2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) | 978-1-6654-9747-3/22/$31.00 ©2022 IEEE | DOI: 10.1109/IPDPSW55747.2022.00014

2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Highly Efficient Alltoall and Alltoallv
Communication Algorithms for GPU Systems

Chen-Chun Chen*, Kawthar Shafie Khorassani*, Quentin G. Anthony*, Aamir Shafi*,
Hari Subramoni® and Dhabaleswar K. Panda'
Department of Computer Science and Engineering
The Ohio State University, Columbus, Ohio
*Email: {chen.10252, shafiekhorassani.1, anthony.301, shafi.16} @osu.edu
"Email: {subramon, panda} @cse.ohio-state.edu

Abstract—In recent years, High Performance Computing
(HPC) and Deep Learning (DL) applications have been modified
to run on top supercomputers and utilize the high compute
power of GPUs. While GPUs provide high computational power,
communication of data between GPUs and across a network
continues to be a bottleneck. In particular, with the increasing
amount of FFT compute and sparse matrix transpose operations
in these applications, Alltoall MPI collective operations are
heavily used. Alltoall communication is considered the heaviest
communication pattern compared to other MPI collective calls.
Few techniques and algorithms effectively help in optimizing
Alltoall communication, much less improving the performance on
a dense GPU cluster while exploiting the features of modern inter-
connects and topologies. Despite the introduction of Inter-Process
Communication (IPC) in CUDA 4.1 by NVIDIA, state-of-the-art
MPI libraries have not utilized these IPC-based mechanisms to
design novel Alltoall algorithms that exploit the capabilities of
modern GPUs.

In this paper, we propose hybrid IPC-advanced designs for
Alltoall and Alltoallv communication on novel GPU systems.
By utilizing zero-copy load-store IPC mechanisms for multi-
GPU communication within a node, we are able to overlap
the intra-node and inter-node communication, yielding improved
performance on GPU systems.

We evaluate the benefits of our designs at the benchmark and
application layers on the ThetaGPU system at ALCF and the
Lassen system at LLNL. Our designs provide up to 13.5x and
71% improvements on 128 GPUs and 64 GPUs at the benchmark-
level over state-of-the-art MPI libraries on ThetaGPU and Lassen
respectively. At the application level, our designs have up to 59x
performance improvement for an HPC application, heFFTe, and
5.7x performance improvement for a Deep Learning application,
DeepSpeed, on 64 GPUs on ThetaGPU and 256 GPUs on Lassen.

Index Terms—MPI, GPU, DGX, IPC, Alltoall, Alltoallv

I. INTRODUCTION AND MOTIVATION

Alltoall communication is widely used in many HPC and
scientific applications and DL frameworks. It allows data
in each process to be transferred to every process, which
results in the most communication-heavy pattern over other
MPI collective operations. For example, in an application
run with n processes, Alltoall communication requires O(n?)
communication for data transfer. As the scale and the message
size increase, the heavier communication load leads to higher
overall latency across the network. Due to the heavy com-
munication workload, few algorithms or techniques are really
efficient for improving communication performance. Recently,

more applications use GPUs to accelerate computation, and
the data is often stored in device memory, which increases the
communication cost regardless of whether it is in an intra-node
or an inter-node environment.

°

°
°

°
o
8

Time (log)

2
100p
s

2
104
s

Packing Unpacking FFT-1d Scale
Kernel

Alltoall

Fig. 1. The bottleneck of MPI_Alltoall in the heFFTe application on 24
GPUs (Courtesy [1])

For instance, heFFTe [2] is a popular library, with support
for modern GPU-based HPC systems, that provides efficient
and scalable implementations of the Fast Fourier Transform
(FFT) algorithm—a widely used computational kernel in many
HPC applications. Figure 1 depicts an overall execution time
profile of a typical heFFTe application run. The profile shows
the time spent in Alltoall in comparison to the time spent in
other application tasks including computing FFTs and pack-
ing and unpacking kernels. It is clear that the MPI_Alltoall
operation is the main bottleneck for the heFFTe application.
In this context, it is critical to optimize the performance of
Alltoall communication at the MPI layer in order to improve
the performance of HPC applications like heFFTe.

Historically, the computation nodes of GPU-based HPC
systems were equipped with fewer GPUs than nodes on
modern cluster deployments. This meant that the overall
communication performance of GPU applications was bound
by the bandwidth of the network during multi-node data
transfers and bound by the bandwidth of the inter-GPU in-
terconnects for intra-node data transfers. However with the
emergence of modern architectures and systems, a single node
is equipped with more GPUs, and nodes are connected with
a faster network. One such example is the NVIDIA DGX-
A100 system illustrated in Figure 2. It is powered by 8

978-1-6654-9747-3/22/$31.00 ©2022 IEEE 24
DOI 10.1109/IPDPSW55747.2022.00014

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:44:59 UTC from IEEE Xplore. Restrictions apply.

lHca | |HeA| | cPU | [Hea| [Hea |
| l
| PCle Switch | | PCle Switch |
| | | |
GPUO GPU1 GPU 2 GPU 3
|
| |
GPU4 GPUS GPU 6 GPU7
| | | |
| PCle Switch | | PCle Swilch |
| l
|HCA | [HoA | | CPU | [Hca| [Hea |

wes NVLink (600 GB/s) ~—PCle Gen4 (31.5 Ghb/s)

Fig. 2. Topology of DGX-A100 Node

10°
—s— |PC-enabled Pt2Pt
IPC-disabled Pt2Pt
104
m
3103
>
5 136/
w102
16
10t

1 8 64 512 4K 32K 256K 2M 16M128M

Message Size (Bytes)

Fig. 3. Comparison of IPC enabled and IPC disabled in a point-to-point
latency benchmark (OMB) on a DGX-A100 system

A100 Tensor Core GPUs per node, and fully connected by
NVLink/NVSwitch technology. In this system, each socket
contains 2 PCle switches, and each PCle switch connects
with 2 Mellanox NICs. This powerful connection not only
improves the communication between devices within a node
through NVLink, but lowers the latency between GPUs across
nodes through the presence of multiple NICs. In particular,
it enhances the performance of a scenario allowing multiple
GPUs to transfer data simultaneously. These novel architec-
tures attract the users to run their applications on a larger scale
and with a heavier workload, which makes the optimization
for Alltoall communication even more critical.

While IPC has been utilized for point-to-point commu-
nication to enhance the performance of medium to large
message sizes, as depicted in Figure 3, it has yet to be
extended widely to GPU-aware collective designs. State-of-
the-art MPI libraries do not utilize IPC-based designs
for Alltoall collectives in order to enhance the inter-
GPU communication through the NVLinks available on

25

—e— Optimized Alltoall

1 5
0 Kernel-based IPC
—e— Memcpy-based IPC 13862
- 10*
2
3
2103
i)
© 17
10? 54
Lo
10! ,,_._._._..2/1
2 16 128 1K 8K 64K 512K 4M 32M

Message Size (Bytes)

Fig. 4. Latency comparison of optimized Alltoall design (with existing
Alltoall algorithms and techniques), proposed kernel-based IPC, and
Memcpy-based IPC designs for an MPI_Alltoall benchmark (OMB) on 8
GPUs on a DGX-A100 system

many modern dense GPU systems. Hence, we propose IPC-
advanced Alltoall communication algorithms for improving
Alltoall and Alltoallv communication on novel dense GPU
systems. The heavily connected GPUs within a node motivates
the usage of IPC for collective operations in order to allow
for an overlap of intra-node communication through IPC and
inter-node communication with other protocols. We move data
in IPC buffers by launching kernels, referred to as kernel-
based IPC for medium sizes and utilize CUDA memcpy
APIs to transfer data, referred to as Memcpy-based IPC, for
large message sizes. Figure 4 depicts the performance of
optimized Alltoall design (with existing Alltoall algorithms
and techniques) compared to Memcpy-based IPC and kernel-
based IPC on 8 GPUs on a DGX-A100 node.

Besides Alltoall, Alltoallv communication is also widely
applied by applications since it allows arbitrary send (recv)
counts to be transferred between any 2 processes. For ex-
ample, heFFTe supports data transferring with both Alltoall
and Alltoallv communication. This further motivates the need
to not only apply optimized designs for Alltoall but also
to evaluate the benefits of extending these novel designs to
Alltoallv communication patterns as well.

A. Challenges

We address the following challenges to develop efficient
GPU-based Alltoall and Alltoallv algorithms using hybrid
IPC-advanced techniques for modern dense GPU systems:

o Can we utilize the features, e.g.: NVLink, provided by
heavily connected GPUs on modern systems to motivate
the need for optimized MPI collective algorithms that
fully exploit this high connectivity?

« How can we exploit the zero-copy load-store mechanisms
of IPC to design GPU-aware IPC-advanced Alltoall and
Alltoallv collective operations?

o What are the limitations within existing communication
libraries with respect to running and optimizing the MPI
bottleneck of certain workloads?

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:44:59 UTC from IEEE Xplore. Restrictions apply.

e Can we optimize the performance of HPC and DL
workloads that are reliant on Alltoall and Alltoallv for
FFT and matrix transpose using optimized designs for
MPI_Alltoall and MPI_Alltoallv to provide enhanced
performance and scalability?

B. Contributions

In this paper, we design hybrid IPC-advanced Alltoall and
Alltoallv communication algorithms to optimize the perfor-
mance of GPU-aware MPI_Alltoall and MPI_Alltoallv across
different dense GPU platforms.

This paper makes the following contributions:

1) Identify challenges with existing MPI_Alltoall and
MPI_Alltoallv implementations and utilizing existing
architectures to motivate the need for an optimized
MPI_Alltoall and MPI_Alltoallv algorithm that exploits
the available interconnect and technology.

Propose a kernel-based and memcpy-based IPC-
advanced algorithm implementation of GPU-based
MPI_Alltoall and MPI_Alltoallv.

Implement the GPU-aware IPC-advanced algorithm and
propose hybrid designs. The integrated designs support
single/multi Alltoall and Alltoallv communication pat-
terns and cover common MPI datatypes, which benefits
a variety of use cases required by certain applications.
Develop a comprehensive performance evaluation of
GPU-aware MPI_Alltoall and MPI_Alltoallv using the
proposed designs compared to the state-of-the-art GPU-
aware communication libraries (i.e. MVAPICH2-GDR,
NCCL, IBM Spectrum MPI, and OpenMPI+UCX) at
the benchmark level, using OSU-Microbenchmarks and
at the application level, using heFFTe, PSDNS, Deep-
Speed, and DLRM on a DGX-A100 system (ThetaGPU)
and a Power9 V-100 system (Lassen).

2)

3)

4)

To the best of our knowledge, this is the first paper focusing
on developing hybrid designs using IPC- and GPU-based MPI
collective algorithms for Alltoall and Alltoallv communication.

II. BACKGROUND
A. GPU-aware MPI

The Message Passing Interface (MPI) is a standard for
exchanging messages on parallel and distributed architectures.
State-of-the-art GPU-aware communication libraries [3], such
as MVAPICH2-GDR [4], OpenMPI [5], IBM Spectrum
MPI [6], and NCCL [7] provide communication primitives
optimized for GPUs and networking. Modern GPU-Aware
MPI libraries employ a collection of optimizations such
as GPUDirect RDMA, CUDA Inter-Process Communication
(IPC), and pipelining mechanisms.

B. Inter-Process Communication (IPC)

Since CUDA 4.1, the Inter-Process Communication (IPC)
interface has enabled the efficient transfer of messages be-
tween GPUs within the same node. Specifically, CUDA IPC
enables any process to share its GPU device buffer with any
other remote node-local process. Once the GPU buffer is

26

shared, the remote process can map this device buffer into its
own address space and issue CUDA transfer operations such
as cuMemcpy to it directly. An MPI library can use CUDA
IPC to efficiently transfer GPU data within a node [8].

C. GPU Direct RDMA

NVIDIA GPUDirect [9] enables 3rd-party devices to di-
rectly access CUDA device memory, which reduces the over-
head of multiple copies to memory. NVIDIA GPUDirect
remote direct memory access (RDMA) allows GPU devices to
directly exchange data with a remote device across the cluster.
It also allows devices on the same PCle bus to directly transfer
data among each other.

III. THE PROPOSED DESIGN

We delve into the details of the hybrid GPU-aware IPC-
advanced designs by first describing the intra-node compo-
nent and then elaborating on the inter-node implementation.
We implemented our designs based on MVAPICH2-GDR. In
section III-A, we will discuss using IPC-based techniques to
overlap intra-node communication with the inter-node data
transfer. In section III-B, we will illustrate how to integrate
the IPC-based design into the communication path in order to
create this overlap in the inter-node environment. We will also
detail how we extended our GPU-aware IPC-advanced Alltoall
designs to Alltoallv in section III-C.

A. Intra-Node

Traditionally, Alltoall communication within a single node
is implemented using multiple send-recv pairs. However, with
the utilization of IPC in the intra-node environment, the IPC
buffer pointers can be exchanged and utilized by other GPUs to
create this intra-node transfer, without utilizing other protocols
or the send-recv implementation. We utilize IPC and the
heavily connected GPUs systems to apply two techniques: a
kernel-based and a memcpy-based implementation:

o Kernel-based IPC: launch a CUDA kernel and pass an
IPC buffer pointer to initiate the data exchange across
GPUs within a node.

e Memcpy-based IPC: call the CUDA API
cudaMemcpyAsync and pass an IPC buffer pointer to
copy data from device to device within a node.

For both kernel-based and memcpy-based implementations,
we use the same algorithm to exchange/copy data. To avoid
unbalanced communication within some GPUs in a certain
time, we dispatch the workload in a specific order: in the
first step, each GPU sends data to itself, and then it starts
to send data to the (rank + 4)'* at the ** step, where
rank is the rank of the sender, and ¢ is the iteration. This
algorithm spreads the receiving time of each GPU as much
as possible. This ensures that at any time, a GPU receives
data from only one other GPU. After calling either kernel-
based or memcpy-based function we implemented, we call
cudaStreamSynchronize to make sure data exchanging
accomplished.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:44:59 UTC from IEEE Xplore. Restrictions apply.

Existing All-to-all Designs:
[Hga]| [Hoa cPU 'HCA | [HCA [Hga] [rgal [[Hga [Hga |
I [I I I [I ‘GPU 0 [recvlisend] Wait [Irecvfisend| Wait Irecv lsend Wait [Irecvlsend| Wait | ‘
[&5 Pcle switch] PCle Switch] [i .] - = LY 1 1 _ _
| | e ¥ ¥ 1
ntra-node
GPUO ‘ GPU1 ‘ Gpu2 ‘ GPU3 ‘ | GPUO ‘ GPU1 ‘ Gpuz ‘ GPU3 ‘ data trangter ‘GFU 0= GPU 0| ‘GPU 0= GPU1 ‘ \ ‘
[[]]]][] [[]] [1]]] 1111 [1[]]] [[[]]] []]]] v —
T Y YO Y QO T e el i D
| ‘ ‘ ‘ | oL ians;or NODE 1 GPU 0 NODE1GPU1 |
GPU4 ‘ GPUS GPUB ‘ GPU7 | GPU4 GPUS GPUG GPUT7 =
| [[-
I PCie Swich | PGis Swich \ I 7o | \ Proposed IPC-ad: d Desig
0 | | | | p B [[] A :]
HCA | |HCA cry HCA | |HCA |Hga| |Hga | cry |Hga | [Hga | ‘GPUU [Irecv lIsend Wait |irecv]isend] Wait E
1 1
1
Node 0 Node 1 ::Inatlr:-t'::::fer Data placement Data placement
g GPU 0 = GPU 0 GPU 0 = GPU 1
~—— Intra-node communication via NVLink = Inter-node communication via IB (via IPC) \ | /
- T
Inter-node NODE 0 GPU 0 NODEDGF’UU:
3 M . L} =
Fig. 5. GPU-aware IPC—adyanced Alltoall Design on 2‘ nqdes - 16 GPUS. datatransfer | NopEf GPUO | NoDE1GPU1) Expected Benefit from overlap of
On Node 0, GPU 0 communicates with all other GPUs within the node using 0 intra and inter-node transfer

IPC (red arrow) and the inter-node transfer is depicted by the blue arrow.

These two implementations are optimal for different mes-
sage ranges. Kernel-based IPC has lower overhead for small
messages, but the memcpy-based IPC implementation out-
performs it as the message size increases. To achieve the
lowest latency for a wide range of message sizes, our design
takes advantage of both schemes by using a hybrid approach.
For example, Figure 4 shows the latency by using different
implementations on ThetaGPU within 1 node. We observe that
the kernel-based implementation performs well under 256KB,
while the memcpy-based implementation has better numbers
for message sizes greater than 512KB.

Although IPC-based communication has benefits for large-
message transferring within a single node, there are overheads
for small messages. Figure 4 shows that our kernel-based and
memcpy-based implementation has around 30 ps and 50 ps
overhead, respectively for small message sizes. Based on this
observation, we introduce the optimized Alltoall design with
existing Alltoall algorithms and techniques to deal with small
messages. Based on these findings, we design a hybrid algo-
rithm for intra-node communication. We utilize the optimized
Alltoall design for small messages, proposed kernel-based IPC
for medium messages, and proposed memcpy-based IPC for
large messages. The toggle of the implementations can be
controlled by I PC'_threshold and memcpy_threshold.

B. Inter-Node

In the inter-node environment, the data transfer path can be
categorized into two types: the intra-node and the inter-node
communication. Figure 5 shows an example of the communi-
cation technique that can be used in a 2-node, 8 ppn (process
per node) environment. For intra-node communication, we can
utilize our IPC-based algorithm introduced in section III-A
directly. For inter-node communication, we have several pro-
tocols to deal with different message size ranges. We use
NVIDIA GDR Copy library and GDR loopback technique
to transfer small messages, and use GPU Direct RDMA to
transfer large messages. By calling non-blocking MPI point-
to-point calls, MPI_TIsend and MPI_Irecv, we overlap
the intra-node and inter-node communications to reduce the
latency.

27

P

Fig. 6. The proposed IPC-advanced Designs for GPUs provide overlap
potential of intra-node and inter-node communication through utilizing zero-
copy load store IPC mechanisms. Compared to existing designs that do not
have this overlap, the proposed designs are expected to demonstrate enhanced
performance. This example depicts a 2 Nodes, 2 GPUs per Node Alltoall
scenario.

1 MPI_Alltoall I MPI_Isend I MPl_lrecv EEE MPI_Wait @l IPC

Existing
Design

Proposed
Design

100 150
Elapsed Time (ps)

Fig. 7. Timeline comparison of pairwise sendrecv-based (existing) and IPC-
advanced (proposed) Alltoall on 2 nodes (ThetaGPU) at 64K.

Similar to intra-node, based on the finding depicted in
figure 4, we first check whether the sendcount is less than the
IPC_threshold, if so, our design falls back to optimized All-
toall communication, or it will perform the IPC-advanced All-
toall. Since inter-node communication usually takes more time,
in our implementation, we call non-blocking MPI_ Isend and
MPI_TIrecv at the beginning, and have MPI_Wait before
the end of the algorithm to ensure the completion of the
point-to-point calls. During the inter-node communication, we
call our IPC-based implementation to perform the intra-node
communication. This implementation also works in an intra-
node environment since in such case, no MPI call is called but
the intra-node designs still work well. Figure 6 explains how
our proposed IPC-advanced designs provide overlap potential
of intra-node and inter-node communication through utilizing
zero-copy load store IPC mechanisms.

Figure 7 shows the comparison of the timeline profiling
results using our proposed designs and an existing sendrecv-
based implementation on 2 DGX-A100 nodes with 16 GPUs
(8 GPUs per node). The profiling tools used include TAU
and CUDA CUPTI libraries. The timeline demonstrates the
details of different MPI calls and the IPC data exchange
phase in rank 0. We observe that the existing sendrecv-based
implementation spends the most time on MPI_Isend and

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:44:59 UTC from IEEE Xplore. Restrictions apply.

MPI_Wait. Specifically, there are 16 send-recv pairs and
wait calls in the figure. Those pairs cannot be overlapped
even though they involve the same amount of intra- and inter-
node communication, which dominates the total running time
(239.63 ps). On the other hand, there are only 8 send-recv
pairs and wait calls in our proposed designs. The other calls for
intra-node communication are replaced by our IPC-advanced
implementation, which is shown in green in the figure. It saves
approximately 50% of the total running time. The saved time
is not only coming from the reduction of send/recv calls, but
the overlap of the intra-node communication using IPC and
the inter-node communication using send/recv calls.

C. Extension to Alltoally

The most significant challenge for extending Alltoall to
Alltoallv designs using IPC-advanced technique is that the
send/recv offsets are unknown. In MPI_Alltoallv, there
are parameters called sdispls and rdispls. They record
the offset from sendbuffer/recvbuffer where the process should
send/place data. The information is only related to the current
rank. For example, as a sender, the process only knows
which piece of data would be sent based on sdispls, but
it does not know where the data would be placed after it
arrives at another process; as a receiver, it knows where to
place the received data according to rdispls, but it would
never know which offset the data is coming from. The basic
sendrecv-based algorithm works well with this constraint.
However, IPC-advanced algorithm is limited by the un-shared
information among processes. Either kernel-based or memcpy-
based implementation needs the destination offset of the array
to assign or copy data directly. To address this challenge, we
exchange the destination offset in advance before performing
IPC-advanced data transferring. To be specific, we gather the
corresponding offsets from rdispls in different processes.
There may be some overheads for utilizing gather calls, but
due to the benefits from using IPC-advanced design, this
overhead is hidden.

Alltoall communication can be considered as a special case
of Alltoallv communication, and when MPI_Alltoallv
is called, eventually it would require the same behavior as
MPI_Alltoall. Given that we are able to optimize Alltoall
communication more efficiently (recall that MPT_Alltoall
has no gather overhead described in the previous paragraph),
our designs will fall back to Alltoall communication once we
find that the users expect Alltoall behavior but use Alltoallv
calls.

To identify this scenario, our design uses the following
optimizations: 1) scan the sendcount (recvcount) array to find
out the local maximum and minimum of the sendcount (recv-
count) in each rank, 2) use all-reduce calls to get the global
maximum and minimum of sendcount (recvcount) among all
ranks, then 3) compare the global maximum and minimum.
If the values are the same, it indicates that elements in the
sendcount (recvcount) array among all ranks are the same.
Since the sendcount (recvcount) are the same, the send (recv)
offsets can be easily deduced. It is equivalent to the behavior

28

of Alltoall communication, so we can fall back and take
advantage of our GPU-aware IPC-advanced Alltoall designs.

IV. EVALUATION
A. Experimental Setup

The following evaluations were conducted on the ThetaGPU
cluster at Argonne Leadership Computing Facility [10] and on
the Lassen cluster at Lawrence Livermore National Laboratory.
ThetaGPU is comprised of 24 NVIDIA DGX A100 nodes.
Each node is equipped with 2 AMD Rome CPUs, 1TB
DDR4 memory, and 8 NVIDIA A100 Tensor Core GPUs. The
NVIDIA DGX A100 GPU has 40GB HBM2, and is connected
with the second generation NVIDIA NVSwitch. Also, each
node is connected with Mellanox ConnectX-6 VPI HDR
InfiniBand/Ethernet network adapters and runs with Mellanox
OFED 5.1, CUDA driver version 450.142.00, and CUDA
version 11.0. The cluster also includes 20 Mellanox QM9700
HDR200 switches wired in a fat-tree topology. Lassen is the
#26-ranked machine in the TOP500 [11] as of November 2021
and consists of 792 GPU nodes each with four 16 GB memory
NVIDIA Volta V100 GPUs. Each node has two 44-core IBM
Power 9 architecture CPUs.

Benchmark-level evaluation: To evaluate the perfor-
mance of our proposed Alltoall design, we utilize the
osu_alltoall test from the OSU Micro-Benchmarks
(OMB) [12] suite version 5.8. It reports the latency and
bandwidth of point-to-point and collective MPI operations at
different message sizes. And for NCCL, we use alltoall
from NVIDIA NCCL Tests 2.11.0 as the benchmark. To
compare our design, we utilize NCCL 2.11.4, Spectrum-MPI
10.3.1, MVAPICH2-GDR 2.3.6, and OpenMPI 4.1.1 + UCX
1.11.1 as the baselines.

Application-level evaluation: DeepSpeed [13] is a popular
distributed DL framework built on top of the PyTorch DL
framework. Two of DeepSpeed’s key features are memory ef-
ficiency for large DL models and efficient parallelism schemes
for DL training on large-scale systems. Given these features,
DeepSpeed has recently been applied to large-scale DL models
that require the Alltoall collective operation. We implemented
and applied a communication benchmark built on top of
DeepSpeed to measure the throughput of applying Alltoall
to PyTorch tensors of varying sizes. Specifically, we use
DeepSpeed 0.5.3 with PyTorch 1.9.0, MVAPICH2-GDR 2.3.6,
NCCL 2.10.3, and CUDA 10.2.89.

The heFFTe [2] application provides a highly efficient
Fast Fourier Transform (FFT) library which supports GPU
kernels. In a 3D FFT computation, the workload is divided
into 2D or 1D arrays for data exchange. In one iteration,
it may require different scales of Alltoallv communication
simultaneously within different groups of processes, which
makes the communication pattern more complicated. heFFTE
also supports using Alltoall communication with data padding.

One limitation we faced in our evaluation was ensuring that
all libraries used in the evaluation have support for the datatype
used in heFFTe. heFFTe uses MPI_DOUBLE_COMPLEX
as the major datatype, which is not supported by NCCL

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:44:59 UTC from IEEE Xplore. Restrictions apply.

ncclDataType_t [14]. Additionally, NCCL does not have
pre-implemented alltoall or alltoallv APIs, requiring users
to implement their own designs by calling ncclSend and
ncclRecv. Hence, the users must have knowledge of com-
munication primitives and need to modify or even redesign
their programs if they were to utilize NCCL APIs.

The PSDNS mentioned in the following evaluations refers
to kernel-based Fourier pseudo-spectral numerical simulation
application implemented in [15]. It applies to NVIDIA li-
braries, such as cuFFT, to accelerate the computation on GPUs.
PSDNS utilizes MPI_Alltoall to exchange the transposed data
in the 3D-FFT kernel. Currently, the implementation is only
supported by the IBM XL compiler. Hence, we only evaluate
PSDNS on Lassen.

B. Performance Evaluation

We evaluate the performance of our Alltoall design by
running osu_alltoall benchmark in OMB on ThetaGPU
from 1 node with a total of 8 GPUs to 16 nodes with a total of
128 GPUs, and on Lassen from 1 node with 4 GPUs per node
to 16 nodes with a total of 64 GPUs. On ThetaGPU, we use
4KB as the threshold to switch from optimized Alltoall designs
to IPC-advanced designs, and use 512KB as the threshold to
switch from kernel-based implementation to memcpy-based
implementation. We show the maximum message size of 4MB
in each graph, but note that it indicates the message size of
each process, Figure 8 shows the latency numbers compared to
MVAPICH2-GDR, NCCL and OpenMPI + UCX. To illustrate
the details more clearly, we separate the figures by message
sizes. Figures 8(a) and 8(d) show the performance on a single
node, which indicates that it uses our proposed IPC-based
Alltoall design entirely.

For small messages in Figure 8(a), the proposed design
achieves a latency of 9.48 ps at 16 bytes message size,
approximately 39%, 4.1x and 3.2x better performance com-
pared to MVAPICH2-GDR, NCCL and OpenMPI + UCX.
For the medium and large messages, our design also gives
better latency numbers against MVAPICH2-GDR, NCCL and
OpenMPI + UCX by 1.5x, 12% and 17.4x at 8K message
size, and 41%, 14% and 2.5x at 4MB message size. Figure 4
shows the performance comparison between Kernel-based IPC
and Memcpy-based IPC designs. It verifies that our IPC-
advanced design performs well in any message size on one
node. Note that our design uses the optimized Alltoall design
only because it has lower latency than the IPC-advanced
algorithm for small messages. If we use the IPC-advanced
design for message sizes less than 8KB, it can still outperform
NCCL and OpenMPI + UCX.

Figures 8(b) and 8(e) show the performance numbers using
32 GPUs on 4 nodes. For large messages, Figure 8(e) shows
that the proposed design takes 445.8 ps for 256KB message
size, approximately 20% better performance than NCCL.
Figures 8(c) and 8(f) show the performance benefits in a
larger scale scenario involving 128 GPUs on 16 nodes. It
performs similar to the results in Figure 8(b) and 8(e). The

29

proposed design takes 3724.5 ps at 512KB, approximately
44% improved performance over NCCL.

To verify the feasibility of our design on other platforms,
we have carried out similar benchmark-level evaluations on
Lassen, as indicated in Figure 9. Figure 9(a) shows the
performance of small messages. For example, the proposed
design takes only 3.3 us for 16B, approximately 10% better
performance than MVAPICH2-GDR. Figure 9(d) shows the
proposed design taking 736.3 ps at 4MB, approximately 8%
better performance than NCCL. Figures 9(c) and 9(f) show the
performance on 16 nodes, 64 GPUs. For this configuration,
NCCL has performance degradation for small message sizes.
However, if we compare the latency at 4KB, our design takes
only 168.7 us and it’s approximately 13% and 10.9x better
performance than MVAPICH2-GDR, and NCCL, respectively.

C. Application-Level Evaluation

To evaluate the benefits of our design for real applications,
we conducted application-level experiments by running a
DeepSpeed communication benchmark for DL applications,
and heFFTe and PSDNS for HPC applications.

Figure 10 and figure 11 show the evaluation results of
DeepSpeed. It measures the throughput of applying Alltoall
to PyTorch tensors of varying sizes. Figure 10 shows the
throughput per GPU under different tensor sizes compared
to MVAPICH2-GDR, NCCL, and OpenMPI + UCX on
ThetaGPU. Figure 10(a) shows the results on one node. Our
proposed design has better throughput in every Tensor size.
For example, we have 7.6 Gbps at 4Kx16 on ThetaGPU; and
1755 Gbps at 16Mx16, which gives 27% better performance
than NCCL, on ThetaGPU. In multi-node environment, the
throughput shown in Figures 10(b) and 10(c) also outperform
against other baselines in every Tensor size. The throughput
of our proposed design reaches 192 Gbps at 16Mx16 on 8
nodes, which is 7% NCCL on ThetaGPU.

Figure 11 shows the throughput per GPU under different
tensor sizes compared to NCCL on Lassen. Figure 11(a)
shows the results on one node. Our proposed design also
has better throughput in every Tensor size. For example, we
have 26 Gbps at 2Kx4x4, which gives 52% better perfor-
mance compared to MVAPICH2-GDR on ThetaGPU. In multi-
node environment, the throughput shown in Figures 11(b)
and 11(c) also outperform against NCCL for every Tensor
size. The throughput of our proposed design reaches 1.75
Gbps at 128xx256x4 on 64 nodes, which is 5.7x better than
NCCL. Note that MVAPICH2-GDR and Spectrum MPI get
segmentation faults above 8 nodes, and OpenMPI + UCX also
gets segmentation faults above 64 nodes and are therefore not
depicted on these graphs.

Figures 12 and 13 show the throughput of running heFFTe
with Alltoall and Alltoallv using different libraries. The
throughput numbers are the performance numbers reported
by heFFTe itself, which is the overall throughput of the
application. Note that NCCL is unavailable here because it
doesn’t support MPI_DOUBLE_COMPLEX.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:44:59 UTC from IEEE Xplore. Restrictions apply.

800

—e— Proposed hybrid Alltoall —e— Proposed hybrid Alltoall 20000] —*~ Proposed hybrid Altoall
MVAPICH2-GDR 2.3.6 3000 MVAPICH2-GDR 2.3.6 MVAPICH2-GDR 2.3.6

600{ —=— NCCL2.11.4 2500{ —® NCCL2.11.4 —=— NCCL2.11.4
= —< OpenMPI4.1.1 + UCX 1.11.1 - —— OpenMPI 4.1.1 + UCX 1.11.1 5150001 —<— OpenMPI 4.1.1 + UCX 1.11.1
2 22000 2
3400 g 9
S $ 1500 S 10000
E E 1000 E

200 5000

500
0 o—t—t—o—0—6—9—9¢ © © 0 0 =%
2 8 32 128 512 2K 8K 2 8 32 128 512 2K 8K 2 8 32 128 512 2K 8K
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)

(a) 8 GPUs (1 node 8 ppn) - Small Messages (b) 32 GPUs (4 nodes 8 ppn) - Small Messages (c) 128 GPUs (16 nodes 8 ppn) - Small Messages

500000
7001 —e— Proposed hybrid Alltoall —e— Proposed hybrid Alltoall —e— Proposed hybrid Alltoall
MVAPICH2-GDR 2.3.6 MVAPICH2-GDR 2.3.6 -
600 80000 400000 MVAPICH2-GDR 2.3.6
—=— NCCL2.11.4 —=— NCCL2.11.4 = NCCL2.11.4
g500{ OpenMPI 4.1.1 + UCX 1.11.1 Te0000] 7 OpenMPI 4.1.1 + UCX 1.11.1 T 300000] — OPENMPI4L1+UCX 1101
2400 z g
= o c
2300 g 40000 200000
© o o
3 3 3
200 20000 100000
100 . . ——
0 0

32K 128K 512K 2M 32K 128K
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)

512K 2M 32K 128K 512K 2M

(d) 8 GPUs (1 node 8 ppn) - Large Message (e) 32 GPUs (4 nodes 8 ppn) - Large Message (f) 128 GPUs (16 nodes 8 ppn) - Large Message

Fig. 8. Comparison of Alltoall Operations between Proposed hybrid GPU-aware GPU-aware IPC-advanced and other baselines on ThetaGPU

80| —* Proposed hybrid Alltoall —e— Proposed hybrid Alltoall 14000
MVAPICH2-GDR 2.3.6 300 MVAPICH2-GDR 2.3.6 12000
—=— NCCL2.11.4 2500 —= NCCL2.11.4
5601 —— OpenMPI 4.1.1 + UCX 1.11.1 % —— OpenMPI 4.1.1 + UCX 1.11.1 4 10000 Proposed hybrid Alltoall
2 | —— Spectrum MPI 10.3.1.03 22001 —+— Spectrum MPI 10.3.1.03 2 8000 MVAPICH2-GDR 2.3.6
? > g —=— NCCL2.11.4
g4o — S & 60001 —— OpenMPI 4.1.1 + UCX 1.11.1
5 k] 4000 Spectrum MPI 10.3.1.03
20 '
e 2000
ol e —e—e—t—t—t—a—o——¢ e 0
2 3 32 128 512 2k &K 2 g 32 128 512 2Kk &K 2 g 32 128 512 2K 8K
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)

(a) 4 GPUs (1 node 4 ppn) - Small Messages (b) 16 GPUs (4 nodes 4 ppn) - Small Messages (c) 64 GPUs (16 nodes 4 ppn) - Small Messages

—e— Proposed hybrid Alltoall 250001 —e— Proposed hybrid Alltoall 150000] |~ Proposed hybrid Alltoall
MVAPICH2-GDR 2.3.6 MVAPICH2-GDR 2.3.6 MVAPICH2-GDR 2.3.6
30001 —=— NCCL2.11.4 200001 —=— NCCL2.11.4 125000{ —#— NCCL2.11.4
5 —< OpenMPI 4.1.1 + UCX 1.11.1 5 —< OpenMPI 4.1.1 + UCX 1.11.1 = —< OpenMPI 4.1.1 + UCX 1.11.1
izooo —~— Spectrum MPI 10.3.1.03 315000 Spectrum MPI 10.3.1.03 5;100000 Spectrum MPI 10.3.1.03
c c £ 75000
E E 10000 E 0000
1000 5
5000 25000
0 0 0
32K 128K 512K 2M 32K 128K 512K 2M 32K 128K 512K 2M
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)

(d) 4 GPUs (1 node 4 ppn) - Large Message (e) 16 GPUs (4 nodes 4 ppn) - Large Message (f) 64 GPUs (16 nodes 4 ppn) - Large Message

Fig. 9. Comparison of Alltoall Operations between Proposed hybrid IPC-advanced and other baselines on Lassen

Figures 12(a), 12(b), 12(c) show the results using Alltoall
communication on ThetaGPU. For every message size and
scale, our proposed designs reach the highest throughput. For
example, we obtain 191 GFlops/s at message size 1K> using
Alltoall, which gives 1.4x and 14.9x better performance than
MVAPICH2-GDR and OpenMPI + UCX on 16 ThetaGPU
nodes. Figures 12(d), 12(e), 12(f) show the results using All-

30

toallv communication. We obtain 4,491 GFlops/s at message
size 2K? using Alltoallv, which gives 17.8x and 27x better
performance than other baselines on 16 ThetaGPU nodes.

Figure 13 shows similar evaluations for heFFTe on Lassen.
The proposed designs give the highest throughput against
MVAPICH2-GDR and Spectrum MPI. Note that there are
issues in running heFFTe with OpenMPI + UCX on Lassen,

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:44:59 UTC from IEEE Xplore. Restrictions apply.

Bl Proposed hybrid All-to-all
s MVAPICH2-GDR 2.3.6

10°

g BN NCCL2.11.4

o 102{ mmm OpenMPI 4.1.1 + UCX 1.11.1
s

a

<

=)

=

I}

<

=

512x
16 16 16 16 16 16
Tensor Size

1Kx 2Kx 4Kx 8Kx 1Mx

(a) 8 GPUs (1 node 8 ppn)

Throughput (Gbps)

Bl Proposed hybrid All-to-all
s MVAPICH2-GDR 2.3.6
BN NCCL2.11.4

B OpenMPI4.1.1 + UCX 1.11.1

512x 1Kx 2Kx 4Kx 8Kx 1Mx 16Mx
16 16 16 16 16 16 16
Tensor Size

(b) 32 GPUs (4 nodes 8 ppn)

102{ mmm Proposed hybrid All-to-all
W= MVAPICH2-GDR 2.3.6

101| mmm NCCL2.114

B OpenMPI 4.1.1 + UCX 1.11.1

Throughput (Gbps)
=
1)
2

512x 1Kx 2Kx 4Kx 8Kx

1Mx 16Mx
16 16 16 16 16 16 16
Tensor Size

(c) 64 GPUs (8 nodes 8 ppn)

Fig. 10. Comparison of application-level (DeepSpeed) Alltoall Operations on ThetaGPU

Proposed hybrid All-to-all
MVAPICH2-GDR 2.3.6

mmm Proposed hybrid All-to-all
BN NCCL2.11.4

Bl Proposed hybrid All-to-all
mmm NCCL2.11.4

NCCL2.11.4
OpenMPI 4.1.1 + UCX 1.11.1
Spectrum MPI 10.3.1.03

Throughput (Gbps)
Throughput (Gbps)

256x 512x 1Kx 2Kx 4Kx 8Kx 32x 64x
4x4 4x4 4x4 4x4 4x4 4x4 32x4 32x4
Tensor Size

(a) 4 GPUs (1 node 4 ppn)

B OpenMPl 4.1.1 + UCX 1.11.1

Throughput (Gbps)

128x 256x 512x 1Kx 4x X 16x 32x 64x 128x
32x4 32x4 32x4 32x4 256x4 256x4 256x4 256x4 256x4 256x4
Tensor Size Tensor Size

(b) 32 GPUs (8 nodes 4 ppn)

(c) 256 GPUs (64 nodes 4 ppn)

Fig. 11. Comparison of application-level (DeepSpeed) Alltoall Operations on Lassen

10° 10° 10°
" Bl Proposed hybrid All-to-all B Proposed hybrid All-to-all B Proposed hybrid All-to-all

< 10" msm MVAPICH2-GDR 2.3.6 5 m=E MVAPICH2-GDR 2.3.6 = W= MVAPICH2-GDR 2.3.6

a 103] ™M OpenMPI4.1.1+UCX 1.11.1 2 10° B OpenMPl 4.1.1 + UCX 1.11.1 g 10° B OpenMPl 4.1.1 + UCX 1.11.1
=} (=} <}

I o I

S 102 () e

= 5 10! E]

& 10 £ 2

B g ES

g 10° 8 8

< <1071 <

F F =

107t

32 64 128

Size (cube)

256 512 32 64

(a) Alltoall, 8 GPUs (1 node 8 ppn)

128

Size (cube)

(b) Alltoall, 32 GPUs (4 nodes 8 ppn)

256 512 1024

64 128
Size (cube)

256 512 1024

(c) Alltoall, 128 GPUs (16 nodes 8 ppn)

10° 10° 10°
mmm Proposed hybrid All-to-all mmm Proposed hybrid All-to-all . mmm Proposed hybrid All-to-all

& 10%Y mmm MVAPICH2-GDR 2.3.6 o 10%Y mmm MVAPICH2-GDR 2.3.6 10%) m=m MVAPICH2-GDR 2.3.6
g v a
g 103 ™ OpenMPI411+UCK 1111 g 10] ™ OpenMPI411+UCK 1111 g 03] ™ OpenMPI4.11+UCK1111
o I fr
9 102 9 02 9 102
= = =
3 2 5.,
< 10 < 10t < 10
E g E§
£ w0 2 100 g 100
= = [

10-1 10-1 107t

32 64

128 256
Size (cube)

512 1024

32 64

(d) Alltoallv, 8 GPUs (1 node 8 ppn)

128
Size

(e) Alltoallv, 32 GPUs (4 nodes 8 ppn)

256
(cube)

512 1024 64 128

256
Size (cube)

512 1024 2048

(f) Alltoallv, 128 GPUs (16 nodes 8 ppn)

Fig. 12. Comparison of application-level (heFFTe) Alltoall and Alltoallv Operations on ThetaGPU

and we gets errors for running heFFTe with Spectrum MPI
above 32 nodes.

We also evaluated our designs with another HPC appli-
cation, PSDNS, on Lassen. Figure 14 shows the latency of
PSDNS from 1 node to 64 nodes. Our proposed designs
give the lowest latency for every message size and scale.
For example, on one node, our design is 16%-33% faster

than MVAPICH2-GDR. On 16 nodes, our design has only
1.05 sec per iteration at size 1/3, which is 71% better than
MVAPICH2-GDR. Note that PSDNS should be built with
IBM XL compiler, and there are issues building OpenMPI
+ UCX with IBM XL compiler. Also, running PSDNS with
Spectrum MPI has errors above two nodes, so we only include
MVAPICH2-GDR as the baseline here.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:44:59 UTC from IEEE Xplore. Restrictions apply.

Bl Proposed hybrid All-to-all
s MVAPICH2-GDR 2.3.6
B Spectrum MPI 10.3.1.03

3

=]
-
N
o

=
=)
S

N o
S =)
o
S o

Throughput (GFlops/s)
IS
S

~N
S
Throughput (GFlops/s)

N
o

o
o

32 64 128

Size (cube)

256 64

(a) alltoall, 8 GPUs (2 nodes 4 ppn)

Bl Proposed hybrid All-to-all
s MVAPICH2-GDR 2.3.6
B Spectrum MPI 10.3.1.03

(b) alltoall, 32 GPUs (8 nodes 4 ppn)

Size (cube)

100

Bl Proposed hybrid All-to-all
s MVAPICH2-GDR 2.3.6

Throughput (GFlops/s)

128 256 64 128

Size (cube)

256

(c) alltoall, 128 GPUs (32 nodes 4 ppn)

200{ mmm Proposed hybrid All-to-all
W MVAPICH2-GDR 2.3.6

B Spectrum MPI 10.3.1.03

-
u
=)

Throughput (GFlops/s)
Throughput (GFlops/s)
]
S

32

64 128

Size (cube)

256

32

64

(d) Alltoallv, 8 GPUs (2 nodes 4 ppn)

B Proposed hybrid All-to-all
s MVAPICH2-GDR 2.3.6
s Spectrum MPI 10.3.1.03

128
Size (cube)

(e) Alltoallv, 32 GPUs (8 nodes 4 ppn)

800

B Proposed hybrid All-to-all
s MVAPICH2-GDR 2.3.6

o
1=}
1=

Throughput (GFlops/s)
N B
S S
3 3

256 512 1024 32 64 128 256

Size (cube)

512 1024

(f) Alltoallv, 128 GPUs (32 nodes 4 ppn)

Fig. 13. Comparison of application-level (heFFTe) Alltoall and Alltoallv Operations on Lassen

~
n

mmm Proposed hybrid All-to-all
m= MVAPICH2-GDR 2.3.6

mmm Proposed hybrid All-to-all
m= MVAPICH2-GDR 2.3.6

o o

B N

[l S
[P
0w o

o
j
S

Latency (second)
o
S

Latency (second)

o
o
a

o
o
8

—
512

64
Tensor Size

256 32 64 128 256

Tensor Size

1024

(a) 4 GPUs (1 node 4 ppn) (b) 16 GPUs (4 nodes 4 ppn)

5
mmm Proposed hybrid All-to-all
m== MVAPICH2-GDR 2.3.6

o
o
&

mm Proposed hybrid All-to-all
m= MVAPICH2-GDR 2.3.6

°
o
3

o

&
°
e
)

°
j
S

Latency (second)
°
5

Latency (second)

o
o
S

o
S
38

32

64 128 256

Tensor Size

512 1024

32

64 128 256

Tensor Size

512 1024

(c) 64 GPUs (16 nodes 4 ppn) (d) 256 GPUs (64 nodes 4 ppn)

Fig. 14. Comparison of application-level (PSDNS) Alltoall Operations on Lassen

V. RELATED WORK

While many works have designed MPI_Alltoall algorithms
on host buffers [16]-[19], few previous works have ex-
plored MPI_Alltoall algorithms specifically for device buffers
on GPU-dense systems [20]. Further, most existing GPU
MPI_Alltoall algorithms use pipelining [18] [17] or non-
blocking methods [21] to hide MPI_Alltoall’s relatively high
communication overhead. With the advent of the NVIDIA
DGX family of HPC systems, the ratio of GPUs to CPUs
(number of sockets) on recent systems has increased. Even
fewer studies exist on MPI_Alltoallv. Some of the past designs
for MPI_Alltoallv focus on CPU systems [22] only.

NVIDIA DGX systems have been a testbed for new efficient
collective communications in many prior works. Awan et
al. investigated efficient algorithms for MPI_Bcast on DGX
systems [23], [24]. The work by Cai et al. [25] demonstrated
performance benefits on a DGX system by synthesizing col-
lective algorithms for a specific topology.

Deep learning (DL) applications are increasingly depen-
dent on dense collectives and distributed neural networks.
Past works have optimized the MPI_Allreduce collective for

32

distributed DL training [26], yet the MPI_Alltoall collective
is increasingly becoming a bottleneck in DL training for
models in recommendation [27], and language [28], [29].
Distributed deep learning frameworks have recently accounted
for this by adding Alltoall support [13], [30], [31]. Given
that recent studies have shown that CUDA IPC is vital to
efficient MPI_Allreduce for DL training [32], we expect
similar benefits for DL training with MPI_Alltoall.

VI. CONCLUSION

With the emergence of modern GPU systems equipped with
faster, denser, and more connected GPU compute nodes, it
is important that communication middleware, such as MPI,
utilizes these advancements to provide enhanced performance
on these novel systems. In this paper, we improved the per-
formance of GPU-based Alltoall and Alltoallv MPI collective
calls on dense GPU systems and proposed a new GPU-aware
IPC-advanced design. Considering the different properties of
implementations, we have developed a hybrid strategy to use
the best communication mechanism to reduce the overhead.
For an intra-node environment, we used a kernel-based IPC
implementation for smaller messages and a memcpy-based

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:44:59 UTC from IEEE Xplore. Restrictions apply.

IPC implementation for larger messages. For an inter-node
environment, we utilized the GPU Direct RDMA library to
transfer data across nodes and exploited overlap with the intra-
node communication by using the proposed IPC-advanced
designs. The evaluations have shown that the proposed designs
outperform the baseline by 4.1x and 2.5x for small and large
messages on one ThetaGPU node, and by 76% for large
messages on 16 ThetaGPU nodes. For the DL application
DeepSpeed, our proposed designs demonstrate up to 59x better
performance on ThetaGPU. In HPC applications heFFTe and
PSDNS, our proposed designs reach approximately 27x and
71% better performance on ThetaGPU and Lassen, respec-
tively. As future work, we plan to extend our designs to other
common collectives, such as gather and scatter.

VII. ACKNOWLEDGEMENT

This research is supported in part by NSF grants #1818253,
#1854828, #1931537, #2007991, #2018627, #2112606, and
XRAC grant #NCR-130002.

REFERENCES

[1] A. Ayala, “heFFTe profiler,” https://heffte.icl.utk.edu/, 2021.

[2] A. Ayala, S. Tomov, A. Haidar, and J. Dongarra, “heffte: Highly
efficient fft for exascale,” in Computational Science — ICCS 2020, V. V.
Krzhizhanovskaya, G. Zavodszky, M. H. Lees, J. J. Dongarra, P. M. A.
Sloot, S. Brissos, and J. Teixeira, Eds. Cham: Springer International
Publishing, 2020, pp. 262-275.

[3] H. Wang, S. Potluri, D. Bureddy, C. Rosales, and D. K. Panda,
“Gpu-aware mpi on rdma-enabled clusters: Design, implementation and
evaluation,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 10, pp. 2595-2605, Oct 2014.

[4] D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour,
“The mvapich project: Transforming research into high-
performance mpi library for hpc community,” Journal of
Computational ~Science, p. 101208, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877750320305093

[S] Open MPI, “Open MPI: Open Source High Performance Computing,”
https://www.open-mpi.org/, 2004, Accessed: March 17, 2022.

[6] IBM, “IBM Spectrum MPI: Accelerating high-performance application
parallelization,” https://www.ibm.com/us-en/marketplace/spectrum-mpi,
2018, Accessed: March 17, 2022.

[71 NVIDIA, “NCCL,” https://github.com/NVIDIA/nccl, 2016.

[8] S. Potluri, H. Wang, D. Bureddy, A. K. Singh, C. Rosales, and D. K.
Panda, “Optimizing MPI Communication on Multi-GPU Systems Us-
ing CUDA Inter-Process Communication,” in Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE
26th International, May 2012, pp. 1848-1857.

[9] NVIDIA, “NVIDIA GPUDirect,” https://developer.nvidia.com/gpudirect.

[10] Argonne National Laboratory, “Theta/ThetaGPU Machine Overview,”
https://www.alcf.anl.gov/support-center/theta/theta-thetagpu-overview,
2021, Accessed: March 17, 2022.

[11] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer, “TOP 500
Supercomputer Sites,” http://www.top500.org, 1993.

[12] D. Bureddy, H. Wang, A. Venkatesh, S. Potluri, and D. K. Panda, “OMB-
GPU: A Micro-benchmark Suite for Evaluating MPI Libraries on GPU
Clusters,” in Proceedings of the 19th European Conference on Recent
Advances in the Message Passing Interface (EuroMPI), 2012, pp. 110—
120.

[13] Microsoft, “DeepSpeed,” https://www.deepspeed.ai, 2021, Accessed:
March 17, 2022.

[14] NVIDIA, “NCCL API - Types,” https://docs.nvidia.com/deeplearning/
nccl/user-guide/docs/api/types.html, 2021.

[15] K. Ravikumar, D. Appelhans, and P. K. Yeung, “Gpu acceleration
of extreme scale pseudo-spectral simulations of turbulence using
asynchronism,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3295500.3356209

33

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

S. Li, Y. Zhang, and T. Hoefler, “Cache-oblivious mpi all-to-all commu-
nications based on morton order,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 3, pp. 542-555, March 2018.

A. K. Singh, S. Potluri, H. Wang, K. Kandalla, S. Sur, and D. K.
Panda, “Mpi alltoall personalized exchange on gpgpu clusters: Design
alternatives and benefit,” in 2011 IEEE International Conference on
Cluster Computing, Sep. 2011, pp. 420-427.

A. K. Singh, “Optimizing all-to-all and allgather communications on
gpgpu clusters,” Ph.D. dissertation, The Ohio State University, 2012.
J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby, “Efficient
algorithms for all-to-all communications in multiport message-passing
systems,” IEEE Transactions on parallel and distributed systems, vol. 8,
no. 11, pp. 1143-1156, 1997.

K. S. Khorassani, C.-H. Chu, Q. G. Anthony, H. Subramoni, and D. K.
Panda, “Adaptive and hierarchical large message all-to-all communica-
tion algorithms for large-scale dense gpu systems,” in 202/ IEEE/ACM
21st International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), 2021, pp. 113-122.

A. Venkatesh, K. Hamidouche, H. Subramoni, and D. K. Panda,
“Offloaded gpu collectives using core-direct and cuda capabilities on
infiniband clusters,” in 2015 IEEE 22nd International Conference on
High Performance Computing (HiPC), Dec 2015, pp. 234-243.

K. Kandalla, H. Subramoni, K. Tomko, D. Pekurovsky, and D. Panda,
“A novel functional partitioning approach to design high-performance
mpi-3 non-blocking alltoallv collective on multi-core systems,” in 2013
42nd International Conference on Parallel Processing, 2013, pp. 611—
620.

A. A. Awan, K. Hamidouche, A. Venkatesh, and D. K. Panda, “Efficient
large message broadcast using nccl and cuda-aware mpi for deep
learning,” in Proceedings of the 23rd European MPI Users’ Group
Meeting, ser. EuroMPI 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 15-22. [Online]. Available:
https://doi.org/10.1145/2966884.2966912

A. A. Awan, C. Chu, H. Subramoni, and D. K. Panda, “Optimized
broadcast for deep learning workloads on dense-gpu infiniband clusters:
MPI or nccl?” CoRR, vol. abs/1707.09414, 2017. [Online]. Available:
http://arxiv.org/abs/1707.09414

Z. Cai, Z. Liu, S. Maleki, M. Musuvathi, T. Mytkowicz,
J. Nelson, and O. Saarikivi, “Synthesizing optimal collective
algorithms,” CoRR, vol. abs/2008.08708, 2020. [Online]. Available:
https://arxiv.org/abs/2008.08708

C.-H. Chu, P. Kousha, A. A. Awan, K. S. Khorassani, H. Subramoni,
and D. K. Panda, “ NV-Group: Link-Efficient Reduction for Distributed
Deep Learning on Modern Dense GPU System,” in The 34th ACM
International Conference on Supercomputing (ICS-2020), 2020.

M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov,
A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao,
B. Jia, L. Xiong, and M. Smelyanskiy, “Deep learning
recommendation model for personalization and recommendation
systems,” CoRR, vol. abs/1906.00091, 2019. [Online]. Available:
http://arxiv.org/abs/1906.00091

D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun,
N. Shazeer, and Z. Chen, “Gshard: Scaling giant models with conditional
computation and automatic sharding,” arXiv preprint arXiv:2006.16668,
2020.

J. He, J. Qiu, A. Zeng, Z. Yang, J. Zhai, and J. Tang, “Fastmoe: A fast
mixture-of-expert training system,” 2021.

N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani,
P. Koanantakool, P. Hawkins, H. Lee, M. Hong, C. Young,
R. Sepassi, and B. A. Hechtman, “Mesh-tensorflow: Deep learning
for supercomputers,” CoRR, vol. abs/1811.02084, 2018. [Online].
Available: http://arxiv.org/abs/1811.02084

A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in TensorFlow,” CoRR, vol. abs/1802.05799, 2018. [Online].
Available: http://arxiv.org/abs/1802.05799

Q. Anthony, L. Xu, H. Subramoni, and D. K. D. Panda, “Scaling single-
image super-resolution training on modern hpc clusters: Early experi-
ences,” in 2021 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2021, pp. 923-932.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 06,2022 at 22:44:59 UTC from IEEE Xplore. Restrictions apply.

