2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) | 978-1-6654-9747-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/IPDPSW55747.2022.00083

2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Arm meets Cloud: A Case Study of MPI Library
Performance on AWS Arm-based HPC Cloud with
Elastic Fabric Adapter

Shulei Xu, Aamir Shafi, Hari Subramoni, and Dhabaleswar K. (DK) Panda

The Ohio State University
395 Dreese Laboratories, 2015 Neil Avenue
Columbus, Ohio
{xu.2452, shafi.16, subramoni.1, panda.2} @osu.edu

Abstract—Recent advances in HPC Cloud field has made
multi-core high performance VM services more accessible.
Emerging Arm based HPC systems are also receiving more
attention. Amazon Web Service recently announced new cé6gn
instances with Gravition 2 Arm CPU on each node and support
of Elastic Fabric Adapter, which make them the leading high
performance Arm-based cloud system vendor. In this paper,
we characterize the performance and capability of the AWS
Arm architecture. We explore the performance optimization of
current MPI libraries based on features of Arm-based cloud
systems and Scalable Reliable Datagram protocol of Elastic
Fabric Adapter and evaluate the impact of our optimization
of high-performance MPI libraries. Our study shows that the
performance optimization for MPI library on AWS Arm systems
significantly improves the performance of MPI communication
for both benchmark and application level. We gain up to
86% performance improvement in micro-benchmark level col-
lective communication operations and up to 9% improvement in
Weather Research and Forecasting application level. This paper
provides a comprehensive performance evaluation for several
popular MPI libraries on AWS Arm-based Cloud systems with
EFA support. HPC application developers and users are able to
get insights from our study to achieve better performance of their
applications on Arm-based cloud systems with EFA support.

Index Terms—HPC Cloud, MPI, Arm, Elastic Fabric Adapter,
Scalable Reliable Datagram

I. INTRODUCTION AND MOTIVATION

The recent development of High Performance Cloud tech-
nology has started an evolution to the Parallel and High
Performance Computing fields. Vendors such as Amazon Web
Services, Microsoft Azure, and Oracle Compute Infrastructure
now provide remote virtualized compute resources with good
support of high performance software and hardware stacks,
which are significantly attractive to HPC application devel-
opers or users. As those vendors provide High Performance
Cloud service with remote virtual compute system of different
architectures, the interconnect components are normally built
with either Infiniband RoCEv2 or their self-developed network
adapter such as Elastic Fabric Adapter of AWS.

For most of the high performance cloud services in the
market, vendors usually provide x86 architecture systems with
Intel or AMD CPU. However, Amazon Web Services recently

started to provide their Arm-based high performance cloud
systems. These Arm-based cloud systems are built with their
own-designed AWS Graviton processors, which has general
support of high performance compute workloads.

Message Passing Interface [1] (MPI), as the de-facto pro-
gramming model for large-scale parallel applications, is also
commonly supported on different high performance cloud
systems. MPI supports different communication patterns in-
cluding point-to-point and collective communications.

With the emergence of rich set of cloud environments
including different hardware or software stacks, MPI libraries
should be optimized and tuned based on the features provided
by cloud environments. However, there has no performance
optimization work been done for MPI libraries on any state-
of-the-art high performance Arm-based cloud systems.

In this paper, we first explore the performance optimization
and enhancement of MPI libraries on the AWS Arm-based
HPC cloud systems with EFA. Due to the nature of HPC
cloud system, users have more accessibility and deeper control
of the system. Our exploration of performance tuning and
optional build setting with XPMEM kernel modules is capable
of taking full advantage of features of Arm-based high perfor-
mance cloud systems, in order to maximizing MPI application
performance on Arm-based high performance cloud systems.

The high performance cloud service is becoming a more
popular choice for HPC application developers and users. The
emerging Arm processors have started their story in HPC field
as well. Comparing to the current mainstream x86 systems,
how would Arm-based cloud system perform differently? How
can we bring HPC applications from x86 system to Arm-based
system and keep the best efficiency? What performance and
scalability should we expect for these HPC applications on
Arm-based cloud systems? To answer those questions, this
paper also provides a comprehensive performance characteri-
zation and evaluation of different MPI libraries on AWS Arm-
based HPC Cloud system, including the latency and bandwidth
comparing of different MPI communication operations, in both
micro-benchmark level and application level.

978-1-6654-9747-3/22/$31.00 ©2022 IEEE 449
DOI 10.1109/IPDPSW55747.2022.00083

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 23:02:41 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND

A. Elastic Fabric Adapter

Amazon Elastic Compute Cloud (EC2) is a web service that
provides resizable compute capacity in the cloud. An EC2
instance is a virtual server that can be used to run appli-
cations in AWS. The application developers can customize
the instance features based on their budget and requirements.
The on-demand allocation of resources is possible in cloud
computing models due to their elastic capability and leads to
cost-effective and energy-efficient solutions. Amazon Elastic
Compute Cloud (EC2) provides a specialized Cluster Compute
(CC) instance type to run HPC applications. The CC plat-
form offers powerful and up-to-date CPUs and GPUs and an
improved interconnection network well suited for large-scale
HPC applications.

Elastic Fabric Adapter (EFA) is a network interface from
Amazon for AWS EC?2 instances. It is used to run applications
that require high levels of inter-node communications at scale
on AWS. It improves the performance of inter-node communi-
cations by avoiding the involvement of the Operating System
(OS) kernel for each communication. EFA is an optional EC2
networking feature that can be enabled on any supported EC2
instance. For running MPI applications on AWS, the MPI
library should support EFA for inter-node communications.

In the InfiniBand standard, there are four different transport
modes: RC (Reliable Connected), RD (Reliable Datagram),
UC (Unreliable Connected), and UD (Unreliable Datagram).
These transport modes has different functionality and char-
acteristics. Among these transport modes, EFA supports UD
which is a connection-less and unreliable transport. More
specifically, UD does not provide reliable delivery or ordering.
Moreover, the maximum message size is limited to 1 Message
Transfer Unit (MTU) which is 4KB. Thus, for messages larger
than one MTU, the software should take care of reliability
through re-transmissions, segmentation, and reassembly.

EFA supports a new transport mode other than UD called
Scalable Reliable Datagram (SRD). SRD is similar to UD, but
in different, it provides reliable delivery. It means that in SRD,
the packets will be guaranteed to be delivered from sender to
receiver, but since message are transferred through multiple
paths, they might arrive out-of-order at the receiver.

B. Amazon Gravition 2

AWS Graviton 2 is the second generation of AWS own
designed high performance Arm processor. It is a 64-core
ARMV8 SoC custom-built by AWS using 64-bit Arm Neoverse
cores. On AWS c6gn instances with Graviton 2 processor,
the Elastic Fabric Adapter is supported with up to 100 Gbps
interconnecting network bandwidth.

C. MPI

Message Passing Interface (MPI) is one of the most popular
programming models for writing parallel applications in clus-
ter computing area. MPI libraries provide basic communica-
tion support for a parallel computing job. In particular, several
convenient point-to-point and collective communication oper-
ations are provided. High performance MPI implementations

450

are closely tied to the underlying network dynamics and try
to leverage the best communication performance on the given
interconnect. MPICH [2], MVAPICH [3], Open MPI [4] and
Intel MPI [5] are ones of popular MPI libraries.

III. THE OPTIMIZATION ON AWS EC2 CLOUD ARM
INSTANCES WITH EFA

Due to the popularity of MPI programming model among
HPC users, most HPC cloud systems like AWS HPC clouds
have started providing support for MPI libraries. In the paral-
lelcluster of AWS EC2, some MPI libraries such as IntelMPI
or OpenMPI libraries are supported as built-in modules of
default instance image. Different to traditional supercomputer
clusters, MPI libraries on the cloud systems are usually in
different levels of optimization because of the highly cus-
tomizable hardware or software configuration of cloud sys-
tems. For example, the MVAPICH2-X-AWS library share the
same collective tuning settings for x86 Intel, AMD and Arm
CPU systems. In AWS HPC clouds x86 instances, IntelMPI,
OpenMPI and MVAPICH2-X are all supported. However in
AWS Arm instances, there is no built-in support for IntelMPI.
Therefore, we pick MVAPICH2-X-AWS as the MPI library
to explore performance optimization and enhancement, and
compare the optimized MVAPICH2-X-AWS performance with
its unoptimized version, and later in the next section we have
comprehensive performance evaluation across MVAPICH2-X
and OpenMPI libraries.

The performance optimization and enhancement for
MVAPICH2-X-AWS on AWS Arm-based HPC instances in-
cludes two main steps. The first step is performance tun-
ing. Similarly to how HPC application users or developers
always do, we adjust the mpirun parameters, and compare
the performance of different collective algorithm selection
through run-time arguments. After iterations of comparison,
we could finalize the parameters and algorithms that achieve
best performance on AWS Arm-based HPC instances, and
this step will be iterated for each combination of number of
nodes X processes per node. Second step is to take advantage
of the higher freedom of loading kernel modules on Cloud
systems. Compare to traditional supercomputer clusters, the
HPC cloud service vendors allow users to have root access
to the system. Some MPI libraries also have build option for
these kernel modules. For example, both MVAPICH2-X and
OpenMPI have optional build support with XPMEM. In order
to have further optimization on AWS Arm-based instances,
we load the XPMEM kernel module, and have MVAPICH2-
X-AWS built with auto-detection of XPMEM module using
dlopen.

Figure 1(a) and 1(b) shows an example of the benefit we
gain from our performance optimization. On 16 nodes scale
64 ppn comparison, we observe 69% lower allreduce latency
and 86% lower scatter latency with the mentioned tuning and
optimization work.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 23:02:41 UTC from IEEE Xplore. Restrictions apply.

100000

10000

X3 ¥

1000 M
100 X Mo K3

Latency (us)

10

1

opt-MV2X ——
def-MV2X X

0.1
4 64

1K 16K 256K
Message Size (bytes)

(a) allreduce

100000

opt-MV2X —— %
defMV2X X- x-
10000 s
>://
o
1000
- X
g %
3 100
5 VEVENINENINSC 2
S
10
;
0.1
1 16 256 4K 64K

Message Size (bytes)

(b) scatter

Fig. 1: Example of Performance difference between optimized and unoptimized MVAPICH2-X-AWS on 16 c6gn instances

scale with full subscription

and EFA support

IV. PERFORMANCE EVALUATION

After the performance optimization for AWS HPC Arm

system, we conduct a comprehensive performance evaluation
on both mirco-benchmark level and application level. We com-
pare the MVAPICH2-X-AWS with OpenMPI as the built-in
MPI library of AWS parallelcluster [6]. Since in the previous
section we have already done the optimization, we are using

optimized MVAPICH2-X-AWS in this section.

A. Experimental Setup

Table I lists the hardware and software details of system
configuration of the platform where we perform our experi-

ments on.

TABLE I: Hardware & software specification of tested clusters

Specification
Instance Type

AWS Arm
cbgn.16xlarge

Processor Amazon Graviton Gen 2
Clock Speed 2.5 GHz

#. Sockets 1

Cores Per socket 64

RAM (DDR4) 128 GB

Libfabric ver. 1.13.2

Parallelcluster 3.0.2

MVAPICH2 MVAPICH2-X-AWS
OpenMPI 4.1.0

B. Microbenchmark Results

We first do the performance evaluation with OSU-
Microbenchmarks-5.8 [7].

Figure 2 presents the point-to-point latency, bandwidth and
bi-directional bandwidth of the inter-node MPI communica-
tion performance among two AWS Arm c6gn instances. We
compare the inter-node latency, bandwidth and bi-directional
bandwidth performance between optimized MVAPICH2-X-
AWS and OpenMPI libraries. In figure 2(a), for small-size
messages, MVAPICH2-X-AWS and OpenMPI has very close
performance, while MVAPICH2-X-AWS has slightly lower
latency, that is because OpenMPI are based on libfabric on

AWS instances with EFA, while MVAPICH2-X-AWS directly
ultilizes Scalable Reliable Datagram. In figure 2(b) and 2(c),
we observe OpenMPI has higher bandwidth. That is mainly
because the EFA verbs based SRD zero-copy design of
MVAPICH2-X-AWS has more overheads with medium-sized
messages, while OpenMPI is based on libfabric on AWS EFA.

After point-to-point latency and bandwidth, we compare the
performance of four popular collective communication pat-
terns between MVAPICH2-X-AWS and OpenMPI libraries. In
order to analyze the performance in different scales, we repeat
the collective performance comparison on 1 node, 4 nodes and
32 nodes scale respectively. Figure 3 shows the single node
collective performance comparison between MVAPICH2-X-
AWS and OpenMPIL. In figure 3(a), MVAPICH2-X-AWS has
up to 5.3x lower Allgather latency in small and medium mes-
sage sizes. In figure 3(b), MVAPICH2-X-AWS is up to 6.1x
faster than OpenMPI for small messages, and OpenMPI shows
up to 47% lower allreduce latency for messages larger than
128 KB and smaller than 512 KB. In figure 3(c), MVAPICH2-
X-AWS shows up to 4.8x lower latency for small and medium
message sizes. In figure 3(d), MVAPICH2-X-AWS shows
up to 6.7x lower latency on large messages. Through those
four collective communication patterns, we can observe that
due to different communication patterns, the performance
of different MPI libraries diverge or converge in different
message sizes. That is because our performance tuning and
algorithm selection make effect in different message sizes
respectively on those four collective communication patterns.
Similarly, figure 4, figure 5 and figure 6 show the performance
comparison of the same set of collective communication
patterns with different number of nodes. In the experiments of
4 nodes small scale, we observe MVAPICH2-X-AWS has 1.4x
lower allgather latency for small and medium message sizes,
up to 2.5x lower allreduce latency with small message sizes,
up to 4.2x lower gather latency with small message sizes, and
3.9x lower scatter latency with large message sizes. In the

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 23:02:41 UTC from IEEE Xplore. Restrictions apply.

25 9000 » 14000
X X=X o
0 @ 8000 o = @ 12000 RN S
m , o 7000 2 o xS
E e Lf/f// < 6000 XL s 10 .
>~.15 o R n o ok = X(= 8000
[5) % 5000 ; 5 / /
10 i<l / 2 6000 o
9 £ 4000 2 2 ; i
3 € 3000 g 4000 W
MVAPICH2-X-AWS —— m 2000 | X APICH2-X-AWS — m 2000 £ MVAPICH2-X-AWS ——
0 OpenMPI -x 1000 s OpenMPI -x 0 OpenMPI -x
1 8 64 512 4K 2K 16K 128K 1M 2K 16K 128K 1M
Message Size (bytes) Message Size (bytes) Message Size (bytes)

(a) inter-node latency

(b) inter-node bandwidth

(c) inter-node bi-bandwidth

Fig. 2: Inter-node Point-to-point communication performance of OMB small message latency and large message bandwidth

tests on AWS c6gn instances with EFA.

100000

10000

1000

Latency (us)
=]
o

kX XX % X XXX

MVAPICH2-X-AWS —+—
OpenMPI -X-

=)

o

1 16 256 4K 64K ™

Message Size (bytes)

(a) Allgather

10000
MVAPICH2-X-AWS —— A

OpenMPI =X~
/)
X
X %2
X Xe X X=X X XX X
4
1

0.1

1000

o
S

=)

Latency (us)

1 16 256 4K 64K ™

Message Size (bytes)

(c) Gather

Latency (us)

Latency (us)

10000

K
1000 f'/’
))/S'{
100 Sy X %
€ X=X X-X X=X X K™
10
Ly
1
MVAPICH2-X-AWS —+—
OpenMPI =X~
0.1 L
4 64 1K 16K 256K
Message Size (bytes)
(b) Allreduce
10000
MVAPICH2-X-AWS ——
OpenMP| =X~ .
- X
1000
X +
yox X7
e N
100 ' sl
X
X=X
10 [VIRVIRVIR x
fARARARARS e s
1
0.1
1 16 256 4K 64K ™

Message Size (bytes)

(d) Scatter

Fig. 3: Performance of OMB collectives with full subscription (64 ppn) on 1 AWS Arm instance with EFA

experiments of 32 nodes large scale allgather and allreduce
communication patterns, MVAPICH2-X-AWS still shows up
to 1.3x lower allgather and allreduce latency for small and
medium message size, while OpenMPI has advantage of up
to 2.2x lower latency for large message sizes. In 32 nodes scale
gather experiments, MVAPICH2-X-AWS shows 6.2x lower
latency for small and medium messages, which is larger than
small scale test result. However for 32 nodes scale scatter
experiment, the performance gap become smaller to 2.1x lower
latency on MVAPICH2-X-AWS.

C. Application Results

In addition to micro-benchmark level performance evalu-
ation, we evaluate application level performance with two
representative HPC applications — the Weather Research and
Forecasting [8] (WRF) model package and Adaptive Mesh
Refinement Mini-App [9] (miniAMR).

Figure 7(a) shows the performance comparison between
MVAPICH2-X-AWS and OpenMPI with WRF application.
For this experiment we use strong scaling input dataset from
12km resolution case over the Continental U.S. (CONUS)

452

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 23:02:41 UTC from IEEE Xplore. Restrictions apply.

100000

MK
10000 K
e
ook
1000 f
100 Y= X X%

10

1
MVAPICH2-X-AWS ——
OpenMPI -X-

0.1

1 16 256 4K 64K

Message Size (bytes)

(a) Allgather

1000

MVAPICH2-X-AWS —+—
OpenMPI| -X-

¥ X X=X =X X- X -% X X7

0.1 ‘ ‘ ‘
1 16 256 4K 64K

Message Size (bytes)

(c) Gather

10000

M/‘ﬁt
1000 5 X
x—/x/ x X X7
100 =

K= K= R XK

MVAPICH2-X-AWS ——
OpgnMPI -

0.1

4 64 1K 16K 256K

Message Size (bytes)

(b) Allreduce

100000

MVAPICH2-X-AWS ——
OpenMPI =X~
10000

]
1000

£
- X‘x
100 ® L
¥ X X% XX XK
10
1
01 ‘ ‘ ‘ ‘
1 16 256 4K 64K ™

Message Size (bytes)

(d) Scatter

Fig. 4: Performance of OMB collectives with full subscription (64 ppn) on 4 AWS Arm instances with EFA

domain. We run the application with full subscription. As
the figure showing, MVAPICH2-X-AWS is more scalable than
OpenMPI. On 32 nodes scale, MVAPICH2-X-AWS has 31%
less execution time than OpenMPI. Based on our profiling
analysis, our WRF experiment execution has scatter and bcast
with small message as its main communication pattern. And
as it scales out, there are more communication operations
involved and we are able to observe more advantage in large
scale tests. The optmized MVAPICH2-X-AWS has 5% less
execution time than unoptimized version.

Similarly, Figure 7(b) shows the performance evaluation
of miniAMR application. MiniAMR is a mini app which
applies a stencil calculation on a unit cube computational
domain. In performance comparison of miniAMR, we observe
MVAPICH2-X-AWS has up to 35% faster execution time than
OpenMPI. The optimized MVAPICH2-X-AWS has 3% less
execution time than unoptimized version.

V. RELATED WORK

There are some researchers that have explored HPC appli-
cation performance on cloud system before. [10]-[14]. Many
of them performed experiments on AWS EC2. However, they
use non-HPC instances of Amazon EC2 as their experiments
were conducted before the availability of Amazon’s Cluster
Compute instance.

There are some more recent works in this area, they
are [15]-[21]. S. Chakraborty et al. [15] propose a new
zero-copy design for MPI library to improve communication
performance on Amazon EFA and evaluate the impact of
SRD transport. This design is based on EFA with “’send with
immediate” operation disabled. The proposed design provide
initial support for MPI libraries to directly transmit messages
through scalable reliable datagram. S. Xu et al. [16] proposed
an enhanced zero-copy design based on the design proposed
in [15]. The enhanced design utilizes “send_with_immediate”
operation to straightforwardly reorder out-of-order data with
recorded sequence number on receiver’s buffer. This paper
also performs a cross-platform performance evaluation and
characterization between different high performance cloud
platforms including Azure and AWS EC2.

Y. Wang et al. [22] perform the experiments of tuning Ten-
sorFlow SSD MobileNet on AWS Arm-based cloud systems
with Graviton 2 processors. Similarly, Y. Cody Hao et al. [23]
perform AutoTVM tuning experiments across severl different
AWS Cloud Instance types including Arm-based instances
with Graviton processors and Intel Xx86 processors.

Several other researchers [17]-[21] explore the impact of
virtualization or multi-level parallelism on several high perfor-
mance cloud platforms including Azure and AWS, but most

453

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 23:02:41 UTC from IEEE Xplore. Restrictions apply.

1x10°

100000

10000

1000

100

Latency (us)

10

T "MVAPICH2-X-AWS ——
01 OpenMPI -X-)

1 16 256 4K 64K

Message Size (bytes)

(a) Allgather

1000

MVAPICH2-X-AWS ——
OpenMPI =X~

=)
)

=)

K X=X X=X -X X-% XTXR

Latency (us)

0.1

256 4K 64K

Message Size (bytes)

(c) Gather

10000
d
1000 =,
. X X FE
T 400 XXX X% X
]
§ 10
1
MVAPICH2-X-AWS —+
OpenMPI -X-
0.1 L
4 64 1K 16K 256K
Message Size (bytes)
(b) Allreduce
100000
MVAPICH2-X-AWS ——
OpenMP| =X~
10000 %
g 1000 M
= X X 26~
> X
g 100 jeese)oxe e X
2 1
- 10
1

0.1

256 4K 64K

Message Size (bytes)

(d) Scatter

Fig. 5: Performance of OMB collectives with full subscription (64 ppn) on 16 AWS Arm instances with EFA

of their study is on x86 based systems.

This paper differs from those related study by exploring
MPI communication operation performance optimization and
comprehensively analyzing and comparing the parallel appli-
cation performance of different MPI libraries. It brings insights
of scientific parallel application optimization on Arm-based
cloud systems by leveraging various mechanisms to improve
MPI communication performance.

VI. CONCLUSION

In this paper, we presented our study of performance
characterization and optimization of MPI libraries and HPC
applications on the emerging Arm-based HPC cloud system
of a popular cloud platform, Amazon EC2 using state-of-
the-art MPI libraries. With effort of our performance tuning
and system customization setting, we contribute to improving
large scale collective operation latency by 86% in micro-
benchmark level and 9% in application level. In our per-
formance evaluation study, we systematically analyze the
performance characteristics of two supported state-of-the-art
MPI libraries on AWS Arm-based Cloud system with EFA
support. Through our experiments with various parallel HPC
applications and middleware on the emerging Arm-based HPC

454

cloud system, we realize that the Arm-based HPC systems has
become an unignorable competitor in HPC community with its
cost efficiency and competitive performance. We are looking
forward to seeing the next Generation Graviton 3 CPU and
characterizing MPI and parallel applications on the Arm-based
GPU cloud systems.

ACKNOWLEDGMENT

This research is supported in part by NSF grants #1818253,
#1854828, #1931537, #2007991, #2018627, #2112606, and
XRAC grant #NCR-130002.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 23:02:41 UTC from IEEE Xplore. Restrictions apply.

1x108 10000

100000
w x _W" 1000
-
10000 . X/M
1000 X 100

=X
-
100 10
10
1
! MVAPICH2-X-AWS —— MVAPICH2-X-AWS —+—
OpenMPI -X- OpenMPI -X-
0.1 L 0.1 L
1 16 256 4K 64K 4 64 1K 16K 256K
Message Size (bytes) Message Size (bytes)
(a) Allgather (b) Allreduce
1000 100000
MVAPICH2-X-AWS —+— A MVAPICH2-X-AWS ——
OpenMPI =X~ , OpenMP| =X~ XHK

% 10000
X4
100 % e M
1000 .
% XX
e M
100 ~%

R R S S T g

10
1
1
0.1 0.1
1 16 256 4K 64K 1 16 256 4K 64K
Message Size (bytes) Message Size (bytes)
(c) Gather (d) Scatter

Fig. 6: Performance of OMB collectives with full subscription (64 ppn) on 32 AWS Arm instances with EFA

WRF Execution Time miniAMR Execution Time
I Mv2X-default [MV2X-optimized [l OpenMPI B Mv2X-default M MV2X-optimized M OpenMPI
60 250
200
s 40
?0,/ § 150
° &
£ 2 100 4
E 2 E 1
50
0
2-nodes 8-nodes 16-nodes 32-nodes o0
2 4 8 16 32
Number of Nodes x (64 ppn) Number of Nodes x (64 ppn)
(a) WRF (b) miniAMR

Fig. 7: Two popular HPC application performance comparison on AWS EC2 c6gn instances with full subscription and different
number of nodes, comparing unoptimized default MVAPICH2-X-AWS, optmized MVAPICH2-X-AWS and built-in OpenMPI.

455

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 23:02:41 UTC from IEEE Xplore. Restrictions apply.

[1

3

[4

[5

=3

[8

19

[10]

[11]

[12]

[13]

REFERENCES

“MPI-4 Standard Document,” https://www.mpi-forum.org/docs/mpi-4.0/
mpi40-report.pdf.

“MPICH: High-Performance Portable MPI,” http://www.mpich.org. Ac-
cessed: March 21, 2022.

Network-Based Computing Laboratory, “MVAPICH: MPI over Infini-
Band, Omni-Path, Ethernet/iWARP, and RoCE,” http://mvapich.cse.ohio-
state.edu/.

E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, Concept, and Design of a Next Generation MPI Implementation,”
in Proceedings, 11th European PVM/MPI Users’ Group Meeting, 2004.
“Intel MPI Official Website,” https://www.intel.com/content/www/us/en/
developer/tools/oneapi/mpi-library.html.

“AWS Parallel Cluster,” https://aws.amazon.com/hpc/parallelcluster/.

D. Panda et al., “OSU microbenchmarks v5.6.3,” http://mvapich.cse.
ohio-state.edu/benchmarks/.

The National Center for Atmospheric Research (NCAR), “Weather
Research and Forecasting (WRF) model ,” https://github.com/hanschen/
WRFV3.

“miniAMR - Adaptive Mesh Refinement Mini-App,” https://github.com/
Mantevo/miniAMR.

K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia,
J. Shalf, H. J. Wasserman, and N. J. Wright, “Performance analysis
of high performance computing applications on the amazon web ser-
vices cloud,” in 2010 IEEE second international conference on cloud
computing technology and science. 1EEE, 2010, pp. 159-168.

J. Napper and P. Bientinesi, “Can cloud computing reach the top500?”
in Proceedings of the combined workshops on UnConventional high
performance computing workshop plus memory access workshop, 2009,

pp. 17-20.

L. Ramakrishnan, R. S. Canon, K. Muriki, I. Sakrejda, and N. J.
Wright, “Evaluating interconnect and virtualization performance forhigh
performance computing,” ACM SIGMETRICS Performance Evaluation
Review, vol. 40, no. 2, pp. 55-60, 2012.

J. J. Rehr, FE. D. Vila, J. P. Gardner, L. Svec, and M. Prange, “Scientific
computing in the cloud,” Computing in science & Engineering, vol. 12,
no. 3, pp. 3443, 2010.

456

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

E. Walker, “Benchmarking amazon ec2 for hig-performance scientific
computing,” ; login:: the magazine of USENIX & SAGE, vol. 33, no. 5,
pp. 18-23, 2008.

S. Chakraborty, S. Xu, H. Subramoni, and D. Panda, “Designing scalable
and high-performance mpi libraries on amazon elastic fabric adapter,”
in 2019 IEEE Symposium on High-Performance Interconnects (HOTI).
IEEE, 2019, pp. 40-44.

S. Xu, M. Ghazimirsaeed, J. Hashmi, H. Subramoni, and D. Panda,
“Mpi meets cloud: Case study with amazon ec2 and microsoft azure,”
November 2020.

R. Aljamal, A. El-Mousa, and F. Jubair, “Benchmarking microsoft
azure virtual machines for the use of hpc applications,” in 2020 11th
International Conference on Information and Communication Systems
(ICICS). IEEE, 2020, pp. 382-387.

P. Smith, S. L. Harrell, A. Younts, and X. Zhu, “Community clusters
or the cloud: Continuing cost assessment of on-premises and cloud hpc
in higher education,” in Proceedings of the Practice and Experience
in Advanced Research Computing on Rise of the Machines (learning),
2019, pp. 1-4.

R. Aljamal, A. EI-Mousa, and F. Jubair, “A user perspective overview of
the top infrastructure as a service and high performance computing cloud
service providers,” in 2019 IEEE Jordan International Joint Conference
on Electrical Engineering and Information Technology (JEEIT). 1EEE,
2019, pp. 244-249.

H. A. Hassan, M. S. Kashkoush, M. Azab, and W. M. Sheta, “Impact of
using multi-levels of parallelism on hpc applications performance hosted
on azure cloud computing,” International Journal of High Performance
Computing and Networking, vol. 13, no. 3, pp. 251-260, 2019.

M. Alfatafta, Z. AlSader, and S. Al-Kiswany, “Cool: A cloud-optimized
structure for mpi collective operations,” in 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD). 1IEEE, 2018, pp. 746-753.
Y. Wang, X. Zhou, Y. Wang, R. Li, Y. Wu, and V. Sharma, “Tuna:
A static analysis approach to optimizing deep neural networks,” arXiv
preprint arXiv:2104.14641, 2021.

C. H. Yu, X. Shi, H. Shen, Z. Chen, M. Li, and Y. Wang, “Lorien:
Efficient deep learning workloads delivery,” in Proceedings of the ACM
Symposium on Cloud Computing, 2021, pp. 18-32.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 23:02:41 UTC from IEEE Xplore. Restrictions apply.

