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Abstract—In recent years, High Performance Computing
(HPC) and Deep Learning (DL) applications have been modified
to run on top supercomputers and utilize the high compute
power of GPUs. While GPUs provide high computational power,
communication of data between GPUs and across a network
continues to be a bottleneck. In particular, with the increasing
amount of FFT compute and sparse matrix transpose operations
in these applications, Alltoall MPI collective operations are
heavily used. Alltoall communication is considered the heaviest
communication pattern compared to other MPI collective calls.
Few techniques and algorithms effectively help in optimizing
Alltoall communication, much less improving the performance on
a dense GPU cluster while exploiting the features of modern inter-
connects and topologies. Despite the introduction of Inter-Process
Communication (IPC) in CUDA 4.1 by NVIDIA, state-of-the-art
MPI libraries have not utilized these IPC-based mechanisms to
design novel Alltoall algorithms that exploit the capabilities of
modern GPUs.

In this paper, we propose hybrid IPC-advanced designs for
Alltoall and Alltoallv communication on novel GPU systems.
By utilizing zero-copy load-store IPC mechanisms for multi-
GPU communication within a node, we are able to overlap
the intra-node and inter-node communication, yielding improved
performance on GPU systems.

We evaluate the benefits of our designs at the benchmark and
application layers on the ThetaGPU system at ALCF and the
Lassen system at LLNL. Our designs provide up to 13.5x and
71% improvements on 128 GPUs and 64 GPUs at the benchmark-
level over state-of-the-art MPI libraries on ThetaGPU and Lassen
respectively. At the application level, our designs have up to 59x
performance improvement for an HPC application, heFFTe, and
5.7x performance improvement for a Deep Learning application,
DeepSpeed, on 64 GPUs on ThetaGPU and 256 GPUs on Lassen.

Index Terms—MPI, GPU, DGX, IPC, Alltoall, Alltoallv

I. INTRODUCTION AND MOTIVATION

Alltoall communication is widely used in many HPC and

scientific applications and DL frameworks. It allows data

in each process to be transferred to every process, which

results in the most communication-heavy pattern over other

MPI collective operations. For example, in an application

run with n processes, Alltoall communication requires O(n2)
communication for data transfer. As the scale and the message

size increase, the heavier communication load leads to higher

overall latency across the network. Due to the heavy com-

munication workload, few algorithms or techniques are really

efficient for improving communication performance. Recently,

more applications use GPUs to accelerate computation, and

the data is often stored in device memory, which increases the

communication cost regardless of whether it is in an intra-node

or an inter-node environment.

Fig. 1. The bottleneck of MPI Alltoall in the heFFTe application on 24
GPUs (Courtesy [1])

For instance, heFFTe [2] is a popular library, with support

for modern GPU-based HPC systems, that provides efficient

and scalable implementations of the Fast Fourier Transform

(FFT) algorithm—a widely used computational kernel in many

HPC applications. Figure 1 depicts an overall execution time

profile of a typical heFFTe application run. The profile shows

the time spent in Alltoall in comparison to the time spent in

other application tasks including computing FFTs and pack-

ing and unpacking kernels. It is clear that the MPI Alltoall

operation is the main bottleneck for the heFFTe application.

In this context, it is critical to optimize the performance of

Alltoall communication at the MPI layer in order to improve

the performance of HPC applications like heFFTe.

Historically, the computation nodes of GPU-based HPC

systems were equipped with fewer GPUs than nodes on

modern cluster deployments. This meant that the overall

communication performance of GPU applications was bound

by the bandwidth of the network during multi-node data

transfers and bound by the bandwidth of the inter-GPU in-

terconnects for intra-node data transfers. However with the

emergence of modern architectures and systems, a single node

is equipped with more GPUs, and nodes are connected with

a faster network. One such example is the NVIDIA DGX-

A100 system illustrated in Figure 2. It is powered by 8
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Fig. 2. Topology of DGX-A100 Node

Fig. 3. Comparison of IPC enabled and IPC disabled in a point-to-point
latency benchmark (OMB) on a DGX-A100 system

A100 Tensor Core GPUs per node, and fully connected by

NVLink/NVSwitch technology. In this system, each socket

contains 2 PCIe switches, and each PCIe switch connects

with 2 Mellanox NICs. This powerful connection not only

improves the communication between devices within a node

through NVLink, but lowers the latency between GPUs across

nodes through the presence of multiple NICs. In particular,

it enhances the performance of a scenario allowing multiple

GPUs to transfer data simultaneously. These novel architec-

tures attract the users to run their applications on a larger scale

and with a heavier workload, which makes the optimization

for Alltoall communication even more critical.

While IPC has been utilized for point-to-point commu-

nication to enhance the performance of medium to large

message sizes, as depicted in Figure 3, it has yet to be

extended widely to GPU-aware collective designs. State-of-
the-art MPI libraries do not utilize IPC-based designs
for Alltoall collectives in order to enhance the inter-
GPU communication through the NVLinks available on

Fig. 4. Latency comparison of optimized Alltoall design (with existing
Alltoall algorithms and techniques), proposed kernel-based IPC, and

Memcpy-based IPC designs for an MPI Alltoall benchmark (OMB) on 8
GPUs on a DGX-A100 system

many modern dense GPU systems. Hence, we propose IPC-

advanced Alltoall communication algorithms for improving

Alltoall and Alltoallv communication on novel dense GPU

systems. The heavily connected GPUs within a node motivates

the usage of IPC for collective operations in order to allow

for an overlap of intra-node communication through IPC and

inter-node communication with other protocols. We move data

in IPC buffers by launching kernels, referred to as kernel-
based IPC for medium sizes and utilize CUDA memcpy

APIs to transfer data, referred to as Memcpy-based IPC, for

large message sizes. Figure 4 depicts the performance of

optimized Alltoall design (with existing Alltoall algorithms

and techniques) compared to Memcpy-based IPC and kernel-

based IPC on 8 GPUs on a DGX-A100 node.

Besides Alltoall, Alltoallv communication is also widely

applied by applications since it allows arbitrary send (recv)

counts to be transferred between any 2 processes. For ex-

ample, heFFTe supports data transferring with both Alltoall

and Alltoallv communication. This further motivates the need

to not only apply optimized designs for Alltoall but also

to evaluate the benefits of extending these novel designs to

Alltoallv communication patterns as well.

A. Challenges

We address the following challenges to develop efficient

GPU-based Alltoall and Alltoallv algorithms using hybrid

IPC-advanced techniques for modern dense GPU systems:

• Can we utilize the features, e.g.: NVLink, provided by

heavily connected GPUs on modern systems to motivate

the need for optimized MPI collective algorithms that

fully exploit this high connectivity?

• How can we exploit the zero-copy load-store mechanisms

of IPC to design GPU-aware IPC-advanced Alltoall and

Alltoallv collective operations?

• What are the limitations within existing communication

libraries with respect to running and optimizing the MPI

bottleneck of certain workloads?
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• Can we optimize the performance of HPC and DL

workloads that are reliant on Alltoall and Alltoallv for

FFT and matrix transpose using optimized designs for

MPI Alltoall and MPI Alltoallv to provide enhanced

performance and scalability?

B. Contributions

In this paper, we design hybrid IPC-advanced Alltoall and

Alltoallv communication algorithms to optimize the perfor-

mance of GPU-aware MPI Alltoall and MPI Alltoallv across

different dense GPU platforms.

This paper makes the following contributions:

1) Identify challenges with existing MPI Alltoall and

MPI Alltoallv implementations and utilizing existing

architectures to motivate the need for an optimized

MPI Alltoall and MPI Alltoallv algorithm that exploits

the available interconnect and technology.

2) Propose a kernel-based and memcpy-based IPC-

advanced algorithm implementation of GPU-based

MPI Alltoall and MPI Alltoallv.

3) Implement the GPU-aware IPC-advanced algorithm and

propose hybrid designs. The integrated designs support

single/multi Alltoall and Alltoallv communication pat-

terns and cover common MPI datatypes, which benefits

a variety of use cases required by certain applications.

4) Develop a comprehensive performance evaluation of

GPU-aware MPI Alltoall and MPI Alltoallv using the

proposed designs compared to the state-of-the-art GPU-

aware communication libraries (i.e. MVAPICH2-GDR,

NCCL, IBM Spectrum MPI, and OpenMPI+UCX) at

the benchmark level, using OSU-Microbenchmarks and

at the application level, using heFFTe, PSDNS, Deep-

Speed, and DLRM on a DGX-A100 system (ThetaGPU)

and a Power9 V-100 system (Lassen).

To the best of our knowledge, this is the first paper focusing

on developing hybrid designs using IPC- and GPU-based MPI

collective algorithms for Alltoall and Alltoallv communication.

II. BACKGROUND

A. GPU-aware MPI

The Message Passing Interface (MPI) is a standard for

exchanging messages on parallel and distributed architectures.

State-of-the-art GPU-aware communication libraries [3], such

as MVAPICH2-GDR [4], OpenMPI [5], IBM Spectrum

MPI [6], and NCCL [7] provide communication primitives

optimized for GPUs and networking. Modern GPU-Aware

MPI libraries employ a collection of optimizations such

as GPUDirect RDMA, CUDA Inter-Process Communication

(IPC), and pipelining mechanisms.

B. Inter-Process Communication (IPC)

Since CUDA 4.1, the Inter-Process Communication (IPC)

interface has enabled the efficient transfer of messages be-

tween GPUs within the same node. Specifically, CUDA IPC

enables any process to share its GPU device buffer with any

other remote node-local process. Once the GPU buffer is

shared, the remote process can map this device buffer into its

own address space and issue CUDA transfer operations such

as cuMemcpy to it directly. An MPI library can use CUDA

IPC to efficiently transfer GPU data within a node [8].

C. GPU Direct RDMA

NVIDIA GPUDirect [9] enables 3rd-party devices to di-

rectly access CUDA device memory, which reduces the over-

head of multiple copies to memory. NVIDIA GPUDirect

remote direct memory access (RDMA) allows GPU devices to

directly exchange data with a remote device across the cluster.

It also allows devices on the same PCIe bus to directly transfer

data among each other.

III. THE PROPOSED DESIGN

We delve into the details of the hybrid GPU-aware IPC-

advanced designs by first describing the intra-node compo-

nent and then elaborating on the inter-node implementation.

We implemented our designs based on MVAPICH2-GDR. In

section III-A, we will discuss using IPC-based techniques to

overlap intra-node communication with the inter-node data

transfer. In section III-B, we will illustrate how to integrate

the IPC-based design into the communication path in order to

create this overlap in the inter-node environment. We will also

detail how we extended our GPU-aware IPC-advanced Alltoall

designs to Alltoallv in section III-C.

A. Intra-Node

Traditionally, Alltoall communication within a single node

is implemented using multiple send-recv pairs. However, with

the utilization of IPC in the intra-node environment, the IPC

buffer pointers can be exchanged and utilized by other GPUs to

create this intra-node transfer, without utilizing other protocols

or the send-recv implementation. We utilize IPC and the

heavily connected GPUs systems to apply two techniques: a

kernel-based and a memcpy-based implementation:

• Kernel-based IPC: launch a CUDA kernel and pass an

IPC buffer pointer to initiate the data exchange across

GPUs within a node.

• Memcpy-based IPC: call the CUDA API

cudaMemcpyAsync and pass an IPC buffer pointer to

copy data from device to device within a node.

For both kernel-based and memcpy-based implementations,

we use the same algorithm to exchange/copy data. To avoid

unbalanced communication within some GPUs in a certain

time, we dispatch the workload in a specific order: in the

first step, each GPU sends data to itself, and then it starts

to send data to the (rank + i)th at the ith step, where

rank is the rank of the sender, and i is the iteration. This

algorithm spreads the receiving time of each GPU as much

as possible. This ensures that at any time, a GPU receives

data from only one other GPU. After calling either kernel-

based or memcpy-based function we implemented, we call

cudaStreamSynchronize to make sure data exchanging

accomplished.
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Fig. 5. GPU-aware IPC-advanced Alltoall Design on 2 nodes - 16 GPUs:
On Node 0, GPU 0 communicates with all other GPUs within the node using
IPC (red arrow) and the inter-node transfer is depicted by the blue arrow.

These two implementations are optimal for different mes-

sage ranges. Kernel-based IPC has lower overhead for small

messages, but the memcpy-based IPC implementation out-

performs it as the message size increases. To achieve the

lowest latency for a wide range of message sizes, our design

takes advantage of both schemes by using a hybrid approach.

For example, Figure 4 shows the latency by using different

implementations on ThetaGPU within 1 node. We observe that

the kernel-based implementation performs well under 256KB,

while the memcpy-based implementation has better numbers

for message sizes greater than 512KB.

Although IPC-based communication has benefits for large-

message transferring within a single node, there are overheads

for small messages. Figure 4 shows that our kernel-based and

memcpy-based implementation has around 30 μs and 50 μs

overhead, respectively for small message sizes. Based on this

observation, we introduce the optimized Alltoall design with

existing Alltoall algorithms and techniques to deal with small

messages. Based on these findings, we design a hybrid algo-

rithm for intra-node communication. We utilize the optimized

Alltoall design for small messages, proposed kernel-based IPC

for medium messages, and proposed memcpy-based IPC for

large messages. The toggle of the implementations can be

controlled by IPC threshold and memcpy threshold.

B. Inter-Node

In the inter-node environment, the data transfer path can be

categorized into two types: the intra-node and the inter-node

communication. Figure 5 shows an example of the communi-

cation technique that can be used in a 2-node, 8 ppn (process

per node) environment. For intra-node communication, we can

utilize our IPC-based algorithm introduced in section III-A

directly. For inter-node communication, we have several pro-

tocols to deal with different message size ranges. We use

NVIDIA GDR Copy library and GDR loopback technique

to transfer small messages, and use GPU Direct RDMA to

transfer large messages. By calling non-blocking MPI point-

to-point calls, MPI_Isend and MPI_Irecv, we overlap

the intra-node and inter-node communications to reduce the

latency.

Fig. 6. The proposed IPC-advanced Designs for GPUs provide overlap
potential of intra-node and inter-node communication through utilizing zero-
copy load store IPC mechanisms. Compared to existing designs that do not
have this overlap, the proposed designs are expected to demonstrate enhanced
performance. This example depicts a 2 Nodes, 2 GPUs per Node Alltoall
scenario.

Fig. 7. Timeline comparison of pairwise sendrecv-based (existing) and IPC-
advanced (proposed) Alltoall on 2 nodes (ThetaGPU) at 64K.

Similar to intra-node, based on the finding depicted in

figure 4, we first check whether the sendcount is less than the

IPC threshold, if so, our design falls back to optimized All-

toall communication, or it will perform the IPC-advanced All-

toall. Since inter-node communication usually takes more time,

in our implementation, we call non-blocking MPI_Isend and

MPI_Irecv at the beginning, and have MPI_Wait before

the end of the algorithm to ensure the completion of the

point-to-point calls. During the inter-node communication, we

call our IPC-based implementation to perform the intra-node

communication. This implementation also works in an intra-

node environment since in such case, no MPI call is called but

the intra-node designs still work well. Figure 6 explains how

our proposed IPC-advanced designs provide overlap potential

of intra-node and inter-node communication through utilizing

zero-copy load store IPC mechanisms.

Figure 7 shows the comparison of the timeline profiling

results using our proposed designs and an existing sendrecv-

based implementation on 2 DGX-A100 nodes with 16 GPUs

(8 GPUs per node). The profiling tools used include TAU

and CUDA CUPTI libraries. The timeline demonstrates the

details of different MPI calls and the IPC data exchange

phase in rank 0. We observe that the existing sendrecv-based

implementation spends the most time on MPI_Isend and
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MPI_Wait. Specifically, there are 16 send-recv pairs and

wait calls in the figure. Those pairs cannot be overlapped

even though they involve the same amount of intra- and inter-

node communication, which dominates the total running time

(239.63 μs). On the other hand, there are only 8 send-recv

pairs and wait calls in our proposed designs. The other calls for

intra-node communication are replaced by our IPC-advanced

implementation, which is shown in green in the figure. It saves

approximately 50% of the total running time. The saved time

is not only coming from the reduction of send/recv calls, but

the overlap of the intra-node communication using IPC and

the inter-node communication using send/recv calls.

C. Extension to Alltoallv

The most significant challenge for extending Alltoall to

Alltoallv designs using IPC-advanced technique is that the

send/recv offsets are unknown. In MPI_Alltoallv, there

are parameters called sdispls and rdispls. They record

the offset from sendbuffer/recvbuffer where the process should

send/place data. The information is only related to the current

rank. For example, as a sender, the process only knows

which piece of data would be sent based on sdispls, but

it does not know where the data would be placed after it

arrives at another process; as a receiver, it knows where to

place the received data according to rdispls, but it would

never know which offset the data is coming from. The basic

sendrecv-based algorithm works well with this constraint.

However, IPC-advanced algorithm is limited by the un-shared

information among processes. Either kernel-based or memcpy-

based implementation needs the destination offset of the array

to assign or copy data directly. To address this challenge, we

exchange the destination offset in advance before performing

IPC-advanced data transferring. To be specific, we gather the

corresponding offsets from rdispls in different processes.

There may be some overheads for utilizing gather calls, but

due to the benefits from using IPC-advanced design, this

overhead is hidden.

Alltoall communication can be considered as a special case

of Alltoallv communication, and when MPI_Alltoallv
is called, eventually it would require the same behavior as

MPI_Alltoall. Given that we are able to optimize Alltoall

communication more efficiently (recall that MPI_Alltoall
has no gather overhead described in the previous paragraph),

our designs will fall back to Alltoall communication once we

find that the users expect Alltoall behavior but use Alltoallv

calls.

To identify this scenario, our design uses the following

optimizations: 1) scan the sendcount (recvcount) array to find

out the local maximum and minimum of the sendcount (recv-

count) in each rank, 2) use all-reduce calls to get the global

maximum and minimum of sendcount (recvcount) among all

ranks, then 3) compare the global maximum and minimum.

If the values are the same, it indicates that elements in the

sendcount (recvcount) array among all ranks are the same.

Since the sendcount (recvcount) are the same, the send (recv)

offsets can be easily deduced. It is equivalent to the behavior

of Alltoall communication, so we can fall back and take

advantage of our GPU-aware IPC-advanced Alltoall designs.

IV. EVALUATION

A. Experimental Setup

The following evaluations were conducted on the ThetaGPU

cluster at Argonne Leadership Computing Facility [10] and on

the Lassen cluster at Lawrence Livermore National Laboratory.

ThetaGPU is comprised of 24 NVIDIA DGX A100 nodes.

Each node is equipped with 2 AMD Rome CPUs, 1TB

DDR4 memory, and 8 NVIDIA A100 Tensor Core GPUs. The

NVIDIA DGX A100 GPU has 40GB HBM2, and is connected

with the second generation NVIDIA NVSwitch. Also, each

node is connected with Mellanox ConnectX-6 VPI HDR

InfiniBand/Ethernet network adapters and runs with Mellanox

OFED 5.1, CUDA driver version 450.142.00, and CUDA

version 11.0. The cluster also includes 20 Mellanox QM9700

HDR200 switches wired in a fat-tree topology. Lassen is the

#26-ranked machine in the TOP500 [11] as of November 2021

and consists of 792 GPU nodes each with four 16 GB memory

NVIDIA Volta V100 GPUs. Each node has two 44-core IBM

Power 9 architecture CPUs.

Benchmark-level evaluation: To evaluate the perfor-

mance of our proposed Alltoall design, we utilize the

osu_alltoall test from the OSU Micro-Benchmarks

(OMB) [12] suite version 5.8. It reports the latency and

bandwidth of point-to-point and collective MPI operations at

different message sizes. And for NCCL, we use alltoall
from NVIDIA NCCL Tests 2.11.0 as the benchmark. To

compare our design, we utilize NCCL 2.11.4, Spectrum-MPI

10.3.1, MVAPICH2-GDR 2.3.6, and OpenMPI 4.1.1 + UCX

1.11.1 as the baselines.

Application-level evaluation: DeepSpeed [13] is a popular

distributed DL framework built on top of the PyTorch DL

framework. Two of DeepSpeed’s key features are memory ef-

ficiency for large DL models and efficient parallelism schemes

for DL training on large-scale systems. Given these features,

DeepSpeed has recently been applied to large-scale DL models

that require the Alltoall collective operation. We implemented

and applied a communication benchmark built on top of

DeepSpeed to measure the throughput of applying Alltoall

to PyTorch tensors of varying sizes. Specifically, we use

DeepSpeed 0.5.3 with PyTorch 1.9.0, MVAPICH2-GDR 2.3.6,

NCCL 2.10.3, and CUDA 10.2.89.

The heFFTe [2] application provides a highly efficient

Fast Fourier Transform (FFT) library which supports GPU

kernels. In a 3D FFT computation, the workload is divided

into 2D or 1D arrays for data exchange. In one iteration,

it may require different scales of Alltoallv communication

simultaneously within different groups of processes, which

makes the communication pattern more complicated. heFFTE

also supports using Alltoall communication with data padding.

One limitation we faced in our evaluation was ensuring that

all libraries used in the evaluation have support for the datatype

used in heFFTe. heFFTe uses MPI_DOUBLE_COMPLEX
as the major datatype, which is not supported by NCCL
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ncclDataType_t [14]. Additionally, NCCL does not have

pre-implemented alltoall or alltoallv APIs, requiring users

to implement their own designs by calling ncclSend and

ncclRecv. Hence, the users must have knowledge of com-

munication primitives and need to modify or even redesign

their programs if they were to utilize NCCL APIs.

The PSDNS mentioned in the following evaluations refers

to kernel-based Fourier pseudo-spectral numerical simulation

application implemented in [15]. It applies to NVIDIA li-

braries, such as cuFFT, to accelerate the computation on GPUs.

PSDNS utilizes MPI Alltoall to exchange the transposed data

in the 3D-FFT kernel. Currently, the implementation is only

supported by the IBM XL compiler. Hence, we only evaluate

PSDNS on Lassen.

B. Performance Evaluation

We evaluate the performance of our Alltoall design by

running osu_alltoall benchmark in OMB on ThetaGPU

from 1 node with a total of 8 GPUs to 16 nodes with a total of

128 GPUs, and on Lassen from 1 node with 4 GPUs per node

to 16 nodes with a total of 64 GPUs. On ThetaGPU, we use

4KB as the threshold to switch from optimized Alltoall designs

to IPC-advanced designs, and use 512KB as the threshold to

switch from kernel-based implementation to memcpy-based

implementation. We show the maximum message size of 4MB

in each graph, but note that it indicates the message size of

each process, Figure 8 shows the latency numbers compared to

MVAPICH2-GDR, NCCL and OpenMPI + UCX. To illustrate

the details more clearly, we separate the figures by message

sizes. Figures 8(a) and 8(d) show the performance on a single

node, which indicates that it uses our proposed IPC-based

Alltoall design entirely.

For small messages in Figure 8(a), the proposed design

achieves a latency of 9.48 μs at 16 bytes message size,

approximately 39%, 4.1x and 3.2x better performance com-

pared to MVAPICH2-GDR, NCCL and OpenMPI + UCX.

For the medium and large messages, our design also gives

better latency numbers against MVAPICH2-GDR, NCCL and

OpenMPI + UCX by 1.5x, 12% and 17.4x at 8K message

size, and 41%, 14% and 2.5x at 4MB message size. Figure 4

shows the performance comparison between Kernel-based IPC

and Memcpy-based IPC designs. It verifies that our IPC-

advanced design performs well in any message size on one

node. Note that our design uses the optimized Alltoall design

only because it has lower latency than the IPC-advanced

algorithm for small messages. If we use the IPC-advanced

design for message sizes less than 8KB, it can still outperform

NCCL and OpenMPI + UCX.

Figures 8(b) and 8(e) show the performance numbers using

32 GPUs on 4 nodes. For large messages, Figure 8(e) shows

that the proposed design takes 445.8 μs for 256KB message

size, approximately 20% better performance than NCCL.

Figures 8(c) and 8(f) show the performance benefits in a

larger scale scenario involving 128 GPUs on 16 nodes. It

performs similar to the results in Figure 8(b) and 8(e). The

proposed design takes 3724.5 μs at 512KB, approximately

44% improved performance over NCCL.

To verify the feasibility of our design on other platforms,

we have carried out similar benchmark-level evaluations on

Lassen, as indicated in Figure 9. Figure 9(a) shows the

performance of small messages. For example, the proposed

design takes only 3.3 μs for 16B, approximately 10% better

performance than MVAPICH2-GDR. Figure 9(d) shows the

proposed design taking 736.3 μs at 4MB, approximately 8%

better performance than NCCL. Figures 9(c) and 9(f) show the

performance on 16 nodes, 64 GPUs. For this configuration,

NCCL has performance degradation for small message sizes.

However, if we compare the latency at 4KB, our design takes

only 168.7 μs and it’s approximately 13% and 10.9x better

performance than MVAPICH2-GDR, and NCCL, respectively.

C. Application-Level Evaluation

To evaluate the benefits of our design for real applications,

we conducted application-level experiments by running a

DeepSpeed communication benchmark for DL applications,

and heFFTe and PSDNS for HPC applications.

Figure 10 and figure 11 show the evaluation results of

DeepSpeed. It measures the throughput of applying Alltoall

to PyTorch tensors of varying sizes. Figure 10 shows the

throughput per GPU under different tensor sizes compared

to MVAPICH2-GDR, NCCL, and OpenMPI + UCX on

ThetaGPU. Figure 10(a) shows the results on one node. Our

proposed design has better throughput in every Tensor size.

For example, we have 7.6 Gbps at 4Kx16 on ThetaGPU; and

1755 Gbps at 16Mx16, which gives 27% better performance

than NCCL, on ThetaGPU. In multi-node environment, the

throughput shown in Figures 10(b) and 10(c) also outperform

against other baselines in every Tensor size. The throughput

of our proposed design reaches 192 Gbps at 16Mx16 on 8

nodes, which is 7% NCCL on ThetaGPU.

Figure 11 shows the throughput per GPU under different

tensor sizes compared to NCCL on Lassen. Figure 11(a)

shows the results on one node. Our proposed design also

has better throughput in every Tensor size. For example, we

have 26 Gbps at 2Kx4x4, which gives 52% better perfor-

mance compared to MVAPICH2-GDR on ThetaGPU. In multi-

node environment, the throughput shown in Figures 11(b)

and 11(c) also outperform against NCCL for every Tensor

size. The throughput of our proposed design reaches 1.75

Gbps at 128xx256x4 on 64 nodes, which is 5.7x better than

NCCL. Note that MVAPICH2-GDR and Spectrum MPI get

segmentation faults above 8 nodes, and OpenMPI + UCX also

gets segmentation faults above 64 nodes and are therefore not

depicted on these graphs.

Figures 12 and 13 show the throughput of running heFFTe

with Alltoall and Alltoallv using different libraries. The

throughput numbers are the performance numbers reported

by heFFTe itself, which is the overall throughput of the

application. Note that NCCL is unavailable here because it

doesn’t support MPI_DOUBLE_COMPLEX.
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Fig. 8. Comparison of Alltoall Operations between Proposed hybrid GPU-aware GPU-aware IPC-advanced and other baselines on ThetaGPU
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Fig. 9. Comparison of Alltoall Operations between Proposed hybrid IPC-advanced and other baselines on Lassen

Figures 12(a), 12(b), 12(c) show the results using Alltoall

communication on ThetaGPU. For every message size and

scale, our proposed designs reach the highest throughput. For

example, we obtain 191 GFlops/s at message size 1K3 using

Alltoall, which gives 1.4x and 14.9x better performance than

MVAPICH2-GDR and OpenMPI + UCX on 16 ThetaGPU

nodes. Figures 12(d), 12(e), 12(f) show the results using All-

toallv communication. We obtain 4,491 GFlops/s at message

size 2K3 using Alltoallv, which gives 17.8x and 27x better

performance than other baselines on 16 ThetaGPU nodes.

Figure 13 shows similar evaluations for heFFTe on Lassen.

The proposed designs give the highest throughput against

MVAPICH2-GDR and Spectrum MPI. Note that there are

issues in running heFFTe with OpenMPI + UCX on Lassen,
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Fig. 10. Comparison of application-level (DeepSpeed) Alltoall Operations on ThetaGPU
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Fig. 11. Comparison of application-level (DeepSpeed) Alltoall Operations on Lassen
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Fig. 12. Comparison of application-level (heFFTe) Alltoall and Alltoallv Operations on ThetaGPU

and we gets errors for running heFFTe with Spectrum MPI

above 32 nodes.

We also evaluated our designs with another HPC appli-

cation, PSDNS, on Lassen. Figure 14 shows the latency of

PSDNS from 1 node to 64 nodes. Our proposed designs

give the lowest latency for every message size and scale.

For example, on one node, our design is 16%-33% faster

than MVAPICH2-GDR. On 16 nodes, our design has only

1.05 sec per iteration at size 1K3, which is 71% better than

MVAPICH2-GDR. Note that PSDNS should be built with

IBM XL compiler, and there are issues building OpenMPI

+ UCX with IBM XL compiler. Also, running PSDNS with

Spectrum MPI has errors above two nodes, so we only include

MVAPICH2-GDR as the baseline here.
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Fig. 13. Comparison of application-level (heFFTe) Alltoall and Alltoallv Operations on Lassen
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Fig. 14. Comparison of application-level (PSDNS) Alltoall Operations on Lassen

V. RELATED WORK

While many works have designed MPI Alltoall algorithms

on host buffers [16]–[19], few previous works have ex-

plored MPI Alltoall algorithms specifically for device buffers

on GPU-dense systems [20]. Further, most existing GPU

MPI Alltoall algorithms use pipelining [18] [17] or non-

blocking methods [21] to hide MPI Alltoall’s relatively high

communication overhead. With the advent of the NVIDIA

DGX family of HPC systems, the ratio of GPUs to CPUs

(number of sockets) on recent systems has increased. Even

fewer studies exist on MPI Alltoallv. Some of the past designs

for MPI Alltoallv focus on CPU systems [22] only.

NVIDIA DGX systems have been a testbed for new efficient

collective communications in many prior works. Awan et

al. investigated efficient algorithms for MPI Bcast on DGX

systems [23], [24]. The work by Cai et al. [25] demonstrated

performance benefits on a DGX system by synthesizing col-

lective algorithms for a specific topology.

Deep learning (DL) applications are increasingly depen-

dent on dense collectives and distributed neural networks.

Past works have optimized the MPI Allreduce collective for

distributed DL training [26], yet the MPI Alltoall collective

is increasingly becoming a bottleneck in DL training for

models in recommendation [27], and language [28], [29].

Distributed deep learning frameworks have recently accounted

for this by adding Alltoall support [13], [30], [31]. Given

that recent studies have shown that CUDA IPC is vital to

efficient MPI Allreduce for DL training [32], we expect

similar benefits for DL training with MPI Alltoall.

VI. CONCLUSION

With the emergence of modern GPU systems equipped with

faster, denser, and more connected GPU compute nodes, it

is important that communication middleware, such as MPI,

utilizes these advancements to provide enhanced performance

on these novel systems. In this paper, we improved the per-

formance of GPU-based Alltoall and Alltoallv MPI collective

calls on dense GPU systems and proposed a new GPU-aware

IPC-advanced design. Considering the different properties of

implementations, we have developed a hybrid strategy to use

the best communication mechanism to reduce the overhead.

For an intra-node environment, we used a kernel-based IPC

implementation for smaller messages and a memcpy-based
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IPC implementation for larger messages. For an inter-node

environment, we utilized the GPU Direct RDMA library to

transfer data across nodes and exploited overlap with the intra-

node communication by using the proposed IPC-advanced

designs. The evaluations have shown that the proposed designs

outperform the baseline by 4.1x and 2.5x for small and large

messages on one ThetaGPU node, and by 76% for large

messages on 16 ThetaGPU nodes. For the DL application

DeepSpeed, our proposed designs demonstrate up to 59x better

performance on ThetaGPU. In HPC applications heFFTe and

PSDNS, our proposed designs reach approximately 27x and

71% better performance on ThetaGPU and Lassen, respec-

tively. As future work, we plan to extend our designs to other

common collectives, such as gather and scatter.
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