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Abstract—Genomic variation shared by members of the same
species that are longer than a single nucleotide are commonly
called structural variants (SVs). Though relatively rare, they
represent an increasingly important class of variation as SVs
have been associated with diseases and susceptibility to some
types of cancer. Computational approaches for detecting SVs
often involve parameters that describe certain relevant biological
phenomena. In our work, such parameters relate the incidence of
inherited and novel SVs to probabilistic models of observing these
SVs. In the work presented here, we investigate the sensitivity of
our computational framework to these parameters. In particular,
we demonstrate the robustness of our method by identifying a
wide range of parameter values that lead to high-accuracy SV
predictions in simulated data.

Index Terms—Computational genomics, next-generation se-
quencing data, structural variants, convex optimization, sparse
signal recoery

I. INTRODUCTION

Structural variants (SVs) are variations of genetic sequences
that are larger than 1 kb. Recently, SVs have been associated
with a variety of diseases, including various types of cancer
[8]. The current method for detecting SVs is to sequence an
individual’s (unknown) genome and compare it with a known
reference. These variations are commonly categorized into
three main types: deletions, inversions, and novel insertions
(see Fig. 1). When detecting SVs from alignments against
a reference genome, we are interested in the number of
fragments supporting any given position in the genome. This is
commonly referred to as the coverage. Traditional sequencing
methods offer high quality data that has been amplified to
have high coverage, but it is costly and slow to generate.
Next generation sequencing methods offer a faster, cheaper
alternative to traditional sequencing methods, but at the cost
of noisy data. Our goal is to develop methods that reduce the
false positive discovery rate of structural variants due to low
coverage.

One way for us to improve the ability to accurately predict
SVs is to include information from related individuals whom
we assume share similar features in their SV signals. While
approaches like this have improved the ability to reduce
false-positive predictions, they also increase the number false-
negative predictions because they do not allow for novel
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Fig. 1. Examples of different types of structural variations in an unknown
being compared to a common reference genome.

variants (SVs that are not inherited from a parent) in the child
genome. The method we present here builds a framework to
reconstruct SV signals from one parent and one child under the
assumption that the child possesses novel SVs. In this work,
we examine the sensitivity of this model parameters.

A. Relation to Prior Work

Previously, we have developed frameworks to recover the
signals of two parents and one child under the assumption
that the child inherits all its SVs from one and/or both parents
[4]. We hope to extend the following method to reconstruct
the genetic SV signals of two parents and one child where
the child can contain novel variants. When constructing these
methods we want to have a thorough understanding of the
parameters we use to help reflect the biological reality of the
signals we are reconstructing.

II. METHODS

For this work, we focus on tuning parameters for our
framework to detect structural variants given sequencing data
from one parent, !fp, and one child, !fc, where !fp and !fc are
sequences both of length m. We allow the child to possess
novel variants, which we assume are rarer than variants that
are inherited. In this work we make the simplified assumption
that each individual is haploid (only one copy of each chromo-
some). In our notation the true SV signal for each individual
is a binary vector, !f (j)

I ∈ {0, 1}m where a 1 at position j
indicates an SV and a 0 otherwise for individual I ∈ {p, c}.
Fig. 2 shows an example of a true SV signal for one parent
and one child. We represent the child signal as the sum of the
novel variants signal, !fn, namely, !fc = !fi+ !fn. The vectors of
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Fig. 2. Example of true SV signal in one parent !fp and child !fc, fj = 1
indicates a SV is present, 0 otherwise. Here we see an examples of the variants
that are or are not inherited, as well as a variant in the child that is novel.

observed data !yp, !yc ∈ Rm are the number of DNA fragments
supporting each potential SV. Let

!y = [!yc; !yp] and !f =
[
!fi; !fn; !fp

]
.

We assume the sequencing coverage is low, and therefore,
we assume the data follow a Poisson distribution. Thus the
general observation model can be expressed as

!y ∼ Poisson(A!f∗ + ε1), (1)

where A is a linear operator that maps the true signal to the
vector of measurements and 1 is the vector of ones.

A. Structural Variant Signal Recovery
We use the maximum likelihood principle to determine the

unknown Poisson parameter A!f∗ such that the probability of
observing the vector of Poisson data !y is maximized. We do
this by minimizing the corresponding negative Poisson log-
likelihood given by

F (!f) =
2m∑

j=1

(A!f)(j) − !y (j) log
(
(A!f)(j) + ε

)
.

The genomic variants reconstruction problem has the follow-
ing constrained optimization form:

minimize
!f∈R3m

F (!f) + τpen(!f)

subject to !f ∈ S
(2)

where pen(!f) is a sparsity enforcing penalty term and our
biological constraints are given by

S =









!fi
!fn
!fp



∈R3m :
0 ≤ !fi + !fn ≤ 1, 0 ≤ !fi ≤ !fp ≤ 1,
0 ≤ !fn ≤ 1− !fp, 0 ≤ !fi, !fn, !fp ≤ 1





.

The biological constraint given by

0 ≤ !fi + !fn ≤ 1

controls for the childs SV’s being either novel or inherited,
but not both. The next constraint controls for the case when
the child inherits an SV from the parent, then that structural
variant must also be present in the parent:

0 ≤ !fi ≤ !fp ≤ 1.

Finally, if there is a novel SV in the child, we must enforce
that there not be an SV at that same position in the parent:

0 ≤ !fn ≤ 1− !fp.

Now we need to address the fact that structural variants are
relatively rare in an individuals genome, especially structural
variants that we are calling novel variants. We do this by
incorporating an $1 penalty term into our objective function:

τpen(!f) = τ(‖!fp‖1 + ‖!fi‖1 + γ‖!fn‖1),

where γ & 1 is a penalty weight on !fn enforcing the more
severe rarity of novel variants and τ > 0 enforces sparsity on
all types of SVs.

B. Fine Tuning Sparsity Penalties
We solve the optimization problem (2) using the Sparse

Poisson Intensity Reconstruction ALgorithm (SPIRAL) [7],
which generates a sequence of convex quadratic separable
subproblems that have closed form solutions. In our pervious
work, the τ and γ parameters were chosen based on a simple
parameter search. We are motivated to explore the sensitivity
of our method to these parameters to ensure that we are
minimizing the false positive discovery rate.

We simulated data sets where !f is a vector of length 105

with 500 SVs for both the parent and child. Then we varied
the number of inherited and novel SVs in the child’s signal.
After solving for reconstrucing the SV signal for each data
set, we compute the area under curve (AUC) of the receiver
operating characteristic (ROC) for various values of τ and γ.

Fig 3. shows the AUC for each data set varying sparsity
penalties. It indicates for a well-chosen τ values the accuracy
of our framework remains consistent. The tuning of γ does
not play a critical role, but it becomes more significant as
the number of novel variants increases. In the figure, we
observe a low accuracy region in τ = 1000, which indicates
the tuning of penalty parameter are critical to the accuracy of
our framework.

III. FRAMEWORK SENSITIVITY

After we analyzed the sensitivity of our method to τ and
γ we were interested in seeing how sensitive our framework
was to the composition of the child signal. For example if
the child signal unrealistically only had novel SVs, nothing
was inherited from the parent, then leveraging the parent’s SV
signal would not give us any information to reconstruct the
child’s signal. Alternatively if the overwhelming majority of
the child’s variants were inherited then leveraging the parent’s
signal would aid in our reconstruction and we would expect
our performance to be much better.

To test these assumptions we generated data sets for which
in the child’s signal the number of inherited SVs ranged from
250-500 and the number of novel SVs ranged from 0-250.
So in the most extreme cases the child has 0 novel SVs and
500 inherited SVs or the child has 250 novel SVs and 250
inherited SVs. We fixed γ = 10 and chose two different
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Fig. 3. AUC shown for different values of the penalty terms under varying
assumptions of child signal structure.

Fig. 4. Top τ = 0.01. Bottom τ = 10. Area under the curve for ROC
heatmap. The inherited SVs range from 250 − 500 while the novel SVs
range from 0− 250.

tau values so we could create a heatmap of performance
ranging over the different compositions of the child signal.
The results of this can be seen in Fig. 4, where for each data
set we plotted the AUC. We find that our method is robust to
the number of inherited and novel Svs for carefully chosen
values of τ . However, if τ is chosen to be too large then we
are over enforcing sparsity on our solution which leads to
less uniform performance.

IV. CONCLUSION

In the beginning of this analysis, we suspected that the
performance of our method heavily depends on the ratio
of inherited to novel SVs in the child. However, the above
analysis suggests that well chosen parameter values has a
larger influence on performance that the composition of the
signal being reconstructed. To increase the accuracy of SV
predictions, choosing appropriate parameters is crucial. In
the future we would like to extend this sensitivity analysis
to real data from the 1000 Genomes Project [1] since we
suspect the simplicity of our simulated data may hinder us in
uncovering all of the patterns in performance given changes
in each parameter.
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