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Abstract—Recent advances in HPC Cloud field has made
multi-core high performance VM services more accessible.
Emerging Arm based HPC systems are also receiving more
attention. Amazon Web Service recently announced new c6gn
instances with Gravition 2 Arm CPU on each node and support
of Elastic Fabric Adapter, which make them the leading high
performance Arm-based cloud system vendor. In this paper,
we characterize the performance and capability of the AWS
Arm architecture. We explore the performance optimization of
current MPI libraries based on features of Arm-based cloud
systems and Scalable Reliable Datagram protocol of Elastic
Fabric Adapter and evaluate the impact of our optimization
of high-performance MPI libraries. Our study shows that the
performance optimization for MPI library on AWS Arm systems
significantly improves the performance of MPI communication
for both benchmark and application level. We gain up to
86% performance improvement in micro-benchmark level col-
lective communication operations and up to 9% improvement in
Weather Research and Forecasting application level. This paper
provides a comprehensive performance evaluation for several
popular MPI libraries on AWS Arm-based Cloud systems with
EFA support. HPC application developers and users are able to
get insights from our study to achieve better performance of their
applications on Arm-based cloud systems with EFA support.

Index Terms—HPC Cloud, MPI, Arm, Elastic Fabric Adapter,
Scalable Reliable Datagram

I. INTRODUCTION AND MOTIVATION

The recent development of High Performance Cloud tech-

nology has started an evolution to the Parallel and High

Performance Computing fields. Vendors such as Amazon Web

Services, Microsoft Azure, and Oracle Compute Infrastructure

now provide remote virtualized compute resources with good

support of high performance software and hardware stacks,

which are significantly attractive to HPC application devel-

opers or users. As those vendors provide High Performance

Cloud service with remote virtual compute system of different

architectures, the interconnect components are normally built

with either Infiniband RoCEv2 or their self-developed network

adapter such as Elastic Fabric Adapter of AWS.

For most of the high performance cloud services in the

market, vendors usually provide x86 architecture systems with

Intel or AMD CPU. However, Amazon Web Services recently

started to provide their Arm-based high performance cloud

systems. These Arm-based cloud systems are built with their

own-designed AWS Graviton processors, which has general

support of high performance compute workloads.

Message Passing Interface [1] (MPI), as the de-facto pro-

gramming model for large-scale parallel applications, is also

commonly supported on different high performance cloud

systems. MPI supports different communication patterns in-

cluding point-to-point and collective communications.

With the emergence of rich set of cloud environments

including different hardware or software stacks, MPI libraries

should be optimized and tuned based on the features provided

by cloud environments. However, there has no performance

optimization work been done for MPI libraries on any state-

of-the-art high performance Arm-based cloud systems.

In this paper, we first explore the performance optimization

and enhancement of MPI libraries on the AWS Arm-based

HPC cloud systems with EFA. Due to the nature of HPC

cloud system, users have more accessibility and deeper control

of the system. Our exploration of performance tuning and

optional build setting with XPMEM kernel modules is capable

of taking full advantage of features of Arm-based high perfor-

mance cloud systems, in order to maximizing MPI application

performance on Arm-based high performance cloud systems.

The high performance cloud service is becoming a more

popular choice for HPC application developers and users. The

emerging Arm processors have started their story in HPC field

as well. Comparing to the current mainstream x86 systems,

how would Arm-based cloud system perform differently? How

can we bring HPC applications from x86 system to Arm-based

system and keep the best efficiency? What performance and

scalability should we expect for these HPC applications on

Arm-based cloud systems? To answer those questions, this

paper also provides a comprehensive performance characteri-

zation and evaluation of different MPI libraries on AWS Arm-

based HPC Cloud system, including the latency and bandwidth

comparing of different MPI communication operations, in both

micro-benchmark level and application level.
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II. BACKGROUND

A. Elastic Fabric Adapter
Amazon Elastic Compute Cloud (EC2) is a web service that

provides resizable compute capacity in the cloud. An EC2

instance is a virtual server that can be used to run appli-

cations in AWS. The application developers can customize

the instance features based on their budget and requirements.

The on-demand allocation of resources is possible in cloud

computing models due to their elastic capability and leads to

cost-effective and energy-efficient solutions. Amazon Elastic

Compute Cloud (EC2) provides a specialized Cluster Compute

(CC) instance type to run HPC applications. The CC plat-

form offers powerful and up-to-date CPUs and GPUs and an

improved interconnection network well suited for large-scale

HPC applications.
Elastic Fabric Adapter (EFA) is a network interface from

Amazon for AWS EC2 instances. It is used to run applications

that require high levels of inter-node communications at scale

on AWS. It improves the performance of inter-node communi-

cations by avoiding the involvement of the Operating System

(OS) kernel for each communication. EFA is an optional EC2

networking feature that can be enabled on any supported EC2

instance. For running MPI applications on AWS, the MPI

library should support EFA for inter-node communications.
In the InfiniBand standard, there are four different transport

modes: RC (Reliable Connected), RD (Reliable Datagram),

UC (Unreliable Connected), and UD (Unreliable Datagram).

These transport modes has different functionality and char-

acteristics. Among these transport modes, EFA supports UD

which is a connection-less and unreliable transport. More

specifically, UD does not provide reliable delivery or ordering.

Moreover, the maximum message size is limited to 1 Message

Transfer Unit (MTU) which is 4KB. Thus, for messages larger

than one MTU, the software should take care of reliability

through re-transmissions, segmentation, and reassembly.
EFA supports a new transport mode other than UD called

Scalable Reliable Datagram (SRD). SRD is similar to UD, but

in different, it provides reliable delivery. It means that in SRD,

the packets will be guaranteed to be delivered from sender to

receiver, but since message are transferred through multiple

paths, they might arrive out-of-order at the receiver.

B. Amazon Gravition 2
AWS Graviton 2 is the second generation of AWS own

designed high performance Arm processor. It is a 64-core

ARMv8 SoC custom-built by AWS using 64-bit Arm Neoverse

cores. On AWS c6gn instances with Graviton 2 processor,

the Elastic Fabric Adapter is supported with up to 100 Gbps

interconnecting network bandwidth.

C. MPI
Message Passing Interface (MPI) is one of the most popular

programming models for writing parallel applications in clus-

ter computing area. MPI libraries provide basic communica-

tion support for a parallel computing job. In particular, several

convenient point-to-point and collective communication oper-

ations are provided. High performance MPI implementations

are closely tied to the underlying network dynamics and try

to leverage the best communication performance on the given

interconnect. MPICH [2], MVAPICH [3], Open MPI [4] and

Intel MPI [5] are ones of popular MPI libraries.

III. THE OPTIMIZATION ON AWS EC2 CLOUD ARM

INSTANCES WITH EFA

Due to the popularity of MPI programming model among

HPC users, most HPC cloud systems like AWS HPC clouds

have started providing support for MPI libraries. In the paral-

lelcluster of AWS EC2, some MPI libraries such as IntelMPI

or OpenMPI libraries are supported as built-in modules of

default instance image. Different to traditional supercomputer

clusters, MPI libraries on the cloud systems are usually in

different levels of optimization because of the highly cus-

tomizable hardware or software configuration of cloud sys-

tems. For example, the MVAPICH2-X-AWS library share the

same collective tuning settings for x86 Intel, AMD and Arm

CPU systems. In AWS HPC clouds x86 instances, IntelMPI,

OpenMPI and MVAPICH2-X are all supported. However in

AWS Arm instances, there is no built-in support for IntelMPI.

Therefore, we pick MVAPICH2-X-AWS as the MPI library

to explore performance optimization and enhancement, and

compare the optimized MVAPICH2-X-AWS performance with

its unoptimized version, and later in the next section we have

comprehensive performance evaluation across MVAPICH2-X

and OpenMPI libraries.

The performance optimization and enhancement for

MVAPICH2-X-AWS on AWS Arm-based HPC instances in-

cludes two main steps. The first step is performance tun-

ing. Similarly to how HPC application users or developers

always do, we adjust the mpirun parameters, and compare

the performance of different collective algorithm selection

through run-time arguments. After iterations of comparison,

we could finalize the parameters and algorithms that achieve

best performance on AWS Arm-based HPC instances, and

this step will be iterated for each combination of number of

nodes X processes per node. Second step is to take advantage

of the higher freedom of loading kernel modules on Cloud

systems. Compare to traditional supercomputer clusters, the

HPC cloud service vendors allow users to have root access

to the system. Some MPI libraries also have build option for

these kernel modules. For example, both MVAPICH2-X and

OpenMPI have optional build support with XPMEM. In order

to have further optimization on AWS Arm-based instances,

we load the XPMEM kernel module, and have MVAPICH2-

X-AWS built with auto-detection of XPMEM module using

dlopen.

Figure 1(a) and 1(b) shows an example of the benefit we

gain from our performance optimization. On 16 nodes scale

64 ppn comparison, we observe 69% lower allreduce latency

and 86% lower scatter latency with the mentioned tuning and

optimization work.
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Fig. 1: Example of Performance difference between optimized and unoptimized MVAPICH2-X-AWS on 16 c6gn instances

scale with full subscription and EFA support

IV. PERFORMANCE EVALUATION

After the performance optimization for AWS HPC Arm

system, we conduct a comprehensive performance evaluation

on both mirco-benchmark level and application level. We com-

pare the MVAPICH2-X-AWS with OpenMPI as the built-in

MPI library of AWS parallelcluster [6]. Since in the previous

section we have already done the optimization, we are using

optimized MVAPICH2-X-AWS in this section.

A. Experimental Setup

Table I lists the hardware and software details of system

configuration of the platform where we perform our experi-

ments on.

TABLE I: Hardware & software specification of tested clusters

Specification AWS Arm
Instance Type c6gn.16xlarge
Processor Amazon Graviton Gen 2
Clock Speed 2.5 GHz
#. Sockets 1
Cores Per socket 64
RAM (DDR4) 128 GB
Libfabric ver. 1.13.2
Parallelcluster 3.0.2
MVAPICH2 MVAPICH2-X-AWS
OpenMPI 4.1.0

B. Microbenchmark Results

We first do the performance evaluation with OSU-

Microbenchmarks-5.8 [7].

Figure 2 presents the point-to-point latency, bandwidth and

bi-directional bandwidth of the inter-node MPI communica-

tion performance among two AWS Arm c6gn instances. We

compare the inter-node latency, bandwidth and bi-directional

bandwidth performance between optimized MVAPICH2-X-

AWS and OpenMPI libraries. In figure 2(a), for small-size

messages, MVAPICH2-X-AWS and OpenMPI has very close

performance, while MVAPICH2-X-AWS has slightly lower

latency, that is because OpenMPI are based on libfabric on

AWS instances with EFA, while MVAPICH2-X-AWS directly

ultilizes Scalable Reliable Datagram. In figure 2(b) and 2(c),

we observe OpenMPI has higher bandwidth. That is mainly

because the EFA verbs based SRD zero-copy design of

MVAPICH2-X-AWS has more overheads with medium-sized

messages, while OpenMPI is based on libfabric on AWS EFA.

After point-to-point latency and bandwidth, we compare the

performance of four popular collective communication pat-

terns between MVAPICH2-X-AWS and OpenMPI libraries. In

order to analyze the performance in different scales, we repeat

the collective performance comparison on 1 node, 4 nodes and

32 nodes scale respectively. Figure 3 shows the single node

collective performance comparison between MVAPICH2-X-

AWS and OpenMPI. In figure 3(a), MVAPICH2-X-AWS has

up to 5.3x lower Allgather latency in small and medium mes-

sage sizes. In figure 3(b), MVAPICH2-X-AWS is up to 6.1x

faster than OpenMPI for small messages, and OpenMPI shows

up to 47% lower allreduce latency for messages larger than

128 KB and smaller than 512 KB. In figure 3(c), MVAPICH2-

X-AWS shows up to 4.8x lower latency for small and medium

message sizes. In figure 3(d), MVAPICH2-X-AWS shows

up to 6.7x lower latency on large messages. Through those

four collective communication patterns, we can observe that

due to different communication patterns, the performance

of different MPI libraries diverge or converge in different

message sizes. That is because our performance tuning and

algorithm selection make effect in different message sizes

respectively on those four collective communication patterns.

Similarly, figure 4, figure 5 and figure 6 show the performance

comparison of the same set of collective communication

patterns with different number of nodes. In the experiments of

4 nodes small scale, we observe MVAPICH2-X-AWS has 1.4x

lower allgather latency for small and medium message sizes,

up to 2.5x lower allreduce latency with small message sizes,

up to 4.2x lower gather latency with small message sizes, and

3.9x lower scatter latency with large message sizes. In the
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Fig. 2: Inter-node Point-to-point communication performance of OMB small message latency and large message bandwidth

tests on AWS c6gn instances with EFA.
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Fig. 3: Performance of OMB collectives with full subscription (64 ppn) on 1 AWS Arm instance with EFA

experiments of 32 nodes large scale allgather and allreduce

communication patterns, MVAPICH2-X-AWS still shows up

to 1.3x lower allgather and allreduce latency for small and

medium message size, while OpenMPI has advantage of up

to 2.2x lower latency for large message sizes. In 32 nodes scale

gather experiments, MVAPICH2-X-AWS shows 6.2x lower

latency for small and medium messages, which is larger than

small scale test result. However for 32 nodes scale scatter

experiment, the performance gap become smaller to 2.1x lower

latency on MVAPICH2-X-AWS.

C. Application Results

In addition to micro-benchmark level performance evalu-

ation, we evaluate application level performance with two

representative HPC applications – the Weather Research and

Forecasting [8] (WRF) model package and Adaptive Mesh

Refinement Mini-App [9] (miniAMR).

Figure 7(a) shows the performance comparison between

MVAPICH2-X-AWS and OpenMPI with WRF application.

For this experiment we use strong scaling input dataset from

12km resolution case over the Continental U.S. (CONUS)
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Fig. 4: Performance of OMB collectives with full subscription (64 ppn) on 4 AWS Arm instances with EFA

domain. We run the application with full subscription. As

the figure showing, MVAPICH2-X-AWS is more scalable than

OpenMPI. On 32 nodes scale, MVAPICH2-X-AWS has 31%

less execution time than OpenMPI. Based on our profiling

analysis, our WRF experiment execution has scatter and bcast

with small message as its main communication pattern. And

as it scales out, there are more communication operations

involved and we are able to observe more advantage in large

scale tests. The optmized MVAPICH2-X-AWS has 5% less

execution time than unoptimized version.
Similarly, Figure 7(b) shows the performance evaluation

of miniAMR application. MiniAMR is a mini app which

applies a stencil calculation on a unit cube computational

domain. In performance comparison of miniAMR, we observe

MVAPICH2-X-AWS has up to 35% faster execution time than

OpenMPI. The optimized MVAPICH2-X-AWS has 3% less

execution time than unoptimized version.

V. RELATED WORK

There are some researchers that have explored HPC appli-

cation performance on cloud system before. [10]–[14]. Many

of them performed experiments on AWS EC2. However, they

use non-HPC instances of Amazon EC2 as their experiments

were conducted before the availability of Amazon’s Cluster

Compute instance.

There are some more recent works in this area, they

are [15]–[21]. S. Chakraborty et al. [15] propose a new

zero-copy design for MPI library to improve communication

performance on Amazon EFA and evaluate the impact of

SRD transport. This design is based on EFA with ”send with

immediate” operation disabled. The proposed design provide

initial support for MPI libraries to directly transmit messages

through scalable reliable datagram. S. Xu et al. [16] proposed

an enhanced zero-copy design based on the design proposed

in [15]. The enhanced design utilizes ”send with immediate”

operation to straightforwardly reorder out-of-order data with

recorded sequence number on receiver’s buffer. This paper

also performs a cross-platform performance evaluation and

characterization between different high performance cloud

platforms including Azure and AWS EC2.

Y. Wang et al. [22] perform the experiments of tuning Ten-

sorFlow SSD MobileNet on AWS Arm-based cloud systems

with Graviton 2 processors. Similarly, Y. Cody Hao et al. [23]

perform AutoTVM tuning experiments across severl different

AWS Cloud Instance types including Arm-based instances

with Graviton processors and Intel x86 processors.

Several other researchers [17]–[21] explore the impact of

virtualization or multi-level parallelism on several high perfor-

mance cloud platforms including Azure and AWS, but most
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Fig. 5: Performance of OMB collectives with full subscription (64 ppn) on 16 AWS Arm instances with EFA

of their study is on x86 based systems.

This paper differs from those related study by exploring

MPI communication operation performance optimization and

comprehensively analyzing and comparing the parallel appli-

cation performance of different MPI libraries. It brings insights

of scientific parallel application optimization on Arm-based

cloud systems by leveraging various mechanisms to improve

MPI communication performance.

VI. CONCLUSION

In this paper, we presented our study of performance

characterization and optimization of MPI libraries and HPC

applications on the emerging Arm-based HPC cloud system

of a popular cloud platform, Amazon EC2 using state-of-

the-art MPI libraries. With effort of our performance tuning

and system customization setting, we contribute to improving

large scale collective operation latency by 86% in micro-

benchmark level and 9% in application level. In our per-

formance evaluation study, we systematically analyze the

performance characteristics of two supported state-of-the-art

MPI libraries on AWS Arm-based Cloud system with EFA

support. Through our experiments with various parallel HPC

applications and middleware on the emerging Arm-based HPC

cloud system, we realize that the Arm-based HPC systems has

become an unignorable competitor in HPC community with its

cost efficiency and competitive performance. We are looking

forward to seeing the next Generation Graviton 3 CPU and

characterizing MPI and parallel applications on the Arm-based

GPU cloud systems.
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Fig. 6: Performance of OMB collectives with full subscription (64 ppn) on 32 AWS Arm instances with EFA
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Fig. 7: Two popular HPC application performance comparison on AWS EC2 c6gn instances with full subscription and different

number of nodes, comparing unoptimized default MVAPICH2-X-AWS, optmized MVAPICH2-X-AWS and built-in OpenMPI.
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