GLOBAL SOLUTIONS TO THE SUPERCOOLED STEFAN PROBLEM
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ABSTRACT. We consider the supercooled Stefan problem, which captures the freezing of a
supercooled liquid, in one space dimension. A probabilistic reformulation of the problem
allows to define global solutions, even in the presence of blow-ups of the freezing rate. We
provide a complete description of such solutions, by relating the temperature distribution
in the liquid to the regularity of the ice growth process. The latter is shown to transition
between (i) continuous differentiability, (ii) Holder continuity, and (iii) discontinuity. In
particular, in the second regime we rediscover the square root behavior of the growth process
pointed out by Stefan in his seminal paper [Ste89] from 1889 for the ordinary Stefan problem.
In our second main theorem, we establish the uniqueness of the global solutions, a first result
of this kind in the context of growth processes with singular self-excitation when blow-ups
are present.

1. INTRODUCTION

The systematic study of free boundary problems for the heat equation, now referred to as
Stefan problems, was initiated by STEFAN in 1889, see his series of papers [Ste89], [Ste90al,
[Ste90b], [Ste91], as well as the precursor [LC31] by LAME and CLAPEYRON. Motivated by
the process of ice formation in the polar sea, STEFAN formulated and solved the free bound-
ary problem describing the freezing of a liquid in the half-space {x; > 0} when a constant
temperature below its freezing point is maintained at the surface {x; = 0}, assuming imme-
diate freezing of the liquid at its freezing point. Subsequently, he also formulated and solved
similar problems associated with evaporation and condensation. After a period of dormancy,
Stefan problems for the heat equation attracted renewed interest as a result of a lecture by
BRILLOUIN at the Institut Henri Poincaré in 1929 and its publication [Bri30]. Investigations
of existence, uniqueness and numerical approximation of solutions followed (see [Rub71, in-
troduction, section 1] for a detailed historical review), culminating in the article [Kam61]
by KAMENOMOSTSKAJA, who proved the existence and uniqueness of bounded measurable
generalized solutions and provided an explicit difference scheme for their numerical approx-
imation, in any dimension and in the presence of an arbitrary number of phases.

Much less is known about the supercooled Stefan problem for the heat equation, which
captures the freezing of a supercooled liquid. In this problem, the initial temperature of the
liquid is taken to be lower than the temperature maintained at the surface {z; = 0} that,
in turn, lies below the freezing point of the liquid. As first noted in [She70], already the
one-phase problem in dimension one may exhibit a finite time blow-up of the liquid freezing
rate, leading to a concurrent instantaneous temperature spike along the surface {z; = 0},
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a physically observed phenomenon. Later works were focused on the distinction between
(see [FP81], [FP83], [LO85], [FPHOS89]) and the analysis of the two possible cases: (i) the
existence of a unique solution without blow-ups for all time or until the time the entire
liquid freezes (see [FP81], [FP83], [DF84], [CS96], [CKO08]); and (ii) the existence of a unique
solution until the blow-up time, at which both (the liquid and the solid) phases are present.
Naturally, much subsequent attention has been devoted to the analysis of the arguably more
intriguing case (ii), specifically to the behavior just before and at the blow-up time (see
[HV96], [KEO05], [CK12]) and to the regularization of the problem through modifications of
the boundary condition (see [Vis87], [DHOX89], [HX89], [FPHO90], [Xie90]). However, the
methods available in the literature do not allow a global analysis of the actual supercooled
Stefan problem in the presence of blow-ups, the objective of our paper. This point is under-
pinned by the results in [DF84], [Luc90], [GZ95], [CDMGP16, theorem 3.2] (see [CDMGP16,
displays (3.3.2), (3.3.3)] for the connection with the supercooled Stefan problem) where the
notion of global solution is too weak to yield uniqueness, cf. [DF84], [Luc90], [GZ95], or the
well-posedness is only established for a functional of the supercooled Stefan problem solution
that does not determine the solution uniquely, cf. [CDMGP16, remarks after theorem 3.2].

In contrast to the previous literature on the subject, rather than to regularize the super-
cooled Stefan problem

1
O = §9mu on D:={(t,x)e[0,00)*: x> A},
(11) At = %}xU’(tuAt% t= 07

w(0,z) = f(z), =0 and wu(t,A) =0, t=0,

where f > 0 and a > 0, we consider the global solutions of (1.1) in the presence of blow-
ups. Here, u(t,-) and A; represent the negative of the temperature profile and the location
of the solid-liquid frontier at time ¢, respectively. The global solutions of the supercooled
Stefan and other closely related problems arise not only from the physics of supercooled
liquids, but have been recently discovered to play an important role in the contexts of
integrate-and-fire models in neuroscience (see [LR03] and [OBH09] for neuroscience papers,
[CCP11, CGGS13, CPSS15] for a PDE approach to those models, and [DIRT15al, as well
as [DIRT15b], [DIRT13], for a probabilistic approach), interbank lending network models
in finance (see [NS17], [HLS18], [NS18], [LS18a], [KR18], [LKR18]), and growth processes
in probability theory (see [DT17]). In particular, [DIRT15a, theorem 4.4 and remark 4.5]
guarantee, for a variant of (1.1), the existence of global solutions in which the intervals of
instantaneous freezing are chosen to be minimal (more details can be found below in this
introduction), referred to as physical solutions. Our aim herein is two-fold: (i) to supply
a comprehensive description of the physical solutions, including regularity estimates for the
free boundary A in the vicinity of blow-ups (that is, near ¢ > 0 with A; = c0); (ii) to establish
the uniqueness of the physical solution for given f and a.

It is important to stress that the global well-posedness of the supercooled Stefan problem
is shown herein without the assumption that the initial density f is bounded above by 1/a.
The latter assumption, in particular, excludes discontinuities in A, and it is crucial for the
well-posedness proofs in [FP83], [CS96], [LS18b]. The results of this paper cover the general

case and, hence, require the use of novel arguments. Needless to say that, although it is out
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of the scope of this work, the adaptation of our approach to the higher-dimensional setting
is an exciting prospect.

Our key tool in the study of the supercooled Stefan problem (1.1) is the following proba-
bilistic reformulation. For a random variable X,_ > 0, an independent standard Brownian
motion B, and a constant o > 0, consider the problem of finding a non-decreasing right-
continuous function A : [0,00) — R with left limits such that

Xi=Xo-+ B — Ay, 120,

(12) Ay =aP(r<t), t=0, where 7=inf{t>0: X; <0}.

Assume that X, possesses a density f in the Sobolev space W3 ([0, 0)) with f(0) = 0, and
that the derivative A exists as a function in L2([0,T1]), for some T € (0,0). Then, for every
t € [0,T], the law of the random variable X; 1,5, admits a density p(t,-) on (0,0), and
these combine to give the unique solution in the Sobolev space Wy ([0, 7] x [0,%0)) of the
Cauchy-Dirichlet problem

1 . .
(13) atp = 5690:):]9 + Ataxpa p<0> ) = f7 p(a()) = 07 with At = %axp(ta())a te [OaT]

(cf. [NS17, proof of proposition 4.2(b)]). Thus,
(1.4) u(t,x) = p(t,x — Ay)

is a solution in W, ?({(t,z) € [0,T] x [0,0) : = = A;}) of the supercooled Stefan problem
(1.1) on the time interval [0,7]. For a further elaboration of the connection between the
problems (1.1) and (1.2) we point to the upcoming Remarks 1.2 and 1.5.

Two striking features of the probabilistic problem (1.2) are: (i) the necessary presence
of discontinuities in A (leading to blow-ups in the supercooled Stefan problem (1.1)) for
certain pairs (Xp, @), such as the ones satisfying E[X,] < a/2 (see [HLS18, theorem 1.1]);
(ii) the non-uniqueness of the jump sizes X;— — X; := limgy; X — Xy = Ay — Ay at the
times of discontinuity (cf. [DIRT15b, discussion preceding definition 2.2], as well as [NS18,
p. 7, last paragraph]). The physical choice of the jump sizes A; — A;_ in the supercooled
Stefan problem (1.1) amounts to picking the smallest non-negative numbers so that the total
energy of the system is conserved. On the other hand, the interpretation of the probabilistic
problem (1.2) in neuroscience, finance and probability theory motivates the selection of each
X;_ — X, as the smallest non-negative number that allows for a right-continuous continuation
of X, s €[0,1) to [t,0) (cf. [DIRT15b, paragraph preceding definition 2.2], [NS18, p. 7, last
paragraph] and [DT17, p. 2, last paragraph]). A straightforward adaptation of [DIRT15b,
proposition 2.7, theorem 4.4 and remark 4.5] to the setting of (1.2) shows that both of these
minimality conventions result in

(1.5) Xt_—Xt:inf{a:>O: P(r>t, X,_e(0,2]) < f}, t>0.
(6]

\%

We refer to solutions of (1.2) fulfilling the jump condition (1.5) as physical. The global
existence of physical solutions is known under certain (natural) assumptions on the density
of the initial condition Xy_ > 0, see e.g. [DIRT15b, Subsection 4.2], [NS17, Theorem 2.3],
[LS18a, Theorem 3.2].

Our first main theorem provides a comprehensive description of the physical solutions
(X, A) to the probabilistic problem (1.2).
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Theorem 1.1. Let Xy possess a density f on [0,00) that is bounded and changes mono-
tonicity finitely often on compacts (and, in particular, may and will be assumed to be right-
continuous). Then, for any physical solution (X, ) of (1.2) started from Xo_, and for any
t > 0, the density p(t,-) of the restriction of the distribution of X;_ 1{;54 to (0,00) is real
analytic on (0,00) and possesses the properties of f stated above on [0,00). Moreover, every
t = 0 falls into exactly one of the three categories:

(i) If limsup, oz~ 'p(t, z) < o0, then A€ C'([t,t + €)) for some e > 0.

(it) If limsup, oz~ p(t, ) = o0 but limyyo p(t,z) < L, then A is 1/2-Hélder continuous on
[t,t + €) for some e > 0.
(iii) If limgyo p(t, z) = L, then

(1.6) A=A = — (X, — X,_) = inf{m >0: P(r>t, X,_e(0,2]) < f} > 0.

o}
In all cases, there exists an € > 0 such that A € C*((t,t + ¢€)) and the densities p(s,-),
s € (t,t + €) of the restrictions of the distributions of X;1i5s to (0,00), s € (t,t + €) are
real analytic on (0,0) and form a classical solution of the Dirichlet problem

1 . .
(1.7) op = 5(7mp+Atﬁmp, p(-,0) =0 on (t,t+e€), with As= %axp(s,O), s€ (t,t+e).

Remark 1.2. The interpretation of Theorem 1.1 goes as follows. For all ¢t > 0, there exists a
non-trivial open interval (¢, t+¢) on which the densities p(s, -), s € (¢, t+¢€) evolve according to
(1.7), thus, the corresponding u(s, -) combine to a classical solution of the supercooled Stefan
problem (1.1) on these intervals. For ¢t > 0 as in item (i), the continuous differentiability of
the free boundary A and the classical solution u extend to [t,t + €). In contrast, items (ii),
(iii) address the blow-ups in the supercooled Stefan problem: at the times ¢t > 0 of items (ii)
and (iii) with A; — A;— = 0, the free boundary A has infinite speed, but remains continuous,
and the solution immediately returns to the classical regime; at the times ¢ > 0 of item (iii)
with Ay — A~ > 0, the free boundary A has infinite speed and here it triggers the minimal
discontinuity of the free boundary ensuring the conservation of the total energy in the system,
as encapsulated by (1.6). The discontinuity is succeeded by an immediate comeback to the
classical solution regime. We observe that the set of discontinuity times is countable but,
in principle, may have accumulation points. Finally, it is worth mentioning that, while
there exist several local results connecting (1.2) to the Stefan PDE (1.7) (see e.g. [DIRT15a],
[NS17], [HLS18]), Theorem 1.1 is the first result establishing such a connection for all times
t: indeed, it shows that the density of a physical solution to (1.2), at any time ¢, can be
viewed as the boundary value of a classical solution to the associated PDE (1.7).

Remark 1.3. Item (iii) in Theorem 1.1 can be split further into two sub-items. If p(¢,) > i

on a right neighborhood of 0, then Ay, — A,— > 0. If limg 0 p(t, 2) = + but p(t,-) < L on a
non-trivial interval (0, ), then A is right-continuous but not 1/2-Hélder right-continuous at
t (unlike item (ii) in Theorem 1.1). In the latter situation, the magnitude of the increments
Ag — Ay, for sufficiently small s > ¢, is controlled by the decay of p(t,-) near 0, as can be
inferred from the proofs of Propositions 2.1 and 2.2 below.

Our second main theorem guarantees the uniqueness of the physical solution for any fixed

initial condition.
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Theorem 1.4. Under the assumptions of Theorem 1.1, the physical solution (X, A) of (1.2)
started from Xo_ 1s unique.

Remark 1.5. In [DT17], the authors study an interacting particle system on the non-
negative integers which can be regarded as a discretization of the problem (1.2). More
specifically, the negative of the initial temperature profile is discretized into “heat parti-
cles” subsequently performing independent simple symmetric random walks and advancing
a discrete version of the solid-liquid frontier A via a discrete analogue of (1.6). That is,
the discrete solid-liquid frontier of [DT17] moves in the minimal fashion preserving the total
energy in the system, as dictated by the physics of supercooled liquids. By [DT17, theorem
1.6] and our Theorem 1.4 the scaling limit of the particle system in [DT17] gives the unique
physical solution of (1.2). Consequently, the latter captures the actual physical notion of
solution to the supercooled Stefan problem (1.1) in the presence of blow-ups.

Most importantly, Theorem 1.4 yields the first global uniqueness result for the supercooled
Stefan problem with blow-ups, formulated as in (1.2). In addition, the problem (1.2) is
expected to describe the critical regime for a one-dimensional multiparticle diffusion limited
aggregation process (cf. [DT17, conjecture 1.4]), and Theorem 1.4 is a crucial step in the
rigorous derivation of the scaling limits in such and related settings, beyond the special case
treated in [DT17]. Furthermore, in view of [Szn91, proposition 2.2(i)], our Theorem 1.4
at once settles the propagation of chaos for the constant coefficients version of the mean
field particle system in [HLS18, equation (1.2)]; and, while we do not pursue this direction
here, we are confident that suitable variants of Theorem 1.4 can be established (and, hence,
will complete the proof of the propagation of chaos) for the mean field particle systems in
[DIRT'15b, equation (3.1)], motivated by integrate-and-fire models in neuroscience, as well
as for the ones in [NS17, equation (2.6)] and the full generality of [HLS18, equation (1.2)],
motivated by interbank lending network models in finance. It is worth mentioning that,
while the global existence results for (1.2), and for related systems, have appeared in the
existing literature (e.g., in [DIRT15b], [NS17], [LS18a]), the question of global uniqueness
remained open until now. This is due to the challenging nature of the latter problem, which,
in particular, requires an understanding of the exact structure of physical solutions, provided
by Theorem 1.1. Finally, together with Theorem 1.1, Theorem 1.4 may serve as the basis for
the design and investigation of global numerical schemes for the problems (1.1) and (1.2),
extending the local numerical schemes proposed in [KR18], [LKR18].

In the following proposition we connect the notion of physical solution for (1.2) to an
analytic notion of solution for (1.1) which, in particular, yields the uniqueness of the latter.
To this end, we consider pairs (u, A) such that
(a) A:[0,0) — R is non-decreasing and right-continuous;

(b) u: D — R is bounded and a classical solution of du = %&mu in the interior of D,
with w(t, Ay) = limgys.ia, u(s,z) = 0 for all but countably many ¢t > 0 and u(0,z) =
limy g y—z u(t,y) = f(z) for almost every = > 0;

(¢) dAy = —ad §§ u(t, y) dy with Ay — Ay = inf {z > 0: lim,y, Sﬁ:” u(s,y)dy < £}, t = 0.

Note that, for a regular solution (u,A) of (1.1), the first equation in (¢) amounts to dA; =
au(t, \y) dA; —« Si $0uu(t,y) dy dt = 20,u(t, Ay) dt. Thus, it reframes the Stefan condition
in (1.1) as the natural energy conservation law for this problem.
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Proposition 1.6. Pairs (u,\) satisfying (a)—(c) above are in a one-to-one correspondence

with physical solutions (X, A) of (1.2), via Xo— + By — Ay =: Xy, t = 0 as well as X; 1(7-q <.

u(t,A\y + z)dz, x > 0, t = 0. In particular, under the assumptions of Theorem 1.1, the
described pair (u, \) is unique.

The rest of the paper is structured as follows. In Section 2, we prepare a priori Holder
estimates on the function A and the boundary behavior of the densities p(t, -). Our main tools
include a stochastic comparison method for (1.2) and the Krylov-Safonov estimates [KS79].
The bounds of Section 2 are then improved in Section 3 to Lipschitz estimates on A and the
boundary behavior of the densities p(t, -), away from the times of blow-ups (Subsection 3.1).
The C'*-property along with the real analyticity in x of u in the interior of D are shown in
Subsection 3.2, and supplementary features of the derivative 0,p are deduced in Subsection
3.3. These rely on the findings in [DIRT13], [DIRT15a], [HLS18], Weyl’s lemma in the form
of [McKO05, p. 90, Step 4] and the analyticity assertion of [Kom79, theorem 1]. Section 4
contains the proof of Theorem 1.1, which combines the conclusions of Sections 2 and 3 with
a careful analysis of the zero set of d,u in the spirit of [AF88, proof of theorem 5.1]. In
Section 5, the proof of Theorem 1.4 is carried out by using Theorem 1.1. Lastly, we give the
proof of Proposition 1.6 in the appendix.

Acknowledgement. We thank James Nolen for pointing one of us to the literature on zero
sets of solutions to the heat equation, leading to the completion of a substantial step in the
proof of Theorem 1.1.

2. HOLDER CONTINUITY

We assume that we are given a physical solution X satisfying (1.2), with the associated
A and 7. For any t > 0, we denote by p(t,-) and p(t, -), respectively, the densities of the
restrictions of the distributions of X; 1>y and X,_ 1y5y to (0,00) (in particular, their
integrals may be less than one; we sometimes refer to them as sub-densities to emphasize
this fact). (Notice that p(¢,-) is also the density of the restriction of the distribution of
Xi 174y to (0,00).) The existence and global boundedness of such densities, for all ¢t > 0,
is shown in Lemma 5.1 of [NS17], under the assumption that the initial condition X,_ has
a bounded density. At this stage of the paper, p(¢,-) and p(¢,-) must be regarded as mere
measurable functions for which we do not have any obvious canonical version. Later, in
Proposition 3.4, we will see that, for any ¢ > 0, p(¢,-) and p(¢,-) have analytic versions on
(0,00). In this section, we show that, for any ¢ > 0, under an additional assumption that is
verified later in the paper, there exists a neighborhood (t,t + €) on which the free boundary
A is Holder continuous and the densities p(¢,-) and p(t,-) (which, therefore, coincide) are
vanishing and Hoélder continuous at zero.

2.1. Upper bound on the marginal density at zero. We begin with the following
proposition, which shows that, for any time ¢ at which the profile of p(¢,-) satisfies an
additional assumption (which we finally succeed to check in Section 4, for a large class of
initial conditions), there exists a neighborhood (¢,¢ + €) on which the marginal density at
zero remains strictly below 1/«. This, in particular, implies that A cannot jump in that

neighborhood.
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Proposition 2.1. Fiz an arbitrary t = 0 and assume that p(t,-) satisfies at least one of the
following two conditions: (i) lim, g ess sup,e.np(t,x) < 1/a, or (i) p(t,-) has a version
that is locally monotone in a right neighborhood of any point in [0,00). Then, there exist
€,0>0and p:(0,¢) — [0,1) such that, for any z € (0,¢),

P(r>s, X;- <z) < @x
a

holds for all x € [0,0] and all s € [t + z,t + €]. In case (i), B has an extension to [0,€) (with
values in [0,1)) and the above bound is true for z = 0.

Proof. Let és = B, — B; and /N\S = Ay — Ay, for s = t. We also recall a useful (elementary)
identity

P(X, <z, 7>s)=PX, <ux, iFf)XT > 0).
re|0,s

First case. Assume that lim, o ess sup ¢, p(t,z) < 1/a. Note from (1.5) that, in this
case, X; = X;_ and p(t,-) = p(t,-). For any s > t, we will use the following bound:

]P)(Xsf <z, 1Ff)Xr > O) < ]P)(/\/sf < Xt]-{TZt} + Es ST+ sta Xt]-{7'>t} > O)a
rel0,s

which follows from the definition of a physical solution (1.2). Then,

P(X, <a inf X, >0) <P(R < Xdpoy + By <o+ Ko, Xl > 0)

rel0,s)
= f ]P’(KS, S Xlgey +ty<az+ As_, Xilgsy > 0)g(s—t,y) dy,
R

where ¢(s, ) is the Gaussian kernel of variance s (and zero mean). Let F' be the cumulative
distribution function of p(t,-). Then,

P(X,- <z, inf X, >0)< f (F(z + Ao —y)— F(A,_ — Y))g(s —t,y)dy
R

rel0,s)

- r+ C(Fla+ A —y) — F(Reo —)g(s — t,y) dy.

—00

We split the above term into three parts:

J:-&-/N\S, N .
IP(XS_ <z, inf X, > 0) < J (F(az +As- —y) — F(As- — y))g(s —t,y)dy

rel0,s) Ao

The first term on the right-hand side of (2.1) is less or equal to

T+As—

T+As—
F(x) J g(s —t,y)dy < Ciz J g(s —t,y)dy,

Ao
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for all s > t and all z € [0, ], where C; < 1/a and § > 0 are chosen so that ess sup g 5 0(t, ) <
Cy (which is possible due to lim, o ess sup,¢( 0t z) < 1/a).
As for the second term on the right-hand side of (2.1), we choose € to be sufficiently small,

so that A, < 0/3, for all s € [t, t + €], x € (0,0/3], and € € (0,0/3] (here, we also use the
right-continuity of A). Then, ess sup(07x+/~\s+a)p(t, ) < C4 and

F(m+/~\5_—y)—F(/~XS_—y) < (Chz,

hence, the second term on the right-hand side of (2.1) is less or equal to

Ao
CIxJ g(s —t,y)dy.

Consider the last term on the right-hand side of (2.1). Due to the fast decay, as s | t, of
g(s —t,x)/g(s —t,y), for z <y <0,

—€

—2e
—e2/(2(s—
f g(s —t,y)dy < e =/ ”)J g(s —t,y)dy,

—0o0 —00

so that, decreasing if necessary € = €(¢) > 0, we obtain

—2e —&
f g(s —t,y)dy < ’yf g(s —t,y)dy,

—0 —0
for all s € [t,t + €], with v being small enough, so that (using the global boundedness of the
density) v |p(t, )| Lo + C1 < 1/a. Then, for all s€ [t, t + €], x € (0,0/3], and £ = §/6,

[ (F+ =g - PG =)t -t ay

—2e —€

g(s—t,y)dy+01wf g(s —t,y)dy,

—2¢

<pafnuwx‘[
—00
—€

<o (ylplt e+ ) | gls—t)dy

-0
Collecting the above, we conclude that there exist € > 0 and Cy < 1/a such that
P(X,- <z, inf X,>0)<Chz
r€l0,s)
holds for all s € [t, t + €] and x € (0,d/3]. Thus, the statement of the proposition holds with
B = Csa.

Second case. Assume now that p(t,-) has a version that is locally monotone in a right
neighborhood of any point in [0, c0). Then, without loss of generality we can assume that it
is right-continuous. Resolving the jump (if it occurs), we switch from p(¢,-) to p(t,-). Since
this transition amounts to a shift of variables, we conclude from the assumption that

p(t,z) = p(t,0) —(z), x>0,
where 1 is monotone in a right neighborhood of zero (say [0,0]). By right-continuity,
lim, 0 ¢ (z) = 0. Obviously, if p(¢,0) < 1/a, we are led back to the first case. If p(¢,0) = 1/a,
the fact that we have resolved the jump forces i) to be non-decreasing and strictly positive

in a right neighborhood of zero. Because of a possible jump at time ¢, the inequality (2.1)
8



holds provided we now denote by F' the cumulative distribution function of p(t,-). Let us
estimate the terms on the right-hand side of (2.1).

Repeating the same arguments as in the first case, we conclude that, for any e € (0, /6],

there exists an e = €(¢) such that, for all s € [t,t + €] and all z € [0,6/3], A,_ < §/3 and the
first and the last terms on the right-hand side of (2.1) add up to at most

- ( J_a g(s —t,y)dy + JHL 9(s = t,y) dy>.

« —o0 As_

It only remains to estimate the second term on the right-hand side of (2.1). Since ® is
decreasing on [0, §], we have:

F(x+/~\s_—y)—F(/~Xs_—y)=J plt, 2+ Ay —y)dz
0

—ap,0) - [ vt R —p)de < 2 - auEe ),

for all s € [t,t + €], all z € [0,6/3], and all y € [—6/3, A,_]. Thus, for any ¢ € (0,6/3], we
conclude that the second term on the right-hand side of (2.1) is less or equal to

1 (A Koo
:v(af g(s —t,y)dy — P(Asm —y)g(s —t,y) dy>,
for all s € [t,t + €] and all z € [0,0/3]. Fixing € = §/6, we notice that, for any z € (0,€),
there exists h(z) > 0, such that
Ao . .
v =) gls ~t)dy > | 0 gls — 6.8~ y)dy > h)
—€ 0

holds for all s € [t + z,¢ + €]. Thus, we conclude that, for any z € (0, €),

1
P(X,- <z, inf X, >0) <=z (— - h(z))
rel0,s) o
holds for all € [0,0/3] and all s € [t + z,t + €]. Thus, the statement of the proposition
holds with B(z) = (1 — ah(z))*. O

2.2. Holder continuity of the free boundary. Next, we show that, whenever the mar-
ginal sub-density p at zero is strictly below 1/« on a given time interval, the free boundary
A is 1/2-Holder continuous on the same interval.

Proposition 2.2. Fiz an arbitrary t = 0 and assume that there exist €, § > 0 and § € [0,1)
such that
p

P(r>s, X;- <z) < —z,
o
for all x € [0,8] and all s € [t,t +€]|. Then, A is 1/2-Hélder continuous in [t,t + €].

Proof. The proof follows the strategy outlined in Section 5 of [NS17], and relies on a sequence
of auxiliary processes, whose limit will be shown to dominate the physical solution.
It is clear that P(7 > t) > 0 for all ¢ > 0, whenever P(7 > 0) > 0. Since the statement of

the proposition holds trivially if P(7 > 0) = 0, we assume that P(7 > t) > 0 for all ¢ > 0.
9



Let us fix an arbitrary € € (0,¢) and consider the sequence of processes X™, n € N defined
recursively as follows:

(2.2) X} = (X, + B) 1y, se 0],

(2.3) X" = (X, + By — L" Y 1pay, sel0,e], n=>2,

(2.4) L"=aP(r >t) — aP(1 > ¢t, in]X:>O), n=1,
s€|0,e

where B, 1= Biis — By, s €[0,¢]. (Note that L™ does not depend on the time parameter s.)

It is easy to see that X? < X!, for all s € [0,¢], with probability one. Then, by induc-
tion, we conclude that the sequences X, n € N are non-increasing, for all s € [0,¢], with
probability one. Hence, by Lemma 2.3 below, for € € (0, 0) sufficiently small, the sequence
L™, n € N, (which is non-decreasing by (2.4)) has a limit L. Hence, the processes X", n e N

~

converge uniformly on [0, ¢] to the process X satisfying
(2.5) Xo= (X, + By — L) 172y, se0,¢],

where [ 1= lim,, o, L". Notice that inf,po X', n € N tend almost surely to infyeo )?8.

Since the conditional distribution of the latter random variable, given {7 > ¢}, has no atoms,
we conclude that

(2.6) lim P(r>t, inf X">0)=P(r>t, inf X,>0),

n—00 se[0,e] s€[0,e]

which yields
(2.7) EzaP(T>t)—aIP’(T>t, in])N(s > 0).
se|0,e

By Lemma 2.3, there exist C', < o0 and ¢g € (0, €] such that
(2.8) L<Cpve e<ep

Combining (2.8) and (2.13) in the statement of Lemma 2.4 below, and recalling that they
hold for any ¢ € (0, 0], we conclude that

(29) At+8 — At < CL \/g, S € [0,80].

The statement of the proposition follows by repeating the above arguments for arbitrary
t' € [t,t+€) in place of t and recalling that C, and ¢y can be chosen independently of ¢'. [

Lemma 2.3. Let the assumptions of Proposition 2.2 hold. Then, there exist Cp, < o0 and
o € (0,€], depending only on «, 3, 6, and ||p(t,-)|L>([0,c0)), Such that

(2.10) 0< L"<Cpy/e,
for alln e N and all € € (0,e0].
Proof. We have the estimates

Q0
O<P(T>1€)—P(T>t, inf X81>O)=f (1—]P’( inf §5>—y)>p(t,y)dy

s€[0,e] 0 s€[0,e]
o0 )
0

(2.11) 5
® (—y) pt,yve)dy < 2%%] P (~y) dy = \/ECp\g =: /e Cy,
10
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where
Cp = |lp(t, )] 2,

and ® stands for the standard Gaussian cumulative distribution function.
For n > 2, we find

1
—L"=P(r >1t) —IP’(T >t, inf X! > 0)
a

s€[0,e]
(o0 N
= (1 - IP’( inf B, —L"' > —y)) p(t,y) dy
Jo 86[0,8]
(212) (‘Ln_l 0
<[ sty avE [ @i ptvE Iy
JO 0
(‘L"71
< p(t,y) dy + /e Co.
Jo

Assume that ¢ is sufficiently small, so that aCy/e < (1 — 8)d. Then, (2.11) implies L' < §
and, hence, by the main assumption in the statement of Proposition 2.2,

Ll /8
f p(t,y)dy < =L,
0 [0}

and
L* < BL' 4+ aCyy/e < 6.
Thus, by induction, L™ < 9§, for all n. Repeating the above estimate, we obtain

L" < BL" ' +aCy/e, n=2,

which yields

1
LngOéCO\/g(l-i-m), n=1

and completes the proof of the lemma. O
Lemma 2.4. Let the assumptions of Proposition 2.2 hold. Then,
(2.13) Aps— N <L, sel0,¢.

Proof. First, we notice that A is continuous on [¢, ¢+ €] and A;— = A4, due to the assumption
of the proposition and (1.5). Suppose that there exists an s € [0, €] such that A, s — Ay > L.
Since L > 0, we must have s > 0. Due to the continuity of A we can further find s’ € [0, ¢)
such that Ay, g — Ay = L and Nepor — Ny < L for all s” € [0, ). Therefore, for any s” € [0, §'],
the definitions of X, X , and the properties of Brownian motion, give

1{T>t+8”} - 1{T>t, inf,.c[o o] Xr>0} = 0, ]P)(]‘{T>t+3”} - 1{T>t, inf,.c[o o] Xr>0} > 0) > 0.
Taking s” = s’ and taking expectations in the left inequality, we end up with A;, ¢ —A; < Z,

which is the desired contradiction. [l
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2.3. Holder continuity of the marginal density at zero. Finally, we show that the
1/2-Holder continuity of A implies the Holder continuity of the marginal density at 0.

Proposition 2.5. Fiz an arbitrary t = 0 and assume that there ezists an € > 0 such that A
is 1/2-Hélder continuous in (t,t+€). Then, for any n € (0,€/2), there exist constants C' = 0
and x € (0,1) such that

p(s,z) < CaX

holds for all s € [t +n,t + € —n| and almost every x > 0.

Proof. As before, we assume without loss of generality that P(7 > s) > 0 holds for all s > 0.

First Step. The strategy is based upon Krylov and Safonov estimates, as implemented in
the proof of Lemma 5.5 in [DIRT15b]. However, there is a significant difference with the
proof in [DIRT15b] since, at this stage, the function A is not known to be differentiable
on (t,t + €): we only know that it is 1/2-Hélder continuous. To overcome the lack of
differentiability of A, we use the following mollification argument. For every n > 1, we
choose A™ as an increasing smooth process on [0, 0), starting from 0 at time 0, such that,
for any s € (t,t+¢€), lim, o A7 = Ay, the convergence being uniform on any compact subset
of (t,t + ¢). Without any loss of generality, we can assume that the processes {A"},>1 are
uniformly 1/2-Holder continuous on [t + 1/2,t 4+ € — n/2].

Then, for any n > 1, we let

(2.14) X = Xpno — (MY = Afyp) + Bs = Bryypa, s € [t+n/2,t +e—n/2],

together with 7" := inf{s > t + n/2 : X? < 0}. Using standard arguments, it is easy to
deduce that, for any s € (t +1/2,t + € — n/2), the restriction of the distribution of X7 . to
(0,00) admits a (sub-)density p™(s, -), which satisfies the Fokker-Planck equation:

1 .
(2.15) osp" — §8mp” —AN'0,p" =0, (s,z)e(t+n/2,t+e—mn/2)x(0,0),
where A" is the time derivative of the regularized function A™. Recall that
p" e O ((t+ /2.t + € —1/2) x (0,0))

and is continuous on (t + n/2,t + € — n/2) x [0,00), with the Dirichlet boundary condition
p"(s,0) =0 for s € (t +n/2,t +¢—n/2).

Second Step. We now prove that, for any n € (0, €/2), there exist two positive constants C'
and y such that, for any n > 1, s€ [t + n,t + € —n], and > 0,
(2.16) p"(s,z) < C'min(1, zY).
In order to prove (2.16), we fix arbitrary to € (t +n/2,t + ¢ —n/2] and 2o > 0, and consider,
for any n > 1, the process Y" given by:

Ay = A? __ds+dB,, sel[0,ty—t—n/2],

to—s

with Yj* = z as the initial condition. Using (2.15), we deduce from It6’s formula that
(2.17) p"(to, x0) = E[p"(to — 0", Yyu)| = E[p"(to — 0", Yy ) Lm0y ]

where " is any stopping time not exceeding gf A§?, with an arbitrary fixed 62 € (0, to—t—n/2)
and with of :=inf{s > 0: Y* < 0}.
12



Next, we consider another free parameter L > 1, whose value is determined below in terms
of n, and choose ¢" = inf{s > 0: Y > L&} A g A §%. Then, (2.17) yields

P"(to,m0) < (1 =P(Yyn =0))  sup  p(s,y),
(s,y)€Q(d,L)
with
Q(0,L) := [to — 62, t0] x [0, L]
Denoting by x a common 1/2-Hdlder bound of the paths (A"),>1 on [t + n/2,t + € —n/2],
we have, for any s € [0, "] and z¢ < 4,
Y <0+ Kké+ Bs.

Therefore,
(Y =0} 3{ inf B, < —(1+ n)a} A { sup B, < (L — (1 + n))a}.
0<5<62 0<s<6?

Choosing L = 2(1 + k), we easily deduce by a scaling argument that there exists a constant
c€ (0,1) only depending on « (in particular, ¢ is independent of n, d, t, and zy) such that
P(Y;. =0) > ¢,

from which we conclude that

p"(to, z0) < (1 —¢) sup P"(5,v).

to—02<s<to, 0SY< LS

The above holds true under the sole assumption that xo < § and t+1/2+6% < to < t+e—n/2.
Assuming 2n < to —t (notice that we can always make 7 arbitrarily small) and iterating the
above estimates, we deduce that, as long as 62(1 + L? + - - + L?) < 1, we have

p"(to, x0) < (1 — )" sup P"(s,).
to—(1+ L2+ +L2k)§2<s<ty, OSy<6LR+1

Hence, as long as 62L***D) < p, we have
p"(to, x0) < (1 —¢)* sup P"(5,).
(s,y)e[t+n,t+e—n/2]x[0,,/7]
That is, the above bound holds true if £ + 1 < In(§~27)/In(L?), which leads to (choosing
k+1=|In(6"2n)/In(L?)))
p"(f0,20) < (1 =€) 2(1— )@ /(D sup P"(s,9)
(s:y)elt+n,t+e—n/2]x[0,y/m]

= (1—0)7?(0/yn)* sup p"(s,y),

(S7y)e[t+n7t+67n/2]X[O’\/ﬁ]
with x := —In(1 — ¢)/In(L). For zq € (O, , we can choose 0 = xg, which yields
ith In(1 In(L). F 0,4/n h ) hich yield
pn(thxU) < CZL’())( sup pn(S,y),
(S,y)e[t+77’t+€*77/2]X[O,\/ﬁ]

for a constant C' only depending on 7.
In order to complete the proof of (2.16), it suffices to provide a bound for

sup p"(s,y),
(Svy)e[t+n7t+€_77/2] X [va)
13



uniformly over n > 1. The latter follows easily from the following observation. For any Borel
Ac (0,00) and s >t + /2,

P(X7\on € A) S P(Xypyo — (AL — AL, 0) + By — Briypp € A),

SA

and the latter is clearly less or equal to 1/4/27(s —t —n/2)|A|, where |A| stands for the

Lebesgue measure of A. We deduce that p"(s,-) < 1/4/2m(s — t — 1/2), which completes the
proof of (2.16).

Third Step. In order to complete the proof, it remains to take the limit as n — oo. Recall
(2.14), together with the identity

Xs = Xignp — (As - At+n/2) + (Bs - Bt+n/2)7 s€[t+mn/2,t+e—mn/2]

Since (A™),>1 converges to A uniformly on [t + 7/2,t + € — n/2], we deduce that, for any
n € (0,¢), the sequence of laws (Po ((X2)seftsn/2t+e—n/2])  )n=1 (seen as probability measures
on C([t+n/2,t+e—n/2];R)) converges in the weak sense to Po ((X;)seft+n/2,t+e—n/2)) - Since
the process X goes (with probability 1) into the negative when touching 0, we deduce that (Po

(X2)seft+n/2.t+c—n/21, T") " )n=1 (seen as probability measures on C([t+1/2, t+e—n/2]; R) xR)

S

converges weakly to P o ((X,)se[tn/2,t4e—n/2],T) ' Hence, for any s € [t +1/2,t + € — n/2]
and for any bounded and continuous real-valued function ¢ on R, with support in (0, ),

lim E[o(X7 )] = E[p(X,.,)] = fo " o (e)p(s.2) da.

n—00

From the above, we easily deduce that p inherits the bound (2.16), which completes the
proof. 0

Combining Propositions 2.1, 2.2, and 2.3, we obtain the following corollary, which sum-
marizes the results of this section.

Corollary 2.6. Fiz an arbitrary t = 0 and assume that p(t,-) satisfies at least one of the
following two conditions: (i) lim,gess sup,eq.np(t;z) < 1/a, or (i) p(t,-) has a version
that is locally monotone in a right neighborhood of any point in [0,00). Then, there exists
an € > 0 such that A is 1/2-Hélder continuous on (t,t + €) and p(s,-) (has a version that)
1s vanishing and Holder continuous at 0, uniformly over s in any compact sub-interval of
(t,t +€).

3. LirscHITZ AND HIGHER ORDER REGULARITY

In this section, we keep the same notation as in the previous one: X = (X;);>¢ is a physical
solution of (1.2); p(t,-) is the density of the restriction of the distribution of X; 1(;>4 to
(0,00); and p(t, -) is the density of the restriction of the distribution of X;_ 1,54 to (0, 0).

Our objective is to provide further regularity properties of p: Lipschitz property at
the boundary, regularity of the gradient up to the boundary and (a form of) smooth-
ness/analyticity inside the domain. Throughout the section, we use repeatedly the following
notation: For a given T > 0 (which shall be understood as a finite time horizon) and a given
te[0,T), we let

Treg(t) := inf{s >t : limess sup p(s,y) > 0} A T\
MO ye(0,n)
As a consequence of Corollary 2.6, we deduce:
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Corollary 3.1. Fiz an arbitrary time horizon T > 0, together with a time t € [0,T), and
assume that p(t,-) has a version that is locally monotone in a right neighborhood of any
point in [0,0). Then, T,ey(t) > t. Moreover, for any n € (0, (T,¢,(t) —t)/2), A is 1/2-Hélder
continuous on [t + 1, T,e,(t) — n] and there exist a constant Cyr, = 0 and an exponent
Xt,ry > 0 such that

p<57 Q?) < Ct,T,r] min(xXt,Tm7 1)7 S € [t + n, Treg(t) - 77]7 T = 0.

Proof. Fix n as in the statement and identify p(¢,-) with its locally monotone version. It
is an immediate consequence of Corollary 2.6 that T,.,(t) > t. Moreover, by construction,
we know that, for any s € [t + /2, Te4(t) — 1/2], limess sup, ,p(s,y) = 0. Therefore, by
Corollary 2.6 again, for any s € [t +1/2, T,.,(t) —n/2], we can find three constants Cs,e5 > 0
and ys € (0,1) such that A is 1/2-Holder continuous on (s, s + €), the Holder semi-norm
being less than C;, and p satisfies

p(r,x) < Cymin(zX,1), re(s,s+e,), ©=0.
By compactness, we can find N > 1, s1,..., sy € [t+1/2,T,e—n/2] so that [t+n, T, —n] <
Ul (84,8 + €5,). It remains to let

C= max Csryn, x = inf xs 14
i=1,..., i=1,....N

We easily deduce that A is 1/2-Hélder continuous on [t + 1, T,,(t) — 1], the Holder semi-
norm being less than C, and that p satisfies p(r,z) < C'max(1,zX), r € [t + 0, T,¢,(t) — 7],
= 0. U

3.1. Lipschitz regularity. We now prove

Proposition 3.2. Fix an arbitrary time horizon T > 0 together with a time t € [0,T) and
assume that (a version of) p(t,-) is locally monotone in a right neighborhood of any point
in [0,00). Then, the function (t,T,.4(t)) > s — A, is continuously differentiable and, for
any 1 € (0, (Treq(t) — t)/2), there exists a constant Cyr, = 0 such that, for almost every
s € [t +n, Treg(t) — ], '

Ay < Cyryy.
In particular, A is Cyr,-Lipschitz continuous on [t + 1, Trey(t) — 1].

Moreover, p € CY2((t, Treg(t)) x (0,00)). For any n € (0, (Trey(t) —t)/2), it is bounded and
continuous on [t + 1, Tres(t) —n] x [0,00) and the space derivative 0,p is also bounded and
continuous on [t +1n, Treq(t) —n] % [0,00). In particular, for any n € (0, (T,e4(t) —t)/2), there
exists a constant Cfp, = 0 such that, for any s € [t + 0, T,ey(t) —n] and x = 0,

p(s,x) < Cf 1, min(z, 1).

Following the proof of Proposition 2.5, we may assume throughout that P(7 > t) > 0 for
any t > 0. The proof of Proposition 3.2 relies upon the recent results of [HLS18|. First, we
state the following lemma, which follows directly from [HLS18].

Lemma 3.3. Fiz T and t as in the statement of Proposition 3.2. Then, for any n €
(0, (Treg(t) —t)/2), there exist three positive constants Kir,, €1y € (0,1) and x¢1., € (0,1)
such that, for any s € [t + 1, T,e4(t) — ), the function (s,s + €,ry,) 2 7 — A, is absolutely
continuous and satisfies

ess sup (r — s)3XT) 2N <K 4

re(s,s+€e,1.n)
15



Proof. By Corollary 3.1, there exist a constant Cy 7, and an exponent x;r, such that
(3.1) p(s,x) < Cyrpmin(zX ™ 1), 20, se [t +n,T.,(t) —n].

For a given s € [t + n,T,.4(t) — 1], we now consider the process (X,is, Apis — Ag)pso. It
is a solution of the state equation (1.2), with p(s,-) as the initial (sub-)density on (0, o).
Equation (3.1) implies that the latter (sub-)density has a Holder decay at the boundary and
is bounded on [0,0). The fact that the constant on the right-hand side of (3.1) remains
independent of s is the key point to invoke the results of [HLS18].

For the sake of completeness, we introduce the following space (whose definition is taken
from [HLS18]): For two constants A and e, we denote by S(A, €) the collection of elements
¢ of H'((0,€)) (the space of absolutely continuous paths on (0, €) whose derivative is square
integrable) such that ess sup,,e[odT(I_Xt»T»")/Qﬁ(r) < A. Then, [HLS18, Theorem 1.7] says
that there exist a constant K and a time € > 0, only depending on ¢, 7" and 71 (through the
constants in (3.1))! such that the state equation (1.2), whose initial condition has p(s,-) as
its sub-density on (0, 0), has a unique solution in the space S(K,€). A priori, uniqueness
is within S(K,¢), but [HLS18, Theorem 1.8] shows that our solution (A, ;s — Ag),>0 must
coincide with the one in S(K,€) on [0, €]. This completes the proof. O

Proof of Proposition 3.2. First Step. Replacing n by 1/2 and choosing r € (s + €;7,,/2/2, s +
€,7n/2) in the supremum appearing in the statement of Lemma 3.3, we deduce that A is
Lipschitz continuous on [t 4 7, Ty..4(t) — 1], proving one of the statements in Proposition 3.2.

Second Step. Next, we deduce that p has linear decay in x at the boundary x = 0 uniformly
in seft+mn,Teg(t) —nl, for ne (0, (Trq4(t) —t)/2). To this end, we proceed as in the proof
of Proposition 2.5 and consider mollified versions ((A?)se[t,ng ®))n=1 of A. By the first step,
we can assume that, for a given n € (0, (Treq(t) —t)/2), the functions ((A7)seft4n,1,eq(t)—n] Jn>1
are Lipschitz continuous, uniformly in n. With a slight abuse of notation, we still denote
the Lipschitz constant by Cy 7.

Consider the collection of stochastic processes:

X;L = Xt+17 - (AZ - A?—i—n) + Bs - Bt+777 s=zt+ n,

for n = 1. For each n > 1 and any s > t + 1, we denote by p"(s,-) the density of the
restriction of the distribution of X7 1(>my to (0,00), where 7" := inf{r > s : X < 0}.
Following [DIRT15a, Lemma 4.2], we know that p™ is continuous on (¢ + 1, ) x [0,00) and
that it is a classical solution of the PDE

1 .
(3.2) op" — §6mp" — A0 p" =0, s>t+mn, x>0

By [DIRT13, Lemmas 2.1 and 3.1] (up to an obvious modification, as the absorption herein
occurs at the boundary of (0,20) and not at the boundary of (—o0, 1)), we know that, for
each n > 1 and each s € (t + 1, T;¢4(t) — 1], the function p"(s, -) is differentiable at any point

'We draw the reader’s attention to the fact that the statement in [HLS18] is not entirely clear on the
dependence of € upon the shape of p, but a careful inspection of the argument shows that our claim is indeed
correct.
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x = 0. Moreover,

Q0
o (s.2) = [ Oals = (4 m)zi) 0 42 0
(33) 0 S o
+ J J Ay 0p"(r, 2) Oyq(s — r, z,x) drdz,
t+n JO

where
q(r,x,y)=g(7",x—y)—g(?",x+y), T>O, $7y>07

is the kernel of the heat equation with absorption at = 0, and the function g(r,-) denotes
the usual Gaussian kernel of variance r (and of zero mean). We make the following key
observations. First, we know that each p™ solves (3.2). As the (p"),>1 are bounded uniformly
in n, we deduce from standard results on the smoothing effect of the heat equation that, on
any closed ball included in (¢ + 7, Tr.y(t) — n) x (0,00), the functions ((s,z) — p™(s,z))n>1
are in CH)/24a((t 4 T, . (t) — 1) x (0,0)), for some o € (0,1), uniformly in n > 1
(namely p™ and 0,p" are locally Holder continuous in time and space, uniformly in n > 1).
As p"™ converges to p on (t + 1, T,¢4(t) —n) x (0,0) (see Proposition 2.5), this shows that
p is differentiable in x on (t + 7, Tey(t) — 1) % (0,00) and that (0,p" (s, z))n=1 converges to
0.p(s,x) for any (s,z) € (t + 1, Trey(t) —n) x (0, 00).

Another observation is that [DIRT13, Propositions 3.2 and 4.2] imply the existence of a
constant C' (possibly depending on ¢, T', i, but independent of n) such that, for any n > 1
and (s,z) € (t + 1, Treq(t) —n) x (0,00),

C

(3.4) |00 (s, 2)] < m
Also, we have, for all r € (t + 7, s) and z > 0,

C |z — 2|2
s—r eXp<_C’(s - 7"))
In particular, we have the following bound for the second integrand in (3.3) (allowing for a
new value of the constant C):

(35) |6yQ(3_T7 Z,l’)| <

C

_— L VO el
‘Araxp (T’Z)ayq(s ) )}g r—(t+n)(s—r) p< C(S—T)>7

which is integrable in (r,z) € (¢t +n,s) x (0,00). Since, after passing to a subsequence, An
converges almost everywhere (in time) to A, we can take the limit in (3.3) as n — oo and
deduce that

oplsia) = | dyals = (¢4 m).z0)plt 4, 2) 0

(3.6) Y o

+ f J A, Opp(r, 2) Oyq(s — r, z,x) dr dz.
t+n JO

Moreover, taking the limit in (3.4), we also have

C

s€ (t+n,Tregt) —n), > 0.

17



Therefore, we can take the limit as | 0in (3.6). We deduce that, for any s € (t+n, T,¢,(t) —
n), 0xp(s,x) has a limit as x | 0. In particular, p(s,-) is differentiable at the point 0 and
2.p(s,0) is given by (3.6). Since 7 is arbitrary, this is true for any s € (¢, T,¢,4(t)). Moreover,
we deduce from (3.7) (with n replaced by 1/2), that for any n € (0, (T},(t) — t)/2), we can
find a constant C} 5., such that

(3.8) p(s,x) < Cppyymin(z, 1),  se [t +n,t+ Toey(t) —n], = 0.

Fourth Step. By combining the conclusions of the second and third steps, we deduce that,
for any 7 € (0, (T}4(t) — t)/2), the function p(t + n, -) is differentiable on [0, ®0) and satisfies
(3.8). In other words, it satisfies all the assumptions of the existence and uniqueness result
stated in [DIRT15a, Theorem 4.1] (which is stated in a slightly different framework, but
which obviously applies in our setting). This latter result says that there exists a unique
solution (X, A) to the state equation (1.2) whose initial condition has p(t + 7, ) as its sub-
density on (0,00), and it is such that A is continuously differentiable on [t + 7, t + 71 + €], for
some € € (0, T,ey(t) —t — 21m) only depending on the parameter Cj,, in (3.8). By [HLSIS,
Theorem 1.8], the process A must coincide with A — Ay, on [t +7,t + 7 + €], which shows
that A is continuously differentiable on (¢, Tye4(t)).

Moreover, (3.7) shows that d,p is bounded on [t + 7, T;e4(t) — n] x [0,0), for any n €
(0, (Treq(t) —1)/2).

Lastly, using the fact that, for s > r (and with a new C' < o),

C |z — 2|?
(s —1r)? eXp<_C’(s — r))’

lat(?yq(s -2, 91:)‘ <

we see from (3.5) that, for s > s" > r,

‘@q(s =1, z2,2) — Oyq(s’ — 1, 2, ZL‘)‘
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< <‘6yq(s -, z,z)|7/8 +|0ya(s’ =, z,:z)|7/8>

J 0r0yq(s" — 1, z,x)ds”

_ Cls — s'|'/® o (_ |z — 2|2 )
(s —1)98 C(s'—r)/)
Plugging the above bound in (3.3), we deduce that, for any n € (0, (T,c4(t) — t)/2), Oup is

continuous in s, uniformly over z, for (s, z) € [t + 1, Trey(t) — 1] x [0,00). We conclude that
0.p is continuous on (¢, T,.4(t)) x [0, 00). O

3.2. Smoothness and analyticity inside the domain. Whilst Proposition 3.2 mostly
concerns regularity at the boundary, the next result addresses the regularity of p inside the
domain.

Proposition 3.4. For a physical solution (X, ) of (1.2), following (1.4), we denote
u(t,z) :=p(t,x —Ay), t>0, x> A

Then, u is C* in (t,x) and satisfies Oyu = £0y,u pointwise on D :={(t,x) € (0,00)%: 2>A,}.
Moreover, for any (t,x) € D, there is a neighborhood of (t,z) in R x C on which there exist

extensions of u and its time derivatives of all orders, such that the extensions are analytic

in the space variable with jointly continuous space derivatives of all orders. In particular,
18



for any t > 0, the function u(t,-) is real analytic in x on (A, ), and the functions p(t,-),
p(t,-) are real analytic in x on (0, 00).

At first sight, the fact that u solves the heat equation could appear as a simple reformula-
tion of the fact that p satisfies the equation (1.7), but it is not! As we have already explained,
p may have time discontinuities (and, hence, may not be smooth in time) at those times ¢
when lim, o ess sup p(t,y) = 1/a. This is in contrast with the above statement: Therein,

ye(0,n)

we assert that u is smooth in D whatever the behavior of p at the boundary. Regarding the
smoothness in the sole space variable x, the real analyticity of v in x was already pointed
out in the very recent preprint [LS18b|. In fact, the real analyticity in x of the solutions to
the heat equation is a general result in PDE theory, see for instance [Kry96, exercise 8.4.7].
Here, our result says more since we not only prove the real analyticity in x of u and of its
time derivatives, but also extend u to a complex domain in x, locally uniformly in ¢. We use
the latter fact in Section 4. Also, our arguments are different from those used in [LS18b], as
we have developed our analysis independently.

Lastly, it is worth noticing that the analyticity of p(t,-) is a not a direct consequence of
the analyticity of u(¢,-); indeed, the definition of u yields p(t,z) = u(t,z + A;_), but the
latter only makes sense when = + A, > A4, that is, x > A, — A;,_. Hence, an additional
(small) argument is needed to prove that, at any given discontinuity time ¢ of A, u(¢,-) may
be analytically extended to the entire (A;_, o0).

Proof. Let 0 < t; <ty < o and 0 < x; < xy < oo fulfill [¢y,t2] % [z, 22] < D. Then,
u is a generalized solution of the PDE du = 10,,u on [t1,t5] X [21,22]. Indeed, for any

pEe COO (t17t2) X (ZUl,.Tz))

xro— At
f f Ogp + ﬁmgo dxdt f J 8tcp+ 8m<p>(t,y+At)dydt
t1

1At

= f [((975(,0 + 5&@#) (t, Xo + M) 1{T>t}] de

t1

to AT 1
= E[J (atg) + —am@) (t, Xo + By) dt]
¢ 2

1NAT

= E[gp(tg AT, Xo+ Biyar) — @t AT, Xo + Bth)] =0,

where in the second-last equality we used It6’s formula and the optional sampling theorem
(see e.g. [RY99, chapter II, corollary 3.6]), and in the last equality we used the fact that the
support of ¢ is included in (t1,%2) x (x1,22). We conclude that u € C®([t1,t2] % [x1, x2])
and du = %amu pointwise on (tq,%2) % (x1,2z3) by virtue of Weyl’s lemma in the form of
[McKO05, p. 90, step 4]. The analyticity of u, and of its time derivatives, in space is now a
consequence of Lemma 3.5 below, applied to the function

(3.9) w: [0,00) x [z1,25] > R, (t,x) — w(t + €, 2),

where w is the classical solution of the Cauchy-Dirichlet problem

1 w(e,x) = ule,x), x <x <Xy,
(3.10) Qw = éﬁmﬁ on [e,00) x [x1, 2], with { @(t,z1) = u(t,x1) p(t), t=>c¢,
’aj(t,fbg) = U(t,l‘g) @(07 L =€,
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and with ¢ € C%([e,0)) satisfying ¢ = 1 on [¢,t2] and ¢ = 0 on [ty + €,0), for some
¢ € (0,t) such that [0,t, + €] x [21,22] < D. Clearly, @ coincides with u on [e, ¢5]. The
analyticity of p in = € (0,00) at positive times follows easily.

It now remains to address the analyticity of p(t,-) in x € (0,0), for t > 0. Clearly, it
suffices to treat the case Ay > A;_ and z € (0, A, — A;_]. With the same notation as before,
we consider a rectangle [t1,ts] x [x1, 2], with t; > 0, t = ¢t and x; > A,_ = A,,_. For
s € [t1,t2) and = € (21, x2), we have

u(s,x) = E[u(s —oA(s—11),x+ Bm(sftl))],

where o :=inf{r > 0: x + B, ¢ (21, 22)}. Since P(0 > 0) = 1 and since u is continuous and
bounded on [t1,t5) % [21,x5], the right-hand side of the above has a limit as s 1 t3 = t. In
fact, by interior estimates for the heat equation, we have uniform bounds on the derivatives
(of any order) of w on any [t],t2) x [2], 2], with t; < | <ty and 27 < 2} < a2, < zy. As
we may play with the choice of ¢;, 21 and x5, we have uniform bounds on the derivatives (of
any order) of u on [t1,ts) x [x1,x2]. This says that u has a C*([t, t2] x [1, z2])-extension.
Denoting this extension by u, we can repeat (3.10) by extending (s, z;) and a(s,z2) in a
constant way for s > t5. We deduce that a(t,-) is analytic on (A, o0) and, thus, p(t, ) is
analytic on (0, o). O

Lemma 3.5. Let 0 < 21 < 25 < 0 and w € C*([0,0) x [z1,23]) be a classical solution of

(3.11) Ow = %&mw on [0,00) x [z1,x5]

with ¢1 = w(-,x1) € CL([0,0)) and ¢y := w(-,x2) € CL([0,0)). Then, for any (t,z) €
(0,00) x (21, z3), there is a neighborhood of (t,x) in R x C to which w and its time derivatives
of any order can be extended, the extensions being analytic in the space variable with jointly
continuous space derivatives. In particular, w is real analytic in x on (x1, ).

Proof. First Step. We pick any z; < T1 < Iy < x5 and any [0, 1]-valued function ¢y €
C°([x1,x3]) compactly supported in (z1,25) with @y = 1 on [x1,2,]. Then, by [LSUGS,
chapter IV, Theorem 5.2] there exists a unique classical solution w® € C([0, ) x [z, x2])
of the Cauchy-Dirichlet problem

1
o’ = Z0w® on  [0,00) x [z, 7],
(3.12) 2
. with wO(O,x) = U)(O,ZE) SOO(I)7 T1 ST S Ty,
wo(tal’l) = wo(tva) = 07 t=0.

Moreover, w® is real analytic in (¢,x) on (0,00) x [x1,22] by [Kom79, Theorem 1]. In

particular, for any (¢,z) € (0,0) x (z1, z2), the function w® has a complex analytic extension
to a complex neighborhood of (¢, z). Hence, the conclusions of the lemma hold for w®. Thus,
it suffices to show that the conclusions of the lemma also hold for A := w — w°.
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Second Step. The function A € C*([0,0) x [z1,x2]) is a classical solution of the Cauchy-
Dirichlet problem

AVANES é’mA on [0,00) x [z, 2],

(3.13) A( z) = w(0,2)(1 —po(2)), @1 <z <y,

In particular, A, 0,A, 0y A € C*(]0,00) x [x1,22]) are all classical solutions of the forward
heat equation on [0,00) x [z1, 23] and, by the maximum principle, all three are globally
bounded in absolute value. The latter is also true for 0,,A = 20;A € C*([0,0) x [x1,x2]),
so that, with C; := {\ € C: Re A > 0}, the Laplace transform in time

0
(3.14) A\ ) = J e MA(t, ) dt, (M) e Cy x [2q, 2],
0

solves (using the fact that A(0,z) = 0 for z € [z, 22])
(3.15) (0saA)(N,-) = 2MA(N,2) on  [21, 2s],
for all A € C,. The solution of the linear ordinary differential equation (3.15) reads

AN z) = CL(N) eV 4 Cy(N) e Ve,

1 ~ o o N o >
Ci(\) = ANz eV _ A AT e~ V22 ,
(3.16) e 2 sinh(v2X (1 — 2)) *a) ,22) )
1 ~
Co(N) = (= B0 &) e/ £ A, ) ¥,

2sinh(v2A (2, — 22))

where v/2\ is the principal square root of 2\. It is easy to see that, for any A € C,, A()\, )
extends to a holomorphic function on (5:1, %2) + iR, where 72 = —1.

Third Step. Next, we apply the complex Laplace inversion formula, e.g., in the form of
[Rud66, chapter 19], to find

(3.17) Alt,z) = — AN, 2)dN, (L z) € (0,0) x [, Ta],

for all r > 0, with the integral on the right-hand side of (3.17) being absolutely convergent.
The proof of (3.17) is in fact quite straightforward. Whenever A = r + iv,
a0

A(r +iv,x) = J e " 10,00y (t)e P A(L, ) dt.

—Q0

Up to the scaling factor 4/27, the function v — A(T + v, x) is the Fourier transform of the
integrable function ¢ — 1o (t)e " A(t, z). Formula (3.17) then follows if we can prove that

v — A(r + v, x) is integrable. This is where the regularity properties of A come in. Indeed,

using the fact that A(0,z) = 0 and that 0,A(0,z) = $0,.A(0,z) = 0 for the value of z in
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consideration, we have, for A € C,,

1 ([~ 1 1
p f G_At attA(t, .ZU) dt <
0

IA2Re X

(3.18) AN, )| = sup sup |OuA(t, 7)),

t=0

ze[xl xg]
which implies that the right-hand side of (3.17) is absolutely convergent.

Our next goal is to use (3.17) to extend A(t, ) analytically to a complex neighborhood of
(21,25) for a given t > 0, that is, to extend A to pairs (¢,z) € (0,00) x C such that Re = €

(21, 22) and |Imz| is small (but possibly non-zero). This is in fact not so straightforward
because, at this stage of the proof, nothing guarantees a prior: that the right-hand side of
(3.17) is absolutely convergent whenever x has a non-trivial imaginary part.

In the fourth step below, we prove that, for any ¢ € (0, (x2 — 21)/2), A € C such that
Re()\) = 1, and z € C such that Re(z) € (21 + &, 25 — ¢) and [Im z| < £/2,

(3.19) A 2)| < |§2 exp( m)

Observing from (3.16) that the integrand in the right-hand side of (3.17) is holomorphic
in x € C, and using the Cauchy representation formula for holomorphic functions together
with the Lebesgue differentiation theorem under the integral sign, we deduce that A(t, )
and its time derivatives oFA(t,-), k > 1, are holomorphic on the domain {z € C : Re(x) €

(21 + &,25 —€), |Im z| < £/2}. Moreover for any k € N, the function 0FA is continuous on
{(t,z) € (0,0) x C: Re(z) € (x1 + ¢, 23 — ), |Im z| < /2} and, by Cauchy’s formula, the
same is true for all the derivatives 0F0‘A, k,¢ € N. Choosing € > 0 as small as needed, this
proves in particular the desired real analyticity of A(¢,-) in & on (21, Z2).

Fourth Step. We now prove the desired strengthening (3.19) of (3.18).

Our first observation is that, in (3.13), &,A is bounded on the whole [0,00) x [y, Z5].
This follows from the interior gradient estimates for the heat equation (see e.g. [LSUG6S,
chapter IV, Theorem 10.1]) and from the fact that A itself is globally bounded on the whole
[0,00) X [z1,22]. By induction, the same holds for higher order derivatives. We deduce that

010 A and 0y 0, A are also bounded on [0, 00) x [571, :%2] As a consequence, we can differentiate
under the integral in the right-hand side of (3.14) and obtain a similar representation formula

for &Cﬁ(}\, x). Duplicating the proof of (3.18), we conclude that there exists a constant C'
such that

AE C+, xr e [%1,[%2].
Next, we differentiate the first line in (3.16) with respect to x € [%1, Z5]. We deduce that

VIAA(N, ) + AN, ) = 2V2AC; (A)eV2

Modifying the value of the constant C' if necessary, we obtain, for Re()\) > 1,

C o o
(3.20) ‘01()\)6@ | < BB T € [x1, x9]
and, similarly,
(3.21) Co(N\)e V2| < ¢ e [21, Zo].

MP’



Next, we consider z € C with Re z € [z, Z,] and write
(3.22) ﬁ(/\, x) = C1(N) VP2 VI (@—22) 4 Ca(N) e~V V2@ —),
For A e C with Re()\) > 1, we write v/2\ = a + ib, with a > 0. Then, a> — b*> > 2 and
Re(\/ﬁ(x — :%2)) — aRe(z — x3) — bIm(z).
If [Im z| < Re(zy — x)/2, then
Re(vV2\(x — 7)) = aRe(z — 2) — bIm(z) < —g Re(zs — 2) < —i\/mRe(%g — ).
By the same argument, if [Im(z)| < Re(z — 21)/2, then

Re(\/ﬁ(il — 1)) < —i\/WRe(x — ).

Hence, the conclusion is that, for e € (0, (zo—21)/2), Re(z) € (£14¢, —¢) and [Im z| < /2,
£

Re(V2A(z — 72)) < —Z A, Re(V2A(#1 — 2)) < =3/,
which, along with (3.20), (3.21) and (3.22), yields
~ C
A2 < |Wexp( —V/IN).
This completes the proof. 0

3.3. Further properties of the gradient. By combining Propositions 3.2 and 3.4, we
obtain the following proposition.

Proposition 3.6. Fiz an arbitrary time horizon T > 0 together with a time t € [0,T] and
assume that p(t,-) is locally monotone in a right neighborhood of any point in [0,0). Then,
0xp is continuous on (t,Teq(t)) % [0,00) and satisfies, on (t,Treq(t)) % (0,0),

1 .
§axx(awp) + At aw(awp)

Proof. The first part is a straightforward consequence of Proposition 3.2. Equation (3.23)
follows from the following computation:

(3.23) 0(0zp) =

d )
Oup(t,x) = —0pu(t,x + Ay) = Onu(t, x + Ay) + Opoult,x + Ay) Ay
(3.24) dt

1 . 1 .
= §5mmu(t, T+ N) + Oppu(t,x + Ay) Ay = §5mxp(t, x) + Opap(t, z)(t, ) Ay,
which holds pointwise on (¢, T}..4(t)) x (0, 0). O
Next, we deduce the following result.

Lemma 3.7. Fiz an arbitrary time horizon T > 0 together with a time t € [0,T] and assume
that p(t,-) is locally monotone in a right neighborhood of any point in [0,00). Then, for any
5 € (t, Treg(t)), we have Ay = $02p(s,0) > 0.
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Proof. First, we verify the identity A, = 50:p(s,0) for s € (t,T5e4(t)). To do so, we follow
the proof of Proposition 3.2. For any 1 € (0, (T,¢4(t) —t)/2), we recall from the fourth step
of the proof that the initial sub-density p(t + 7,-) satisfies [DIRT15a, Lemma 5.3] (which
is stated in a slightly different framework). Choosing therein A as a drift, the latter result
states that, for s € (t + 1, T,,(t) — 1),

d 1
&P(T = S) = 5 xp(sa 0)7
which yields
As = %amp(sv())
For the second part of the statement, it suffices to show that, for every s € (t,T,..4(1)),
d2
3.25 — | P(inf X,>0, X, € (0, 0.
( ) da? lz=0 (relf(l),s] ~ E( x]) -

To verify (3.25) we employ the explicit formula for the joint distribution of the value and the
running maximum of a standard Brownian motion (see e.g. [KS91, chapter 2, Proposition
8.1]) and find that, for any 7 € (0, (Tye4(t) — t)/2) and s € (t + 1, T,e4(t) — ), the following

holds with A := A — Ay,
P( inf X, >0, X, € (0,z])

rel0,s]

a0
> f p(t + 77 y) ]P)(y + 1I1f (B Bt+77) Asa ) + Bs - Bt+7} € (Asa As + ‘T]) dy

A re[t+mn,s]

(326) y—As 2 o _
=ﬁ t+nyf J =0 5 dbdady

W

: L p(t+n,y) F(z,y)dy.

Next, we write (with f defined implicitly by the above):

y—As y—As (y—As)/
F(z,y) J f (2b — a) dbda—ff f(2b+a)dbda
s—T (y—As)/2

(y—As)/2
f J ff (2b + v) dv dbda,
(y—As)/2

where the last equality follows from the fact that f is odd. Therefore, Fubini’s theorem
yields:

(y—As)/2
f p(t+n,y) F xydy—fff t+77yf f(2b + v)dbdy dvda

(y—As)/2

JJJ T i it ) b f(( “A)HY) 4w da,

Thus, we obtain
d2
da?

P( inf X, >0, X,€(0,2]) > J p(t +n,y) fly = As) dy.
As

=0 rel0,s]
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It remains to observe that

ﬁ p(t+n,y) fly— Ay dy > 0,

As

in view of the probabilistic interpretation of the latter integral. O
We conclude this section by verifying the absolute integrability of d,p(, -).
Lemma 3.8. For any t > 0, lim, o, p(t,z) = 0 and d,p(t,-) € L*((0,0)).

Proof. Let (X, A) be a physical solution of (1.2). First, we assume that X, = z > 0 and,
for any 0 < y; < yo < 20, obtain:

P(X; Lint, (o X, >0} € [y1, 52]) = P( éﬁ)ft] X, > 0| Xy € [y1,42]) P(X: € [1,12]).
Recall that a Brownian motion started at  and conditioned to be equal to z at the terminal
time ¢ is a Brownian bridge from x to z on [0, t]. Denote as before by g(¢,x — -) the density
at time ¢ of a Brownian motion started at x, and take a limit as y;,y> — y > 0, to obtain

p(t,y) =g(t,x —y — At)IP< ir[%)ft](a: + B, +r(y+ AN —x—By)/t — AT) > O).
relo,
(See also [GSV07, Proposition 4] for a direct derivation of this formula.) By Proposition 3.4,
we conclude that p(t,-) € C*((0,00)). Moreover, lim, ., p(t,z) = 0. Next, we notice that
the function
p(t,): (0,00) 3y — IP’( il[})f](:v + B +r(y+ AN —x— B/t —A,) > 0)
re|0,t

is [0, 1]-valued and non-decreasing. Since p(t,-) is continuously differentiable (thanks to
p(t,-) € C*((0,00))) and g(t,-) is smooth, we have d,p(t,-) € L*((0,00)), with the norm
bounded uniformly over ¢ > 0.

For a general X,_, we have

o0

p(t,y) = J g(t,x —y — AQIP’( il[%f](x + B, +r(y+ AN —x— Bt — A,) > O) pu(dx),
0 re 7t

where p is the distribution of the positive part of Xy_. Using the observation at the end of

the preceding paragraph, as well as the fast decay (in x) of g(¢,z) and of its x-derivative, we

easily obtain the statement of the lemma by means of Fubini’s theorem. ]

4. PROOF OF THEOREM 1.1

In addition to the results of Sections 2 and 3, we need the next lemma for our proof of
Theorem 1.1.

4.1. The number of monotonicity-changing points. The next lemma is at the core of
our analysis.

Lemma 4.1. Let Xo_ admit a density f on (0,00) that changes monotonicity finitely often
on compacts of [0,00). Then, the same applies to X¢— L=y, t > 0, for every physical

solution (X, A) of (1.2) started from Xo_.
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Proof. First Step. We refer to the property of a random variable described in the lemma as
(P) and argue by contradiction. To this end, we suppose

(4.1) tw :=Inf T :=inf {t > 0: X;_ 1{;54 violates (P)} < oo

The first (easy) step is to check that, necessarily, ¢, € T (which, in particular, implies ¢, > 0).
Indeed, if t, ¢ T, then by Proposition 3.2, Lemma 3.7 and Proposition 3.4, respectively, there
exists an € > 0 such that X,_ 1sg = X 1o, limg o 0xp(s, x) = lim,y 0,p(s, ) > 0 and
0:p(8,+) = 0.p(s,-) are analytic on (0,0) for all s € (t,,ts + €). Clearly, this implies that
[te,t« + €) < T, which contradicts (4.1).

To deduce a contradiction from ¢, € T we pick an arbitrary R > Ay, — Ay, and aim to
show that p(t.,-) changes monotonicity finitely often on [0, R]. For this purpose, it suffices
to obtain a uniform upper bound M < oo on the number of monotonicity changes of p(s, -) on
[0, R] for all s € [t./2,t,). Indeed, then the definition of ¢,, Lemma 3.7 and a diagonalization

argument would yield a sequence [t,/2,t,) 3¢, 1 t, and 0 < xi") < chn) <0 < xf{;ﬁl =R,

n € N converging when n — o to 0 < 77 < 29 < -+ < Ty R, respectively,
such that each p(t,,-) is non-decreasing on [O,xgn)), [xé"),xgn)), ... and non-increasing on
[, 28, [27, 2{), ... Hence, the cumulative distribution function of X, Lirot,y, 88

the pointwise limit on (0, 00) of the cumulative distribution functions of Xy, 1(-~,3, n € N,
would be convex on [0, 1), [z2,x3), ... and concave on [x1,z3), [x3,24), .... (The convex-
ity /concavity at 0 would follow from the right-continuity of cumulative distribution func-
tions.) Recalling from Proposition 3.4 that p(ts, ) is smooth on (0, 0), p(t., -) would change
monotonicity finitely often on (0, R]. In particular, p(t,,-) would have a limit at 0 and the
resulting extension would change monotonicity finitely often on [0, R].

Second Step. To find an upper bound M < oo as desired (which is the precise purpose of
the remaining steps in the proof), we make the change of variables (1.4) and consider the
zero set of O,u on D, = {(t,z) € [t./2,t:] x (0,0) : x > Ay}. On D,, the C*-function
0pu is analytic in 2 and solves dy(0,u) = $044(0,u) (cf. Proposition 3.4). We conclude that,
for every point (t,z) € D,, either d,u(t,z) # 0 and the zero set of J,u is empty on a
neighborhood (¢ — 61, + 61) x (x — d2,x + d2), or d,u(t,z) = 0 and there exists a smallest
k e N\{0} with o%0,u(t,z) # 0.

By Lemma 4.2 below, the latter case results in a neighborhood (t—d1, t+01) x (£ —0d2, x+02)
on which the zero set of d,u is the union of k curves, each containing (¢,z). 2|k/2| curves
are given by the graphs (in the (time, space)-coordinate system) of continuous functions on
[t —61,t] that are C* on [t —d1,t). In the (space, time)-coordinate system, the latter curves
form |k/2| strictly convex smooth paraboloids with graphs in the negative half-space only.
If k is odd, there is another curve given by the graph of a C*-function on [t — d1,¢ + d;] (in
the (time, space)-coordinate system; in particular, it crosses the z-axis).

Covering the segment [t,/2,t.] x {R + As,—} by such neighborhoods of its elements and
extracting a finite subcover we find a non-trivial rectangle [¢,/2, ] X [R+ As,—, R+ Ay, — +6]
contained in the latter. We claim that, consequently, for V € N large enough, d,u has at
most a finite number of zeros along the curve 6 that linearly interpolates between the points

<5, R+At*,>, (5 + N R+ Ay +6>, (5 +2m, R+At*,),
Ly ts ts Ly
<5 +3W’ R+ Ay, - +6), (— +4—, R+At*_), covy (tey, R+ Ag,o).
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Indeed, it suffices to prove that the number of intersection points between 6 and the aforemen-
tioned zero curves is finite in a given neighborhood of the form (t —d1,¢+d1) x (x — da, x + 02)
(provided we choose N large enough, which is always possible since we just need to handle a
finite number of these neighborhoods). Obviously, by choosing N large enough, we see that,
if it exists, the extra curve (say () that goes through the x-axis has at most one intersection
point with any linear segment of 6 (choose the slope of 6 greater than the maximum of the
time derivative (). As for the other zero curves, we know that they are strictly convex or
concave on (t —dy,t). Hence, whatever the value of N, any of those other curves has at most
two intersection points with any linear segment of 6.

Third Step. Next, we fix an s € [t./2,t,). The purpose of this step is to verify the following
assertion.

Assertion. For all z € (A, 05) with d,u(s, z) = 0, there exist a t € [t./2, s) and a continuous
function ¢ : [t,s] — (0,00) (we shall say that ¢ is C° on [t, s]) such that

(a) (s =z and ¢ € (A, 6;), Ou(t, ) = 0 when t € (¢, s];

(b) for all t € (¢, s), there exists a neighborhood

(t —061,t +01) X (G — 02, ¢ +62) < {(t, ) € (t4/2,5] x (0,00) : Ay <2 <Oy} =Ty, 106

on which d,u(r,y) = 0, for r < s, implies y > (,;
(c) one has

(4.2) (£, ) € Otayos) U ({5/2} X [Aryj2 R+ Aty ]) U Aty 26] =1 Cparl 'ty /o6

Let us fix any x as in the statement of the assertion and construct the desired curve (. First,
the local description of the zero set of d,u implies that

To:={r € [t./2,t.) : (a), (b) hold, with r replacing ¢,

(4.3) . .
for a continuous function ¢ : (r,s] — (0,%0)}

is non-empty. Hence, t := inf Ty € [t./2, 1) is well-defined. Next, we notice that, for any
r € Ty, the corresponding continuous function ( is uniquely determined. Indeed, thanks to
Lemma 4.2 (recall also the local description of the zero set of d,u, provided earlier), there
exists a minimal curve in the left neighborhood of s. This shows that ( is uniquely determined
in the left neighborhood of s. Then, it is uniquely determined on (r,s], as otherwise the
property (b) would be violated for the smallest ¢ such that the two candidate functions
agree on [t,s]. Uniqueness also implies that, for any r,r" € 7Ty, with 7’ < r, the function ¢
corresponding to 7’ coincides with the one for r, on (7, s]. Thus, all functions corresponding
to the elements of 7y combine to a continuous function ¢ : (¢, s] — (0, 00) satisfying (a), (b).
Moreover, by the intermediate value theorem, the limit points of ( as ¢t | ¢ form an interval.
However, d,u(t,-) = 0 on its interior, and in view of the analyticity of d,u(t,) this interval
must consist of a single point, which shows that lim,; (; is well-defined. Now, we claim that
(t,z = limyyy G) ¢ Ty, 05- Indeed, if (¢, 2) € 'y, /25, we know from Lemma 4.2 that ¢ can be
extended to the left of (¢, z) by choosing the smallest zero curve in the left neighborhood of
t, obtaining a contradiction to the definition of t. Thus, ( satisfies (c).

Fourth Step. Let us consider the curves ¢ as in the above Assertion, for all possible x €
(As, R+ Ay, ) such that d,u(s,z) = 0, and with s fixed. Whenever this causes no ambiguity,
we will refer to them simply as “zero curves”. We claim that no two zero curves intersect in
[ty /2.6 U Oparl't, /2,5 Any potential intersection in I'y, o s U0, 2,61 U ({t4/2} X (At /2, R4+ Ag, —])
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is ruled out by applying the maximum principle for classical solutions of the heat equation
on the region bounded by the two intersecting curves and recalling the analyticity of d,u in
zon D,.

It remains to exclude the scenario that two zero curves, say (! < (2, approach the same
point (s, As,) € Aft,/2,6)- First, we notice that ¢’ restricted to any compact in D, is C* at
all points, except for at most a finite number of them, as follows from the local description
of the zero set of d,u. This means that, for every (?, the only possible accumulation point of
such singular points is s*. Therefore, we can iterate over the singular points on each curve,
smoothing out the functions at these points, and obtain new curves, (V) < ¢ which are
C*-functions on (s*, s|, taking values in (A4, 6;) for every t € (s*, s], and converging to A,
as t | s,. In addition, for any & > 0, we can choose ((V) and (@, respectively, so that they
are &-close to ¢! and (2, and that [0, u(t, Ctl))\ < £ for all ¢ € (s*, s]. In fact, by making the
approximation finer as we get closer to s,, we can also make sure that lim, d,u(t, Ctl)) = 0.
For most of the subsequent derivations in this step, we fix an arbitrary & > 0 and the
associated ¢V, ¢,

The main challenge in this step of the proof lies in the lack of a priori continuity and
boundedness of d,u near the boundary point (s, As, ), which does not allow us to directly
apply the maximum principle or the Feynman-Kac formula to obtain a contradiction. We,
therefore, need to justify the Feynman-Kac formula
(4.4)

opu(t, z) = Blosu(t — 7%, 2 + Bpes)] = v(t,2), x=CY, so <t<s, (t,z)# (s*,CS(i)),

where 767 = inf{r = 0 : z + B, = ({".} A (t — s,). The proof is deferred to Lemma 4.3
below. As a consequence of (4.4), the function v is well-defined except maybe when t = s,
and r = Qé}k) = A,,, in the sense that, for z > Ct(l) and s, <t < s with (t,2) # (S«, As,)s
E[|0yu(t — 75%, 2 + Brea)|] < o0.

The Markov property of standard Brownian motion and the Feynman-Kac formula (4.4)
show that, for t € (s, s), x € ( t(l), 152)), the process ,u(t —r ATV &+ By ayta ), 7 € [0, — 4]
is given by the conditional expectations of its terminal value with respect to the filtration
of B, r € [0,t — s4], consequently a martingale. The optional stopping theorem (see e.g.
[RY99, chapter II, corollary 3.6]) renders the process O u(t—r AT AT & + By prtio ppt) =
u(t —r AT, 2 4 Byagea), v € [0t — s,], with 7% ;= inf {r > 0: 2 + B, € {Cﬁl,(@r}}, a
martingale as well. Therefore,

(4.5) |Ozu(t,x)| = \E[@acu(t—(t—s*)/\f”:”,x+B(t_5*)AIt,z)]‘ = |E[8$u(t—f’z,x+th,z)]‘ < &,

for all z € (¢V,¢?), t € (sy,s). Hence, for all t € (s,,s) and z € (¢}, (?), we also
have |0,u(t,x)| < &, provided & > 0 is small enough. In the limit & | 0, we obtain that
O.u(t,-) vanishes on a non-trivial interval, contradicting the analyticity of u(t,-) and ruling
out limy,, ¢} = Ag, = limy,, ¢

Fifth Step. To conclude, we denote, for a given s € [t./2,t,),
(4.6) T :=sup{z € (A,,0,) : dyu(s,z) =0 and lg?(’t = A} v A,
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with ¢ € [t./2,s) and ¢ : (t,s] — (0,00) of the Assertion in the third step (in particular,
(s = x), and claim that d,u(s,-) = 0 on (A4, Z]. Indeed, for any fixed zero z € (A4, 7]
of dyu(s,-) and with the corresponding T,,(t) of Proposition 3.2, each (¢,(;), t € [(t +

Treg(t ))/2 $) =: [treg, s) admits a neighborhood (t — d1,t + 01) % ({ — 02, G + 09) satisfying
the property stated in part (b) of the Assertion in the third step. By adding a rectangle
(s — d1,8] x (Cs — 62,(s + d2) on which d,u(r,y) = 0 implies y > ¢, and extracting a finite
subcover of (j;,., . we construct left neighborhoods of z and (., on which the signs of
Ou(s, ) and oxu(treg, -), respectively, coincide. Moreover, O,u(treg,y) > 0, y € (Ay,.,, Ctrey )
since otherwise Lemma 3.7, the intermediate value theorem, and twhe Assertion in the third
step, would imply the existence of a £ and a continuous function ¢ : [f, treg] — (0,00) such
that

(a) G € (Ay, &) and dpu(t, &) = 0, for all t € (L, treg];
(b) for all t € (£, t,e4), there exists a neighborhood

(t— 01yt +01) % (G — 02, G + 02)  {(t,7) € (Ftreg] X (0,00) : Ay < 2 < G}

on which d,u(r,y) = 0, for r < t,.,, implies y > C,,,
(C) one has Cz € {Cz, Az}

This would contradict the findings of the third step, if EZ = (;, and would contradict Lemma

3.7, if T > t and Ct = A;. Hence, d,u(s, ) = 0 on (A, 7], as claimed. In particular, u(s,-)
does not change monotonicity on (A, Z].

Finally, for any x € (Z,0;) with du(s,z) = O we have ¢ > A; (with ¢ now ending
at ¢, = x) and the set (g U {(t,limy; )} =: () can be covered by open rectangles
satisfying the property (b) of the Assertion in the third step, together with the two rectangles
[t,t+61) x (g — 02, G + 02) and (s — d1, 8] x (¢s — d2, (s + d2) on which d,u(r,y) = 0 implies
y = (.. Extracting a finite subcover we deduce the existence of an € > 0 such that d,u has
the same sign on {s} x (z —¢€,x) and on Oy_cy, if t > t,/2, or on {s} x (¥ —€,2) and on
{te/2} x (G —€,¢y), if t = t./2. Applying this observatlon first for x € (Z,7*|, where

(4.7)
¥ = max {m € (Asy/2, 00, 2]+ Opul(ty/2,-) =0 or yu(t,/2,-) <0 on (At*/Q,x]},

" =sup{z € (Ay,0,) : yu(s,z) =0, and t = t*/2, 1}{{1@ € (Mg, 2, 2%] or lg?g = A} v A,

and then for z € (T*,6;), we see that d,u(s,-) has at most two sign changes on (Ag, T*],
and its number of sign changes on (T*, ;] cannot exceed the number of zeros of d,u on
Oty /2,600 © ({t/2} x (2%, R+ Ay, —]). Since the latter is finite, due to the definition of 2* and
the analyticity of d,u(t./2,-), we complete the proof. |

Our proof of Theorem 1.1 combines Lemma 4.1 and the results of Sections 2 and 3.

Proof of Theorem 1.1. Lemma 4.1 gives the first assertion of the theorem and ensures the
existence of the limit lim, o p(¢,x) for all £ > 0. In case (i), it suffices to use the local
uniqueness result of [HLS18, Theorem 1.8] in conjunction with a straightforward adaptation
of the local existence result in [DIRT15a, Theorem 4.1] to the setting of (1.2). In case (7i),
Propositions 2.1 and 2.2 guarantee the 1/2-Hélder continuity of A on [t,t+€), for some € > 0.

In case (iii), the identity (1.6) stems directly from the definition of a physical solution, see
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(1.5). In all cases, Propositions 3.2 and 3.4 yield an € > 0 such that A € C*((¢,t + ¢€))
and the densities p(s,-), s € (t,t + €) are real analytic and form a classical solution of the
Dirichlet problem in (1.7). The relation A, = 50:p(s,0), s € (t,t + ¢€) is now an immediate
consequence of Ay = aP(min,cp 4 X, <0), s € (¢,¢ + €) and [DIRT13, Lemma 2.1(iv)]. O

4.2. Proofs of auxiliary results.

Lemma 4.2. Lett > 0 and x > A; be such that o u(t,z) = 0 and call k € N\{0} the smallest
integer such that 0%d,u(t,x) # 0. Then, there is a neighborhood (t—8y,t+06;) x (x— 02, 1+ 0)
on which the zero set of O,u is the union of k curves. 2|k/2| curves are given by the graphs
(in the (time, space)-coordinate system) of continuous functions on [t —01,t] that are C* on
[t—01,t). In the (space, time)-coordinate system, the latter curves form |k/2| strictly convex
smooth paraboloids with graphs in the negative half-space only. If k is odd, there is another
curve given by the graph of a C*-function on [t — d1,t+ 01] (in the (time, space)-coordinate
system; in particular, it crosses the x-azis).

Proof. The simple fact that 00, u(t + s,z + y) # 0 for (s,y) in the neighborhood of 0
implies that, for a given s in the neighborhood of 0, the equation d,u(t + s,z +y) = 0,
with y in a neighborhood of 0 (the neighborhood being independent of s), has at most k
roots. In fact, by Proposition 3.4, d,u(t + s,z + z) can be analytically extended in z to a
complex neighborhood of 0 (again, the neighborhood is independent of s), and, then, for
(s,2) in a neighborhood of 0, it holds 0¥0,u(t + s,z + z) # 0. Therefore, for a given s in
the neighborhood of 0, the equation d,u(t + s,z + z) = 0, with z in a complex neighborhood
of 0 (the neighborhood being independent of s), has at most k (complex) roots (counting
multiplicity).

First Step. Next, we describe these roots on a case-by-case basis. To do so, we fol-
low [AF88], with the only difference being that the procedure therein is applied to time-
space analytic functions. Arguing as in [AF88, procedure following the display after (5.2)],
we first freeze y (instead of s) in a real neighborhood of 0 and find |k/2| negative roots
s of dyu(t + s,z + y) of the form s = y?0;(y), for j € {1,...,|k/2]}, where o;(y), j €
{1,...,|k/2]} are smooth non-positive-valued functions of y in a neighborhood of 0. The
proof of this fact relies on the expansion of d,u(t + y?c,z + y) as y — 0 in the form
Y* Y a1/ (min)]omoro,u(t, )o™ + y* 1 H(o,y), for a smooth function H, which allows
us to apply [AF88, procedure following the display after (5.2)]. For y in the neighborhood
of 0, the curves o,(y), j € {1,...,m} are known to be away from 0, implying via a simple
differentiation argument that the curves y?c;(y), j € {1,...,m} are (strictly) decreasing for
y > 0 and (strictly) increasing for y < 0; moreover, a second derivative computation reveals
that they are strictly convex. In other words, going backward in time from (¢, z), we (lo-
cally) find 2|k/2| curves of zeros of d,u that are continuous up to and including ¢ but that
are smooth up to and excluding ¢ (because the curves behave like /—s as s — 0). If k is
even, we have (locally) exhausted all the roots of d,u(t + s,z + y) for s < 0.

When s = 0, the k roots are obviously at y = 0 (counting multiplicity).

When s > 0, we may repeat the same procedure as before by expanding 0, u(t —y?c, x +1iy)
as y — 0, with 72 = —1 (or, equivalently, by expanding d,u(t + 2%0,z + 2) as z — 0, with z
complex, which is licit since the time derivatives are also analytically extended to a complex

neighborhood of (¢,z) thanks to Proposition 3.4). We, then, find k& purely imaginary roots
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to dyu(t + s,x + z), for s > 0 close to 0. When k is even, this exhausts all the possible
complex roots of d,u(t + s,z + z) and, in particular, there are no real roots.

Second Step. In order to complete the picture, it remains to address the case of k being
odd. By the above procedure, we already have 2|k/2]| roots (s,y) with s < 0 and 2|k/2]
(purely) imaginary roots (s,iy) with s > 0. In both cases, we are missing one root. Writing
k =20+ 1, we then follow [AF88, procedure following the display after (5.3)], again, paying
attention to the fact that the solution therein is time-space analytic, while it is not the case
here. In this regard, the main difficulty is to handle the case r = oo, where r is the first
positive integer such that ¢*"?"u(t,z) # 0 (or, equivalently, o7 0u(t,z) # 0). In the time-
space analytic setting, r = o forces d%u(s,xz) = 0 for s in the neighborhood of 0, yielding
y = 0 as the missing root. This logic does not apply in our setting, and we must argue
differently.

For completeness, we start by considering the case r < co. Adapting [AF88, procedure
following the display after (5.3)], we now expand d,u(t + s,z +ns") as s — 0 (for a given n):

1
Opu(t + s,z +ns") = 2 S '(9;”+2”+1u(t, z)s" Ty 4 s (s )
m+2n=kn+rm<l+r e

1 1
_ A+r k+2r = Ak+1 l4+r+1
=3 (—2€+r(€ " T)!ﬁx u(t,x) + 2%!@” u(t,x)n) +s L(s,n),

where L(s,n) is a smooth function that may vary from line to line, and where, in the second
equality, we used the fact that the conditions m+2n > k and n+rm < £+ imply m € {0, 1}.
By the implicit function theorem, we find, for any s in a neighborhood of 0, a root of the
form y = n(s)s", where 7 is a smooth function of s. This yields a smooth curve of zeros
that crosses the y-axis. This root behaves polynomially in s and, hence, must differ from
the roots we have already found. It is the last missing root.

Third Step. It remains to consider the case r = co. Although this is not really useful in
our analysis, we notice that this case may only occur when ¢ < ¢, and limsup,,p(t,y) >
0. Indeed, if o¥2u(t,x) = 0 for any | € N, we obtain du(t,r) = --- = 0¥ lu(t,z) =
X3yt r) = - = P2+UFL = 0, for any [ € N, which proves that u(t,x +y) is even in y in a
neighborhood of 0. Put differently, u(¢,) is locally symmetric with respect to x. Recalling
that u(t,-) is analytic on the entire (A, 00) (see Proposition 3.4), we conclude that wu(t, -)
and u(t,—-) are two (real-)analytic functions (with different domains) that coincide on a
non-empty interval. Hence, u(t, ) extends to an analytic function on the entire R and is
symmetric with respect to . Then, following the end of the proof of Proposition 3.4, we
deduce that the density p(t,-) changes monotonicity finitely often on compacts of [0, 0),
from which we conclude that ¢ < t,. Now, if limsup,,p(s,y) = 0, we get u(s,A;) = 0, so
that, by the symmetry w.r.t. z, u(t,-) has another zero greater than z. By the maximum
principle for the heat equation and by analyticity, this forces u(t,-) to be identically zero,
which is of course absurd.

Returning to our analysis, we claim that the conclusion of the second step also holds true
in the case r = o0: i.e., there exists a smooth curve of zeros of d,u that crosses the y-axis; in
addition, all of the derivatives of this curve (viewed as a function of time s) vanish at s = 0.

Indeed, invoking the Malgrange preparation theorem (see [CH82, chapter 2, Theorem 7.1))

we know that, for (s,y) in a neighborhood of (0,0), d,u(t + s,z + y) can be written in the
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form q(s,y)Ts(y), where ¢(s,y) is a smooth non-zero function and, for s fixed, I's(y) :=
y* — Z;:OI a;(s)y! is a polynomial function of order k (whose coefficients a;(s) are smooth
real-valued functions of s). Clearly, when s = 0, I',(y) degenerates into y*. In particular, by
continuous dependence of the roots upon the coefficients, all the real roots of I'y are in the
neighborhood of 0 when |s| is small enough. From the first part of our analysis, we already
know that I'y has k — 1 = 2|k/2| simple real roots when s < 0 and, hence, the missing root
must be simple and real. We also know that it cannot have more than one real root when
s > 0 (as otherwise d,u(t + s,z + y) would have at least two additional zeros) and, hence,
the remaining root must be simple and real as well. Denoting by ((s) this remaining root,
we deduce from the implicit function theorem that ¢ is C* on (t — d,t) and on (¢,t + 0), for
some 0 > 0.

Fourth Step. To obtain smoothness at s = 0, we argue as follows: For s < 0, the Malgrange
preparation theorem says that the leading term in the expansion of d,u(t+s, x) as s — 0 must
behave like the product of all k roots, namely d,u(t + s, ) = q(s,0)c(s)s!¥/21((s), where c(s)
is a non-zero smooth function of s. Since r = o0, we easily deduce from the Taylor expansion
of d,u(t + s,x) that [((s)| is less than C|s|?, for all o € N. By differentiating the relationship
dpu(t + s,2) = q(s,2)s¥/2I((s) with respect to s and by arguing in a similar manner, we
deduce that |(’(s)] is less than C|s|?, for all o € N. Tterating this argument, we deduce that
((s) is infinitely differentiable on (¢t — d,¢], with vanishing left-derivatives of all orders at
s =0.

A similar argument can be applied to s > 0, by using the complex roots of d,u(t+s, x +7vy),
but the derivation of the identity d,u(t + s,2) = q(s,0)c(s)s*/2I((s) is more involved. It
requires an extension of Malgrange’s decomposition to a complex neighborhood of x. For
this purpose, it is worth recalling that the proof of Malgrange’s theorem, as exposed in
the monograph [CH82] is based upon the polynomial division theorem [CH82, chapter 2,
theorem 7.3] with G(y,s) = y* or G(y,s) = d,u(t + s,z + y). The key fact in our case
is that both choices have a natural extension to a neighborhood of (0,0) € C x R, the
extensions 2* and d,u(t + s,z + z) being holomorphic in the complex variable z (and having
derivatives in s that are also holomorphic in z). This makes the choice of G in the proof
trivial, see [CH82, page 48]. In particular, G may be assumed to be independent of \ and to
be holomorphic in the first argument. Consequently, ¢ in the statement of [CH82, chapter
2, Theorem 7.3] may be assumed holomorphic in the first variable when considered on a
neighborhood of 0. As a result, the decomposition d,u(t + s, x +y) = q(s,y)I's(y) extends to
Oxu(t + s,x + z) = q(s,2)I's(2), for (s,2) in a neighborhood of (0,0) € R x C, where ¢(s, 2)
is holomorphic in the variable z. Obviously, ¢ may be assumed to be non-zero on the latter
neighborhood, from which we deduce that I's(z) and d,u(t + s,z + z) have the same zeros.
Hence, the roots of I'y, for s > 0, are given precisely by ((s), and the k — 1 = 2|k/2| purely
imaginary zeros of d,u(t + s,z + z) have already been found. Taking z = 0, we still have
dpu(t + s,7) = q(s,0)c(s)s!¥/21¢(s) and we conclude as in the case s < 0. O

Lemma 4.3. For arbitrary (fized) € > 0 and s > s, > 0, let ¢ : [s4,s] — R be a continuous
function, such that (s, = As, and, on (s, s], ¢ is C®, is strictly greater than A, and satisfies
|0,u(-, )| <& Then, forte s, s] and x = (, with (t,x) # (84, As,.),

(4.8) Opu(t,z) = E[du(t — 7%, 2 + Bres)],

where 75 ;= inf{r = 0: 2+ B, = (-} A (t — $4).
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Proof. The idea of the proof is to show that v, defined by v(t, z) = E[0,u(t — 7%, & + Bt )],
for t € [s4, s] and & = G, with (t,2) # (s, As, ), coincides with d,u(t,z). To achieve this,
we, first, identify — {“v(t,y) dy with u(t,z), which is easier than identifying v(t, ) with
Oru(t, x), since u(t,-) is more regular than d,u(t,-) in the right neighborhood of A;.

First Step. We begin by noticing that the function v is well-defined and locally bounded in
the interior of the region D(sy, s) := {(t,x) : t € [s«, s], * = }. Since d,u remains bounded
along ¢, we only need to verify that E[|0,u(t — s*, 2 4+ Bi_ox)|1—s,—rt=y] < 00. Recalling
the notation g(s,y) for the heat kernel at time s and point y, we infer the latter inequality
from SZ* |0zu(S4,Y)| g(t — 54,2 —y) dy < o0, which follows from Lemma 3.8.

Moreover, the absolute integrability of d,u(ss,-) also implies that, for a collection of
smooth functions ¢° : R — [0,1], € € (0,1/2), with ¢°(z) = 0if x < As, +e or & = Ay +2/¢
and ¢°(z) = 1 if x € [As, + 25, A, + 1/¢], it holds that

I _ Atz £ I €
(4.9) v(t,x) = lslﬁ)lE[axu(t T & + Brew )¢t (x + Bres)| = 151%111 (t,x),
for = ¢ and s, <t < s, with (£,2) # (s«, As, ). Notice that, for any ¢ > 0, the function
Oxu(t, x)¢°(x) is smooth and bounded in (¢, ) € D(sy, s). Indeed, by the interior estimates
for the heat equation (see e.g. [LSU68, chapter IV, Theorem 10.1]), d,u(t, ) remains bounded
over (t,x) changing on any compact inside D, with D as in the statement of Proposition 3.4.
Hence, letting 75 := 757 A (t — s, — €) for € > 0, we get

ve(t,x) = lglr{)lE[@xu(t — 795 & + Brets )% (2 + Brers)| = leilr(r)l vo(t, x),

for x = (; and s, <t < s. Since d,u(t, x)¢® () is bounded and smooth in (¢,z) € D(s, +¢, s),
the function v®¢ must coincide with the smooth solution of the heat equation on the domain
D(s« + €,8) with du(t,x)¢°(x) as the boundary condition on 0D(s, + €,s) (see [Kry96,
Theorem 10.4.1], which we can apply here after changing wu(t, z) to u(t,x + (;)). Hence, for
sy+e<t<sandz > (, wehave o (t, x) = $0,,0%(¢, ). Clearly, by the same argument
as the one we used to show the local boundedness of v, we can find, on a neighborhood
of (t,x), an upper bound for |v=¢| that is independent of € and € (at least for € > 0 small
enough). Invoking, again, the interior estimates for the heat equation, we also obtain uniform
bounds for the absolute values of the derivatives of v=¢ on a neighborhood of (¢,z). Letting
¢ and then ¢ tend to 0, we deduce that v is smooth in the interior of D(s,, s) and satisfies
O=e(t, ) = 30,,07(t, ) in the classical sense, for > ¢, and ¢ € (s, s).

Second Step. Next, we claim that lim z)—qc) v(t, 2) = Gpu(r, (), r € (s*,s]. The proof
relies on three key observations.
The first observation is that, in the formula (4.9), we can choose € > 0 small enough to

make E[0,u(t—75%, 24 B )1y, % o4 By g <A +2¢}] as small as needed, uniformly in (¢, x)

As 2
820 (50, )| gt — 5u, 1 —y) dy

in a neighborhood of (7, ¢,). Indeed, it suffices to make
small by means of Lemma 3.8.

The second observation is that, on the event {t — s, = 7% & + Byte > Ay + 22}, |pu(t —
74" & + Byew)| remains bounded by a constant C. (since d,u is bounded away from 0D).
Combining this with the fact that, for every € > 0, lim,¢, P(75* > €) = 0, uniformly in ¢ in
a neighborhood of r, we obtain

lim sup E[]&mu(t — 7% 2 + Bis)| Lt symrtt o4 By >As*+€}] <C. limIP’(Tt’x =1t— s*) =0,
Tyt

x|t
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with the limit on the right-hand side being uniform in ¢ on a neighborhood of r.
The last observation is that, on the event {7* < t—s,}, |Q,u(t—7%*, x + B,tz)| is bounded
by & and that d,u(-, () is continuous on (s*, s]. Therefore,

thlE[a U(t - Ttx T+ BT’ T) ]—{‘rt T <t— s*}] han[a U(t - T aCt—Ttv”) ]—{‘rt’”‘<tfs*}]

= aa:u(ta gt)a

and, once again, the limit is uniform in ¢ on a neighborhood of r. Invoking, once more, the
fact that dyu(-,(.) is continuous on (s*,s], we deduce that limg ).y v(t, ) = u(r, ),
re (s* s].

Third Step. Next, we show that limy s, v(t,x) = d,u(ss, x), © > Ag, locally uniformly.
Indeed, with the same notation as in (4.9), the fact that d,u(t, z)¢®(z) is smooth in (¢, z) €
D(s4, s) implies that, for any € > 0, limy s, v°(f, ) = 0, u(S«, x)¢°(x), the limit being locally
uniform in x > A,

Thus, it remains to prove that, for 6 > 0, we can make the distance |v(t,x) — v¢(t, )| as
small as needed by choosing, uniformly in = € [A,, + J, A;, + 1/6], t close enough to s, and
€ > 0 small enough. This follows from the following two facts. First,

E[|8mu(t — 7", 2 + Breo)|(1 — ¢°(z + Bres)) 1{t_5*=7-t,z}:|

As*+25 o0
<f |axu<s*,y>|g<t—s*,x—y)dy+f (sas )| 9t — 520 — ) dy,

As* As*Jrl/E

with the right-hand side of the above tending to 0 as € — 0, uniformly in (¢,z) € [s4, s]| x
[Ase + 6, A, +1/5]. Second,

E[‘ﬁxu(t — 7% 2 + Bia) (1 — ¢ (z + BTt,z))l{Tt,mq,s*}] SEP(TH <t — sy),

and the latter can be made as small as needed by choosing t close enough to s,, uniformly
in ze[Ag, +0,Aq, +1/0].

Fourth Step. Our next goal is to identify u(¢, x), for x > (; and s, <t < s, with

u(t,x) == — JOO u(t,y)dy.

x

The function @ is well-defined thanks to the estimate

0
(4.10) lo(t,z)| < J 10,u(845,Y)| g(t — 84,2 — y) dy + EP(TH" < t — s,),
Ay

for x = (; and s, <t < s (the term g(t — s4, x —y) dy being understood as the Dirac mass at
x when ¢t = s,). By Lemma 3.8 and the sub-Gaussianity of minpy,_s,] B, we conclude that
the right-hand side of the above is integrable in x. Hence, u is a well-defined and bounded
function of (¢,x). We claim that it is smooth in the interior of D(s,,s). Indeed, with the
same notation as in (4.9), we can write

o0

u(t,z) = hf(r)l w(t,z), u(t,z):= —J vi(ty)dy, >, s.<t<s
€ X

Now, the analogue of (4.10) for v shows that v*(t,z) decays exponentially fast to 0 as z

tends to oo, uniformly in ¢ € [s4,s]. Invoking, again, the interior estimates for the heat
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equation, we deduce that the derivatives of v also decay exponentially fast in x when ¢ is
restricted to a compact subset of (s, s]. In particular, it is easy to see that, for any € > 0,
u° satisfies the heat equation in the interior of D(s,s). By (4.10) again, the family u°,
e € (0,1/2) is uniformly bounded on compact subsets of D(sy,s). Another application of
the interior estimates for the heat equation shows that the derivatives of u¢, £ € (0, 1/2) are
also uniformly bounded on compact subsets of D(s,, s). Thus, we deduce that @ is smooth
in the interior of D(sy, s) and satisfies ,U(t, x) = 30.,U(t, ), x > (;, t € (54, 5).

At the boundary, we clearly have limg g(rc,) OU(t, ®) = limy gy (re) V(¢ ) = du(r, ¢),
for r € (s4,s]. We also claim that lim ;)| (¢, U(t, ) = @(r, (), for 7 € (s4,s]. To prove the
latter claim, we split @(¢, x) into three parts:

K o0

v(t,y)dy+f v(t,y)dy,

K

g’r*‘ré
ta) = [ olt)dy+ |
T Crte
for (; < x < (, + ¢, with € > 0 small and K > 0 large. By the continuity of v at (r,(.),
we can choose € > 0 and |t — r| small enough to make SiTJrev(t,y) dy — SC:+€U(T, y)dy as

small as needed. Then, by (4.10), we can choose K large enough to make S;? v(t,y) dy small,
uniformly in ¢ changing in a neighborhood of r. Finally, for fixed values of € and K, we can

decrease |t — r| if necessary to make Séj L (v(t,y) —v(r,y)) dy as small as needed.

Moreover, we claim that lim ), u(t,2) = — {7 dyu(ss,y) dy = u(ss, z), © > Ay, locally
uniformly. The second of the two equalities is a direct consequence of Lemma 3.8. As
for the first one, we notice that, for any ¢ > 0, limy,, (¢, 2) = — {7 dou(s., y)¢*(y) dy,

locally uniformly in x > A,,. The latter follows from the following two facts: v* decays
exponentially fast in space, uniformly in time, and lim;,, v°(¢, x) = Jyu(sy, )¢ (z), locally
uniformly in z > A,,. Then, it remains to prove that, for any § > 0, we can make the
distance |u(t,z) — @°(¢,x)| as small as needed by choosing, uniformly in x € [A,, + 6, 0),
t close enough to s, and £ > 0 small enough. By the second step, we already know that
we can make the distance |v(t,x) — v°(¢,z)| as small as needed by choosing, uniformly in
x € [As, + 06, As, +1/0], t close enough to s, and € > 0 small enough. Hence, it suffices to
establish

o0
(4.11) lim [v°(t,y) —v(t,y)|dy = 0,
6—0 Noye+1/8

uniformly in ¢ € [s,, s] and € € (0,1/2). The latter follows from the appropriate versions of
(4.10).

Fifth Step. All in all, @ is a classical solution of the problem

N
(4.12) Ol = S 0asli o0 {(,2) € (54, 8) x [0,00) : &> G},

(S, ) = u(Ss,x), x>ANs, and 0,u(t,) = dpult,(), te (s49),

and the same is true for u. Both u and u are continuous and have continuous derivatives at
any point (¢, ;) of the boundary, for ¢ € (s,,s). Hence, for any ¢ € (s, s), * > (;, and with
the reflected Brownian motion R** in the time-dependent domain {(r,y) € [0,t—s.]x [0, o0) :

y > (i}, started from z, and its boundary local time ¢%* (see [BCS03, section 2] for more
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details on such processes), we have

t—Sy—€
ﬁ(t’ x) - E[?j(s* +€ RifS*—J - J axu(t - gtfr) daﬁﬂ,x‘| and

(4.13) 0

t—sy—€
U(ta LE’) = E[u(s* + ¢, Rifs*—e) - f axu(t - Ct*T) dei’x]7
0

for all € € (0,¢—s,) (cf. [BCSO04, Theorem 2.8]). Relying on P(Ry”, = A,,) = 0 (see [BCS03,
Theorem 2.2]), as well as on the locally uniform convergences limy s, U(t,x) = u(s4, x) =
limy s, u(t, ), © > As,, and on the boundedness of @, u, and |J,u(t, ()| < &, r € [s*,t], we

consider € | 0 to obtain:
t—Sx

(4.14) u(t,x) = Elu(s*, R®,) — f Oru(t — 7, Co—y) dfi’x:| = u(t,x).
0

Thus, Oyu(t, z) = 0,u(t, z) = v(t,z) = E[Oyu(t — 5%, + Bte)], yielding the Feynman-Kac
formula (4.8). O

5. PROOF OF THEOREM 1.4

In this section, we prove the uniqueness of the physical solution (X, A) of (1.2), under the
assumptions of Theorem 1.1 (which are in force throughout the section). The strategy of the
proof is to represent a physical solution as a fixed point of a mapping that has a contraction
property. We start with the following technical lemma.

Lemma 5.1. Let X > 0 be a random variable with a bounded density p on (0,00) such that

o) < = =), w>0,

where 1 is non-decreasing and strictly positive on a non-trivial interval (0,0), and ¥ (04) =
0. Then, for any t = 0, there exist T >t and £9,0 > 0 such that, for all s € [t,T] and all

measurable L : [t,T] — [0, 2], we have

IP’(O< inf (?C'—l—ﬁ,,—zr)éx)g

re(t,s]

Rlg

1 T
—§Lw(z)dz, e [0,0],

where B = (Er)@t 18 a standard Brownian motion started from Et =0.

Proof. The proof is a modification of the “Second case” in the proof of Proposition 2.1. We
denote by F' the cumulative distribution function of p and obtain for s > t:
P(0 < inf (X + B, —L,) < z)

re(t,s]

(5.1)
:JLOﬁF@—yV—FPw>%@w+J‘ (Fla—y) — F(~y)) %(dy),

(700775]

with an arbitrary constant € > 0 and with 7, being the law of infre[t’s](ér — Zr)
We estimate the right-hand side of (5.1) using methods similar to those in the proof of

Proposition 2.1. We begin with the first integral in (5.1), which poses the main difference to
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the proof of Proposition 2.1. Since 1) is non-decreasing on (0, dp), we conclude that, for all
51 € (0, 50),

Flai)=F(-n) = [ pe-n)ds< 2= [ wGnde < 2wz o-ye [0.6,2)

0

Thus, for all z,e € (0,0;/2], the first term on the right-hand side of (5.1) does not exceed
T . v N

(52 Zoi((=20) ~ | w(e)azm((—z. 0.

Next, we bound the second integral in (5.1). Notice that, for any z € R,
IP’( inf (ér — Zr) < z) < IP’( inf B <z+ 60)

reft,s] reft,s]
In addition, due to the fast decay, as s | ¢, of the density of inf,cf 4 B, we have, for € > ¢,

P(inf B, <gy—2¢) <e E0YVCEP(inf B, < —¢)

re(t,s] relt,s]

< e—(e—so)2/(2(s—t)) [[D( inf (ér _ zr) < _5)_

re(t,s]
Hence, there exists a T' = T'(e — gg) > t such that, for all s € [¢,T],
P( inf (B, — L,) < —2¢)

relt,s]

< MR P inf (B, - L) < —e)

relt,s]

B e e ) (]p( inf (B, — L,) < —2¢) +P(~2¢ < inf (B, - L) < —5)).

reft,s] re(t,s]

Setting € = 6;/3 (upon decreasing ey > 0 if necessary to ensure g < d1/3) we conclude that,
for any v > 0, there exists a T" > ¢ such that

P( inf (B, — L,) < —2¢) < yP(—2¢ < inf (B, — L,) < —e), selt,T)].

r€(t,s] relt,s]
Moreover, for the same choice of €, one can find a C} < 1/« so that
F(JL‘ - y) T F(_y) < Clxa S [0761 + y)? ye [_257 _5]'
Therefore, for v > 0 satisfying v||p|r» + C1 < 1/a and all s € [¢,T], x € (0,6,/2],

f (P =) = Fly) 2ildy) < lplue oi(—o0, =2 + Cradi((-22—<)
(5.3) < z(Ylplze + Cr)Ps((—2¢, —¢])
< 2175((—00, —]).

Collecting the estimates (5.2) and (5.3), and decreasing 7' > t if necessary to guarantee

Us((—¢,0]) = %, se[t,T],

we obtain
P(0 < inf (X + B, — L,) <) <

T
re(t,s) «
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for all s € [¢,T], all measurable L : [t,T] — [0, 0], and all 0 < z < &,/2 =: 4. O

The following proposition proves the local uniqueness of the physical solution by establish-
ing the aforementioned contraction property. The proof is similar to the arguments presented
in [FP83] and [LS18b]. Recall that the assumptions of Theorem 1.1 are in force throughout
this section.

Proposition 5.2. Given an initial condition Xo_ satisfying the conditions of Theorem 1.1,
let (X1, AY) and (X2, A?) be two physical solutions of (1.2) starting from Xo_ and coinciding

n [0,t), for some t € [0,00). (Ift =0, we just have that (X', A') and (X2, A?) coincide at
t = 0—.) Then, there exists a T >t such that

X2-X'=Al-A2=0, seltT]

Proof. Notice that A} = A? and X! = X?, as the two solutions must have the same jump size
at t. Moreover, X' := X/ 1.y (with 7° defined in an obvious manner as in (1.2)) satisfies
the conditions of Lemma 5.1 by Theorem 1.1.
Next, we write
A= AL~ Al = aP(X >0, inf (X + B, —Al)<0), s>t

reft,s]

Thus,
Ay =K — A2 = a(IP(X >0, inf (X+B,—Al) <0) —P(X >0, inf (X+B,—A2) < 0))

ret,s] re(t,s]

<aP(0 < inf (X + B, — A?) < sup AT), s=t.

reft,s] re(t,s]

Combining this with Lemma 5.1 we deduce that

~ ~ Q SUPre[t,s] Ay
Ay < sup A, — —J W(z)dz, selt,T].
re(t,s] 2 0
Decreasing T° > t if necessary to make the right-hand side of the latter display non-
decreasing in sup,¢; ;) A, (vecall that A is right-continuous and (0+) = 0) and taking the
running supremum of both sides we arrive at

~ ~ Q SUDre[t,s] Ar
0 < sup A, < sup AT__J W(z)dz, selt,T].
reft,s] reft,s] 2 0

Since 1 is strictly positive on (0, dp), for some do > 0, we have sup,; A, =0, ie., /N\i < /NXE,

for all small enough s > ¢t. Reversing the roles of A! and A? we complete the proof of the
proposition. U

Theorem 1.4 is an easy consequence of Proposition 5.2. Indeed, assuming that there exist
two distinct physical solutions (X!, A') and (X2, A?) of (1.2) and letting
t:=inf{s > 0: Al # A2} € [0,0)

we see that Proposition 5.2 contradicts the definition of ¢.
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APPENDIX: PROOF OF PROPOSITION 1.6

Let (u,A) be obtained from a physical solution (X, A) of (1.2). Then, (a) is immediate
from Ay = aP(7 < t), t = 0. Turning to (b), the boundedness of u follows from the remarks
at the beginning of Section 2, whereas the other properties are readily inferred from the last
sentence in Theorem 1.1 and the convergence to 1 ast | 0, y — x locally uniformly in x > Ag
of the probability in the representation

u(t,y) = J flx)gt,y —x)P (1nf(x+B —Ay) >0‘:E—|—Bt—y)d

s€[0,t]

(Here, we recall that g(¢,-) is the Gaussian kernel of mean 0 and variance t.) For (c), we
employ A; = oP(7 < t), ¢t >0, (1.5), and

(5.4)

P(T = t, Xt— € (O,ZB]) = ]P)(T = t, XQ_ =+ Bt € (At—;At— + 11])

A+
=lim P(7 > s, Xo— + By € (A, A_ + z]) = lim u(s,y) dy,

stt stt As
where we used IP’(XO_ + Bye {A A+ ZB}) = 0.
Conversely, let (u, A) satisfy (a)—(c) and X; := Xo_+ B;—A¢, t = 0. To see that (X, A) isa
physical solution of (1.2), we fix a ¢t > 0 and define 7§ = inf{s € [0,¢] : y+ Bs < Ay_s+0} At
forally > Ay and 6 > 0. By Ito’s formula, u(t—7;, y+BT§f)—u(t, Y) :Sgs Ozu(t—s, y+ By) dBs,

which thanks to the assumed boundedness of u and y + By = At,Tg when 7§ < ¢ (recall
that A is non-decreasing and right-continuous) yields

ult,y) = E[u(t — 74,y + Bo)] > Elu(t — 7,y + Bpy)] = E[f(y + Be) Limy—y]-

By conditioning on y + B;, we arrive at the representation

u(t,y) zjoog(t,x—y)f(x)ﬂ”( inf (y+ B, —A,)>0|y+ B, =) dax.

0 se Ot]

Noting that, conditional on y + B; = x, the process y + B is a Brownian bridge from y to x
n [0,t], we obtain by the time-reversal of the latter and Fubini’s theorem:

Y2 v2
J tydy—J f f(z)g(t,y —z)P( inf (y+BS—AS)>0|y+Bt=x)dyd:L‘

" s€[0,t]

- ]P XO + Bt At [ Ata Y2 — At]v éﬁ)ft](XO_ + Bs - AS) > 0)7

for all Ay < y1 <y, < 0. In other words, u(t, Ay +-) is the density of X; 1(;~4 on (0,00). The
desired A; = aP(7 < t), t > 0 stems from integrating both sides of dA. = —ad { u(-,y) dy.

Lastly, the jump condition (1.5) results from A,—A,_ = inf {z>0: limy, SAt Tu(s,y) dy < zy

and following the equalities in (5.4) in the reverse direction.
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