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Equilibrium Behavior of a
Tethered Autogyro: Application
in Extended Flight and Power
Generation
In this article, we study the characteristics of steady autorotation of a tethered autogyro.
The phenomenon of autorotation refers to the natural spinning of a rotor in a wind field.
We explore the viability of tethered autogyros as unmanned aerial vehicles (UAVs) for
long-duration and energy efficient hovering applications, such as in monitoring or surveil-
lance. The tether provides mooring and can be used to power the rotor and to transmit wind
power to the ground when suitable. This is a novel application of autorotation. It requires a
generalized formulation and modeling of autorotation, beyond what is reported in the liter-
ature. We adopt a model-based approach where the blade element momentum (BEM)
method and catenary mechanics are used to model the aerodynamics and the tether, respec-
tively. The resulting model is highly nonlinear and numerical methods are proposed to solve
for the equilibria. The model is validated against existing simulation and experimental
results in the literature. It is extended to incorporate new features that are pertinent to
our application, such as low rotor speeds, regenerative torque for power generation, com-
bining catenary mechanics with aerodynamics, and varying atmospheric conditions with
altitude. We characterize the autorotational equilibria over a range of operating conditions
involving multiple independent variables. The analysis reveals an optimal operating range
of the tip speed ratio of the autogyro under equilibrium. It also indicates the possibility of
power generation in large autogyros stationed at high altitudes. [DOI: 10.1115/1.4054927]
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1 Introduction
An unpowered rotorcraft producing steady lift from self-rotating

blades is in a state of autorotation. Harnessing significant prevailing
winds found consistently at high altitudes [1–5], and it is possible
for an autorotating rotorcraft, or autogyro, to generate power.
This ability can be exploited for the purpose of extended, efficient
flight of rotorcraft, and can provide a platform for accessing the
largely untapped energy source of high-altitude jet streams. This
document presents a numerical model for describing a tethered,
power-generating autogyro and analyzes the feasible flight region
to verify practicality for both a larger, high-altitude configuration
focusing on power generation, and a smaller, lower altitude config-
uration focused on energy efficient flight for surveillance
applications.
Many efforts have been made to explore the power generation

capabilities of airborne wind energy (AWE) systems in the form
of tethered airfoils/kites, [6–14], as well as lighter-than-air (LTA)
tethered wind turbines [15–17]. Airfoil/kite AWEs largely rely on
mechanical stimulation of the tether through crosswind maneuvers.
Thus, such a system becomes impractical at higher altitudes where
wind energy density is prominent, as increased uncertainty in tether
dynamics can decrease the efficiency of mechanical transmission to
the base. LTA windmills may be effective at higher altitudes, but
are quite lacking in maneuverability, as suggested by Ref. [18],
which can be essential for effective surveillance. The use of tethered
autorotation combines the benefits of on-board power generation

seen in LTAs with the heightened maneuverability of smaller,
and more aerodynamic designs are seen in airfoil/kite AWEs.
A review of the timeline and challenges of autogyro development

is presented in Refs. [19,20]. Following the creation of autogyros
for piloted flight in the early 1920s, Glauert [21] developed a
compact initial model for describing the steady-state behavior of
an autogyro utilizing the blade element momentum approach
[22]. Many works followed to relax the assumptions of Ref. [21]
and expand upon their model [23–27]; perhaps most notable of
which is the work of Wheatley [25], who not only presented a
more detailed model but also provided experimental validation
through testing on a commercially available autogyro of the time.
This analysis expanded upon Ref. [21] to include a linear variation
in pitch. Further work in Ref. [28] expanded the analysis to explore
the effects of periodic blade twist. Many works have focused on
autorotation in the context of the descent of a helicopter [29]. Anal-
ysis of autogyro performance analogous to the flight modes of heli-
copters and fixed-wing vehicles is also present in the literature [30],
with some works testing and modeling the performance of hybrid
rotor/fixed-wing crafts in the conditions of autorotation [31–33].
In Ref. [34,35], a simple model was tuned through small-scale
experimentation to explore instability in autorotation. In this
article, we take a different approach considering the context of a sta-
tionary tethered rotorcraft autorotating in a prevailing wind field. It
is unpowered when autorotating, and if excess wind power is avail-
able at its operating altitude, it can transfer the power to ground via
the tether.
Improving upon Ref. [25], initial efforts have been made in

Refs. [36–39] to model and explore the effects of regenerative
braking on the steady-state behavior of an autogyro, as well as
the practicality of tethered autorotation as a source of high-altitude
power generation. The following document provides an updated
and refined numerical method for solving aerodynamic equilibrium
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behavior. An additional numerical method is presented to couple
the response of a static tether to the aerodynamic forces provided
by an autogyro in a realistic wind profile. The coupled numerical
process has been thoroughly simulated to visualize the steady-state
behavior of a tethered autogyro over a dense range of inputs, not
only for the case of high-altitude power generation but also lower
altitude surveillance. The contributions of this work are as follows:

(1) The aerodynamics of autorotation is generalized by incorpo-
rating regenerative braking, lower rotor speeds, and wind
velocity and atmospheric density variations with altitude.

(2) Numerical methods are proposed to solve for the equilibrium
conditions.

(3) The generalizations yield a larger space of equilibrium con-
ditions of the system.

(4) Tether mechanics are incorporated and equilibria are deter-
mined for the tether-autogyro assembly.

(5) The possibility of power generation is quantitatively
explored through this model-based approach.

The rest of this article is organized as follows: In Sec. 2, we
present the aerodynamic model that incorporates regenerative
braking and lower rotor speeds. A numerical approach to solve
for equilibrium conditions and model validation results is provided.
Section 3 presents the model of the catenary. In Sec. 4, we discuss
the numerical approach to solve for the equilibria of the combined
tether-autogyro system in the presence of wind speeds and air
density, which vary with altitude. Simulation results are provided
in Sec. 5. This is followed by concluding remarks, acknowledg-
ments, and references.

2 Autorotational Equilibria: Incorporating
Regenerative Braking and Low Rotor Speeds
2.1 Aerodynamic Model. The model presented here expands

upon the work of Wheatley, [25], to explore the equilibrium aero-
dynamic behavior of an autogyro under regenerative braking and
low rotor speeds. With this as the focus, we skip the details of
model development, for which the reader is suggested to read
[25,36]. Here, we concisely present the governing equations for
steady autorotation. Consider a tethered autogyro under equilibrium
conditions, as shown in Fig. 1(a). In describing the aerodynamics,
this model employs the use of two dimensionless ratios shown in
Eq. (1).

μ =
V cos α
ΩR

, λ =
V sin α − v

ΩR
(1)

The variables V, α, v, and Ω and the parameter R are defined in the
nomenclature. The variable μ, the tip speed ratio, is the ratio of
the component of the wind velocity parallel to the rotor disc to
the speed of the tip of the rotor blade. The variable λ, the axial
flow ratio, is the ratio of the total flow perpendicular to the rotor
disc to the speed of the tip. Rotor blades of an autogyro are
hinged at the base allowing a flapping motion, which naturally bal-
ances the rolling torque of the craft. A visualization of the hinge
mechanism is shown in Fig. 1(b). This flapping dynamic of a
blade can be approximated by a periodic function of its angular
position ψ, as a truncated Fourier series containing five coefficients,
as shown in Eq. (2).

β = a0 − a1 cosψ − b1 sinψ − a2 cos 2ψ − b2 sin 2ψ (2)

where β is the flapping angle of a blade (see Fig. 1(b)). The values
a0, a1, b1, a2, and b2 are the coefficients of the Fourier series. It has
been shown in Ref. [25] that these coefficients can be written as a
function of μ and λ, as given in Eqs. (3)–(7).

a0 =
1
2
γ

1
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(6)

Fig. 1 (a) Side view of tethered autogyro and (b) top view of hinged autogyro blades
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3b2 +
1
4
γa2B

4 =
1
2
γμ2 −

1
4
a0 B2 −

1
6
μ2

( )
+
1
3
b1
μ
B3

{ }
(7)

where γ, B, θ0, and θ1 are defined in the Nomenclature and blade
pitch θ is considered to vary along the radial distance r according
to, θ= θ0+ (r/R)θ1. The nondimensional mass constant γ is given by

γ =
cρaR4

I1
(8)

where c, ρ, a, R, and I1 are defined in the Nomenclature. It is noted
that Eqs. (3)–(7) are derived using Eq. (2) and the flapping dynam-
ics of each blade, given by

I1
d2β

dt2
+ Ω2β

( )
=MT −MW (9)

where β, Ω,MT, andMW are defined in the Nomenclature. The term
MW/I1Ω2 in Eq. (3) is considered negligible in Ref. [25]. This is
because Wheatley [25] considers autorotation in the context of a
powered rotor, such as a helicopter, where Ω is much higher com-
pared to a rotor freely autorotating under different ambient wind
speeds. Since we consider the latter scenario, this assumption
must be removed. However, removing this assumption requires a
considerable complication in how the autorotational equilibria are
calculated. The consequence of relaxing this assumption will be
clear in validation results, to be presented in Sec. 2.2.
For an autogyro undergoing steady autorotation, the aerodynamic

torque about the rotor will be equal to that of the applied regenera-
tive braking, Qe. The introduction of regenerative braking in the
aerodynamics is critical to this study since our goal is to explore
the potential of such tethered autogyros to not only be stationed
at a certain location but also produce energy from the ambient
wind field, when possible. The torque balance can be rearranged
to yield an expression shown in Eq. (10).

2Qe

bρcΩ2R4a
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(10)

The parameters b, c, a, and δ are defined in the nomenclature. The
introduction of the regenerative braking torque Qe is another major
departure from Wheatley [25], where the left-hand side of Eq. (10)
is set to zero as no regenerative braking is applied. In that case, a
value of λ could be solve for irrespective of Ω and Qe. In the pre-
sented model, an input value is selected for Qe, but Ω and λ must
be solved simultaneously. Solving for λ allows for the coefficient
of thrust CT to be expressed as a function of μ, given by

CT =
T

ρΩ2πR4
=
1
2
σa

1
2
λ B2 +

1
2
μ2

( )
+ θ0

1
3
B3 +

1
2
μ2B −

4
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( )[

+ θ1
1
4
B4 +

1
4
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( )

+
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4
μ2b2B +

1
8
μ3a1

]

(11)

where T is the thrust and σ is the solidity of the blade disc. The angle
of incidence α, Fig. 1(a), is given by

tan α =
λ

μ
+

1
2
CT

μ(λ2 + μ2)1/2
(12)

Realistically, the induced velocity is not uniform across the rotor
disc. This variation can be approximated by the sinusoidal variation
given in Eq. (13) [25].

v1 = Kv
r

R
cosψ (13)

where K is the amplitude of flow variation. Applying this velocity
variation produces a correction term for λ in the form of Eq. (14)
[25].

λ1 =

1
2
KCT

(μ2 + λ2)1/2
(14)

The influence of the variable flow requires an update to the values of
the flapping coefficients, which can be seen in Eq. (15). Further-
more, the terms of Eq. (16) must be appended to Eq. (10) so that
an updated value of λ can be retrieved.

Δb1 =
λ1B2

B2 +
1
2
μ2

; Δa2 =
−
1
3
μγ2λ1B7

144 + γ2B8
; Δb2 =

−4μγλ1B3

144 + γ2B8

(15)
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8
λ1

2B4 +
1
3
μλ1a0B

3 −
1
4
λ1b1B

4 −
1
6
μλ1a2B

3 −
8

45π
a0λ1μ

4 −
1
64

λ1
2μ4

(16)

In Wheatley’s work, [25], the exclusion of the final term in Eq. (3)
allows for a complete description of autogyro aerodynamics with
only one input of μ. This description is compact and can be
solved analytically, but is limited to a one-dimensional equilibrium
space associated with a particular relation between wing load and μ.
Inclusion of the final term in Eq. (3) and implementation of a
numerical method produces Ω as an output. While this complicates
the process for solving the aerodynamic steady-state behavior, it
also expands the equilibrium space to include the ambient wind
speed. Further, with the inclusion of regenerative braking Qe, the
presented model explores a wider three-dimensional input space
and thus is representative of the behavior for a much larger set of
equilibrium conditions of an autogyro.

2.1.1 Numerical Solution of Equilibria. In this section, we
present an algorithm that can be used to determine the various auto-
rotational equilibria. The proposed algorithm considers three vari-
ables, namely μ, Qe, and V, to form the input space of the
autorotational equilibria. A total of ten unknown variables are deter-
mined from the set of nonlinear equations composed of
Eqs. (1)–(12) and Eq. (14) (with the adjustments of Eqs. (15) and
(16)). Due to the coupling of equations introduced by the inclusion
of the final term in Eq. (3) and the addition of regenerative braking
in Eq. (10), an iterative solving method is necessary to converge on
an equilibrium state. A suggested numerical process is presented
below:
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(1) Provide a selected μ, Qe, and V.
(2) Initialize λ and α with reasonable guesses.
(3) Calculate Ω with the tip speed relation of Eq. (1).
(4) Calculate a0, a1, b1, a2, and b2 with Eqs. (3)–(7).
(5) Calculate λ with Eq. (10).
(6) Calculate CT with Eq. (11).
(7) Calculate λ1 with Eq. (14).
(8) Adjust b1, a2, and b2 with Eq. (15).
(9) Recalculate λ by appending Eq. (16) to Eq. (10).
(10) Calculate α with Eq. (12).
(11) Adjust guesses for λ and α in direction of calculated values.
(12) Repeat steps 3–11 until the absolute change of λ and α is

below a desired threshold suggesting convergence
(chosen as 10−5 in this study).

2.2 Model Validation. In the development of the presented
model, the assumption of a nonnegligible effect of the blade
weight moment term in Eq. (3) was relaxed, and a regenerative
braking torque, Qe, was incorporated to increase the input space
to that of three inputs, namely, μ, Qe, and V. This provides a
broader insight into the possible equilibrium space for autorotation
than that of Wheatley [25]. It follows that, for validation against the
experimental results provided in Ref. [25], special attention must be
given to selecting an appropriate contour of inputs for direct com-
parison with the experimental data. The comparison data was
done by prescribing a wing load for each value of μ considered.
This wing load was used to calculate the rotor speed. A side
effect of this prescribed wing loading profile is that V is not
uniform across the span of μ. Thus, it is necessary, for comparison
of the presented model and experimental results, to input experi-
mental values of μ, Ω, and α into Eq. (1) to retrieve an analogous
value for V, which can be used as input to the presented model
for each value of μ. It should be noted that, for validation against
experimental data,Qemust be set to zero as it [25] does not consider
regenerative braking. Further, the values of parameters must also be
consistent. In this regard, the following table gives a list of param-
eter values used for the model,

a = 5.85 b = 4 B = 0.9593
c = 1.833 ft I1 = 334 slug

ft2 K = 0.5
ma = 23.3 slug MW = 715.799 ft lb R = 22.5 ft
γ = 17.2791 δ = 0.012 θ0 = 0.0384
θ1 = 0.0001256 σ = 0.1037

(17)

Figure 2 displays simulated profiles for the flapping Fourier coef-
ficients of Eq. (2). The trends denoted by x’s represent the presented
model with the blade weight moment term of Eq. (3) neglected. The

profiles resulting from this assumption are independent of wind
velocity, V. With the blade weight moment term of Eq. (3) included
in the analysis, consideration of V becomes important. This is appar-
ent by observing the solid contours representing constant V across
the span of μ. The dash-dot profile is the simulated results with
the blade weight moment term of Eq. (3) incorporated while select-
ing input V values analogous to that of the experimental data, as out-
lined in the previous paragraph. The experimental data collected by
Wheatley [25] is visualized with circular points. As the assumption
of a nonnegligible effect of blade weight moment directly pertains
to Eq. (3), it is reasonable that a0 would be the most significantly
affected coefficient. The other four coefficients are negligibly
affected by the inclusion of the blade weight moment term of
Eq. (3), especially in the region μ< 0.5. It was suggested by
Glauert [21] and substantiated by experiments in Ref. [25] that μ
< 0.5 is the range of validity for blade element momentum calcula-
tions. This is based on the condition that the relative wind velocity
be positive over the outer half of the retreating blade. Thus, it is
expected that error will occur beyond this point. The adjusted mag-
nitude of a0 directly relates to the average of the flapping angle, β. It
can be observed that for high wind velocities, V, the assumption of a
negligible effect of blade weight moment becomes more and more
accurate. It follows from Eq. (1) that, for a given μ and uniform α, a
larger V will result in higher angular velocity Ω. Therefore, by pro-
viding sufficiently large V and sustaining a nonzero value of cosα,
the final term of Eq. (3) will be dominated by its denominator and
thus be rendered negligible.
In Figs. 2–4, note the trends labeled “Prescribed Wing Loading.”

These trends are obtained under the specific flight conditions used
to report results in the study by Wheatley [25]. We include these
specific trends to put our results in context. The wing loading
refers to the weight per unit area supported by the fixed wing of
the PCA-2 Autogyro, whose experimental results are reported in
Ref. [25]. The PCA-2 Autogyro has both a fixed wing and a
rotor. The experimental setup and data are detailed in Ref. [31].
The prescribed wing loading has a specific one-to-one correspon-
dence with the air-speed of the PCA-2 Autogyro, which is equiva-
lent to the wind velocity, V, in our work. It also has a similar
dependence with the tip-speed ratio μ of the rotor. Thus, the data
in Ref. [31] effectively considers V as a function of μ. In
Ref. [25], this relationship is not explicitly given. However, it can
be determined from the Ω versus μ and α versus μ data, together
with the definition of μ. The calculated dependence matches
closely with the experimentally obtained relation reported in
Ref. [31]. For example, from Ref. [31], the wing aloading at μ=
0.25 is ≈ 20%, which corresponds to an effective air speed of
≈ 56 mph (equivalent to ≈ 82 ft/s). It can be observed in Fig. 4

Fig. 2 Flapping coefficient behavior for various wind velocity inputs: (a) a0, a1, a2 and (b) b1, b2
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that the “Prescribed Wing Loading” trend as well as the data cross
the velocity level curves at ≈ 82 ft/s.
In Fig. 3, it can be seen that the coefficient of thrust CT is largely

independent of V below μ= 0.5, where as angle of incidence, α, dis-
plays only negligible changes with respect to V for the entire range
of μ. While the model results show deviation from the experimental
data of CT, this deviation is particularly small (within ≈ 5%) in the
range 0.15 < μ< 0.35, a region where feasible autorotational equilib-
ria are predominantly concentrated. It is noted that for μ< 0.1, α
assumes large angles where the momentum theory is not valid
and hence model predictions for μ< 0.1 may not be reliable. The
angular velocity Ω shown in Fig. 4 varies significantly with differ-
ing V. It can be seen from the dash-dot line in Fig. 4 that the
prescribed-wing-loading-based V generates nearly constant Ω
over the range μ> 0.1. This behavior as well as the magnitude

agrees with the experimental behavior over the range of 0.1 < μ <
0.5 reported by Wheatley [25]. The trends of Fig. 4 are representa-
tive of a nonnegligible effect of blade weight moment, but it was
observed that exclusion of this term does not significantly affect
the value of Ω. Comparison to the results of Ref. [25] was shown
for a case of no regenerative braking, i.e., for Qe= 0.
Addition of regenerative braking significantly affects the perfor-

mance of an autogyro, and thus, the visuals presented in Figs. 5–7
serve to provide insight into this behavior. The solid trends repre-
sent a constant input of torque with consideration to nonnegligible
blade weigh moment effects; the dash-dot trends show the same
torque applied with blade weight moment neglected. These trends
were simulated at a constant wind velocity of 100 ft/s. The behavior
of a0, a1, a2, b1, and b2 with differing torque input is displayed in
Fig. 5. The increase in magnitude with increasing torque

Fig. 3 (a) Coefficient of thrust and (b) Angle of incidence for various wind velocity inputs. Note: Trends identified in legend are
almost coincident in (b) but show diversion in (a) at high μ values.

Fig. 4 Angular velocity for various wind velocity inputs
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relationship seen for a0 and b1 is also true for the remaining coeffi-
cients, and thus, the same constant torque inputs from 0 to 1000 lb ·
ft should be associated with the a1, a2, and b2 trends from bottom to
top, respectively. This increase in flapping coefficient magnitude
suggests an overall increase to the average flapping angle as well
as the variation of the flapping angle over a full rotation of the
rotor. A similar trend is shown in Fig. 6(a) with regards to the coef-
ficient of thrust, CT. Once again, CT does not appear to be signifi-
cantly affected by the inclusion of the effects of the blade weight
moment term of Eq. (3); however, an increase in regenerative
braking does appear to change the performance, suggesting the
ability to tune the thrust output of an autogyro with regenerative
braking. The parameters α and Ω remain largely unaffected by a
change in input torque.
It should be noted that the plots shown are in relation to a span of

μ. The ratio μ is defined in Eq. (1) to be a function of V, α, and Ω.
With μ and V being inputs, it follows from this observation that the
weak relationship between Qe and α causes only a small change in
Ω with different input Qe. Logic and experience tells us that apply-
ing a braking torque to a rotating shaft will decrease its angular
speed; however, by selecting a value for μ as input, the presented
model neglects causality. As this work is an exploration of

steady-state behavior, it need not be upheld to the same causal
demands of dynamic analysis. Nevertheless, a practical interpreta-
tion of Fig. 4 can be as follows: a decrease in angular speed for
constant V and uniform α would in fact increase the tip speed
ratio. Therefore, for a scenario where a torque is applied to an auto-
gyro at a slow enough rate to be considered quasi-static, the analysis
suggests that the angular speed would move along a trend analogous
to the 100 ft/s trend shown in Fig. 7.

3 Catenary Tether Model
To explore the equilibria of a tethered autogyro, one must not

only analyze the aerodynamics of the rotor but also the forces of
the tether. From the aerodynamic model of Sec. 2.1, the equilibrium
thrust T, rotor spinning speed Ω and angle of incidence α of a pro-
spective autogyro are calculated based on given operating condi-
tions. A two-dimensional analysis of the static forces due to the
tether is next presented. When combined with the aerodynamics,
this will complete the equilibrium analysis of the tethered autogyro
in a wind field. In this regard, the tether is modeled as a catenary to
provide an adequate approximation of the tether profile and forces.

Fig. 5 Flapping coefficient for various torque inputs at V=100 ft/s: (a) a0, a1, a2 and (b) b1, b2

Fig. 6 (a) Coefficient of thrust and (b) angle of incidence for various torque inputs at V=100 ft/s. Note: Trends identified in
legend are almost overlapping in (b) and hence indiscernible.

091003-6 / Vol. 89, SEPTEMBER 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/89/9/091003/6897806/jam
_89_9_091003.pdf by U

niversity O
f C

entral Florida user on 10 Septem
ber 2022



A description of the catenary and its statics analysis can be found in
Ref. [40]. Under this approximation, the tether profile can be
expressed in a functional form as follows:

y = ζ cosh
x − q

ζ

( )
− cosh

q

ζ

( )[ ]
(18)

where q and ζ are constant parameters of the catenary. A diagram of
the catenary tether and forces to be considered for equilibrium anal-
ysis are presented in Fig. 8. To solve for the shape of the catenary, a
force balance is performed at two different points of reference.
Equation (19) represents the x and y-direction force balance of the
whole system in Fig. 8, and Eq. (20) represents force balance
only on the autogyro (inset in Fig. 8).

T cos α = F0 sin η0 + H sin α + mag + mtg
T sin α = F0 cos η0 − H cos α − Ft,d

(19)

T cos α = F1 cos η1 + H sin α + mag
T sinα = F1 sin η1 − H cos α

(20)

where the variables used in Eqs. (19) and (20) are defined in the
Nomenclature. For the following analysis, it is assumed that Ft,d

and H provide a negligible effect on the equilibrium behavior and
thus are ignored. Equations (19) and (20) can be manipulated to
find the angles η0 and η1, as presented in Eqs. (21) and (22).

tan η0 =
T cos α − (ma + mt)g

T sin α
(21)

tan η1 =
T sin α

T cos α − mag
(22)

Note that the values of T and α are obtained from solving for
equilibrium conditions of the autogyro. The two angles η0 and η1,
together with the length of the tether lt, provide enough informa-
tion to solve for the catenary parameters ζ and q, and the coordinates
(xe, ye) of the autogyro are given in Eqs. (23)–(26).

ζ =
lt

tan
π

2
− η1

( )
− tan η0

(23)

q = ζarcsinh( − tan η0) (24)

xe = ζarcsinh tan
π

2
− η1

( )[ ]
+ q (25)

ye = ζ cosh
xe − q

ζ

( )
− cosh

q

ζ

( )[ ]
(26)

It is noted that the assumption of negligible H can be justified based
on preliminary calculations suggested by Glauert [21]. The assump-
tion of negligible Ft,d is based on the slender tether profile in com-
parison to the exposed area of the autogyro.

4 Computing Equilibria Under Variable Wind Profile
The aforementioned tether model is valid for finding equilibrium

positioning of a tethered autogyro system in a uniform wind velocity
field. With this assumption, the aerodynamics of the autogyro and the
static equilibrium of the tether can be solved independently.

Fig. 7 Angular velocity for various rotor torque inputs. Note: Input torques are same as
shown in Fig. 6(a), but trends are almost overlapping and hence indiscernible.

Fig. 8 Static analysis of tethered autogyro
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However, relaxing this assumption to a more realistic wind field,
where V increases linearly as a function of altitude, y, couples the
solving of the autogyro aerodynamics and tether profile, as the equi-
librium altitude, ye, solved for by the catenary model may not coin-
cide with the value of V selected as input to the aerodynamic
calculations. Instead, it is necessary to implement an iterative
method to converge on an altitude where the input V matches the
wind speed expected at ye. It should be noted that for many cases,
this equilibrium altitude will not exist, suggesting the given condi-
tions are not suitable for sustainable steady-state tethered autorotation.
An equilibrium altitude can be found through the following process:

(1) Select a value for μ, Qe, and lt.
(2) Initialize V as the velocity at an altitude of lt.
(3) Use the above aerodynamic model to solve for T and α.
(4) Calculate the altitude at xe using Eqs. (21)–(26).
(5) Compare the velocity at this altitude, and adjust the guess in

the direction of the new velocity.
(6) Repeat steps 3–5 until the absolute change of V is below a

desired threshold (chosen as 10−3), or until the calculated
altitude has dropped below a selected minimum threshold
suggesting failure.

This process can be significantly expedited by first calculating the
aerodynamic results over a sufficiently dense range of μ, Qe, and V
values. Such a data set bypasses the need to resolve the model in
step 3. When considering a wide range of altitudes, the role of air
density becomes significant and must be considered appropriately.
Employing the International Standard Atmosphere model and knowl-
edge of the average wind velocity at a sufficient range of altitudes, the
input value of V can be employed to select an appropriate air density
for aerodynamic calculations. This improves upon the calculations of
Wheatley [25], which assumed a compromise density value analo-
gous to an altitude of approximately 4000 ft.

5 Simulation Results and Favorable Flight Region
Utilizing the aforementioned numerical process, one can explore

the feasible equilibrium space for a selected autogyro design and
visualize the optimal flight conditions for power generation. The
range of equilibria was explored for a wind field with wind velocity
and air density varying with altitude. These altitude variations are
shown in Fig. 9. Standard atmospheric density variation data are
obtained from Ref. [41]. Wind velocity distribution with altitude
is based on Refs. [2,42]. Linear velocity distributions were approx-
imated. We present two sets of simulation results. The first concerns
high altitudes and a large and heavy autogyro, see Sec. 5.1. In this
scenario, we explore regenerative power generation as a feature.
The second simulation considers lower altitude deployment and a
smaller autogyro, Sec. 5.2. Here we only explore equilibrium auto-
rotation, without power generation. For the two scenarios, the linear
wind velocity distributions have slightly different approximations,
as shown in Fig. 9.

5.1 Large and Heavy Autogyro at High Altitudes: Potential
Power Generation. Selected physical parameters for the autogyro
and tether used in this simulation are provided in Eq. (17). For blade
physical and aerodynamic properties, refer to Sec. 2.2 and the study
by Wheatley [25]. The tether is considered to have a weight per unit
length of 0.00 lb/ft. This mass density is based on mechanical prop-
erties of commercial Kevlar rope found online, for example,
Ref. [43]. Specifically, tensile strength was considered and com-
pared against simulation results (presented in Fig. 11). The autogyro
weight is chosen at 23.3 slugs, i.e., ≈750 lb. A main component of
the weight is anticipated to come from the on-board motor/genera-
tor. For the possible power generation determined from simulations
(to be discussed using Fig. 11), such motors can weigh as low as
≈50 lb, [44]. The 750 lb assumption can therefore be considered
conservative. The results of tethered autogyro simulation are dis-
played for a range of μ and Qe values in Figs. 10 and 11.
Figure 10 presents the converged equilibrium altitudes for various
tether lengths. The flight conditions that did not allow convergence
have been filtered to an altitude value of zero to emphasize the suc-
cessful equilibrium states. It should be noted that converging states
along the border of these successful regions will likely have other
undesirable traits such as tether profiles that drop below zero alti-
tude between the base and the autogyro. For optimization purposes,
it would be necessary to select a higher threshold altitude to avoid
subterranean tether profiles; however, for the purposes of general
equilibrium analysis, this filtering was deemed unnecessary. It
was observed for the selected autogyro/tether dimensions and
weights, see Eq. (17), that successful equilibrium altitude conver-
gence was not achievable for the entire range of μ and Qe input
values for tether lengths below approximately 20,000 ft (≈6 km).
From Fig. 10(c), it is evident that higher values of Qe result in equi-
libria at lower altitudes for a given tether length. This is expected,
since higher Qe effectively reduces the thrust T. It is also evident
that μ≈ 0.2 gives higher equilibrium altitude over the range of fea-
sible Qe, and hence for a given tether length yields a lower horizon-
tal drift.

Fig. 9 Wind velocity and air density variation with altitude

Fig. 10 Equilibrium altitudes for tether lengths: (a) 20,000 ft, (b) 26,000 ft, and (c) 32,000 ft
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Figures 11(a)–11(c) display the lateral drift of the autogyro from
the base, the power generated, and the maximum static tension of
the tether, respectively, for a 32,000 ft (approximately 10 km)
tether. The lateral drift, power, and tension are important consider-
ations in assessing the characteristics of the equilibria. A high lateral
drift may be undesirable as it implies a significant deviation from
the launch point. On the other hand, high power is desirable if
power generation is the primary goal. We note from the regions
enclosed by dashed lines in Figs. 11(a) and 11(b) that these two
goals are conflicting. If flying at a higher altitude is desired, then

the equilibria enclosed by the dashed line in Fig. 11(a) is preferred
since it equivalently corresponds to high-altitude flight, as shown in
Fig. 10(c). Tether tension, Fig. 11(c), is an important practical con-
sideration since it relates to the mechanical integrity of the system.
The tether length 32,000 ft was the maximum length considered for
this study as the assumption of V varying linearly with y loses jus-
tifiablity after this altitude. From Figs. 10(c) and 11(a), it can be
seen that the lateral drift of the autogyro has an inverse relationship
to that of the equilibrium altitude. This is expected, as a lower flying
craft would have more available tether to drift from the base. From
Figs. 11(a) and 11(b), we note that generated power is positively
correlated with rotor torque Qe. This is a sensible result, as assum-
ing Ω does not significantly vary, power is directly related to the
regenerative braking, Qe, applied. It is also apparent that power
output favors lower values of μ. As μ is defined by an inverse rela-
tionship with Ω, it follows that this relation will propagate through
to the power output. This inverse relationship between μ and power
appears to break down; however, as the autogyro approaches the
border of the successful equilibrium space. Given that this region
is represented by low altitude flight, it follows that low altitude
wind speeds are insufficient for producing the rotational speeds
for optimal power output.
Figure 12 plots a combined altitude and power-based fitness for

the case of 32,000 ft tether. The fitness function is of the form,

J = p1y
2 + p2(QeΩ)2

Fig. 12 Comparison of optimal altitude and power regions for
32,000 ft tether

Fig. 13 Tether profile for light autogyro with 1 km (i.e., 3280 ft) tether in uniform 26 ft/s wind
field. Tether color scales with the magnitude of μ from blue to red representing low to high μ,
respectively.

Fig. 11 Equilibria of autogyro specified in Eq. (17) with 32,000 ft tether length: (a) horizontal drift, (b) power, and
(c) tension
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where p1, p2 > 0 are weighting parameters used to give relative
importance to achieving high altitude versus high power. In
Fig. 12, we set p1/p2≈ 200 to get parity between y and generated
power QeΩ. Values of J are color coded, and the dark red regions
indicate high power generation and/or high-altitude flight. Within
the feasible equilibrium space, the dashed lines demarcate the
region that yields high-altitude flight (bottom right) and the one
that yields high power generation (top left). Comparing with
Figs. 10(c) and 11(b), we note that the favorable regions for achiev-
ing one or the other are mutually exclusive, indicating high power
generation would be achieved at the expense of hovering altitude
and vice versa.

5.2 Small, Light Autogyro at Low Altitudes: Hovering
Without Power Generation. In this section, we explore the autoro-
tational equilibria of lighter, smaller autogyros at lower altitudes.Here,
owing to lesser wind power available at lower altitudes, emphasis is
given only on equilibrium hovering conditions and power generation
is de-emphasized. Such a setup is deemed suitable for surveillancepur-
poses and for energy efficient flight using autorotation. A lightweight
motor, e.g. [45], can be installed on-board to lift the autogyro to the
desired altitude range and as a supplement to compensate for variable
wind speeds. We consider a autogyro of 35 lb weight and a tether of
≈ 0.005 lb/ft weight per unit length. This leads to a total weight of
≈ 50 lb if a 1 km long tether is used. The blade length Rwas consider
tobe10 ft. The blade chord cwasproportionately reduced. Theparam-
eters I1,MW, γ, and σ were accordingly scaled.
Figure 13 shows the equilibrium profiles of the system in a 26 ft/s

wind field at different angles of incidence α. All simulations were
conducted with Qe= 0. We notice that as α reduces, the equilibrium
value of μ increases, but the equilibrium altitude reaches a
maximum at an intermediate value of μ. This is consistent with
the trends observed in Figs. 10(b) and 10(c), where maximum alti-
tude consistently occurred at μ≈ 0.2. From Fig. 13, it is evident that
the equilibria at high α, e.g., cases (1) and (2), have a dominant drag
force. This causes high drift and taut tether at equilibrium. Lowering
α causes the equilibria to be progressively driven by the lift force,
e.g., cases (4) and (5), and hence achieve high elevations. Further
lowering of α reduces the magnitude of lift force and the resulting
equilibria are at low altitudes, e.g., cases (7) and (8). In Fig. 14,
we extend the results of the light autogyro to three tether lengths,
namely, 3000, 7000, and 10,000 ft and for Qe= 0. The plots,
along with the results of Sec. 5.2, confirm that μ≈ 0.2 is an
optimal value with respect to maximizing the flying altitude, lower-
ing the horizontal drift and achieving low tether tension.

6 Conclusion and Future Work
This article details a model-based study of the equilibrium char-

acteristics of a tethered autogyro. The aerodynamic model, the
tether mechanics, and the proposed numerical method together
facilitate the consideration of a wider range of operating conditions

than reported in prior works on modeling autorotation. Specifically,
a range of aerodynamic equilibria are obtained as a function of the
operating variables, namely, μ,Qe, and V. It is shown that the results
of the presented model accurately match the experimental data of
the study by Wheatley [25] when its prescribed wing loading
profile is replicated in our model, thereby demonstrating our
model’s efficacy. The model is simulated to visualize the
steady-state behavior of an autogyro and to explore the effects of
differing wind velocities and regenerative braking. The aerodynam-
ics is coupled with a static catenary model to approximate the beha-
vior of a tethered autogryo. This coupled model is numerically
solved for a wind velocity profile varying with altitude.
The investigation shows the feasibility of performing energy effi-

cient and long duration hovering through autorotation, which can be
useful for surveillance of a confined area. In such applications, auto-
rotation could be intermittent or sustained, depending on the consis-
tency of wind speed. In the context of possible power generation, it
is observed that sustainable tethered autorotation with simultaneous
power generation is likely achievable at significantly high altitudes
of a few to several kilometers. Furthermore, it is observed that max-
imizing the power output for a given autogyro configuration is
accompanied by significant drift from the base. It is therefore rea-
sonable to assume that a compromise must be made between the
area required by the tethered autogyro mechanism and the power
output of the rotor; however, it is possible that an array of smaller
autogyros flown at a lower altitude would be able to produce an
analogous power output in a more compact space. Testing of this
claim would require analysis into the optimal geometric design of
a tethered autogyro, which is a topic of future research. The afore-
mentioned analysis is at steady state and thus gives lesser insight
into the dynamic behavior of tethered autogyros. Efforts to
explore this dynamic behavior and controlling the operating alti-
tude, the drift or the angle of incidence, through active regenerative
braking or active tether actuation are currently underway.
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Fig. 14 Equilibria of light autogyro with 3000, 7000, and 10,000 ft tether
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Nomenclature
a = slope of lift curve
b = number of blades
c = blade chord
g = acceleration due to gravity
v = induced axial velocity
x = autogyro horizontal position
y = autogyro altitude
B = blade radius fraction less tip losses
K = amplitude of flow variation
H = longitudinal force
R = blade radius
T = thrust force
V = wind velocity
lt = length of tether

ma = mass of autogyro
mt = mass of tether
xe = autogyro horizontal equilibrium position
ye = autogyro vertical equilibrium position
CT = rotor thrust coefficient
F0 = tether tension at base
F1 = tether tension at autogyro
Ft,d = total drag force of tether
I1 = blade moment of inertia about flapping hinge

MW = flapping moment from blade weight
MT = flapping moment from thrust
Qe = regenerative Braking Torque

a0, a1, b1, a2, b2 = Fourier series parameters of flapping
α = angle of incidence
β = flapping angle
γ = nondimensional mass constant
δ = average drag coefficient
η0 = tether angle at base
η1 = tether angle at autogyro
θ0 = blade pitch angle at hub
θ1 = blade pitch slope
λ = axial flow ratio
μ = tip speed ratio
ρ = density of air
σ = blade disc solidity
ψ = angular position of blade
Ω = rotor angular velocity
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