
Article

A scale-dependent measure of system
dimensionality

Highlights
d The scale-dependent dimensionality unifies widely used

measures of dimensionality

d Dynamical systems show distinct dimensionality properties

at different scales

d The scale-dependent dimensionality allows us to identify

critical scales of the system

d Fundamental trends in dimensionality of neural activity

depend on the brain state

Authors

Stefano Recanatesi, Serena Bradde,

Vijay Balasubramanian,

Nicholas A. Steinmetz,

Eric Shea-Brown

Correspondence
stefano.recanatesi@gmail.com (S.R.),
serena.bradde@gmail.com (S.B.),
etsb@uw.edu (E.S.-B.)

In brief
We present a scale-dependent

dimensionality analysis that reveals the

effective degrees of freedom in a complex

system at all scales. We illustrate how,

when applied to various types of data, the

scale-dependent participation ratio

exposes interesting geometrical patterns.

Our method incorporates widely known

dimensionality measures and is

applicable to multivariate data in a wide

range of scientific areas.

Recanatesi et al., 2022, Patterns 3, 100555
August 12, 2022
https://doi.org/10.1016/j.patter.2022.100555 ll

https://doi.org/10.1016/j.patter.2022.100555
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100555&domain=pdf


Article

A scale-dependent measure
of system dimensionality
Stefano Recanatesi,1,7,8,* Serena Bradde,2,3,7,8,* Vijay Balasubramanian,2,6 Nicholas A. Steinmetz,4,6

and Eric Shea-Brown1,5,7,8,*
1Center for Computational Neuroscience, University of Washington, Seattle, WA 98195, USA
2David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, PA 19104, USA
3American Physical Society, Ridge, NY 11709, USA
4Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
5Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
6Senior author
7These authors contributed equally
8Lead contact
*Correspondence: stefano.recanatesi@gmail.com (S.R.), serena.bradde@gmail.com (S.B.), etsb@uw.edu (E.S.-B.)
https://doi.org/10.1016/j.patter.2022.100555

SUMMARY

A fundamental problem in science is uncovering the effective number of degrees of freedom in a complex
system: its dimensionality. A system’s dimensionality depends on its spatiotemporal scale. Here, we intro-
duce a scale-dependent generalization of a classic enumeration of latent variables, the participation ratio.
We demonstrate how the scale-dependent participation ratio identifies the appropriate dimension at local,
intermediate, and global scales in several systems such as the Lorenz attractor, hidden Markov models,
and switching linear dynamical systems. We show analytically how, at different limiting scales, the scale-
dependent participation ratio relates to well-established measures of dimensionality. This measure applied
in neural population recordings across multiple brain areas and brain states shows fundamental trends in the
dimensionality of neural activity—for example, in behaviorally engaged versus spontaneous states. Our novel
method unifies widely used measures of dimensionality and applies broadly to multivariate data across
several fields of science.

INTRODUCTION

In many branches of science, complex systems are charac-
terized by simultaneous values of many observables evolving
over time. For example, the operational state of a living cell
may be summarized by the expression levels of myriad pro-

teins. Likewise, the instantaneous activity levels of the many
neurons in a brain region summarize its state.1 The dynamics
of these systems can be much lower dimensional. For
example, at the coarsest scale, the overall dynamics of a
brain area may be described just by slow fluctuations in the
mean neural firing rate, i.e., a single dynamical variable.2,3

THE BIGGER PICTURE Data mining is based on the discovery of structure within data. However, such a
structure is often complex. The fact that the properties of data distributions vary depending on the scale
at which they are examined is a fundamental component of this complexity. For example, a manifold
may appear smooth at small scales but jagged or even fractal at larger scales. This scale dependence is
critical, yet it is commonly overlooked. We introduce a fundamental approach for analyzing the properties
of data distributions at all scales. This single scale-dependent description enables simultaneous examina-
tion of how characteristics vary across all scales, offering insight into the structure of the data distribution.
This will help us gain a better grasp of data structures and pave the way for future theoretical advances in
data science.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
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At an intermediate scale, the same dynamics could consist of
several characteristic firing patterns evolving smoothly on a
fixed d-dimensional manifold embedded in the state space.
If we knew the underlying dynamical system, we could derive
the relevant manifold at each scale from first principles. But in
many of the most exciting complex systems becoming acces-
sible to experimental study, our goal is to discover the
dynamical system, a task that starts by determining the num-
ber of effective latent variables, i.e., the dimensionality of the
system.

One approach to this problem has roots in point-set topology:
a manifold is d dimensional if the number of uniformly sampled

points in a region of characteristic length L scales as Ld. This
fact leads to definition of the capacity dimension D0

4 in
terms of the number n of Euclidean boxes of side length e
needed to cover the system’s trajectory in its embedding space:

D0 = lime/0
log n

logð1=eÞ. This intuitive quantity is difficult to compute

in more than three dimensions,5 while sampling of dynamical
systems is often too coarse to directly estimate the e/ 0
limit.6–8 A variation on this idea, easier to estimate in high dimen-
sions, is the correlation dimension Dcorr ,

9 determined from the
scaling of the number of pairs of data points with separations
less than r, in the r/0 limit. In this way, the capacity dimension
and the correlation dimension both give local, fine-scale mea-
sures of dimension.9,10

A second class of approaches starts with the correlation ma-
trix between observations. For example, techniques related to
principal-component analysis define the effective dimension as
the number of eigenmodes of the correlation matrix that capture
most of the variance. Substantial literature analyzes how to
choose the threshold that defines ‘‘most,’’4,11 but the resulting
arbitrariness makes it challenging to define the dimension asso-
ciated to different scales of observation.12,13 A dimension can be
definedmore naturally from the participation ratio (PR),1,14 which
counts the effective dimensions along which data are spread as
a ratio of the square of the first moment and the second moment
of the eigenvalue probability density function.15 Here, we gener-
alize this notion to a measure of effective dimension at different
observation scales and show that it interpolates between corre-
lation dimension at small scales and PR dimension globally. We
show that the new quantity has intuitive meanings when applied
to dynamical systems including the Lorenz attractor and clus-
tered systems like hidden Markov models. We then apply our
method to elucidate the structure of neural population activity
in different brain areas and states.

RESULTS

Generalizing the notion of dimension to all scales
Consider T observations of N observables xðiÞ, i = 1;.T
sampled from a data distribution M. For example, xðiÞ could
be generated by a dynamical process xðt + tÞ = F ðxðtÞÞ with
specified initial conditions. The empirical covariance matrix S

over xðiÞ is S = 1
T # 1

PT
i = 1ðxðiÞ # xÞðxðiÞ # xÞu, anN3Nmatrix

with x = 1
T

PT
i xðiÞ. The eigenvalues of S are li = 1::N, and the

associated spectral density is rðlÞ. The PR dimension, DPR, is
defined as the ratio between the second and the first moments
of the spectral density:15

DPR =
TrðSÞ2

Tr
!
S2

" =

#PN
j = 1lj

$2

PN
i = 1l

2
j

=

! R
l rðlÞ dl

"2
R
l2 rðlÞ dl

: (Equation 2.1)

DPR measures the concentration of the eigenvalue distribution
and quantifies how many eigenmodes are needed to substan-
tially capture the data distribution, a similar notion to counting ei-
genmodes (or principal components) that capture most of the
variance.

To extend DPR to a scale-dependent measure of dimension,
we first consider a ball of radius r, BiðrÞ, around a point xðiÞ.
The local covariance matrix of points within this ball is SiðrÞ =

1
M# 1

P
x0 ˛BiðrÞðx

0 # x0Þðx0 # x0Þu, where M counts points in

BiðrÞ and x0 is their average. In local principal-component anal-
ysis, the dominant eigenvectors of this matrix determine the local
subspace in which the distribution M is localized. Likewise,
computing the PR dimension of this covariancemeasures a local
dimension. Averaging over all starting points yields the scale-
dependent PR (sdPR)

DPRðrÞ =
1

T

X

i

ðTrSiðrÞÞ2

TrSiðrÞ2
; (Equation 2.2)

an effective dimension up to scale r. Evaluating DPRðrÞ for the
Lorenz attractor and the noisy two-dimensional (2D) spiral4 il-
lustrates its scale-dependent properties. For the Lorenz attrac-
tor, DPRðrÞ is roughly 2 across scales (Figure 1B), reflecting
dense coverage of a 2-manifold by this chaotic system and
agreeing at small scales with the Lyapunov dimension arising
from its dynamics.16 For the spiral, DPRðrÞ starts from 2 for
small r, reflecting the spread of local noise, and then dips to
approach $1, reflecting the line making the spiral, and returns
to 2 at large scales r, reflecting the overall embedding of the
spiral (Figure 1E).

Alternatively, the correlation dimension can be generalized

across scales.17,18 Let dij =
%%%%xi # xj

%%%% be distances between

samples, and define the correlation integral at distance r as

CðrÞ = limT/N
1

TðT # 1Þ
P

isjHðr # dijÞ =
R r
0 PðxÞ dx. Here, H is

the Heaviside step function, and PðxÞ is the distribution of pair-

wise distances. We expect that CðrÞfrd, for small r, where d is
the dimension of the manifold supporting the data M. Then,

Dcorr is defined as Dcorr = limr/0
log CðrÞ
log r . Although Dcorr is

defined as r/0, it is sometimes extended to general r as the

log-log derivative DcorrðrÞ = d log CðrÞ
d log r = d

dv log CðevÞ ; where v =

log r.4 To overcome sampling constraints as r/0, one seeks
a plateau in DcorrðrÞ17 at small but finite r, a valid approach if
the dimension is relatively stable across a range of scales.
This method effectively treats low-dimensional strange attrac-
tors,16 but sampling remains a challenge for high-dimensional
manifolds, and the problem is compounded if the effective
dimension varies with scale.6,7,19 Likewise, for any bounded
dataset, Dcorr/0 at large r simply because the data look
point-like at large scales. (Technically, the correlation integral

CðrÞ =
R r
0 PðxÞdx/1 by construction at large r, so its derivative

vanishes.) Indeed, applying DcorrðrÞ to the Lorenz attractor, we
recover the expected dimension just bigger than 2 at small
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scales, but the value declines to zero at large scales at which
the compact attractor is effectively point-like (Figure 1C). By
contrast, DPRðrÞ (Figure 1B) remains roughly constant across
scales, as it performs a kind of adaptive rescaling (via the de-
nominator in Equation 2.1). Similarly, DcorrðrÞ declines to zero
at large scales for the noisy spiral (Figure 1F), while the PR
dimension (Figure 1E) stably captures the essentially 2D
large-scale structure. Note that DcorrðrÞ also produces diffi-
cult-to-interpret oscillations at intermediate scales.
At small scales, we can derive a universal expression for the

PR DPRðr/0Þ via a tangent space approximation to the data
manifold that enables a new link between the PR and the corre-
lation dimension. Approximating the local distribution as a

Gaussian, MzMGauss = ð2pÞ#N=2
%%%Sj# 1=2e#

1
2 ðx#mÞS# 1ðx#mÞu ,

where m is the mean and S is the covariance. Rotating and
centering the data so that mh0 and S is diagonal, each compo-
nent of the sampled vectors will be normally distributed: xa $
N ð0; laÞ, where la is an eigenvalue of S. Thus, in this limit,

DPRðr/0Þ = ð
P

alaÞ
2=
P

al
2
a.

In the same limit, the correlation dimension is determined by
the distribution of squared Euclidean distances between
sampled points. For any pair, the distance squared is a sum
of squared separations in each coordinate. Since the coordi-
nates are Gaussian distributed, the squared separations are

Gamma distributed: Gðk; qaÞðxÞ = xk# 1e# x=qa

qkaGðkÞ
, with x > 0 where

k = 1=2 and qa = 2la for the ath coordinate direction. The

A

B

C

D

E

F

Figure 1. The scale-dependent dimension-
ality
(A) Lorenz attractor: 105 points sampled from the

attractor.

(B) The scale-dependent PR (sdPR) dimension is

stable across scales.

(C) The scale-dependent correlation dimension

matches the Lyapunov dimension 2.05 at small

scales but vanishes at large scales.

(D) Noisy spiral: 105 points sampled from the 2D

spiral with local noise.

(E) The sdPR dimension is 2 at small scales re-

flecting spread due to noise, approaches 1 at in-

termediate scales reflecting the line, and 2 at large

scales reflecting the coarse-grained spiral.

(F) The scale-dependent correlation dimension in-

terpolates non-montonically between 2 and 0.

Details of the sdPR are in Section S1.

convolution of independent Gamma distri-
butions for each coordinate gives the
overall distribution of squared Euclidean
distances between sampled points as an
approximate Gamma distribution with pa-
rameters ðks; qsÞ given by the Welch-Sat-
terthwaite equation20–23 simplifying here

to ks = 1
2

ð
P

a
qaÞ2P
a
q2a

; qs =
P

a
q2aP

a
qa
. Exploiting

this formula to compute the correlation in-
tegral in the r/0 limit (cf. Section S3)
yields

Dcorr =

!P
aqa

"2
P

aq
2
a

=

!P
ala

"2
P

al
2
a

= DPRðr/0Þ : (Equation 2.3)

Thus, the sdPR coincides with the correlation dimension, a
well-accepted local notion of dimension, at small scales. In Sec-
tion S2 and Figure S1, we also relate sdPR to the Renyi dimen-
sion for small scales. We will next show in several tractable
models that the sdPR—unlike the correlation and Renyi dimen-
sions—generalizes naturally across scales.

Dimensionality across scales

We numerically computed DcorrðrÞ and DPRðrÞ for isotropic
multidimensional Gaussians. As shown in Figures 2A and
S2A, these examples illustrate the relationship between
sdPR and the correlation dimension. While Dcorr decreases
at larger scales, DPR remains constant. Furthermore, we see
how, limiting the sampled statistics to 50,000 points, it is
not possible to achieve a plateau in Dcorr at small scales,
even for d = 10—this means that capturing the dimension-
ality of the system from the correlation dimension in Figure 2A
(left) is difficult, if not impossible. In the case of 2D Gaussians
with increased elongation along one of the coordinate axes
(Figures 2B and S2B), the correlation dimension accurately
quantifies the local two dimensions in the regime r/0 but
fails to quantify the distribution’s skewness, which effectively
makes it 1D at large scales. In comparison, DPR quantifies
both the local two dimensions and the skewness, which
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results in a reduced dimension at larger scales. The correla-
tion dimension captures well the local two dimensions in the
regime r/0 but fails to quantify the skewness of the distribu-
tion, which makes it effectively 1D at large scales. By
contrast, DPR quantifies both the local two dimensions and
the skewness, which induces a lower dimension at larger
scales.

A key further test of the sdPR is to understand how it behaves
in scale-free systems. Thus, we considered multidimensional
Gaussians whose covariance matrices have power-law-distrib-
uted eigenvalues, resembling structures near criticality. In these
cases, sdPR equals the full rank of the covariance matrix at small
scales and declines at large scales (Figures 2C and S2C). The
global PR (Equation 2.1), at large scales, can be quantitatively
captured; with a scale-free spectrum la = ba#a, we find

DPR =
ð
PN

i
liÞ

2

PN

i
l2i

=
ð
PN

a
ba#aÞ

2

PN

a
ba# 2a

= zðaÞ2
zð2aÞ ; where zðaÞ is the Riemann

zeta function. This global dimension declines monotonically
with the scaling exponent a: larger a creates a more skewed dis-
tribution that is effectively lower dimensional when viewed at
large scales (Figure 2C, right, inset).24 In contrast to this consis-
tent behavior of the sdPR, the correlation dimension declines to
zero at large scales, failing to capture the data dimension (Fig-
ure 2C, left). Section S3 of the supplemental experimental pro-
cedures contains another scale-free example, as well as an
example based on receptive field maps of neural populations
(see also Figure S3).

A

B

C

Figure 2. The correlation dimension versus
the PR dimension
(A) (Left) Scale-dependent correlation dimension

and (right) sdPR of the multidimensional isotropic

d-dimensional Gaussian distribution. Different lines

correspond to increasing dimension d, cf. legend.

(B) (Left) Scale-dependent correlation dimension

and (right) sdPR for the 2D skewed Gaussian dis-

tribution. The first eigenvalue of the diagonalized

covariance matrix S of this distribution is l1 = 1,

while the second varies according to the legend,

determining the elongation of the distribution.

(C) (Left) Scale-dependent correlation dimension

and (right) sdPR of the d-dimensional Gaussian

distribution with scale-free power law spectrum.

Different lines correspond to increasing dimension

d, cf. legend. In this case, the dimensions have ei-

genvalues that are distributed according to a power

law with a = 4 so that the k # th eigenvalue is lk =

k#a. For each case, 50,000 points were randomly

sampled. Dashed lines are extrapolations of the

plotted curves in the left panel (right panel extrap-

olations not shown).

(C) (Right inset) PR dimension as a function of the

exponent a for a scale-free spectrum of the

covariance eigenvalues: la = ba#a, where a is

the index of the sorted eigenvalues. Then, DPR at

large scales converges to DPR = zðaÞ2
zð2aÞ.

Limitations of the study
The comparison between sdPR and corre-
lation dimension highlighted advantages of
sdPR over the correlation dimension.

However, there also some limitations in evaluating sdPR, espe-
cially concerning its computational complexity.
The primary advantage of sdPR over correlation dimension is

that it gives an estimate of the dimensionality across all scales.
The disadvantages stem from the fact that DPRðrÞ is a local
point-wise dimensionality estimator: DPRðrÞ is calculated as
the average of multiple data points surrounding each ball of
radius r (see Equation 2.2). Both the sdPR and correlation di-
mensions require the computation of second order statistics:
the covariance matrix S for the sdPR and the matrix of squared
distances for the correlation dimension. These two quantities
have the same computational cost since they are related:
Dij = Sii +Sjj # 2Sij. Their computational cost scales as
OðNT2Þ, where T is the number of data points and N is the
dimensionality of the data. Thus, the increased computational
cost of sdPR coming from the average over points is the
main difference between the costs of the correlation dimen-
sion’s and sdPR’s.

However, the computational cost of sdPR, arising from the
point-wise average in its definition, can be limited in practice,
as the estimation around independent points need not be carried
out over all points but just on a relatively small subset of repeats
(we useNrepeats = 100). An analysis of the bias over independent
repetitions yields a fast decay of the estimation bias as 1=Nrepeats

(cf. Section S3.4 and Dahmen et al.25). Given this rapid conver-
gence, it is enough to select 1 % Nrepeats % T when T is in the
order of thousands or higher.
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A second consequence of sdPR arising from a local point-wise
estimator is that the value of the minimum scale accessible to
sdPR is higher than for the correlation dimension. The minimum
distance for which the correlation dimension can be computed is
rcorrmin = minxi ;xj ˛MðdijÞ. Meanwhile, DPRðrÞ computes the dis-

tance only within a ball of radius r around a subset of initial points
and then averages over the initial points. Therefore, theminimum

scale for sdPR is given by rsdPRmin = maxxk ˛Mðminxi ;xj ˛BkðrÞðdijÞÞ.
Thus, the correlation dimension is more granular than the sdPR

dimension, rcorrmin % rsdPRmin . Despite this apparent limitation, howev-

er, in practice, sdPR often appears to have a faster convergence
to the true dimensionality at small scales, especially for higher-
dimensional manifolds (cf. Figure 2A).

A measure of the local and global dimension
We next show how the sdPR can separate dimensionality driven
by local dynamics that are partly influenced by noise and global
dynamics that are dominated by the latent structure of a dynam-
ical system. To illustrate, we considered data generated by an
underlying hidden Markov model (HMM) with dynamics hopping
between latent states (Figures 3A and S4; Section S4). The sys-
tem is observed through measurements of noisy ‘‘emissions’’
distributed around well-separated means associated with each
latent state. Locally, the dimension should be determined by
the statistical spread of the data and hence equal the dimension
of the emission noise in the observation space. Globally, the
dimension should be related to the number of latent states and
the separation of their emissions, relative to the magnitude and
structure of the noise. The sdPR uncovers precisely this struc-
ture (example in Figure 3B; further details and examples in
Section S4) and indicates a characteristic scale for transitioning
between local and global dimensions, set by separability of the
emission distributions.
For many applications, we must contend with the challenge

that a ‘‘state’’ of the system may itself involve a characteristic
dynamical trajectory with changing internal variables. Thus, we
studied the sdPR of switching linear dynamical systems
(SLDSs) (Figures 3C and S5; Section S4), in which the latent

states of an HMM describe dynamical trajectories following an
ordinary differential equation (ODE). We found that, for interme-
diate scales r, DPRðrÞ identifies the system as 1D, which reflects
the fact that trajectories in each state follow deterministic low-
dimensional dynamics. Figure 3D demonstrates this for the
case of switching rotating dynamics; the increase in dimension-
ality at the very smallest scales reflects the addition of emission
noise. Thus, in this case, similar to Figures 1D and 1E, the local
dimension is driven by stochastic observations, the global
dimension is driven by the overall geometry of the dynamical
system, and at intermediate scales, the structure of dynamical
trajectories is revealed.

The dimensionality of neuronal data
We next applied our sdPR method to recordings of the simulta-
neous activity of thousands of neurons,26 made possible by
recent technological advances.27,28 Others have examined the
global dimension of the underlying systems;1,24,29 here, we use
sdPR to reveal differences in latent dynamics across scales, in
different brain areas and states. Thus, we analyzed 37 Neuropix-
els recordings in mice from two sensory areas (visual thalamus
and cortex) and two decision areas (frontal cortex and
midbrain).26,30,31 Animals were either in a ‘‘spontaneous’’ state
(awake, no task) or in an ‘‘engaged’’ state (performing two alter-
native forced-choice tasks; Section S5).26

We binned neural spike counts in 100 ms windows and subdi-
vided neurons into groups of 100 to compare across sessions
sampling variable numbers of units. Intriguingly, we first found
that the sdPR depended systematically on scale in the visual cor-
tex, midbrain, and frontal cortex—decreasing at larger scales
(DPRðrminÞ=DPRðrmaxÞ = 1.63 ± 0.05 mean ± SEM)—but was
roughly scale invariant in the thalamus (Figure 4A). Here, dis-
tances between neural response vectors quantify scale in the
functional space of neural activity, rather than physically on the
cortical sheet, suggesting that activity in deeper areas is struc-
tured in groups of similar patterns spread broadly over lower-
dimensional functional manifolds, like our models with skewed
or scale-invariant data covariance. The thalamus, a peripheral

A

C

B

D

Figure 3. Scale-dependent dimensionality of
hidden Markov models and switching linear
dynamical systems
(A) Example of a hidden Markov model (HMM) with

five hidden states. Right: latent space states dia-

gram.

(B) sdPR for an HMM with 2 and 10 states, with

observations made in a 30-dimensional observation

space. At small versus large scales, the dimension

is related to the structures of the observation space

(where the noisy observations are high dimensional)

and the state space (where the number of clusters

influences the dimensionality).

(C) Example of time course of 2D latent space of

switching linear dynamical system (SLDS) with two

states (red and blue). Right: latent space dynamics.

(D) sdPR of the dynamics of one state in the SLDS (a

rotating latent dynamical system). Observations

have addedGaussian noise, and therefore the local dimensionality is higher, decays to 1 (the dimensionality of a single trajectory), and finally grows to 2, capturing

the 2D circular geometry of the latent dynamics.

Figures S4 and S5 generalize the analysis of HMM and SLDS to consider different latent and observation space dimensions, noise distributions, and numbers of

states.
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sensory area directly reflecting visual input, instead shows scale-
invariant dimensionality, like our models with isotropic data
covariance, and recalling the spatial scale invariance of natural
images.32 Moreover, the closeness of the thalamus to the input
may explain its significantly higher dimension than the visual cor-
tex at every scale (see Section S5 and Figures S6 and S7),
despite massive expansion in the number of neurons involved
in cortical as opposed to thalamic representation.33 Interest-
ingly, the frontal cortex, a key player in planning and executive
control, had higher dimensionality than the midbrain in engaged,
but not spontaneous, conditions—prominently at smaller scales
accessible to our analysis despite limited data, as shown in
Figure 4B.

To assess dimensionality changes within brain areas but

across behavioral states, we computed differences DDAB
PR =

DA
PR # DB

PR between engaged and spontaneous conditions

(Figures 4C, S6, and S7), finding significant deviation in the

frontal cortex and midbrain, which are involved in decision
making, but not in sensory areas. Specifically, task-driven
neural activity was lower dimensional, especially at small and
intermediate scales, recalling Mazzucato et al.34 We also
considered a ‘‘passive’’ condition in which decision task
stimuli were presented in randomized order without eliciting
behaviors. The difference between spontaneous and passive
was not significantly different from zero (Figure 4C, green),
demonstrating that task engagement influences response
dimension.

Interpreting our results on neural data (Figure 4) in light of the
dynamical model results in Figure 3 leads to hypotheses about
the underlying system dynamics. For example, in the engaged
condition, neurons in the frontal cortex and midbrain display
reduced dimensionality at intermediate scales. This suggests
reduced complexity of the underlying latent dynamics (number
of states or latent space dimensionality in HMM and SLDS

A

B

C

Figure 4. Scale-dependent dimensionality of neural activity
(A) sdPR across regions (scale normalized from 0 to 1; Section S5).

(B) Comparison between regions with 95% confidence intervals.

(C) Difference in dimensionality between engaged and spontaneous (green) and between spontaneous and passive conditions (yellow). Dimensionality modu-

lation DAB between conditions. Shading = 95% confidence interval (CI).

Extended analysis in Figures S6 and S7.
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models) in task-driven conditions, aligning with intuitive notions
of focus on a prescribed sensorimotor behavior.

DISCUSSION

Many fields employ analogs of the global PR as a measure of
effective intrinsic dimension. In physics, this ratio was first intro-
duced in atomic spectroscopy35,36 and then used as a measure
of localization in condensed matter.15 In quantum information, a
similar quantity is called ‘‘purity’’ and measures the degree of
mixedness of states. In economics and sociology, the Herfin-
dahl-Hirschman Index measures market concentration of an in-
dustrial sector.37,38 In sociology, the related Simpson Index
quantifies diversity,39 while in politics, it is ameasure of the effec-
tive number of parties.40 In machine learning, the same quantity
serves as a metric of expressivity for learning kernels,41 and in
neuroscience, it measures the global dimension of neural
activity.1,25,34

Thus, the PR is used to quantify dimension in a remarkably
wide variety of disciplines. However, complex systems behave
differently at different scales—and thus their dimension is not
necessarily characterized by a single number. Our DPRðrÞ mea-
sures a ‘‘running dimension,’’ capturing the effective number of
latent degrees of freedom required to summarize observables
at different scales. Importantly, it also approaches the well-
known correlation dimension at the smallest scales. Moreover,
the sdPR dimension can be computed as a simple, exact func-
tional of a system’s second-order statistics, and can be derived
analytically in many cases (e.g., Dahmen et al.25 and Hu and
Sompolinsky42). Overall, our approach may be used to analyze
multivariate data in a range of domains, and we expect that it
will reveal new geometrical aspects of data across many fields.
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Resource availability
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gmail.com).

Materials availability
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Data and code availability
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date of publication. Any additional information required to reanalyze the data
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per analyzes existing, publicly available electrophysiology data deposited in

Neurodata Without Borders (NWB) format at https://figshare.com/articles/
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18. Lacasa, L., and Gómez-Gardeñes, J. (2013). Correlation dimension of

complex networks. Phys. Rev. Lett. 110, 168703. https://doi.org/10.

1103/physrevlett.110.168703.

19. Guerrero, A., and Smith, L.A. (2003). Towards coherent estimation of cor-

relation dimension. Phys. Lett. 318, 373–379. https://doi.org/10.1016/j.

physleta.2003.09.023.

20. Ballico,M. (2000). Limitations of thewelch-satterthwaite approximation for

measurement uncertainty calculations. Metrologia 37, 61.

21. Huang, H. (2016). On the welch-satterthwaite formula for uncertainty esti-

mation: a paradox and its resolution. Cal Lab the International Journal of

Metrology 23, 20–28.

22. Satterthwaite, F.E. (1946). An approximate distribution of estimates of vari-

ance components. Biometrics Bull. 2, 110. https://doi.org/10.2307/

3002019.

23. Welch, B.L. (1947). The generalization of ‘Student’s’ problemwhen several

different population variances are involved. Biometrika 34, 28. https://doi.

org/10.2307/2332510.

24. Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M., and Harris, K.D.

(2019). High-dimensional geometry of population responses in visual cor-

tex. Nature 571, 361–365. https://doi.org/10.1038/s41586-019-1346-5.

25. Dahmen, D., Recanatesi, S., Ocker, G.K., Jia, X., Helias, M., and Shea-

Brown, E. (2020). Strong coupling and local control of dimensionality

across brain areas. Preprint at bioRxiv. https://doi.org/10.1101/2020.11.

02.365072.

26. Steinmetz, N.A., Zatka-Haas, P., Carandini, M., and Harris, K.D. (2019).

Distributed coding of choice, action and engagement across the mouse

brain. Nature 576, 266–273. https://doi.org/10.1038/s41586-019-1787-x.

27. Jun, J.J., Steinmetz, N.A., Siegle, J.H., Denman, D.J., Bauza, M.,

Barbarits, B., Lee, A.K., Anastassiou, C.A., Andrei, A., Aydın, Ç., et al.
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