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Abstract. As more High-Performance Computing (HPC) and Deep
Learning (DL) applications are adapting to scale using GPUs, the com-
munication of GPU-resident data is becoming vital to end-to-end appli-
cation performance. Among the available MPI operations in such appli-
cations, All-to-All is one of the most communication-intensive operations
that becomes the bottleneck of efficiently scaling applications to larger
GPU systems. Over the last decade, most research has focused on the
optimization of large GPU-resident data transfers. However, for state-
of-the-art GPU-Aware MPI libraries, MPI Alltoall communication for
large GPU-resident data still suffers from poor performance due to the
throughput limitation of commodity networks. However, the develop-
ment of GPU-based compression algorithms with high throughput can
reduce the volume of data transferred. The recent research of point-to-
point-based online compression with these compression algorithms has
shown potential on modern GPU clusters.

In this paper, we redesign an MPI library to enable efficient collective-
level online compression with an optimized host-staging scheme for
All-to-All communication. We demonstrate that the proposed design
achieves benefits at both microbenchmark and application levels. At the
microbenchmark level, the proposed design can reduce the All-to-All
communication latency by up to 87%. For PSDNS, a traditional HPC
application, our proposed design can reduce the All-to-All communica-
tion latency and total runtime by up to 29.2% and 21.8%, respectively,
while ensuring data validation and not affecting the application conver-
gence time. For Microsoft’s DeepSpeed, a DL optimization library, the
proposed design reduces the MPI Alltoall runtime by up to 26.4% com-
pared to a state-of-the-art MPI library with point-to-point compression
while ensuring data validation. To the best of our knowledge, this is
the first work that leverages online GPU-based compression techniques
to significantly accelerate MPI Alltoall communication for HPC and DL
applications.
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1 Introduction

Emerging high-performance computing (HPC) and cloud computing systems are
widely adopting Graphics Processing Units (GPUs) to support the computa-
tional power required by modern scientific and deep learning (DL) applications.
By offering high-bandwidth memory, tensor processing, and massive parallelism,
GPUs enable running complex applications such as weather forecasting, brain
data visualization, and molecular dynamics. MPI is the de facto communica-
tion standard widely used in developing parallel scientific applications on HPC
systems. To further enhance the high compute power of current generation of
hardware, researchers are building large-scale GPU clusters to benefit from mas-
sive computation capabilities offered by these accelerators.

Due to the computing power offered by GPUs, a large range of applications
have been adapted to scale on GPU-based systems by application developers.
Communication performance plays a vital role in end-to-end application perfor-
mance on such systems. In fact, at a large scale, the communication operations
become the performance bottleneck for any massively parallel HPC and DL appli-
cation. Over the last decade, researchers have significantly optimized data trans-
fers in MPI for GPU-resident data [2,21,24]. Inter-node communication opera-
tions for large messages are highly optimized to saturate the bandwidth of the
InfiniBand network by the state-of-the-art MPI libraries [9,24]. [32] has shown
the saturated inter-node network bandwidth of the state-of-the-art MPI libraries.
Although these MPI libraries are well optimized, the communication time at the
application level is still a major bottleneck for many HPC and DL applications.
Since the inter-node communication bandwidth is already saturated via optimiza-
tions implemented by major MPI libraries, we should seek other innovative ways
to reduce the communication time of the HPC applications.

Thinking outside the box, we propose exploiting compression to aid with opti-
mizing the performance of MPI stacks and HPC/DL applications, subsequently.
Compression can reduce the amount of data that needs to be transmitted and/or
stored helping to mitigate the cost of communication. Various compression tech-
niques have been proposed in the literature diving into CPU-based algorithms and
GPU-based algorithms. The common issue with CPU-based algorithms is the low
throughput compared to GPU-based designs [14,31]. Existing GPU-based com-
pression schemes such as MPC [31], SZ [3], and ZFP [14] are typically focused on
achieving a high compression ratio and not absolute high performance.

1.1 Motivation

There are challenging aspects to consider when applying compression to the
HPC domain. HPC requires low overhead while maintaining high throughput.
Further, some HPC applications require that the underlying compression and
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decompression operations are handled by the MPI library, leaving the HPC/DL
application unchanged. We refer to this qualifier as “Online” compression. Online
compression means the message should be compressed and decompressed in real-
time inside the MPI library during a communication operation without any
modifications to the end applications. This implies that the online compression
algorithms should be self-contained with low overheads. Meeting these require-
ments first before maximizing the compression ratio and revamping the commu-
nication pattern/algorithm to fully exploit the HPC system’s available transfer
bandwidth is a challenging task that we undertake in this paper.

Since most MPI users are domain scientists first and programmers second,
modifying the application to use compression is often out of reach. Adding sup-
port often involves understanding compression techniques and when to apply
them based on message features such as size. Therefore, using compression
directly in HPC/DL applications is a daunting task for domain scientists. In
this context, [32] proposed an online compression enabled MPI library for point-
to-point operations—this is an initial work in this direction.

Fig. 1. Motivating Example: All-to-all communication time for 8 GPUs on 2 Longhorn
nodes. The observed message range in PSDNS is 1.2 MB to 9.5 MB. With more GPUs,
All-to-all communication time becomes dominant within the overall runtime of PSDNS
application.

In this paper, we use the online compression idea to optimize the performance
of MPI collective operations and improve HPC/DL application performance.
One of the most communication-intensive operations is MPI Alltoall which is
used in many applications like PSDNS [23] and DeepSpeed [22]. DeepSpeed
depends on MPI Alltoall to support the addition of Mixture-of-Experts [10]. As
shown in the Fig. 1(a), with larger scale, the MPI Alltoall time dominates the
overall execution time of the PSDNS application. Figure 1(b) shows the message
size range of MPI Alltoall operations observed in PSDNS application. In this
context, the MPI Alltoall operation is ideally suited to benefit from compression
since it is the most dense communication operation used in various HPC and
DL applications.
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1.2 Challenges

To design an efficient online compression scheme for MPI Alltoall operation,
following research challenges need to be addressed.
Challenge-1: The Limitation of Point-to-Point Based Online Com-
pression Technique: MVAPICH2-GDR-2.3.6 is the only public library that
has support for online compression. Table 1 summarizes the representative
MPI Alltoall algorithms in the MVAPICH2-GDR-2.3.6 MPI library and existing
support for online compression.

Both the Scatter Destination (SD) and Pairwise Exchange (PE) algorithms
rely on the GPU-based point-to-point communication to transfer data between
GPUs. With the current point-to-point based online compression, these algo-
rithms can leverage compression for both inter-node and intra-node communica-
tion. However, there are limitations in the existing point-to-point based online
compression design. For the PSDNS application, we use the NVIDIA profiler
Nsight to monitor the compression behavior of the existing GPU-based Scatter
Destination and Pairwise Exchange All-to-All algorithms in the state-of-the-
art MVAPICH2-GDR-2.3.6 library. Figure 2 shows the existing design that uti-
lizes point-to-point operations in the MVAPICH2-GDR-2.3.6 library. The figure
also proposes a design to overcome this limitation. As shown in the existing
design section of Fig. 2, when a process sends data to other processes, the
compression kernel in a single send operation does not overlap with kernels
in other send operations even though they run on different CUDA streams.

Table 1. Comparison of existing online compression support in MVAPICH2-GDR-
2.3.6 with proposed design

Algorithms Compression

support

Compression

level

Inter-node

data

transfer

Intra-node

data

transfer

Multiple

streams

compression

Hide

compression

overhead

Overlap

opportunity

GPU-aware

Scatter

Destination

[28]

Y Point-to-

Point

GPUDirect IPC Within single

Send/Recv

N N

GPU-aware

Pairwise

Exchange

[29]

Y Point-to-

Point

GPUDirect IPC Within single

Send/Recv

N N

CPU Staged

Scatter

Destination

[28]

N N RDMA Shared

Memory

N N N

CPU Staged

Pairwise

Exchange

[29]

N N RDMA Shared

Memory

N N N

Proposed Y Collective Staging + RDMA Across Y Y

Design level multiple

Send/Recv
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This limitation is similar for the decompression kernels in receive operations.
This essentially becomes a bottleneck for implementing dense collective opera-
tions like MPI Alltoall efficiently.

Fig. 2. Comparison between using existing compression method for point-to-point
operations versus proposed design. The proposed design increases the overlap of kernel
initialization and wait time by enabling compression at the collective level instead of
the point-to-point level.

Challenge-2: Move the Point-to-Point Compression to the Collective-
Level: The above limitation can be handled by utilizing compression at the
collective level. In MPI libraries, collectives operations are typically built
using point-to-point operations. In collective-level compression, the compres-
sion/decompression is done at the collective algorithm level before calling the
underlying point to point send/receive operation to transfer data. This provides
us the opportunity that CUDA kernels across multiple send/receive operations
can be overlapped to reduce the compression overheads—this is depicted in Fig. 2
and forms the primary motivation of our proposed design in this paper. However,
the underlying mechanism of Scatter Destination and Pairwise Exchange algo-
rithms prevents us from moving the compression to the collective level efficiently.
This pushes us to explore other MPI Alltoall algorithms. The CPU Staging algo-
rithm [28] moves the data from GPU to host and leverages the host-based Scatter
Destination, Pairwise Exchange, or other MPI Alltoall algorithms to transfer the
data. Since the send and receive operations are host-based, we cannot merely
use the existing GPU-based point-to-point compression. We need to co-design
the GPU-based compression at the collective level (Sect. 3).

Challenge-3: Revamp and Optimize GPU-Based Compression for the
Collective-Level Online Compression: While point-to-point compression
focuses on reducing the inherent compression-related overheads, collective-level
compression aims to further reduce the effective kernel computing time by
co-designing the compression with the collective operations. This needs the
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enhancement of designing interfaces for the existing collective operations to
support GPU-based compression. Furthermore, naive integration of the com-
pression algorithms at the collective level may not achieve optimal performance
(Sect. 3.1). We have to analyze the bottlenecks of such naive compression designs,
revamp the existing GPU-based algorithm, upgrade the naive design to support
the new interface, and optimize the collective operations. The implementations
of each optimization will be proposed (Sect. 4).

1.3 Contributions

In this paper, we design and implement high-performance online message com-
pression for the MPI Alltoall communication operation on modern GPU clusters.
To the best of our knowledge, this is the first work that leverages GPU-based
compression techniques to significantly improve MPI Alltoall communication
performance while maintaining data validation and not affecting the convergence
time. To summarize, this paper makes the following main contributions:

– We conduct a thorough analysis of the limitations and possible optimization
opportunities for existing MPI Alltoall algorithms with online compression
support on modern GPU systems.

– We propose an online compression design that is integrated into the underly-
ing communication libraries (e.g., MPI) for host-staging based MPI Alltoall
communication. Later, we analyze the limitations of naively integrating the
existing ZFP compression library.

– We optimize the ZFP compression library to enable execution of compression/
decompression kernels on multiple CUDA streams. These strategies reduce
the overhead of compression/decompression kernels and improve overall
performance.

– We use the OSU Micro Benchmark (OMB) suite to evaluate MPI Alltoall
communication and show that the proposed design can achieve up to 87%
improvement in performance. We also enhance OMB to use real data sets
and get up to 75% improvement in the MPI Alltoall operation.

– We evaluate the effectiveness of the proposed design through application
studies. In the PSDNS application, we can gain up to 29.2% and 21.8%
reduced MPI Alltoall runtime and total execution time, respectively, com-
pared to the existing MVAPICH2-GDR-2.3.6 with point-to-point compres-
sion. In the Deep Learning framework DeepSpeed, the proposed design
reduces the MPI Alltoall runtime by up to 26.4% and improves throughput
by up to 35.8%.

2 Background

In this section, we provide the necessary background knowledge including
the recent development of GPU based compression algorithms, MPI Alltoall
algorithms in MPI libraries, GPUDirect technology, and GPU-aware communi-
cation middlewares.
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2.1 Compression Algorithms for HPC Applications

In recent years, lossy compression libraries have shown acceptable error-
bounds [6] for HPC applications. Among them, ZFP [14] is a well-known public
compression library with user-friendly interfaces and supports CUDA-enabled
fixed-rate compression. ZFP deconstructs a d-dimensional array into 4d blocks.
The resulting compression rate is the number of amortized compressed bits
among these blocks. For example, for single-precision (32-bit) floating-point data,
a compression rate of 8 bits/value can get a compression ratio of 4. In this work,
we use the ZFP compression library.

NVIDIA recently proposed nvCOMP [19], a CUDA-based lossless compres-
sion interface to achieve high-performance compression kernels. nvCOMP sup-
ports Cascaded, LZ4, and Snappy compression methods. However, the burden of
integrating nvCOMP APIs and using them for HPC applications requires chang-
ing application code. Since nvCOMP is a user-level library, we don’t consider it
for online compression.

2.2 Algorithms for MPI Alltoall Communication

Different MPI libraries have their own implementations of MPI Alltoall algo-
rithms and often tune their library to pick up the most efficient MPI Alltoall
algorithm for a given system and message size at runtime. In existing MPI
libraries, there are three representative MPI Alltoall algorithms for large-
message data transfers. (a) In the Scatter Destination algorithm [28], each pro-
cess posts a series of MPI Isend and MPI Irecv operations and waits for these
operations to complete. (b) In the Pairwise Exchange algorithm [29], each process
runs MPI Sendrecv to communicate with only one source and one destination.
These send and receive operations will reply with GPU-based point-to-point
communication schemes to transfer data between GPUs. (c) The CPU staging
algorithm [28] leverages the host-based send and receive operations to transfer
the data. The GPU data will be moved from GPU to host before the MPI Isend
operation, and will be copied back from host to GPU after MPI Irecv.

2.3 GPU-Aware Communication Middleware

GPU-aware MPI libraries like SpectrumMPI [5], OpenMPI [20], and MVAPICH2
[17] can distinguish between host buffers and GPU buffers. These libraries have
been optimized with GPU-based point-to-point communication schemes like
CUDA Inter-Process Communication (IPC) [25] and NVIDIA GPUDirect tech-
nology [18] which supports direct reading and writing to host and device memory
by the CPU and GPU. Such technologies provide optimal performance across
varied communication paths.
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3 Proposed Online Compression Design for MPI Alltoall
Communication

To tackle the limitation of using point-to-point based compression (Challenge-1)
for MPI Alltoall communication and move the point-to-point compression to col-
lective level (Challenge-2), we redesign the host-staging based MPI Alltoall algo-
rithm in the MPI library to implement efficient MPI Alltoall communication of
GPU data with online compression. Figure 3 depicts the data flow of host-staging
based MPI Alltoall operations with compression. GPU data are exchanged among
fourGPUs. InGPU0, the device buffer sendbuf contains dataA0,A1,A2,A3which
will be sent to the recvbuf in GPU0, GPU1, GPU2 and GPU3 respectively.

Fig. 3. Host-Staging based MPI Alltoall with compression. GPU data will be com-
pressed to the temporary device buffer sendbuf tmp and copied by cudaMemcpyAsync
to the host buffer sendbuf host. MPI Isend sends out the data in the host buffer to other
CPUs. MPI Irecv collects the data to the host buffer recvbuf host from other CPUs.
The received data will be copied by cudaMemcpyAsync to the temporary device buffer
recvbuf tmp and decompressed to the recvbuf.

Algorithm 1 provides a high-level overview of the compression design for
host-staging based MPI Alltoall. Before staging the GPU data to the CPU, a
compression kernel will be launched on the send buffer for each process (Line 4).
The compressed data will be stored into the corresponding part of a temporary
device buffer sendbuf tmp. Once the compression kernel finishes, the compressed
data will be copied to the host buffer sendbuf host using cudaMemcpyAsync on
a specific CUDA stream Stream1 (Line 5). After each cudaMemcpyAsync, a
CUDA event will be recorded on the same CUDA stream (Line 6).

With compression, the data size of the transferred data is changed. The
MPI Isend operation needs to specify the compressed data size instead of the
original data size. We use a data size array B to record the data size of each
compressed data after compression. For the peer processes on other GPUs, they



Accelerating MPI All-to-All Communication with Online Compression 11

also should specify the correct data size for the upcoming data in MPI Irecv. To
transfer such data size information before transferring the compressed data, we
run an MPI Alltoall to exchange the elements in the data size array between all
the CPUs (Line 7). Since each element is only a 4 bytes integer, the overhead of
such operation is negligible compared to the large data transfer.

The multiple MPI Irecv operations for all the peer processes will be issued
ahead of MPI Isend (Line 9). Each MPI Irecv is associated with a receive request.
Before MPI Isend, we use cudaEventSynchronize to indicate the completion of
related cudaMemcpyAsync from device to host (Line 11). The MPI Isend will be
issued to send out data in the host buffer S H to the buffer address in another
CPU (Line 12).

Once a receive request is completed, the related compressed data is stored in
the host buffer R H. Similar to the send operation, the data will be copied to
a temporary device buffer R tmp using cudaMemcpyAsync on a specific CUDA
stream (Line 14). The decompression kernel will be launched on the data of each
process in R tmp after the corresponding cudaMemcpyAsync is finished (Line
19). The compressed data will be restored to the receive buffer R.

Algorithm 1: Online Compression/Decompression Design for Host-Staging

based MPI Alltoall Communication
Input : Send buffer S, Control parameters A, Number of MPI processes N ,

Preallocated GPU buffer S tmp, R tmp, Preallocated Host buffer S H, R H,
CUDA events for send E S, CUDA events for receive E R

Output: Receive buffer R, Compressed data size B for send buffer, Compressed data
size C for receive buffer

1 for i = 1 to N do

2 Construct zfp stream and zfp field;
3 Attach A to zfp stream and zfp field;
4 (Bi, S tmpi)=zfp compress(Si, Ai); //Runs on default CUDA Stream0

5 cudaMemcpyAsync(S tmpi, S Hi, Bi, cudaMemcpyDeviceToHost, Stream1);

6 cudaEventRecord(E Si, Stream1);

7 MPI Alltoall(B, 1, MPI INT, C, 1, MPI INT, MPI COMM WORLD); // Exchange
the compressed data size

8 for i = 1 to N do
9 MPI Irecv(R Hi, Ci, ...) //Receive compressed data;

10 for i = 1 to N do
11 cudaEventSynchronize(E Si);

12 MPI Isend(S Hi, Bi, ...); // Send compressed data;
13 if MPI Irecv finishes for R Hi then
14 cudaMemcpyAsync(R tmpi, R Hi, Ci, cudaMemcpyHostToDevice, Stream2);

15 cudaEventRecord(E Ri, Stream2);

16 for i = 1 to N do

17 cudaEventSynchronize(E Ri);

18 Construct zfp stream and zfp field based on control parameter A;

19 Ri = zfp decompress(R tmpi, Ci, Ai); //Runs on default CUDA Stream0
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We define runtime parameters to enable/disable compression in the host-
staging based MPI Alltoall design. We also define several control parameters
such as compression rate, dimensionality, and data type to run the ZFP com-
pression library,

3.1 Analysis of the Benefits and Limitation for the Naive
Compression Design

In this section, we analyze the compression-related benefits and costs to find out
the bottleneck (Challenge-3) in the naive compression design. With compression,
there will be less data movement by cudaMemcpyAsync between CPU and GPU
in the staging operations. The run time of the staging operation will be reduced.
MPI Isend can send out the data in the host buffer much earlier. Similarly, the
run time of transferring data between the CPUs will be reduced. On the receiver
side, it will take less time to copy data from the host buffer to the device buffer.
However, similar to the point-to-point based compression [32], there is also extra
compression/decompression kernel execution time and related kernel launching
overheads in the naive host-staging based compression. When the compression
ratio is not high enough, the benefits brought by the reduced data size may
not compensate for these extra running time costs. We need to optimize the
compression design to reduce such costs.

Fig. 4. Performance of host-staging based MPI Alltoall with naive compression design
on 2 nodes (4 ppn) of the Longhorn cluster. Higher compression rate (16, 24) indicates
a lower compression ratio. The design only starts to outperform the baseline from larger
message size 1 MB for rate = 16 and 2 MB for rate = 24. The time breakdown shows
the latency of single compression/decompression kernel, and data copy from host to
device and device to host.

We evaluate the proposed compression design using the OSU Micro-
Benchmark suite (OMB) on 2 nodes with 4ppn (4GPUs/node) of the TACC
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Longhorn cluster. As shown in Fig. 4(a), the proposed host-staging based naive
ZFP compression design can achieve benefits from 512 KB with low compres-
sion rates 8 and 4. However, with a higher compression rate (and consequently
a lower compression ratio), it only starts to outperform the baseline for larger
message size. Since ZFP is a lossy compression algorithm, this shortage will pre-
vent the design from applying to those applications which need higher accuracy.
Figure 4(b) depicts the time breakdown of some key operations in the naive com-
pression design with ZFP (rate:24). The results show the latency of every single
operation.

In the existing ZFP library, compression kernel cuZFP::encode runs on the
default CUDA stream. In the naive compression design, although the cudaMem-
cpyAsync executing on a non-default stream with a non-blocking flag cudaS-
treamNonBlocking can achieve overlap with the compression kernels for other
ranks, each cudaMemcpyAsync still needs to wait for the completion of com-
pression kernel for its rank. As we can see in Fig. 5(a), since the compression
kernels run serially in the default stream, there is a long waiting time for the
MPI Isend operation to send out the data since MPI Isend must wait for the
finish of compression kernel and memory copy from device to host.

Fig. 5. Comparison between compression on the default CUDA stream and multiple
CUDA streams for send operations in the host-staging based All-to-All. Overall com-
pression time is reduced due to the overlap between the compression kernels. The data
will be sent out faster since the cudaMemcpyAsync and MPI Isend can be executed
much earlier.

There is also a similar limitation for the decompression phase. As shown in
Fig. 6(a), the decompression kernel cuZFP::decode also runs on default CUDA
stream. Although the cudaMemcpyAsync can be overlapped with the decom-
pression kernel, it will cost a long operation time to restore data in the GPU
due to the serial operations among the decompression kernels.
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Fig. 6. Comparison between ZFP decompression on the default CUDA stream and mul-
tiple CUDA streams. Explicit calling of cudaEventSynchronize is not needed. Overall
decompression time is reduced due to the overlap between the decompression kernels.

4 Optimization Strategies in the Host-Staging Based
MPI Alltoall

Based on the previous analysis of the limitation of the naive compression design,
we propose the following optimizations to address the Challenge-3.

4.1 Enabling Multiple CUDA Streams in ZFP Library

To reduce the overall compression and decompression time, we aim to achieve
overlap between the kernels. However, the current ZFP library does not pro-
vide such an interface to run the kernels concurrently on non-default CUDA
streams. Therefore, we enhance the existing ZFP library to allow compres-
sion and decompression kernels to run on multiple streams. We define two new
functions, zfp compress multi stream and zfp decompress multi stream. A new
parameter of CUDA stream object cudaStream t is added to these functions. At
the user level, we can assign a specific stream to the compression and decom-
pression. ZFP uses a function table to select the correct low-level compression
and decompression functions according to the execution policy (Serial, OpenMP,
CUDA), stride, dimensionality, and scalar type. We extend the function table
and introduce a new execution policy named zfp exec cuda multi stream to allow
the selection of new lower-level APIs with a stream parameter. We add a new
cudaStream t parameter to all the related lower-level APIs.

In the proposed compression design, we use the 1D array type for ZFP com-
pression with the number of floating-point values as the dimensionality. The
compression kernel cudaEncode1 and decompression kernel cudaDecode1 will
be launched to the CUDA stream specified by the new High-level APIs. In the
existing compression kernel, launch function, and constant setup function, two
synchronous CUDA memory copy functions (cudaMemset and cudaMemcpy-
ToSymbol) are used to prepare for the compression and decompression on the
default stream. We change them to cudaMemsetAsync and cudaMemcpyToSym-
bolAsync, respectively, with the same CUDA stream used for compression or
decompression.
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4.2 Proposed Optimization Metrics

With the enhanced ZFP library (ZFP-OPT), we use two new API calls in the com-
pression design: zfp compress multi stream and zfp decompress multi stream.

Algorithm 2: Proposed optimized multi-stream compression/decompression

for MPI Alltoall Communication
Input : Send buffer S, Control parameters A, Number of MPI processes N ,

Preallocated GPU buffer S tmp, R tmp, Preallocated Host buffer
S H, R H, CUDA events for send E S, CUDA events for receive E R
[S1, ..., SN ]= Send buffers for peer processes in Send buffer S;
[S tmp1, ..., S tmpN ]= Divided N partitions of S tmp;
[R H1, ..., R HN ]= Receive buffers for peer processes in R H;
[R tmp1, ..., R tmpN ]= Divided N partitions of R tmp

Output: Receive buffer R, Compressed data size B for send buffer, Compressed
data size C for receive buffer

1 Multi-stream compression for send operation:
2 for i = 1 to N do
3 Construct zfp stream and zfp field based on control parameter A;
4 zfp stream set execution(zfp stream, zfp exec cuda multi stream);
5 (Bi, S tmpi)=zfp compress multi stream(Si, Ai, Streami); //Runs on

non-default CUDA Stream
6 cudaMemcpyAsync(S Hi, Mi, Bi, cudaMemcpyDeviceToHost, Streami);

//Run on the same CUDA stream
7 cudaEventRecord(Ei, Streami);

8 MPI Isend, MPI Irecv operations;
9 Multi-stream decompression for receive operation:

10 for i = 1 to N do
11 cudaMemcpyAsync(R Hi, R tmpi, Ci, cudaMemcpyHostToDevice,

Streami); // Runs on non-default CUDA stream
12 Construct zfp stream and zfp field based on control parameter A;
13 zfp stream set execution(zfp stream, zfp exec cuda multi stream);
14 Ri=zfp decompress multi stream(R tmpi, Ai, Streami); //Runs on the

same CUDA Stream

Algorithm 2 provides a high-level overview of the multi-stream compression
and decompression for the for MPI Alltoall operation. For the compression on
send operation side, we set a new execution policy zfp exec cuda multi stream
(Line 4). Then we launch the compression kernels to different CUDA streams
(Line 5). Each corresponding cudaMemcpyAsync also runs on the same stream as
the kernel (Line 6). The benefits of concurrent kernel execution are two-fold. Due
to the overlap between the compression kernels, the overall compression time is
reduced. Furthermore, since cudaMemcpyAsync can copy the compressed data to
CPU earlier, MPI Isend can send out the data from CPU in advance. Figure 5(b)
depicts the optimized send operations with this mechanism. Note that, the
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overlapping situation among the kernels and data copy operations depends on
the number of processes in the MPI Alltoall operation and the compression rate.

Similarly, on the receive operation side, we optimize decompression using
multiple CUDA streams. Once a receive request is finished, we run the cud-
aMemcpyAsync on a non-default stream to copy the compressed data from host
to device (Line 11). To enable the multi-stream decompression, we also need to
use the execution policy of zfp exec cuda multi stream (Line 13). The related
decompression kernel will also run on the same stream (Line 14). In this way,
we do not need to explicitly launch cudaEventSynchronize to wait for the com-
pletion of cudaMemcpyAsync. As shown in Fig. 6(b), the overlap between the
decompression kernels will reduce the overall decompression time and thus, accel-
erate the data restoration phase in the GPU. In the proposed design, we define
wrapper functions to execute the compression/decompression kernels. Such opti-
mization metrics can be easily applied to compression/decompression kernels of
other compression algorithms.

5 Microbenchmark Results and Analysis

We run the experiments on three GPU-enabled clusters: Longhorn [16] and the
Liquid [15] subsystem at the Texas Advanced Computing Center, and the Lassen
[13] system at Lawrence Livermore National Laboratory. Each computing node
on the Longhorn and Lassen systems is equipped with IBM POWER9 CPUs
and 4 NVIDIA V100 GPUs. They use RHEL operating system. Both systems
enable NVLink2 interconnection between CPU and GPU, and Infiniband EDR
between nodes. Each node on Frontera Liquid is installed with Intel Xeon E5-
2620 CPUs and 4 NVIDIA Quadro RTX5000 GPUs. Frontera Liquid uses PCIe
Gen3 interconnection between CPU and GPU, and Infiniband FDR between
nodes. It installs CentOS operating system. More details about the system con-
figurations can be found in their respective specification documents.

We used osu alltoall in the OSU Micro-Benchmark suite (OMB) to evalu-
ate the MPI Alltoall communications of GPU data on multiple nodes. We also
enhanced OMB to use real data sets for the MPI Alltoall communication tests.

5.1 MPI Alltoall Communication Latency on Micro-Benchmark

We run the OSU Micro-Benchmark suite (OMB) to evaluate the MPI Alltoall
communication latency. Figures 7(a) and 7(b) show the MPI Alltoall commu-
nication latency of message size from 256 KB to 16 MB on the Frontera Liquid
system. Since the proposed design is aimed at the transfer of large GPU mes-
sages, the performance results of smaller message sizes are not shown in the
figures. We observe performance improvement with the optimized compression
design in the 256 KB to 16 MB message range. With a lower compression rate,
ZFP-OPT achieves a higher compression ratio and a further reduced commu-
nication latency. Compared to the baseline, ZFP-OPT (rate:4) can achieve up
to 87.1% reduced latency at 16 MB on both 2nodes and 4nodes with 4ppn
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(4 GPUs/node). Figures 7(c) and 7(d) show the MPI Alltoall communication
latency on the Longhorn system. On 2 nodes with 4ppn, ZFP-OPT starts to
outperform the baseline from around 512 KB. Compared to Fig. 4(a), Fig. 7(c)
demonstrates the performance improvement with the optimization strategies dis-
cussed in Sect. 4. On 4 nodes, except for rate = 24, ZFP-OPT has performance
benefits starting from 256 KB. Similar to the Frontera liquid system, ZFP-OPT
(rate:4) can achieve up to 87.1% reduced latency at 16 MB on 2 nodes and 4
nodes.

Fig. 7. Latency of MPI Alltoall on Frontera Liquid and Longhorn. On Frontera Liq-
uid, ZFP-OPT starts to show benefits from 256 KB on both 2 nodes and 4 nodes.
With a lower compression rate, ZFP-OPT achieves a higher compression ratio and
reduces communication latency. On Longhorn, ZFP-OPT shows performance improve-
ment from about 512 KB on 2 nodes. On 4 nodes, except for rate = 24, ZFP-OPT
achieves benefits from 256 KB. On both systems, ZFP-OPT (rate:4) can achieve up to
87.1% reduced latency at 16 MB on 2 nodes and 4 nodes.

5.2 MPI Alltoall Communication Latency with Real Data Sets

This section evaluates the impact of the proposed design on the MPI Alltoall
communication performance on the Longhorn system with real data sets from
[31]. Figures 8(a) and 8(b) show the results of MPI Alltoall communication
latency on 2 nodes and 4 nodes respectively. In the fixed-rate compression mode,
with the same compression rate, ZFP will have the same compression ratio it
has in the micro-benchmark test. The proposed design achieves similar benefits
as the Micro-benchmark test. With lower compression rate, it reduces communi-
cation latency further. ZFP-OPT (rate:4) reduces the MPI Alltoall communica-
tion latency by up to 75% (num plasma) on 2 nodes, 72% (obs info) on 4 nodes
respectively.
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Fig. 8. Latency of MPI Alltoall with real datasets on Longhorn. With a lower compres-
sion rate, ZFP-OPT achieves greater performance benefit. ZFP-OPT (rate:4) reduces
the MPI Alltoall communication latency by up to 75% (data set num plasma) on 2
nodes and 72% (data set obs info) on 4 nodes, respectively.

5.3 Comparison of the Proposed Design and Existing MPI Alltoall
Algorithms with Point-to-Point Compression

In this section, we compare our proposed design with different algorithms:
CPU Staging (No compression), Scatter Destination, and Pairwise Exchange
in MVAPICH2-GDR-2.3.6. We use the runtime parameters provided by the
MVAPICH2-GDR-2.3.6 to trigger the point-to-point compression for Scatter
Destination and Pairwise Exchange.

On the Lassen system, for 8 GPUs on 2 nodes, our proposed design per-
forms better than these algorithms starting from 1 MB as shown in Fig. 9(a)
and 9(b). Figure 9(a) shows, for 16 MB data, the proposed design reduces the
MPI Alltoall latency by up to 11.2%, 17.8% and 26.6% compared to the Scat-
ter Destination(zfp rate:24), Pairwise Exchange(zfp rate:24), and CPU Staging
(No compression), respectively. In Fig. 9(b), with zfp compression (rate:4), the
latency is reduced by up to 12.4%, 32.3%, and 85.4% compared to the Scatter
Destination, Pairwise Exchange, and CPU Staging (No compression), respec-
tively.

In application tests, we observe greater benefit compared to the Scatter Des-
tination and Pairwise Exchange on larger scales.
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Fig. 9. MPI Alltoall latency with different algorithms for 8 GPUs on 2 Lassen nodes.
With zfp compression (rate:24), the proposed design reduces the MPI Alltoall latency
by up to 11.2%, 17.8%, and 26.6% compared to the Scatter Destination, Pairwise
Exchange, and CPU Staging (No compression), respectively. With zfp compression
(rate:4), the latency is reduced by up to 12.4%, 32.3%, and 85.4% compared to the
Scatter Destination, Pairwise Exchange, and CPU Staging (No compression), respec-
tively

6 Application Results and Analysis

6.1 PSDNS

We evaluate the proposed design with a modified 3D-FFT kernel of the Fourier
pseudo spectral simulation of turbulence (PSDNS) application [23]. The code was
written in Fortran with a hybrid MPI+OpenMP approach and compiled with
the IBM XL compiler. We run PSDNS on the Lassen system which uses the IBM
Power9 CPU architecture. In the 3D-FFT kernel, MPI Alltoall is used to transfer
the transposed data among the multiple GPUs. The kernel will also generate a
timing report about the runtime per timestep of MPI Alltoall operations, FFT
computing, and other operations. It also checks the max global difference of
the sinusoidal velocity field as an accuracy criteria. The underlying different
algorithms of MPI Alltoall can be triggered by runtime parameters. Note that
the Scatter Destination and Pairwise Exchange algorithms are built on top of
point-to-point operations. We compare our proposed design with the state-of-
the-art MVAPICH2-2-GDR-2.3.6 with point-to-point compression.
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Fig. 10. MPI Alltoall runtime in the 3D-FFT kernel of the PSDNS application on
the Lassen system. The proposed design with optimized ZFP(rate:24) can reduce the
MPI Alltoall runtime and total runtime by up to 29.2% and 21.8%, respectively, on
64 GPUs compared to the state-of-the-art MVAPICH2-GDR-2.3.6 with point-to-point
compression.

As shown in Fig. 1(a), the MPI Alltoall communication is dominant when
the application runs on large scale. In this section, by increasing the grid size
of nx, ny, nz along with the number of GPUs, we can evaluate our compression
design on different problem scales. For 128 GPUs, the grid size (nx, ny, nz) is
(1536, 1536, 1536).

Figure 10(a) depicts the MPI Alltoall runtime per time step in the appli-
cation. The proposed design with optimized ZFP (rate:24) is able to reduce
the latency up to 29.2% on 64 GPUs(4 GPUs/node) compared to the state-
of-the-art MVAPICH2-GDR-2.3.6 with point-to-point based compression. For
MVAPICH2-GDR-2.3.6, we report the best result of either Scatter Destination
or Pairwise algorithms with point-to-point based compression. Note that we set
the same rate:24 for MVAPICH2-GDR-2.3.6. Since ZFP compression is lossy,
we have ensured by working with application developers that the data gener-
ated with compression rate (>= 24) maintains acceptable precision for the FFT
computation. Table 2 shows the max global difference of the proposed design
reported in the 3D-FFT kernel. The tolerance of this value is 1.0E–05.

Table 2. Max global difference error

GPUs No compression Compression (rate:24)

16 3.492E–06 5.257E–06

32 3.721E–06 5.050E–06

64 3.275E–06 5.133E–06

128 2.943E–06 4.886E–06

256 3.218E–06 5.173E–06
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Figure 10(b) depicts the total runtime per time step in the application.
Despite the use of ZFP (rate:24) with low compression ratio for PSDNS, we
are still able to show overall improvements in the application execution time.
The proposed design with optimized ZFP (rate:24) reduces the total runtime by
up to 21.8% on 64 GPUs compared to the MVAPICH2-GDR-2.3.6 with com-
pression. These results demonstrate the scalability of the proposed design. The
proposed design could be applied to larger scales due to the straightforward
send/receive operations.

6.2 Deep Learning Application

Given DeepSpeed’s addition of Mixture-of-Experts support [10] which depends
on All-to-All operations, we have evaluated our compression designs at the
PyTorch level. To measure potential deep learning training benefits, we have
implemented a communication benchmark in PyTorch and DeepSpeed [22].
Specifically, our benchmark initializes MPI through DeepSpeed, initializes
PyTorch tensors of varying sizes, and calls MPI Alltoall on each tensor. We
conduct the experiments on the Lassen system. For different numbers of GPUs,
we use the following tensor sizes as shown in Table 3.

Table 3. Tensor size and message size

GPUs Tensor size (Bytes) Message size (Bytes)

8 2097152× 8× 4 8M

16 1048576× 16× 4 4M

32 1048576× 32× 4 4M

64 524288× 64× 4 2M

128 524288× 128× 4 2M

Fig. 11. MPI Alltoall runtime and throughput in DeepSpeed benchmark on Lassen.
The proposed design with optimized ZFP (rate:16) reduces the MPI Alltoall latency
by up to 26.4% and improves the throughput by up to 35.8% on 32 GPUs compared
to the MVAPICH2-GDR-2.3.6 with point-to-point based compression.
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Figure 11(a) shows MPI Alltoall runtime in DeepSpeed on Lassen system
with 4 GPUs per node. Figure 11(b) shows the throughput result. Similar to
the PSDNS application, we compare our proposed design with the state-of-the-
art MVAPICH2-GDR-2.3.6. The proposed design with optimized ZFP (rate:16)
reduces the MPI Alltoall latency by up to 26.4% and improves the throughput
by up to 35.8% on 32 GPUs compared to MVAPICH2-GDR-2.3.6 with point-
to-point based compression support. These results demonstrate the potential
benefits for deep learning training.

7 Related Work

MPI Alltoall communication operations [7] are data-intense operations in mod-
ern HPC and Deep Learning applications. In [1], Bruck et al. evaluate
MPI Alltoall collective algorithms, and propose efficient MPI Alltoall operation
implementations for multi port message-passing systems. In [26,27], Singh et
al. utilize CUDA-aware MPI to implement the GPU-based MPI Alltoall col-
lective operations. More recently, with the advent of NVLINK interconnects
on modern GPU clusters, additional design challenges are incorporated in the
adaptive MPI Alltoall design [8]. However, no work has been done to optimize
GPU-based MPI Alltoall operations using a GPU-based compression in MPI
run-time. In previous work, Filgueira et al. [4] use CPU-based lossless compres-
sion algorithms for MPI communication, CoMPI, to show host-based benefits
of compression. Jin et al. [6] show high compression throughput for large-scale
HPC applications through using GPU-based lossy compression algorithms. Zhou
et al. [32] proposed a framework to integrate the GPU-based compression algo-
rithms MPC [31] and ZFP [14] into MPI library to realize online compression
for point-to-point based GPU communication. Recently, Tian et al. proposed
cuSZ [30] with dual-quantization schemes for NVIDIA GPU architectures. A
recent lossless GPU-based compression library built by NVIDIA, nvCOMP [19],
provides a compression interface for applications.

8 Conclusion

In this paper, we propose a host-staging based scheme with online compression in
the MPI library for MPI Alltoall communication of large GPU data. Moreover,
we move the compression to the collective level and optimize the existing ZFP
compression library to enable the compression/decompression kernels to run on
multiple CUDA streams to achieve overlap across the send/receive operations
and improve the performance of MPI Alltoall while maintaining data validation
and not affecting the convergence time. The proposed design demonstrates up
to 87.1% reduced MPI Alltoall communication latency at the benchmark-level.
At the application level, we compare the proposed design to the state-of-the-
art MPI library MVAPICH2-GDR-2.3.6 with point-to-point compression. In the
PSDNS application, the proposed design yields up to 21.8% reduced overall



Accelerating MPI All-to-All Communication with Online Compression 23

running time. In the DeepSpeed benchmark, the proposed design reduces the
MPI Alltoall runtime by up to 26.4%.

As future work, we plan to study and incorporate more GPU-based com-
pression algorithms, like cuSZ [30] and NVIDIA’s nvCOMP [19]. To analyze
the communication time in the compression design, we plan to utilize real-time
monitor tools like OSU INAM [11,12]. Also, we plan to exploit the online com-
pression design for various collective communications like All-Reduce and study
the impact on more HPC and Deep Learning applications.

Acknowledgment. The authors would like to thank Kiran Ravikumar and Prof. P.K.
Yeung from Georgia Institute of Technology for guiding conducting experiments with
the 3D-FFT kernel of application PSDNS.
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