networks networking technologies. NVIDIA® HPCX®
is a variant of Open MPI [25] maintained by NVIDIA, which pro-
vides high performance, scalability, and efficiency and ensures that
communication is fully optimized for NVIDIA InfiniBand network-
ing solutions. Additionally, for the performance evaluation of deep
learning, we use PyTorch version 1.8.0 [26] and Horovod version
0.20.0 [31]. Finally, each of the numbers reported here is an average

Figure 10: Validation of MHA-inter with 8 nodes 32 PPN

the actual latency of MHA-intra, which means the proposed model
can estimate the trend properly. For inter-node communication,
equations (6) and (7) can be used to estimate the cost of MHA-
inter when the algorithm for inter-leader data exchange is RD and
Ring, respectively. In Figure 10, the predicted latency and the actual
latency reflect the tuned algorithm used in phase two between RD
and Ring. We can see that the estimated numbers from the proposed
model are are comparable with the measured numbers. As a result,
by using the two models, we can predict how much performance
can be improved for a communication pattern of N nodes with L
PPN on a system of H adapters.

5 PERFORMANCE EVALUATION
In this section, we first present the environment for evaluation and
then provide the results of experiments performed to evaluate the
performance of the proposed designs at the microbenchmark and
application levels.

5.1 Experimental environment
All of the experiments presented in this paper are conducted on
Thor cluster of HPC Advisory Council [13]. It consists of 32 nodes
equipped with dual-socket Intel® Xeon® 16-core CPUs E5-2697A
V4 @ 2.60 GHz (Broadwell), 1024 cores in total. Each node is
equipped with 2 ConnectX-6 HDR100 100Gb/s InfiniBand adapters
and 256GB DDR4 2400MHz RDIMMs. The operating system used
is Rocky Linux 8.5 (Green Obsidian), with kernel version 4.18.0-
348.12.2.el8_5.x86_64 and Mellanox OFED version 5.5-1.0.3.2.

On the software aspect, the proposed designs are compared with
two widely used MPI implementations in the scientific community,
namely MVAPICH2-X version 2.3 [23] and HPC-X version 2.10.0
[24]. MVAPICH2 delivers the best performance, scalability and fault
tolerance for high-end computing systems and servers using Infini-
Band, Omni-Path, Ethernet/iWARP, RoCE, Cray Slingshot 10, and
Rockport Networks networking technologies. NVIDIA® HPCX®
is a variant of Open MPI [25] maintained by NVIDIA, which pro-
vides high performance, scalability, and efficiency and ensures that

Figure 9: Validation of MHA-intra with 4 processes

ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France Tran et al.

(𝑀 ∗ 𝐿), either using RD or Ring. While RD runs in log𝑁 steps
with data size doubled in every step, Ring executes in 𝑁 − 1 steps
with data size of (𝑀 ∗ 𝐿). As a result, the cost for phase 2 is
𝑇𝑝ℎ𝑎𝑠𝑒2−𝑅𝐷 (𝑀𝐿) = 𝑇𝑠𝑡𝑒𝑝 1 𝑇𝑠𝑡𝑒𝑝 2 ... 𝑇𝑠𝑡𝑒𝑝 𝑙𝑜𝑔 (𝑁 )

= 𝑇𝐻 (𝑀 ∗ 𝐿) 𝑇𝐻 (2 ∗𝑀 ∗ 𝐿)
... 𝑇𝐻 (𝑙𝑜𝑔(𝑁 ) ∗𝑀 ∗ 𝐿)

= 𝛼𝐻 ∗ 𝑙𝑜𝑔(𝑁 ) (𝑁 − 1) ∗ (𝑀 ∗ 𝐿)/(𝐵𝑊𝐻 ∗ 𝐻 )
(3)

𝑇𝑝ℎ𝑎𝑠𝑒−2−𝑅𝑖𝑛𝑔 (𝑀𝐿) = 𝑇𝑠𝑡𝑒𝑝 1 𝑇𝑠𝑡𝑒𝑝 2 ... 𝑇𝑠𝑡𝑒𝑝 (𝑁−1)
= 𝑇𝐻 (𝑀 ∗ 𝐿) 𝑇𝐻 (𝑀 ∗ 𝐿)

... 𝑇𝐻 (𝑀 ∗ 𝐿)
= 𝛼𝐻 ∗ (𝑁 − 1)

(𝑁 − 1) ∗ (𝑀 ∗ 𝐿)/(𝐵𝑊𝐻 ∗ 𝐻 )

(4)

For the data distribution of node leaders in phase 3, the leaders
perform multiple broadcasts of size (𝑀 ∗ 𝐿) by first copying to
shared memory; then, its peers can copy out to their local buffers.
When copying out, all the peers cannot do it concurrently because
of memory congestion. As a result, the cost of copying out of (𝐿−1)
processes is the cost of memory copy of one process times the con-
gestion factor 𝑐𝑔(𝑀, 𝐿 − 1), which is a function of (𝐿 − 1) processes
accessing a shared region of𝑀 bytes and thus can be empirically
measured. Consequently, a broadcast can be modeled as

𝑇𝑖𝑛𝑡𝑟𝑎 𝑏𝑐𝑎𝑠𝑡 (𝑀 ∗ 𝐿)
= 𝑇𝑐𝑜𝑝𝑦 𝑖𝑛 (𝑀 ∗ 𝐿) 𝑇𝑐𝑜𝑝𝑦 𝑜𝑢𝑡 (𝑀 ∗ 𝐿)
= (𝛼𝐿 (𝑀 ∗ 𝐿)/𝐵𝑊𝐿)

(𝛼𝐿 (𝑀 ∗ 𝐿)/𝐵𝑊𝐿) ∗ 𝑐𝑔(𝑀 ∗ 𝐿, 𝐿 − 1)
(5)

When phase 2 overlaps with phase 3, an inter-node transfer to
get chunk i + 1 happens concurrently with an intra-node broadcast
of chunk i. Phase 2 ends when leaders receive the last chunk; then,
they can do a final broadcast to complete the communication. As a
result, MHA-inter Allgather can be modeled as follows:

𝑇𝑀𝐻𝐴−𝑖𝑛𝑡𝑒𝑟−𝑅𝐷 (𝑀)
= 𝑇𝑝ℎ𝑎𝑠𝑒−1 𝑇𝑝ℎ𝑎𝑠𝑒−2 𝑇𝑖𝑛𝑡𝑟𝑎 𝑏𝑐𝑎𝑠𝑡 (𝑀 ∗ 𝐿 ∗ 𝑁 /2)
, if 𝑇𝑖𝑛𝑡𝑟𝑎 𝑏𝑐𝑎𝑠𝑡 (𝑀 ∗ 𝐿) <= 𝑇𝐻 (2 ∗𝑀 ∗ 𝐿)

= 𝑇𝐻 (𝑀 ∗ 𝐿) (𝑁 − 1) ∗𝑇𝑖𝑛𝑡𝑟𝑎 𝑏𝑐𝑎𝑠𝑡 (𝑀 ∗ 𝐿),
, otherwise

(6)

𝑇𝑀𝐻𝐴−𝑖𝑛𝑡𝑒𝑟−𝑅𝑖𝑛𝑔 (𝑀)
= 𝑇𝑝ℎ𝑎𝑠𝑒 1 𝑇𝑝ℎ𝑎𝑠𝑒 2 𝑇𝑖𝑛𝑡𝑟𝑎 𝑏𝑐𝑎𝑠𝑡 (𝑀 ∗ 𝐿)
, if 𝑇𝑖𝑛𝑡𝑟𝑎 𝑏𝑐𝑎𝑠𝑡 (𝑀 ∗ 𝐿) <= 𝑇𝐻 (𝑀 ∗ 𝐿)

= 𝑇𝐻 (𝑀 ∗ 𝐿) (𝑁 − 1) ∗𝑇𝑖𝑛𝑡𝑟𝑎 𝑏𝑐𝑎𝑠𝑡 (𝑀 ∗ 𝐿),
, otherwise

(7)

4.3 Model Validation
To predict the performance of MHA-intra and MHA-inter Allgather,
we must first empirically obtain parameters in Table 1. For intra-
node communication, Equation (2) is used to estimate the cost of
MHA-intra. Figure 9 shows that the predicted latency is close to
the actual latency of MHA-intra, which means the proposed model
can estimate the trend properly. For inter-node communication,

256
KB

512
KB 1MB 2MB 4MB 8MB 16M

B
26
28
210
212

Message size (bytes)

La
te
nc
y
(u
s) Actual Predicted

Figure 9: Validation of MHA-intra with 4 processes

512 1KB 2KB 4KB 8KB 16K
B
32K

B
64K

B
128

KB
256

KB
512

KB 1MB
26
28
210
212
214
216

Message size (bytes)

La
te
nc
y
(u
s) Actual Predicted

Figure 10: Validation of MHA-inter with 8 nodes 32 PPN

equations (6) and (7) can be used to estimate the cost of MHA-
inter when the algorithm for inter-leader data exchange is RD and
Ring, respectively. In Figure 10, the predicted latency and the actual
latency reflect the tuned algorithm used in phase two between RD
and Ring. We can see that the estimated numbers from the proposed
model are are comparable with the measured numbers. As a result,
by using the two models, we can predict how much performance
can be improved for a communication pattern of 𝑁 nodes with 𝐿

PPN on a system of 𝐻 adapters.

5 PERFORMANCE EVALUATION
In this section, we first present the environment for evaluation and
then provide the results of experiments performed to evaluate the
performance of the proposed designs at the microbenchmark and
application levels.

5.1 Experimental environment
All of the experiments presented in this paper are conducted on
Thor cluster of HPC Advisory Council [13]. It consists of 32 nodes
equipped with dual-socket Intel® Xeon® 16-core CPUs E5-2697A
V4 @ 2.60 GHz (Broadwell), 1024 cores in total. Each node is
equipped with 2 ConnectX-6 HDR100 100Gb/s InfiniBand adapters
and 256GB DDR4 2400MHz RDIMMs. The operating system used
is Rocky Linux 8.5 (Green Obsidian), with kernel version 4.18.0-
348.12.2.el8_5.x86_64 and Mellanox OFED version 5.5-1.0.3.2.

On the software aspect, the proposed designs are compared with
two widely used MPI implementations in the scientific community,
namely MVAPICH2-X version 2.3 [23] and HPC-X version 2.10.0
[24]. MVAPICH2 delivers the best performance, scalability and fault
tolerance for high-end computing systems and servers using Infini-
Band, Omni-Path, Ethernet/iWARP, RoCE, Cray Slingshot 10, and
Rockport Networks networking technologies. NVIDIA® HPCX®
is a variant of Open MPI [25] maintained by NVIDIA, which pro-
vides high performance, scalability, and efficiency and ensures that
communication is fully optimized for NVIDIA InfiniBand network-
ing solutions. Additionally, for the performance evaluation of deep
learning, we use PyTorch version 1.8.0 [26] and Horovod version
0.20.0 [31]. Finally, each of the numbers reported here is an average

Figure 10: Validation of MHA-inter with 8 nodes 32 PPN

the actual latency of MHA-intra, which means the proposed model
can estimate the trend properly. For inter-node communication,
equations (6) and (7) can be used to estimate the cost of MHA-
inter when the algorithm for inter-leader data exchange is RD and
Ring, respectively. In Figure 10, the predicted latency and the actual
latency reflect the tuned algorithm used in phase two between RD
and Ring. We can see that the estimated numbers from the proposed
model are are comparable with the measured numbers. As a result,
by using the two models, we can predict how much performance
can be improved for a communication pattern of N nodes with L
PPN on a system of H adapters.

5 PERFORMANCE EVALUATION
In this section, we first present the environment for evaluation and
then provide the results of experiments performed to evaluate the
performance of the proposed designs at the microbenchmark and
application levels.

5.1 Experimental environment
All of the experiments presented in this paper are conducted on
Thor cluster of HPC Advisory Council [13]. It consists of 32 nodes
equipped with dual-socket Intel® Xeon® 16-core CPUs E5-2697A
V4 @ 2.60 GHz (Broadwell), 1024 cores in total. Each node is
equipped with 2 ConnectX-6 HDR100 100Gb/s InfiniBand adapters
and 256GB DDR4 2400MHz RDIMMs. The operating system used
is Rocky Linux 8.5 (Green Obsidian), with kernel version 4.18.0-
348.12.2.el8_5.x86_64 and Mellanox OFED version 5.5-1.0.3.2.

On the software aspect, the proposed designs are compared with
two widely used MPI implementations in the scientific community,
namely MVAPICH2-X version 2.3 [23] and HPC-X version 2.10.0
[24]. MVAPICH2 delivers the best performance, scalability and fault
tolerance for high-end computing systems and servers using Infini-
Band, Omni-Path, Ethernet/iWARP, RoCE, Cray Slingshot 10, and
Rockport Networks networking technologies. NVIDIA® HPCX®
is a variant of Open MPI [25] maintained by NVIDIA, which pro-
vides high performance, scalability, and efficiency and ensures that



Designing Hierarchical Multi-HCA Aware Allgather in MPI ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France

communication is fully optimized for NVIDIA InfiniBand network-
ing solutions. Additionally, for the performance evaluation of deep
learning, we use PyTorch version 1.8.0 [26] and Horovod version
0.20.0 [31]. Finally, each of the numbers reported here is an average
of at least three runs. Each run has 1000 warm-up and measurement
iterations.

5.2 Intra-node Allgather evaluation
Figure 11a, 11b, 11c, and 11d show the performance evaluation of
Allgather with different numbers of processes participating in the
communication using OSU microbenchmark [22]. The proposed
design with the assistance of 2 available HCAs, when compared to
HPC-X and MVAPICH2-X, speeds up the performance up to 64%
and 65% for two processes, 60% and 73% for four processes, 44%
and 56% for eight processes, and 35% and 10% for 16 processes,
respectively. The numbers with 32 processes are not included here
because the performance improvement is less than 10%. One thing
to note: as the number of processes in the communication increases
given a constant number of adapters, the performance benefit de-
creases, which is an expected trend. To reduce the communication
time, each process offloads a portion of its workload to HCAs with
the objective that processes and HCAs can finish at the same time.
As more processes participate in the communication, the offloaded
portion gets smaller because the HCAs also have to process the
workload from the additional processes. The offloaded portion rep-
resents the reduction in communication latency of each process. A
smaller portion means less performance improvement. As a result,
more adapters are needed for sustained performance when more
processes are involved in the communication.

5.3 Inter-node Allgather evaluation
For inter-node communication, we perform experiments with 8, 16,
and 32 nodes. Figures 12, 13, and 14 compare the performance of the
proposed designs with MVAPICH2-X and HPC-X when running
with 256, 512 and 1024 processes, respectively. When compared
to HPC-X and MVAPICH2-X, the proposed design shows up to
29% and 21% better for 256 processes, 44% and 53% better for 512
processes, and 62% and 61% better for 1024 processes, respectively.
As the number of nodes increases, the performance of the proposed
design is also enhanced. By decoupling inter-node and intra-node
communicationwith a single leader per node in the proposed design,
multiple HCAs are utilized efficiently for communication across
nodes. The second factor that contributes to the gain in performance
comes from a higher overlap provided by Ring than RD during
the inter-node distribution phase. The numbers shown are tuned
numbers between these two algorithms. The proposed designs also
show improvement for different numbers of processes per node;
due to space limits, the results are not shown here.

5.4 Accelerating Allreduce with MHA
Allgather

Allgather is used by several collectives, and Allreduce is one of
them. In Ring-Allreduce, a reduce-scatter is first performed and
then followed by an Allgather. As a result, by improving Allgather,
the performance of Allreduce is also enhanced. Figure 15 depicts

256K 512K 1MB 2MB 4MB 8MB 16MB
0

2,000

4,000

6,000

Message size (bytes)

La
te
nc
y
(u
s) HPC-X MVAPICH2-X MHA

(a) 2 Processes

256K 512K 1MB 2MB 4MB 8MB 16MB
0

10,000

20,000

Message size (bytes)

La
te
nc
y
(u
s) HPC-X MVAPICH2-X MHA

(b) 4 Processes

256K 512K 1MB 2MB 4MB 8MB 16MB
0

20,000

40,000

60,000

Message size (bytes)

La
te
nc
y
(u
s) HPC-X MVAPICH2-X MHA

(c) 8 Processes

256K 512K 1MB 2MB 4MB 8MB 16MB
0

50,000

1 · 105
1.5 · 105

Message size (bytes)

La
te
nc
y
(u
s) HPC-X MVAPICH2-X MHA

(d) 16 Processes

Figure 11: Evaluation of Proposed Intra-nodeMPI_Allgather
Design against state of the art libraries via OSUMicrobench-
marks
the performance of the improved Allreduce compared to HPC-
X and MVAPICH2-X. The improved Allreduce performs up 34%
and 15% better for 256 processes, 39% and 31% better for 512 pro-
cesses, and 56% and 44% better for 1024 processes than HPC-X and
MVAPICH2-X, respectively. We can see that the proposed Allgather
helps Allreduce scale better as the number of processes increases
than the other two compared MPI implementations.

5.5 Impact of MHA Allgather on Matrix-Vector
Multiplication

Allgather is not only used in other MPI collectives, but also in many
applications such as lower and upper triangle factorization, solv-
ing differential equations, basic linear algebra operations such as



ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France Tran et al.

256 512 1024 2048 4096 8192
0

250
500
750

1,000

Message size (bytes)

La
te
nc
y
(u
s) HPC-X MVAPICH2-X MHA

(a) Medium Messages

16KB 32KB 64KB 128KB 256KB
0
1
2
3
4 ·104

Message size (bytes)

La
te
nc
y
(u
s) HPC-X MVAPICH2-X MHA

(b) Large Messages

Figure 12: ProposedMPI_Allgather against state of the art libraries
via OSU Microbenchmarks on 256 processes (8 nodes 32 PPN)

256 512 1024 2048 4096 8192
0

2,000

4,000

Message size (bytes)

La
te
nc
y
(u
s) HPC-X MVAPICH2-X MHA

(a) Medium Messages

16KB 32KB 64KB 128KB 256KB
0
2
4
6
8

·104

Message size (bytes)

La
te
nc
y
(u
s) HPC-X MVAPICH2-X MHA

(b) Large Messages

Figure 13: ProposedMPI_Allgather against state of the art libraries
via OSU Microbenchmarks on 512 processes (16 nodes 32 PPN)

Bayesian Probabilistic Matrix Factorization [29, 39, 41], and matrix-
matrix or matrix-vector multiplication [8, 41]. In this paper, to
demonstrate the performance of the proposed Allgather at the ap-
plication level, we evaluate matrix-vector multiplicationy = A∗x in
whichA is amatrix of sizeM byN ,X anyY are input and output vec-
tors of sizeN by 1 andM by 1, respectively. A is partitioned using 1D
row layout, in which each process holds (M/number o f processes)
rows. Similarly, vector x any y are broken into equal segments of
size (N /number o f processes) and (M/number o f processes) stored
by each process. To do matrix-vector multiplication, each process
first broadcasts the input segment it stores, resulting in an Allgather
(All-to-all Broadcast); after that, they perform the multiplication
locally to create their corresponding output segments. Figure 16
demonstrates the performance of the matrix-vector multiplication
kernel in GFLOP/s (higher is better). In these experiments, we con-
figure the problem size (M byN ) so that communication contributes

256 512 1024 2048 4096 8192
0

0.5

1
·104

Message size (bytes)

La
te
nc
y
(u
s) HPC-X MVAPICH2-X MHA

(a) Medium Messages

16KB 32KB 64KB 128KB 256KB
0

0.5

1

1.5
·105

Message size (bytes)

La
te
nc
y
(u
s) HPC-X MVAPICH2-X MHA

(b) Large Messages

Figure 14: ProposedMPI_Allgather against state of the art libraries
via OSU Microbenchmarks on 1024 processes (32 nodes 32 PPN)

a significant time in the total runtime of the kernel to see the impact
of the improved Allgather; In other words, the matrix A and input
vector are long. The proposed Allgather outperforms both HPC-X
and MVAPICH2-X by up to 1.98x and 1.42x for strong scaling and
1.84x and 1.94x for weak scaling experiments with 1024 processes.

5.6 Impact of the improved Allreduce on Deep
Learning training

To quantify the benefit of the improved Allreduce at the level, we
compare performance of training different neural networks in the
increasing order of the number of parameters using PyTorch and
Horovod. To be specific, we run the synthetic benchmark provided
by Horovod with a batch size of 16. This is the largest batch size
that the evaluated cluster can run without running out of memory.
The three neural networks are ResNet50, ResNet101, and ResNet152
with 25.6, 44.7 and 60.4 millions of parameters, respectively [15].
Due to technical issues, we cannot set up HPC-X to work with
Pytorch + Horovod despite our best effort. Open MPI cannot work
with several versions of Horovod, reported in Horovod’s website.
Because HPC-X is optimized based on Open MPI, this may be the
reason. Figure 17 shows that as the number of processes increases,
we observe better performance, up to 7.83% better than MVAPICH2-
X in both epoch time and images per second for ResNet50. In ad-
dition, when switching to a larger neural network (ResNet101 or
ResNet152), we see similar performance benefits when running at
similar scales.

6 RELATEDWORK
There are a few studies targeting optimization communication for
multi-rail networks at collective level. Ying Qian et al. [28] proposed
designs for RDMA-basedMulti-port All-gather onmulti-rail QsNetII
networks; our work here targets InfiniBand systems, but the designs
are general and can be applied to any kind of network. Träff et al.
[38] used a decomposition method to show that collectives can
be redesigned for better performance when exploiting multi-lane



Designing Hierarchical Multi-HCA Aware Allgather in MPI ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France
Designing Hierarchical Multi-HCA Aware Allgather in MPI ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France

4MB 8MB 16M
B

32M
B

64M
B
128

MB
0

50,000
1 · 105

1.5 · 105
2 · 105

2.5 · 105

Message size (bytes)

La
te
nc
y
(u
s)

HPC-X MVAPICH2-X MHA

4MB 8MB 16M
B

32M
B

64M
B
128

MB
0

70,000
1.4 · 105
2.1 · 105
2.8 · 105
3.5 · 105

Message size (bytes)

La
te
nc
y
(u
s)

HPC-X MVAPICH2-X MHA

4MB 8MB 16M
B

32M
B

64M
B
128

MB
0

80,000
1.6 · 105
2.4 · 105
3.2 · 105
4 · 105

Message size (bytes)

La
te
nc
y
(u
s)

HPC-X MVAPICH2-X MHA

(a) 8 nodes (b) 16 nodes (c) 32 nodes
Figure 15: Evaluation of Proposed Inter-node MPI_Allreduce Design against state of the art libraries

via OSU Microbenchmarks at scale (32 PPN)

256 512 1024
0
30
60
90
120
150
180

Number of Processes

GF
LO

P/
s HPC-X MVAPICH2-X MHA

256 (1024x32768) 512 (1024x65536) 1024 (1024x131072)
0
30
60
90
120
150
180
210

Number of Processes (problem size)
GF

LO
P/
s HPC-X MVAPICH2-X MHA

(a) Strong Scaling of problem size
1024 x 32768

(b) Weak Scaling

Figure 16: Performance Evaluation of MHA against state of the art MPI libraries
in a Matrix-Vector Multiplication kernel for Weak and Strong Scaling

256 512 1024
0
30
60
90
120
150

Number of processes

Im
ag
es
/S
ec
on

d

MVAPICH2-X MHA

0
2
4
6
8
10

%
Im

pr
ov
em

en
t

(a) ResNet-50

256 512 1024
0
20
40
60
80

Number of processes

Im
ag
es
/S
ec
on

d

MVAPICH2-X MHA

0
2
4
6
8

%
Im

pr
ov
em

en
t

(b) ResNet-101

256 512 1024
0
10
20
30
40
50
60

Number of processes

Im
ag
es
/S
ec
on

d

MVAPICH2-X MHA

0
1
2
3
4
5
6

%
Im

pr
ov
em

en
t

(c) ResNet-152

Figure 17: ProposedMHAdesign againstMVAPICH2-X via PyTorch +HorovodDL Performance Evaluation: Images Per Second

communication. Their work is considered to be a performance
guideline to which users can refer when writing MPI programs
running onmulti-rail networks. Compared to this work, we propose
designs that take low-level details into consideration and can be
integrated into any of the existing MPI implementations. Users can
directly invoke high-level functions like MPI_Allgather which take
away the burden of performance from users.

There are several Allgather designs for single rail systems. Sur et
al. [33] proposed an RDMA based All-to-all Broadcast (Allgather).
Specifically, the design aims at eliminating the overhead of protocol
handshake and multiple buffer registrations. Furthermore, they
also cut down the copy cost by dynamically choosing an optimal
threshold from a copy-based approach to a zero-copy one as the
collective progresses. Mamidala et al. [19] proposed shared Memory
and RDMA-based Design for Allgather. To clarify, communication
buffers of each process using different communication channels
are not shared; the authors use shared memory for sharing the
buffers for both intra and inter-node communication, resulting in

overlap of network operations with intra-node shared memory
copies. Kandalla et al. [14] proposed multi-leader-Based Allgather
algorithms for Multi-Core Clusters. Conventional flat and existing
algorithms do not take into consideration of differences in latency
and bandwidth of communication at inter-node, inter-socket, or
intra-socket level, resulting in bottlenecks caused by the slowest
communication level. The authors resolve the congestion by using
multiple leaders per node to decouple communication at different
levels.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose Multi-HCA aware designs for the All-
gather collective operation. Furthermore, theoretical models to
analytically study the impact of such designs are provided. For pure
intra-node communication, by offloading some of the workload to
the adapters, the performance improvement goes up to 65%. For
inter-node communication with multiple processes per node, the

Figure 15: Evaluation of Proposed Inter-nodeMPI_AllreduceDesign against state of the art libraries viaOSUMicrobenchmarks
at scale (32 PPN)

Designing Hierarchical Multi-HCA Aware Allgather in MPI ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France

4MB 8MB 16M
B

32M
B

64M
B
128

MB
0

50,000
1 · 105

1.5 · 105
2 · 105

2.5 · 105

Message size (bytes)

La
te
nc
y
(u
s)

HPC-X MVAPICH2-X MHA

4MB 8MB 16M
B

32M
B

64M
B
128

MB
0

70,000
1.4 · 105
2.1 · 105
2.8 · 105
3.5 · 105

Message size (bytes)

La
te
nc
y
(u
s)

HPC-X MVAPICH2-X MHA

4MB 8MB 16M
B

32M
B

64M
B
128

MB
0

80,000
1.6 · 105
2.4 · 105
3.2 · 105
4 · 105

Message size (bytes)

La
te
nc
y
(u
s)

HPC-X MVAPICH2-X MHA

(a) 8 nodes (b) 16 nodes (c) 32 nodes
Figure 15: Evaluation of Proposed Inter-node MPI_Allreduce Design against state of the art libraries

via OSU Microbenchmarks at scale (32 PPN)

256 512 1024
0
30
60
90
120
150
180

Number of Processes

GF
LO

P/
s HPC-X MVAPICH2-X MHA

256 (1024x32768) 512 (1024x65536) 1024 (1024x131072)
0
30
60
90
120
150
180
210

Number of Processes (problem size)

GF
LO

P/
s HPC-X MVAPICH2-X MHA

(a) Strong Scaling of problem size
1024 x 32768

(b) Weak Scaling

Figure 16: Performance Evaluation of MHA against state of the art MPI libraries
in a Matrix-Vector Multiplication kernel for Weak and Strong Scaling

256 512 1024
0
30
60
90
120
150

Number of processes

Im
ag
es
/S
ec
on

d

MVAPICH2-X MHA

0
2
4
6
8
10

%
Im

pr
ov
em

en
t

(a) ResNet-50

256 512 1024
0
20
40
60
80

Number of processes

Im
ag
es
/S
ec
on

d

MVAPICH2-X MHA

0
2
4
6
8

%
Im

pr
ov
em

en
t

(b) ResNet-101

256 512 1024
0
10
20
30
40
50
60

Number of processes

Im
ag
es
/S
ec
on

d
MVAPICH2-X MHA

0
1
2
3
4
5
6

%
Im

pr
ov
em

en
t

(c) ResNet-152

Figure 17: ProposedMHAdesign againstMVAPICH2-X via PyTorch +HorovodDL Performance Evaluation: Images Per Second

communication. Their work is considered to be a performance
guideline to which users can refer when writing MPI programs
running onmulti-rail networks. Compared to this work, we propose
designs that take low-level details into consideration and can be
integrated into any of the existing MPI implementations. Users can
directly invoke high-level functions like MPI_Allgather which take
away the burden of performance from users.

There are several Allgather designs for single rail systems. Sur et
al. [33] proposed an RDMA based All-to-all Broadcast (Allgather).
Specifically, the design aims at eliminating the overhead of protocol
handshake and multiple buffer registrations. Furthermore, they
also cut down the copy cost by dynamically choosing an optimal
threshold from a copy-based approach to a zero-copy one as the
collective progresses. Mamidala et al. [19] proposed shared Memory
and RDMA-based Design for Allgather. To clarify, communication
buffers of each process using different communication channels
are not shared; the authors use shared memory for sharing the
buffers for both intra and inter-node communication, resulting in

overlap of network operations with intra-node shared memory
copies. Kandalla et al. [14] proposed multi-leader-Based Allgather
algorithms for Multi-Core Clusters. Conventional flat and existing
algorithms do not take into consideration of differences in latency
and bandwidth of communication at inter-node, inter-socket, or
intra-socket level, resulting in bottlenecks caused by the slowest
communication level. The authors resolve the congestion by using
multiple leaders per node to decouple communication at different
levels.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose Multi-HCA aware designs for the All-
gather collective operation. Furthermore, theoretical models to
analytically study the impact of such designs are provided. For pure
intra-node communication, by offloading some of the workload to
the adapters, the performance improvement goes up to 65%. For
inter-node communication with multiple processes per node, the

Figure 16: Performance Evaluation of MHA against state of the art MPI libraries in a Matrix-Vector Multiplication kernel for
Weak and Strong Scaling

Designing Hierarchical Multi-HCA Aware Allgather in MPI ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France

4MB 8MB 16M
B

32M
B

64M
B
128

MB
0

50,000
1 · 105

1.5 · 105
2 · 105

2.5 · 105

Message size (bytes)

La
te
nc
y
(u
s)

HPC-X MVAPICH2-X MHA

4MB 8MB 16M
B

32M
B

64M
B
128

MB
0

70,000
1.4 · 105
2.1 · 105
2.8 · 105
3.5 · 105

Message size (bytes)

La
te
nc
y
(u
s)

HPC-X MVAPICH2-X MHA

4MB 8MB 16M
B

32M
B

64M
B
128

MB
0

80,000
1.6 · 105
2.4 · 105
3.2 · 105
4 · 105

Message size (bytes)

La
te
nc
y
(u
s)

HPC-X MVAPICH2-X MHA

(a) 8 nodes (b) 16 nodes (c) 32 nodes
Figure 15: Evaluation of Proposed Inter-node MPI_Allreduce Design against state of the art libraries

via OSU Microbenchmarks at scale (32 PPN)

256 512 1024
0
30
60
90
120
150
180

Number of Processes

GF
LO

P/
s HPC-X MVAPICH2-X MHA

256 (1024x32768) 512 (1024x65536) 1024 (1024x131072)
0
30
60
90
120
150
180
210

Number of Processes (problem size)
GF

LO
P/
s HPC-X MVAPICH2-X MHA

(a) Strong Scaling of problem size
1024 x 32768

(b) Weak Scaling

Figure 16: Performance Evaluation of MHA against state of the art MPI libraries
in a Matrix-Vector Multiplication kernel for Weak and Strong Scaling

256 512 1024
0
30
60
90
120
150

Number of processes

Im
ag
es
/S
ec
on

d

MVAPICH2-X MHA

0
2
4
6
8
10

%
Im

pr
ov
em

en
t

(a) ResNet-50

256 512 1024
0
20
40
60
80

Number of processes

Im
ag
es
/S
ec
on

d

MVAPICH2-X MHA

0
2
4
6
8

%
Im

pr
ov
em

en
t

(b) ResNet-101

256 512 1024
0
10
20
30
40
50
60

Number of processes

Im
ag
es
/S
ec
on

d
MVAPICH2-X MHA

0
1
2
3
4
5
6

%
Im

pr
ov
em

en
t

(c) ResNet-152

Figure 17: ProposedMHAdesign againstMVAPICH2-X via PyTorch +HorovodDL Performance Evaluation: Images Per Second

communication. Their work is considered to be a performance
guideline to which users can refer when writing MPI programs
running onmulti-rail networks. Compared to this work, we propose
designs that take low-level details into consideration and can be
integrated into any of the existing MPI implementations. Users can
directly invoke high-level functions like MPI_Allgather which take
away the burden of performance from users.

There are several Allgather designs for single rail systems. Sur et
al. [33] proposed an RDMA based All-to-all Broadcast (Allgather).
Specifically, the design aims at eliminating the overhead of protocol
handshake and multiple buffer registrations. Furthermore, they
also cut down the copy cost by dynamically choosing an optimal
threshold from a copy-based approach to a zero-copy one as the
collective progresses. Mamidala et al. [19] proposed shared Memory
and RDMA-based Design for Allgather. To clarify, communication
buffers of each process using different communication channels
are not shared; the authors use shared memory for sharing the
buffers for both intra and inter-node communication, resulting in

overlap of network operations with intra-node shared memory
copies. Kandalla et al. [14] proposed multi-leader-Based Allgather
algorithms for Multi-Core Clusters. Conventional flat and existing
algorithms do not take into consideration of differences in latency
and bandwidth of communication at inter-node, inter-socket, or
intra-socket level, resulting in bottlenecks caused by the slowest
communication level. The authors resolve the congestion by using
multiple leaders per node to decouple communication at different
levels.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose Multi-HCA aware designs for the All-
gather collective operation. Furthermore, theoretical models to
analytically study the impact of such designs are provided. For pure
intra-node communication, by offloading some of the workload to
the adapters, the performance improvement goes up to 65%. For
inter-node communication with multiple processes per node, the

Figure 17: ProposedMHAdesign againstMVAPICH2-X via PyTorch +HorovodDL Performance Evaluation: Images Per Second

communication. Their work is considered to be a performance
guideline to which users can refer when writing MPI programs
running onmulti-rail networks. Compared to this work, we propose
designs that take low-level details into consideration and can be
integrated into any of the existing MPI implementations. Users can
directly invoke high-level functions like MPI_Allgather which take
away the burden of performance from users.

There are several Allgather designs for single rail systems. Sur et
al. [33] proposed an RDMA based All-to-all Broadcast (Allgather).
Specifically, the design aims at eliminating the overhead of proto-
col handshake and multiple buffer registrations. Furthermore, they
also cut down the copy cost by dynamically choosing an optimal
threshold from a copy-based approach to a zero-copy one as the
collective progresses. Mamidala et al. [19] proposed shared Memory
and RDMA-based Design for Allgather. To clarify, communication
buffers of each process using different communication channels are
not shared; the authors use shared memory for sharing the buffers

for both intra and inter-node communication, resulting in overlap
of network operations with intra-node shared memory copies. Kan-
dalla et al. [14] proposed multi-leader-Based Allgather algorithms
for Multi-Core Clusters. Conventional flat and existing algorithms
do not take into consideration of differences in latency and band-
width of communication at inter-node, inter-socket, or intra-socket
level, resulting in bottlenecks caused by the slowest communication
level. The authors resolve the congestion by using multiple leaders
per node to decouple communication at different levels.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose Multi-HCA aware designs for the All-
gather collective operation. Furthermore, theoretical models to
analytically study the impact of such designs are provided. For pure
intra-node communication, by offloading some of the workload to
the adapters, the performance improvement goes up to 65%. For
inter-node communication with multiple processes per node, the



ICPP Workshops ’22, August 29-September 1, 2022, Bordeaux, France Tran et al.

proposed hierarchical design with the use of shared memory for
overlapping intra-node memory copies and network operations
shows up to 71% improvement. In addition, Allreduce by utilizing
the proposed Allgather delivers up to 44% reduction in latency. At
the application level, a Matrix-Vector multiplication kernel using
Allgather and a deep neural network application using Allreduce
show 94% and 7.83% reductions in runtime, respectively. In the fu-
ture, we plan to address other collectives and investigate the impact
of NUMA systems on communication performance. The two-level
design in this paper decouples intra-node and inter-node commu-
nication, but it is not NUMA-aware. We can have a 3-level design
with the overlapping of intra-socket, inter-socket, and inter-node
communication.

ACKNOWLEDGMENTS
This research is supported in part by NSF grants #1818253, #1854828,
#1931537, #2007991, #2018627, and XRAC grant #NCR-130002.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. {TensorFlow}: A System for {Large-Scale} Machine Learning. In 12th
USENIX symposium on operating systems design and implementation (OSDI 16).
265–283.

[2] Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Sameer Kumar,
Ewing Lusk, Rajeev Thakur, and Jesper Larsson Träff. 2009. MPI on a Million
Processors. In European Parallel Virtual Machine/Message Passing Interface Users’
Group Meeting. Springer, 20–30.

[3] Mohammadreza Bayatpour, JahanzebMaqbool Hashmi, Sourav Chakraborty, Hari
Subramoni, Pouya Kousha, and Dhabaleswar K Panda. 2018. Salar: Scalable and
adaptive designs for largemessage reduction collectives. In 2018 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 12–23.

[4] David E Bernholdt, Swen Boehm, George Bosilca, Manjunath Gorentla Venkata,
Ryan E Grant, Thomas Naughton, Howard P Pritchard, Martin Schulz, and Geof-
froy R Vallee. 2020. A survey of MPI usage in the US exascale computing project.
Concurrency and Computation: Practice and Experience 32, 3 (2020), e4851.

[5] Adrián Castelló, Enrique S Quintana-Ortí, and José Duato. 2021. Accelerating
distributed deep neural network training with pipelined MPI allreduce. Cluster
Computing 24, 4 (2021), 3797–3813.

[6] Sourav Chakraborty, Hari Subramoni, and Dhabaleswar K Panda. 2017.
Contention-aware kernel-assisted MPI collectives for multi-/many-core systems.
In 2017 IEEE International Conference on Cluster Computing (CLUSTER). IEEE,
13–24.

[7] Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff Kuehn,
Chuck Koelbel, and Lauren Smith. 2010. Introducing OpenSHMEM: SHMEM
for the PGAS community. In Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model. 1–3.

[8] Daichi Mukunoki and Toshiyuki Imamura 2017. Implementation and Evaluation of
2.5D Matrix Multiplication on the K computer. Retrieved Mar 18, 2022 from https:
//prace-ri.eu/wp-content/uploads/PRACE-at-SC17-Daichi-Mokunoki.pdf

[9] Vijay Dhanraj. 2012. Enhancement of LiMIC-Based Collectives for Multi-core
Clusters. Ph. D. Dissertation. The Ohio State University.

[10] El Capitan 2022. El Capitan. Retrieved Mar 18, 2022 from https://www.hpe.
com/us/en/newsroom/press-release/2020/03/hpe-and-amd-power-complex-
scientific-discovery-in-worlds-fastest-supercomputer-for-us-department-of-
energys-doe-national-nuclear-security-administration-nnsa.html

[11] Frontier 2022. Frontier. Retrieved Mar 18, 2022 from https://www.olcf.ornl.gov/
frontier/

[12] JahanzebMaqbool Hashmi, Sourav Chakraborty,Mohammadreza Bayatpour, Hari
Subramoni, and Dhabaleswar K Panda. 2018. Designing efficient shared address
space reduction collectives for multi-/many-cores. In 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 1020–1029.

[13] HPC Advisory Council 2022. Thor. Retrieved Mar 18, 2022
from https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWORKS/pages/
7864401/Thor

[14] Krishna Kandalla, Hari Subramoni, Gopal Santhanaraman, Matthew Koop, and
Dhabaleswar K Panda. 2009. Designing multi-leader-based allgather algorithms
for multi-core clusters. In 2009 IEEE International Symposium on Parallel & Dis-
tributed Processing. IEEE, 1–8.

[15] Keras 2022. Keras Applications. Retrieved Mar 18, 2022 from https://keras.io/api/
applications/

[16] Ignacio Laguna, Ryan Marshall, Kathryn Mohror, Martin Ruefenacht, Anthony
Skjellum, and Nawrin Sultana. 2019. A large-scale study of MPI usage in open-
source HPC applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–14.

[17] Jiuxing Liu, Abhinav Vishnu, and Dhabaleswar K Panda. 2004. Building multi-
rail infiniband clusters: Mpi-level design and performance evaluation. In SC’04:
Proceedings of the 2004 ACM/IEEE conference on Supercomputing. IEEE, 33–33.

[18] TengMa, George Bosilca, Aurelien Bouteiller, Brice Goglin, JeffreyM Squyres, and
Jack J Dongarra. 2011. Kernel assisted collective intra-node mpi communication
amongmulti-core andmany-core cpus. In 2011 International Conference on Parallel
Processing. IEEE, 532–541.

[19] Amith R Mamidala, Abhinav Vishnu, and Dhabaleswar K Panda. 2006. Efficient
shared memory and RDMA based design for mpi_allgather over InfiniBand. In
European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting.
Springer, 66–75.

[20] Message Passing Interface Forum. 2021.MPI: AMessage-Passing Interface Standard
Version 4.0. https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

[21] Paul Messina. 2017. The exascale computing project. Computing in Science &
Engineering 19, 3 (2017), 63–67.

[22] OSU Micro-Benchmarks. 2018. Osu network-based computing laboratory. URL:
http://mvapich. cse. ohio-state. edu/benchmarks 2 (2018).

[23] Network-Based Computing Laboratory 2022. MVAPICH: MPI over InfiniBand,
10GigE/iWARP and RoCE. Retrieved Mar 18, 2022 from http://mvapich.cse.ohio-
state.edu/

[24] NVIDIA 2022. HPC-X. Retrieved Mar 18, 2022 from https://developer.nvidia.
com/networking/hpc-x

[25] Open MPI 2022. Open MPI: Open Source High Performance Computing. Retrieved
Mar 18, 2022 from https://www.open-mpi.org/

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[27] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth optimal all-reduce algorithms
for clusters of workstations. J. Parallel and Distrib. Comput. 69, 2 (2009), 117–124.

[28] Ying Qian and Ahmad Afsahi. 2007. High performance RDMA-based multi-
port all-gather on multi-rail QsNet II. In 21st International Symposium on High
Performance Computing Systems and Applications (HPCS’07). IEEE, 3–3.

[29] Ruslan Salakhutdinov and Andriy Mnih. 2008. Bayesian probabilistic matrix
factorization using Markov chain Monte Carlo. In Proceedings of the 25th interna-
tional conference on Machine learning. 880–887.

[30] Frank Seide and Amit Agarwal. 2016. CNTK: Microsoft’s open-source deep-
learning toolkit. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining. 2135–2135.

[31] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018).

[32] Sameer S Shende and Allen D Malony. 2006. The TAU parallel performance
system. The International Journal of High Performance Computing Applications
20, 2 (2006), 287–311.

[33] Sayantan Sur, Uday Kumar Reddy Bondhugula, Amith Mamidala, H-W Jin, and
Dhabaleswar K Panda. 2005. High performance rdma based all-to-all broadcast for
infiniband clusters. In International Conference on High-Performance Computing.
Springer, 148–157.

[34] Rajeev Thakur, Pavan Balaji, Darius Buntinas, David Goodell, William Gropp,
Torsten Hoefler, Sameer Kumar, Ewing Lusk, and J Larsson Träff. 2010. MPI at
Exascale. Procceedings of SciDAC 2 (2010), 14–35.

[35] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of
collective communication operations in MPICH. The International Journal of
High Performance Computing Applications 19, 1 (2005), 49–66.

[36] ThetaGPU 2022. Theta/ThetaGPU Machine Overview. Retrieved Mar 18, 2022
from https://www.alcf.anl.gov/support-center/theta/theta-thetagpu-overview

[37] Top500 2022. NOVEMBER 2021. Retrieved Mar 18, 2022 from https://www.top500.
org/lists/top500/2021/11/

[38] Jesper Larsson Träff and Sascha Hunold. 2020. Decomposing MPI collectives for
exploiting multi-lane communication. In 2020 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 270–280.

[39] Tom Vander Aa, Imen Chakroun, and Tom Haber. 2017. Distributed Bayesian
probabilistic matrix factorization. Procedia Computer Science 108 (2017), 1030–
1039.

[40] Yili Zheng, Amir Kamil, Michael B Driscoll, Hongzhang Shan, and Katherine
Yelick. 2014. UPC++: a PGAS extension for C++. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium. IEEE, 1105–1114.

[41] Huan Zhou, José Gracia, and Ralf Schneider. 2019. MPI collectives for multi-
core clusters: Optimized performance of the hybrid MPI+ MPI parallel codes. In
Proceedings of the 48th International Conference on Parallel Processing: Workshops.
1–10.

https://prace-ri.eu/wp-content/uploads/PRACE-at-SC17-Daichi-Mokunoki.pdf
https://prace-ri.eu/wp-content/uploads/PRACE-at-SC17-Daichi-Mokunoki.pdf
https://www.hpe.com/us/en/newsroom/press-release/2020/03/hpe-and-amd-power-complex-scientific-discovery-in-worlds-fastest-supercomputer-for-us-department-of-energys-doe-national-nuclear-security-administration-nnsa.html
https://www.hpe.com/us/en/newsroom/press-release/2020/03/hpe-and-amd-power-complex-scientific-discovery-in-worlds-fastest-supercomputer-for-us-department-of-energys-doe-national-nuclear-security-administration-nnsa.html
https://www.hpe.com/us/en/newsroom/press-release/2020/03/hpe-and-amd-power-complex-scientific-discovery-in-worlds-fastest-supercomputer-for-us-department-of-energys-doe-national-nuclear-security-administration-nnsa.html
https://www.hpe.com/us/en/newsroom/press-release/2020/03/hpe-and-amd-power-complex-scientific-discovery-in-worlds-fastest-supercomputer-for-us-department-of-energys-doe-national-nuclear-security-administration-nnsa.html
https://www.olcf.ornl.gov/frontier/
https://www.olcf.ornl.gov/frontier/
https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWORKS/pages/7864401/Thor
https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWORKS/pages/7864401/Thor
https://keras.io/api/applications/
https://keras.io/api/applications/
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
https://developer.nvidia.com/networking/hpc-x
https://developer.nvidia.com/networking/hpc-x
https://www.open-mpi.org/
https://www.alcf.anl.gov/support-center/theta/theta-thetagpu-overview
https://www.top500.org/lists/top500/2021/11/
https://www.top500.org/lists/top500/2021/11/

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	2.1 Multi-rail point-to-point level design
	2.2 Conventional flat Allgather designs
	2.3 Intra-node Communication Mechanisms
	2.4 Ring Allreduce

	3 The Proposed Designs
	3.1 A multi-HCA aware design for intra-node communication
	3.2 A hierarchical multi-HCA aware design for inter-node and intra-node communication

	4 Performance Models of the Multi-HCA Aware Designs
	4.1 Modeling the Cost of MHA-intra Allgather
	4.2 Modeling the Cost of MHA-inter Allgather
	4.3 Model Validation

	5 Performance Evaluation
	5.1 Experimental environment
	5.2 Intra-node Allgather evaluation
	5.3 Inter-node Allgather evaluation
	5.4 Accelerating Allreduce with MHA Allgather
	5.5 Impact of MHA Allgather on Matrix-Vector Multiplication
	5.6 Impact of the improved Allreduce on Deep Learning training

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

