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Abstract. We consider the supercooled Stefan problem, which captures the freezing of a
supercooled liquid, in one space dimension. A probabilistic reformulation of the problem
allows to define global solutions, even in the presence of blow-ups of the freezing rate. We
provide a complete description of such solutions, by relating the temperature distribution
in the liquid to the regularity of the ice growth process. The latter is shown to transition
between (i) continuous differentiability, (ii) Hölder continuity, and (iii) discontinuity. In
particular, in the second regime we rediscover the square root behavior of the growth process
pointed out by Stefan in his seminal paper [Ste89] from 1889 for the ordinary Stefan problem.
In our second main theorem, we establish the uniqueness of the global solutions, a first result
of this kind in the context of growth processes with singular self-excitation when blow-ups
are present.

1. Introduction

The systematic study of free boundary problems for the heat equation, now referred to as
Stefan problems, was initiated by Stefan in 1889, see his series of papers [Ste89], [Ste90a],
[Ste90b], [Ste91], as well as the precursor [LC31] by Lamé and Clapeyron. Motivated by
the process of ice formation in the polar sea, Stefan formulated and solved the free bound-
ary problem describing the freezing of a liquid in the half-space tx1 ą 0u when a constant
temperature below its freezing point is maintained at the surface tx1 “ 0u, assuming imme-
diate freezing of the liquid at its freezing point. Subsequently, he also formulated and solved
similar problems associated with evaporation and condensation. After a period of dormancy,
Stefan problems for the heat equation attracted renewed interest as a result of a lecture by
Brillouin at the Institut Henri Poincaré in 1929 and its publication [Bri30]. Investigations
of existence, uniqueness and numerical approximation of solutions followed (see [Rub71, in-
troduction, section 1] for a detailed historical review), culminating in the article [Kam61]
by Kamenomostskaja, who proved the existence and uniqueness of bounded measurable
generalized solutions and provided an explicit difference scheme for their numerical approx-
imation, in any dimension and in the presence of an arbitrary number of phases.

Much less is known about the supercooled Stefan problem for the heat equation, which
captures the freezing of a supercooled liquid. In this problem, the initial temperature of the
liquid is taken to be lower than the temperature maintained at the surface tx1 “ 0u that,
in turn, lies below the freezing point of the liquid. As first noted in [She70], already the
one-phase problem in dimension one may exhibit a finite time blow-up of the liquid freezing
rate, leading to a concurrent instantaneous temperature spike along the surface tx1 “ 0u,
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a physically observed phenomenon. Later works were focused on the distinction between
(see [FP81], [FP83], [LO85], [FPHO89]) and the analysis of the two possible cases: (i) the
existence of a unique solution without blow-ups for all time or until the time the entire
liquid freezes (see [FP81], [FP83], [DF84], [CS96], [CK08]); and (ii) the existence of a unique
solution until the blow-up time, at which both (the liquid and the solid) phases are present.
Naturally, much subsequent attention has been devoted to the analysis of the arguably more
intriguing case (ii), specifically to the behavior just before and at the blow-up time (see
[HV96], [KE05], [CK12]) and to the regularization of the problem through modifications of
the boundary condition (see [Vis87], [DHOX89], [HX89], [FPHO90], [Xie90]). However, the
methods available in the literature do not allow a global analysis of the actual supercooled
Stefan problem in the presence of blow-ups, the objective of our paper. This point is under-
pinned by the results in [DF84], [Luc90], [GZ95], [CDMGP16, theorem 3.2] (see [CDMGP16,
displays (3.3.2), (3.3.3)] for the connection with the supercooled Stefan problem) where the
notion of global solution is too weak to yield uniqueness, cf. [DF84], [Luc90], [GZ95], or the
well-posedness is only established for a functional of the supercooled Stefan problem solution
that does not determine the solution uniquely, cf. [CDMGP16, remarks after theorem 3.2].

In contrast to the previous literature on the subject, rather than to regularize the super-
cooled Stefan problem

Btu “
1

2
Bxxu on D :“ tpt, xq P r0,8q2 : x ě Λtu,

9Λt “
α

2
Bxupt,Λtq, t ě 0,

up0, xq “ fpxq, x ě 0 and upt,Λtq “ 0, t ě 0,

(1.1)

where f ě 0 and α ą 0, we consider the global solutions of (1.1) in the presence of blow-
ups. Here, upt, ¨q and Λt represent the negative of the temperature profile and the location
of the solid-liquid frontier at time t, respectively. The global solutions of the supercooled
Stefan and other closely related problems arise not only from the physics of supercooled
liquids, but have been recently discovered to play an important role in the contexts of
integrate-and-fire models in neuroscience (see [LR03] and [OBH09] for neuroscience papers,
[CCP11, CGGS13, CPSS15] for a PDE approach to those models, and [DIRT15a], as well
as [DIRT15b], [DIRT13], for a probabilistic approach), interbank lending network models
in finance (see [NS17], [HLS18], [NS18], [LS18a], [KR18], [LKR18]), and growth processes
in probability theory (see [DT17]). In particular, [DIRT15a, theorem 4.4 and remark 4.5]
guarantee, for a variant of (1.1), the existence of global solutions in which the intervals of
instantaneous freezing are chosen to be minimal (more details can be found below in this
introduction), referred to as physical solutions. Our aim herein is two-fold: (i) to supply
a comprehensive description of the physical solutions, including regularity estimates for the
free boundary Λ in the vicinity of blow-ups (that is, near t ą 0 with 9Λt “ 8); (ii) to establish
the uniqueness of the physical solution for given f and α.

It is important to stress that the global well-posedness of the supercooled Stefan problem
is shown herein without the assumption that the initial density f is bounded above by 1{α.
The latter assumption, in particular, excludes discontinuities in Λ, and it is crucial for the
well-posedness proofs in [FP83], [CS96], [LS18b]. The results of this paper cover the general
case and, hence, require the use of novel arguments. Needless to say that, although it is out
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of the scope of this work, the adaptation of our approach to the higher-dimensional setting
is an exciting prospect.

Our key tool in the study of the supercooled Stefan problem (1.1) is the following proba-
bilistic reformulation. For a random variable X0´ ě 0, an independent standard Brownian
motion B, and a constant α ą 0, consider the problem of finding a non-decreasing right-
continuous function Λ : r0,8q Ñ R with left limits such that

Xt “ X0´ `Bt ´ Λt, t ě 0,

Λt “ αPpτ ď tq, t ě 0, where τ “ inftt ě 0 : Xt ď 0u.
(1.2)

Assume that X0´ possesses a density f in the Sobolev space W 1
2 pr0,8qq with fp0q “ 0, and

that the derivative 9Λ exists as a function in L2pr0, T sq, for some T P p0,8q. Then, for every
t P r0, T s, the law of the random variable Xt 1tτětu admits a density ppt, ¨q on p0,8q, and

these combine to give the unique solution in the Sobolev space W 1,2
2 pr0, T s ˆ r0,8qq of the

Cauchy-Dirichlet problem

(1.3) Btp “
1

2
Bxxp` 9ΛtBxp, pp0, ¨q “ f, pp¨, 0q “ 0, with 9Λt “

α

2
Bxppt, 0q, t P r0, T s

(cf. [NS17, proof of proposition 4.2(b)]). Thus,

(1.4) upt, xq :“ ppt, x´ Λtq

is a solution in W 1,2
2 ptpt, xq P r0, T s ˆ r0,8q : x ě Λtuq of the supercooled Stefan problem

(1.1) on the time interval r0, T s. For a further elaboration of the connection between the
problems (1.1) and (1.2) we point to the upcoming Remarks 1.2 and 1.5.

Two striking features of the probabilistic problem (1.2) are: (i) the necessary presence
of discontinuities in Λ (leading to blow-ups in the supercooled Stefan problem (1.1)) for
certain pairs pX0, αq, such as the ones satisfying ErX0s ă α{2 (see [HLS18, theorem 1.1]);
(ii) the non-uniqueness of the jump sizes Xt´ ´ Xt :“ limsÒtXs ´ Xt “ Λt ´ Λt´ at the
times of discontinuity (cf. [DIRT15b, discussion preceding definition 2.2], as well as [NS18,
p. 7, last paragraph]). The physical choice of the jump sizes Λt ´ Λt´ in the supercooled
Stefan problem (1.1) amounts to picking the smallest non-negative numbers so that the total
energy of the system is conserved. On the other hand, the interpretation of the probabilistic
problem (1.2) in neuroscience, finance and probability theory motivates the selection of each
Xt´´Xt as the smallest non-negative number that allows for a right-continuous continuation
of Xs, s P r0, tq to rt,8q (cf. [DIRT15b, paragraph preceding definition 2.2], [NS18, p. 7, last
paragraph] and [DT17, p. 2, last paragraph]). A straightforward adaptation of [DIRT15b,
proposition 2.7, theorem 4.4 and remark 4.5] to the setting of (1.2) shows that both of these
minimality conventions result in

(1.5) Xt´ ´Xt “ inf
!

x ą 0 : P
`

τ ě t, Xt´ P p0, xs
˘

ă
x

α

)

, t ě 0.

We refer to solutions of (1.2) fulfilling the jump condition (1.5) as physical. The global
existence of physical solutions is known under certain (natural) assumptions on the density
of the initial condition X0´ ą 0, see e.g. [DIRT15b, Subsection 4.2], [NS17, Theorem 2.3],
[LS18a, Theorem 3.2].

Our first main theorem provides a comprehensive description of the physical solutions
pX,Λq to the probabilistic problem (1.2).
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Theorem 1.1. Let X0´ possess a density f on r0,8q that is bounded and changes mono-
tonicity finitely often on compacts (and, in particular, may and will be assumed to be right-
continuous). Then, for any physical solution pX,Λq of (1.2) started from X0´, and for any
t ą 0, the density ρpt, ¨q of the restriction of the distribution of Xt´ 1tτětu to p0,8q is real
analytic on p0,8q and possesses the properties of f stated above on r0,8q. Moreover, every
t ě 0 falls into exactly one of the three categories:

(i) If lim supxÓ0 x
´1ρpt, xq ă 8, then Λ P C1prt, t` εqq for some ε ą 0.

(ii) If lim supxÓ0 x
´1ρpt, xq “ 8 but limxÓ0 ρpt, xq ă

1
α

, then Λ is 1{2-Hölder continuous on
rt, t` εq for some ε ą 0.

(iii) If limxÓ0 ρpt, xq ě
1
α

, then

(1.6) Λt ´ Λt´ “ ´pXt ´Xt´q “ inf
!

x ą 0 : P
`

τ ě t, Xt´ P p0, xs
˘

ă
x

α

)

ě 0.

In all cases, there exists an ε ą 0 such that Λ P C1ppt, t ` εqq and the densities pps, ¨q,
s P pt, t ` εq of the restrictions of the distributions of Xs 1tτěsu to p0,8q, s P pt, t ` εq are
real analytic on p0,8q and form a classical solution of the Dirichlet problem

(1.7) Btp “
1

2
Bxxp` 9ΛtBxp, pp¨, 0q “ 0 on pt, t` εq, with 9Λs “

α

2
Bxpps, 0q, s P pt, t` εq.

Remark 1.2. The interpretation of Theorem 1.1 goes as follows. For all t ě 0, there exists a
non-trivial open interval pt, t`εq on which the densities pps, ¨q, s P pt, t`εq evolve according to
(1.7), thus, the corresponding ups, ¨q combine to a classical solution of the supercooled Stefan
problem (1.1) on these intervals. For t ě 0 as in item (i), the continuous differentiability of
the free boundary Λ and the classical solution u extend to rt, t ` εq. In contrast, items (ii),
(iii) address the blow-ups in the supercooled Stefan problem: at the times t ě 0 of items (ii)
and (iii) with Λt´Λt´ “ 0, the free boundary Λ has infinite speed, but remains continuous,
and the solution immediately returns to the classical regime; at the times t ě 0 of item (iii)
with Λt ´ Λt´ ą 0, the free boundary Λ has infinite speed and here it triggers the minimal
discontinuity of the free boundary ensuring the conservation of the total energy in the system,
as encapsulated by (1.6). The discontinuity is succeeded by an immediate comeback to the
classical solution regime. We observe that the set of discontinuity times is countable but,
in principle, may have accumulation points. Finally, it is worth mentioning that, while
there exist several local results connecting (1.2) to the Stefan PDE (1.7) (see e.g. [DIRT15a],
[NS17], [HLS18]), Theorem 1.1 is the first result establishing such a connection for all times
t: indeed, it shows that the density of a physical solution to (1.2), at any time t, can be
viewed as the boundary value of a classical solution to the associated PDE (1.7).

Remark 1.3. Item (iii) in Theorem 1.1 can be split further into two sub-items. If ρpt, ¨q ě 1
α

on a right neighborhood of 0, then Λt ´ Λt´ ą 0. If limxÓ0 ρpt, xq “
1
α

but ρpt, ¨q ă 1
α

on a
non-trivial interval p0, δq, then Λ is right-continuous but not 1{2-Hölder right-continuous at
t (unlike item (ii) in Theorem 1.1). In the latter situation, the magnitude of the increments
Λs ´ Λt, for sufficiently small s ą t, is controlled by the decay of ρpt, ¨q near 0, as can be
inferred from the proofs of Propositions 2.1 and 2.2 below.

Our second main theorem guarantees the uniqueness of the physical solution for any fixed
initial condition.
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Theorem 1.4. Under the assumptions of Theorem 1.1, the physical solution pX,Λq of (1.2)
started from X0´ is unique.

Remark 1.5. In [DT17], the authors study an interacting particle system on the non-
negative integers which can be regarded as a discretization of the problem (1.2). More
specifically, the negative of the initial temperature profile is discretized into “heat parti-
cles” subsequently performing independent simple symmetric random walks and advancing
a discrete version of the solid-liquid frontier Λ via a discrete analogue of (1.6). That is,
the discrete solid-liquid frontier of [DT17] moves in the minimal fashion preserving the total
energy in the system, as dictated by the physics of supercooled liquids. By [DT17, theorem
1.6] and our Theorem 1.4 the scaling limit of the particle system in [DT17] gives the unique
physical solution of (1.2). Consequently, the latter captures the actual physical notion of
solution to the supercooled Stefan problem (1.1) in the presence of blow-ups.

Most importantly, Theorem 1.4 yields the first global uniqueness result for the supercooled
Stefan problem with blow-ups, formulated as in (1.2). In addition, the problem (1.2) is
expected to describe the critical regime for a one-dimensional multiparticle diffusion limited
aggregation process (cf. [DT17, conjecture 1.4]), and Theorem 1.4 is a crucial step in the
rigorous derivation of the scaling limits in such and related settings, beyond the special case
treated in [DT17]. Furthermore, in view of [Szn91, proposition 2.2(i)], our Theorem 1.4
at once settles the propagation of chaos for the constant coefficients version of the mean
field particle system in [HLS18, equation (1.2)]; and, while we do not pursue this direction
here, we are confident that suitable variants of Theorem 1.4 can be established (and, hence,
will complete the proof of the propagation of chaos) for the mean field particle systems in
[DIRT15b, equation (3.1)], motivated by integrate-and-fire models in neuroscience, as well
as for the ones in [NS17, equation (2.6)] and the full generality of [HLS18, equation (1.2)],
motivated by interbank lending network models in finance. It is worth mentioning that,
while the global existence results for (1.2), and for related systems, have appeared in the
existing literature (e.g., in [DIRT15b], [NS17], [LS18a]), the question of global uniqueness
remained open until now. This is due to the challenging nature of the latter problem, which,
in particular, requires an understanding of the exact structure of physical solutions, provided
by Theorem 1.1. Finally, together with Theorem 1.1, Theorem 1.4 may serve as the basis for
the design and investigation of global numerical schemes for the problems (1.1) and (1.2),
extending the local numerical schemes proposed in [KR18], [LKR18].

In the following proposition we connect the notion of physical solution for (1.2) to an
analytic notion of solution for (1.1) which, in particular, yields the uniqueness of the latter.
To this end, we consider pairs pu,Λq such that

(a) Λ: r0,8q Ñ R is non-decreasing and right-continuous;
(b) u : D Ñ R is bounded and a classical solution of Btu “

1
2
Bxxu in the interior of D,

with upt,Λtq “ limsÓt,xÓΛt ups, xq “ 0 for all but countably many t ě 0 and up0, xq “
limtÓ0,yÑx upt, yq “ fpxq for almost every x ą 0;

(c) dΛt “ ´α d
ş8

Λt
upt, yq dy with Λt´Λt´ “ inf

 

x ą 0: limsÒt

şΛt´`x

Λt´
ups, yq dy ă x

α

(

, t ě 0.

Note that, for a regular solution pu,Λq of (1.1), the first equation in (c) amounts to dΛt “

αupt,Λtq dΛt´α
ş8

Λt
1
2
Bxxupt, yq dy dt “ α

2
Bxupt,Λtq dt. Thus, it reframes the Stefan condition

in (1.1) as the natural energy conservation law for this problem.
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Proposition 1.6. Pairs pu,Λq satisfying (a)–(c) above are in a one-to-one correspondence

with physical solutions pX,Λq of (1.2), via X0´`Bt´Λt “: Xt, t ě 0 as well as Xt 1tτątu
d
“:

upt,Λt ` xq dx, x ą 0, t ě 0. In particular, under the assumptions of Theorem 1.1, the
described pair pu,Λq is unique.

The rest of the paper is structured as follows. In Section 2, we prepare a priori Hölder
estimates on the function Λ and the boundary behavior of the densities ppt, ¨q. Our main tools
include a stochastic comparison method for (1.2) and the Krylov-Safonov estimates [KS79].
The bounds of Section 2 are then improved in Section 3 to Lipschitz estimates on Λ and the
boundary behavior of the densities ppt, ¨q, away from the times of blow-ups (Subsection 3.1).
The C8-property along with the real analyticity in x of u in the interior of D are shown in
Subsection 3.2, and supplementary features of the derivative Bxp are deduced in Subsection
3.3. These rely on the findings in [DIRT13], [DIRT15a], [HLS18], Weyl’s lemma in the form
of [McK05, p. 90, Step 4] and the analyticity assertion of [Kom79, theorem 1]. Section 4
contains the proof of Theorem 1.1, which combines the conclusions of Sections 2 and 3 with
a careful analysis of the zero set of Bxu in the spirit of [AF88, proof of theorem 5.1]. In
Section 5, the proof of Theorem 1.4 is carried out by using Theorem 1.1. Lastly, we give the
proof of Proposition 1.6 in the appendix.

Acknowledgement. We thank James Nolen for pointing one of us to the literature on zero
sets of solutions to the heat equation, leading to the completion of a substantial step in the
proof of Theorem 1.1.

2. Hölder continuity

We assume that we are given a physical solution X satisfying (1.2), with the associated
Λ and τ . For any t ě 0, we denote by ppt, ¨q and ρpt, ¨q, respectively, the densities of the
restrictions of the distributions of Xt 1tτětu and Xt´ 1tτětu to p0,8q (in particular, their
integrals may be less than one; we sometimes refer to them as sub-densities to emphasize
this fact). (Notice that ppt, ¨q is also the density of the restriction of the distribution of
Xt 1tτątu to p0,8q.) The existence and global boundedness of such densities, for all t ě 0,
is shown in Lemma 5.1 of [NS17], under the assumption that the initial condition X0´ has
a bounded density. At this stage of the paper, ppt, ¨q and ρpt, ¨q must be regarded as mere
measurable functions for which we do not have any obvious canonical version. Later, in
Proposition 3.4, we will see that, for any t ą 0, ppt, ¨q and ρpt, ¨q have analytic versions on
p0,8q. In this section, we show that, for any t ě 0, under an additional assumption that is
verified later in the paper, there exists a neighborhood pt, t` εq on which the free boundary
Λ is Hölder continuous and the densities ppt, ¨q and ρpt, ¨q (which, therefore, coincide) are
vanishing and Hölder continuous at zero.

2.1. Upper bound on the marginal density at zero. We begin with the following
proposition, which shows that, for any time t at which the profile of ρpt, ¨q satisfies an
additional assumption (which we finally succeed to check in Section 4, for a large class of
initial conditions), there exists a neighborhood pt, t ` εq on which the marginal density at
zero remains strictly below 1{α. This, in particular, implies that Λ cannot jump in that
neighborhood.
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Proposition 2.1. Fix an arbitrary t ě 0 and assume that ρpt, ¨q satisfies at least one of the
following two conditions: (i) limηÓ0 ess supxPp0,ηqρpt, xq ă 1{α, or (ii) ρpt, ¨q has a version
that is locally monotone in a right neighborhood of any point in r0,8q. Then, there exist
ε, δ ą 0 and β : p0, εq Ñ r0, 1q such that, for any z P p0, εq,

Ppτ ě s, Xs´ ď xq ď
βpzq

α
x

holds for all x P r0, δs and all s P rt` z, t` εs. In case piq, β has an extension to r0, εq (with
values in r0, 1q) and the above bound is true for z “ 0.

Proof. Let rBs :“ Bs ´Bt and rΛs :“ Λs ´ Λt, for s ě t. We also recall a useful (elementary)
identity

PpXs´ ď x, τ ě sq “ PpXs´ ď x, inf
rPr0,sq

Xr ą 0q.

First case. Assume that limηÓ0 ess supxPp0,ηqρpt, xq ă 1{α. Note from (1.5) that, in this
case, Xt “ Xt´ and ppt, ¨q “ ρpt, ¨q. For any s ě t, we will use the following bound:

P
`

Xs´ ď x, inf
rPr0,sq

Xr ą 0
˘

ď P
´

rΛs´ ď Xt1tτětu ` rBs ď x` rΛs´, Xt1tτětu ą 0
¯

,

which follows from the definition of a physical solution (1.2). Then,

P
`

Xs´ ď x, inf
rPr0,sq

Xr ą 0
˘

ď P
´

rΛs´ ď Xt1tτětu ` rBs ď x` rΛs´, Xt1tτětu ą 0
¯

“

ż

R
P
´

rΛs´ ď Xt1tτětu ` y ď x` rΛs´, Xt1tτětu ą 0
¯

gps´t, yq dy,

where gps, ¨q is the Gaussian kernel of variance s (and zero mean). Let F be the cumulative
distribution function of ρpt, ¨q. Then,

P
`

Xs´ ď x, inf
rPr0,sq

Xr ą 0
˘

ď

ż

R

`

F px` rΛs´ ´ yq ´ F prΛs´ ´ yq
˘

gps´ t, yq dy

“

ż x`rΛs´

´8

`

F px` rΛs´ ´ yq ´ F prΛs´ ´ yq
˘

gps´ t, yq dy.

We split the above term into three parts:

P
`

Xs´ ď x, inf
rPr0,sq

Xr ą 0
˘

ď

ż x`rΛs´

rΛs´

`

F px` rΛs´ ´ yq ´ F prΛs´ ´ yq
˘

gps´ t, yq dy

`

ż

rΛs´

´ε

`

F px` rΛs´ ´ yq ´ F prΛs´ ´ yq
˘

gps´ t, yq dy

`

ż ´ε

´8

`

F px` rΛs´ ´ yq ´ F prΛs´ ´ yq
˘

gps´ t, yq dy.

(2.1)

The first term on the right-hand side of (2.1) is less or equal to

F pxq

ż x`rΛs´

rΛs´

gps´ t, yq dy ď C1x

ż x`rΛs´

rΛs´

gps´ t, yq dy,
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for all s ě t and all x P r0, δs, where C1 ă 1{α and δ ą 0 are chosen so that ess supp0,δqρpt, ¨q ď
C1 (which is possible due to limηÓ0 ess supxPp0,ηqρpt, xq ă 1{α).

As for the second term on the right-hand side of (2.1), we choose ε to be sufficiently small,

so that rΛs ď δ{3, for all s P rt, t ` εs, x P p0, δ{3s, and ε P p0, δ{3s (here, we also use the
right-continuity of Λ). Then, ess sup

p0,x`rΛs`εq
ρpt, ¨q ď C1 and

F
`

x` rΛs´ ´ y
˘

´ F
`

rΛs´ ´ y
˘

ď C1x,

hence, the second term on the right-hand side of (2.1) is less or equal to

C1x

ż

rΛs´

´ε

gps´ t, yq dy.

Consider the last term on the right-hand side of (2.1). Due to the fast decay, as s Ó t, of
gps´ t, xq{gps´ t, yq, for x ă y ă 0,

ż ´2ε

´8

gps´ t, yq dy ď e´ε
2{p2ps´tqq

ż ´ε

´8

gps´ t, yq dy,

so that, decreasing if necessary ε “ εpεq ą 0, we obtain
ż ´2ε

´8

gps´ t, yq dy ď γ

ż ´ε

´8

gps´ t, yq dy,

for all s P rt, t` εs, with γ being small enough, so that (using the global boundedness of the
density) γ }ρpt, ¨q}L8 ` C1 ă 1{α. Then, for all s P rt, t` εs, x P p0, δ{3s, and ε “ δ{6,

ż ´ε

´8

`

F px` rΛs´ ´ yq ´ F prΛs´ ´ yq
˘

gps´ t, yq dy

ď }ρpt, ¨q}L8 x

ż ´2ε

´8

gps´ t, yq dy ` C1 x

ż ´ε

´2ε

gps´ t, yq dy,

ď x
`

γ }ρpt, ¨q}L8 ` C1

˘

ż ´ε

´8

gps´ t, yq dy.

Collecting the above, we conclude that there exist ε ą 0 and C2 ă 1{α such that

P
`

Xs´ ď x, inf
rPr0,sq

Xr ą 0
˘

ď C2 x

holds for all s P rt, t` εs and x P p0, δ{3s. Thus, the statement of the proposition holds with
β :“ C2α.

Second case. Assume now that ρpt, ¨q has a version that is locally monotone in a right
neighborhood of any point in r0,8q. Then, without loss of generality we can assume that it
is right-continuous. Resolving the jump (if it occurs), we switch from ρpt, ¨q to ppt, ¨q. Since
this transition amounts to a shift of variables, we conclude from the assumption that

ppt, xq “ ppt, 0q ´ ψpxq, x ě 0,

where ψ is monotone in a right neighborhood of zero (say r0, δs). By right-continuity,
limxÓ0 ψpxq “ 0. Obviously, if ppt, 0q ă 1{α, we are led back to the first case. If ppt, 0q “ 1{α,
the fact that we have resolved the jump forces ψ to be non-decreasing and strictly positive
in a right neighborhood of zero. Because of a possible jump at time t, the inequality (2.1)
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holds provided we now denote by F the cumulative distribution function of ppt, ¨q. Let us
estimate the terms on the right-hand side of (2.1).

Repeating the same arguments as in the first case, we conclude that, for any ε P p0, δ{6s,

there exists an ε “ εpεq such that, for all s P rt, t` εs and all x P r0, δ{3s, rΛs´ ď δ{3 and the
first and the last terms on the right-hand side of (2.1) add up to at most

x

α

ˆ
ż ´ε

´8

gps´ t, yq dy `

ż x`rΛs´

rΛs´

gps´ t, yq dy

˙

.

It only remains to estimate the second term on the right-hand side of (2.1). Since ψ is
decreasing on r0, δs, we have:

F px` rΛs´ ´ yq ´ F pΛ̃s´ ´ yq “

ż x

0

ppt, z ` rΛs´ ´ yq dz

“ x ppt, 0q ´

ż x

0

ψpz ` rΛs´ ´ yq dz ď
x

α
´ xψprΛs´ ´ yq,

for all s P rt, t ` εs, all x P r0, δ{3s, and all y P r´δ{3, rΛs´s. Thus, for any ε P p0, δ{3s, we
conclude that the second term on the right-hand side of (2.1) is less or equal to

x

ˆ

1

α

ż

rΛs´

´ε

gps´ t, yq dy ´

ż

rΛs´

´ε

ψprΛs´ ´ yq gps´ t, yq dy

˙

,

for all s P rt, t ` εs and all x P r0, δ{3s. Fixing ε “ δ{6, we notice that, for any z P p0, εq,
there exists hpzq ą 0, such that

ż

rΛs´

´ε

ψprΛs´ ´ yq gps´ t, yq dy ě

ż ε

0

ψpyq gps´ t, rΛs´ ´ yq dy ě hpzq

holds for all s P rt` z, t` εs. Thus, we conclude that, for any z P p0, εq,

P
`

Xs´ ď x, inf
rPr0,sq

Xr ą 0
˘

ď x

ˆ

1

α
´ hpzq

˙

holds for all x P r0, δ{3s and all s P rt ` z, t ` εs. Thus, the statement of the proposition
holds with βpzq “ p1´ αhpzqq`. �

2.2. Hölder continuity of the free boundary. Next, we show that, whenever the mar-
ginal sub-density ρ at zero is strictly below 1{α on a given time interval, the free boundary
Λ is 1/2-Hölder continuous on the same interval.

Proposition 2.2. Fix an arbitrary t ě 0 and assume that there exist ε, δ ą 0 and β P r0, 1q
such that

Ppτ ě s, Xs´ ď xq ď
β

α
x,

for all x P r0, δs and all s P rt, t` εs. Then, Λ is 1/2-Hölder continuous in rt, t` εs.

Proof. The proof follows the strategy outlined in Section 5 of [NS17], and relies on a sequence
of auxiliary processes, whose limit will be shown to dominate the physical solution.

It is clear that Ppτ ě tq ą 0 for all t ě 0, whenever Ppτ ą 0q ą 0. Since the statement of
the proposition holds trivially if Ppτ ą 0q “ 0, we assume that Ppτ ě tq ą 0 for all t ě 0.
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Let us fix an arbitrary ε P p0, εq and consider the sequence of processes Xn, n P N defined
recursively as follows:

X1
s “ pXt´ ` rBsq1tτětu, s P r0, εs,(2.2)

Xn
s “ pXt´ ` rBs ´ L

n´1
q1tτětu, s P r0, εs, n ě 2,(2.3)

Ln “ αPpτ ě tq ´ αP
`

τ ě t, inf
sPr0,εs

Xn
s ą 0

˘

, n ě 1,(2.4)

where rBs :“ Bt`s ´Bt, s P r0, εs. (Note that Ln does not depend on the time parameter s.)
It is easy to see that X2

s ď X1
s , for all s P r0, εs, with probability one. Then, by induc-

tion, we conclude that the sequences Xn
s , n P N are non-increasing, for all s P r0, εs, with

probability one. Hence, by Lemma 2.3 below, for ε P p0,8q sufficiently small, the sequence

Ln, n P N, (which is non-decreasing by (2.4)) has a limit rL. Hence, the processes Xn, n P N
converge uniformly on r0, εs to the process rX satisfying

(2.5) rXs “ pXt´ ` rBs ´ rLq1tτětu, s P r0, εs,

where rL :“ limnÑ8 L
n. Notice that infsPr0,εsX

n
s , n P N tend almost surely to infsPr0,εs rXs.

Since the conditional distribution of the latter random variable, given tτ ě tu, has no atoms,
we conclude that

(2.6) lim
nÑ8

P
`

τ ě t, inf
sPr0,εs

Xn
s ą 0

˘

“ P
`

τ ě t, inf
sPr0,εs

rXs ą 0
˘

,

which yields

(2.7) rL “ αPpτ ě tq ´ αP
`

τ ě t, inf
sPr0,εs

rXs ą 0
˘

.

By Lemma 2.3, there exist CL ă 8 and ε0 P p0, εs such that

(2.8) rL ď CL
?
ε, ε ď ε0.

Combining (2.8) and (2.13) in the statement of Lemma 2.4 below, and recalling that they
hold for any ε P p0, ε0s, we conclude that

(2.9) Λt`s ´ Λt ď CL
?
s, s P r0, ε0s.

The statement of the proposition follows by repeating the above arguments for arbitrary
t1 P rt, t` εq in place of t and recalling that CL and ε0 can be chosen independently of t1. �

Lemma 2.3. Let the assumptions of Proposition 2.2 hold. Then, there exist CL ă 8 and
ε0 P p0, εs, depending only on α, β, δ, and }ρpt, ¨q}L8pr0,8qq, such that

(2.10) 0 ď Ln ď CL
?
ε,

for all n P N and all ε P p0, ε0s.

Proof. We have the estimates

0 ď Ppτ ě tq ´ P
`

τ ě t, inf
sPr0,εs

X1
s ą 0

˘

“

ż 8

0

´

1´ P
`

inf
sPr0,εs

rBs ą ´y
˘

¯

ρpt, yq dy

ď 2
?
ε

ż 8

0

Φ p´yq ρpt, y
?
εq dy ď 2

?
εCρ

ż 8

0

Φ p´yq dy “
?
εCρ

c

2

π
“:
?
εC0,

(2.11)

10



where

Cρ :“ }ρpt, ¨q}L8 ,

and Φ stands for the standard Gaussian cumulative distribution function.
For n ě 2, we find

1

α
Ln “ Ppτ ě tq ´ P

`

τ ě t, inf
sPr0,εs

Xn
s ą 0

˘

“

ż 8

0

´

1´ P
`

inf
sPr0,εs

rBs ´ L
n´1

ą ´y
˘

¯

ρpt, yq dy

ď

ż Ln´1

0

ρpt, yq dy ` 2
?
ε

ż 8

0

Φ p´yq ρpt, y
?
ε` Ln´1

q dy

ď

ż Ln´1

0

ρpt, yq dy `
?
εC0.

(2.12)

Assume that ε is sufficiently small, so that αC0

?
ε ď p1´ βqδ. Then, (2.11) implies L1 ď δ

and, hence, by the main assumption in the statement of Proposition 2.2,

ż L1

0

ρpt, yq dy ď
β

α
L1,

and

L2
ď β L1

` αC0

?
ε ď δ.

Thus, by induction, Ln ď δ, for all n. Repeating the above estimate, we obtain

Ln ď β Ln´1
` αC0

?
ε, n ě 2,

which yields

Ln ď αC0

?
ε

ˆ

1`
1

1´ β

˙

, n ě 1

and completes the proof of the lemma. �

Lemma 2.4. Let the assumptions of Proposition 2.2 hold. Then,

(2.13) Λt`s ´ Λt ď rL, s P r0, εs.

Proof. First, we notice that Λ is continuous on rt, t` εs and Λt´ “ Λt, due to the assumption

of the proposition and (1.5). Suppose that there exists an s P r0, εs such that Λt`s´Λt ą rL.

Since rL ą 0, we must have s ą 0. Due to the continuity of Λ we can further find s1 P r0, εq

such that Λt`s1´Λt “ rL and Λt`s2´Λt ă rL for all s2 P r0, s1q. Therefore, for any s2 P r0, s1s,

the definitions of X, rX, and the properties of Brownian motion, give

1tτąt`s2u ´ 1
tτět, infrPr0,εs rXrą0u ě 0, P

`

1tτąt`s2u ´ 1
tτět, infrPr0,εs rXrą0u ą 0

˘

ą 0.

Taking s2 “ s1 and taking expectations in the left inequality, we end up with Λt`s1 ´Λt ă rL,
which is the desired contradiction. �
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2.3. Hölder continuity of the marginal density at zero. Finally, we show that the
1/2-Hölder continuity of Λ implies the Hölder continuity of the marginal density at 0.

Proposition 2.5. Fix an arbitrary t ě 0 and assume that there exists an ε ą 0 such that Λ
is 1/2-Hölder continuous in pt, t` εq. Then, for any η P p0, ε{2q, there exist constants C ě 0
and χ P p0, 1q such that

pps, xq ď Cxχ

holds for all s P rt` η, t` ε´ ηs and almost every x ą 0.

Proof. As before, we assume without loss of generality that Ppτ ą sq ą 0 holds for all s ě 0.
First Step. The strategy is based upon Krylov and Safonov estimates, as implemented in

the proof of Lemma 5.5 in [DIRT15b]. However, there is a significant difference with the
proof in [DIRT15b] since, at this stage, the function Λ is not known to be differentiable
on pt, t ` εq: we only know that it is 1{2-Hölder continuous. To overcome the lack of
differentiability of Λ, we use the following mollification argument. For every n ě 1, we
choose Λn as an increasing smooth process on r0,8q, starting from 0 at time 0, such that,
for any s P pt, t` εq, limnÑ8 Λn

s “ Λs, the convergence being uniform on any compact subset
of pt, t ` εq. Without any loss of generality, we can assume that the processes tΛnuně1 are
uniformly 1{2-Hölder continuous on rt` η{2, t` ε´ η{2s.

Then, for any n ě 1, we let

(2.14) Xn
s :“ Xt`η{2 ´

`

Λn
s ´ Λn

t`η{2

˘

`Bs ´Bt`η{2, s P rt` η{2, t` ε´ η{2s,

together with τn :“ infts ě t ` η{2 : Xn
s ď 0u. Using standard arguments, it is easy to

deduce that, for any s P pt` η{2, t` ε´ η{2q, the restriction of the distribution of Xn
s^τn to

p0,8q admits a (sub-)density pnps, ¨q, which satisfies the Fokker-Planck equation:

(2.15) Bsp
n
´

1

2
Bxxp

n
´ 9Λn

Bxp
n
“ 0, ps, xq P pt` η{2, t` ε´ η{2q ˆ p0,8q,

where 9Λn is the time derivative of the regularized function Λn. Recall that

pn P C1,2
ppt` η{2, t` ε´ η{2q ˆ p0,8qq

and is continuous on pt ` η{2, t ` ε ´ η{2q ˆ r0,8q, with the Dirichlet boundary condition
pnps, 0q “ 0 for s P pt` η{2, t` ε´ η{2q.

Second Step. We now prove that, for any η P p0, ε{2q, there exist two positive constants C
and χ such that, for any n ě 1, s P rt` η, t` ε´ ηs, and x ą 0,

(2.16) pnps, xq ď C minp1, xχq.

In order to prove (2.16), we fix arbitrary t0 P pt` η{2, t` ε´ η{2s and x0 ą 0, and consider,
for any n ě 1, the process Y n given by:

dY n
s “

9Λn
t0´s

ds` dBs, s P r0, t0 ´ t´ η{2s,

with Y n
0 “ x0 as the initial condition. Using (2.15), we deduce from Itô’s formula that

(2.17) pnpt0, x0q “ E
“

pnpt0 ´ %
n, Y n

%nq
‰

“ E
“

pnpt0 ´ %
n, Y n

%nq1tY n%ną0u

‰

,

where %n is any stopping time not exceeding %n0^δ
2, with an arbitrary fixed δ2 P p0, t0´t´η{2q

and with %n0 :“ infts ą 0 : Y n
s ď 0u.
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Next, we consider another free parameter L ě 1, whose value is determined below in terms
of η, and choose %n “ infts ą 0 : Y n

s ě Lδu ^ %n0 ^ δ
2. Then, (2.17) yields

pnpt0, x0q ď
`

1´ PpY n
%n “ 0q

˘

sup
ps,yqPQpδ,Lq

pnps, yq,

with

Qpδ, Lq :“ rt0 ´ δ
2, t0s ˆ r0, Lδs.

Denoting by κ a common 1{2-Hölder bound of the paths pΛnqně1 on rt ` η{2, t ` ε ´ η{2s,
we have, for any s P r0, %ns and x0 ď δ,

Y n
s ď δ ` κδ `Bs.

Therefore,

tY n
%n “ 0u Ą

!

inf
0ďsďδ2

Bs ă ´p1` κqδ
)

X

!

sup
0ďsďδ2

Bs ă pL´ p1` κqqδ
)

.

Choosing L “ 2p1` κq, we easily deduce by a scaling argument that there exists a constant
c P p0, 1q only depending on κ (in particular, c is independent of n, δ, t0 and x0) such that

P
`

Y n
%n “ 0

˘

ě c,

from which we conclude that

pnpt0, x0q ď p1´ cq sup
t0´δ2ďsďt0, 0ďyďLδ

pnps, yq.

The above holds true under the sole assumption that x0 ď δ and t`η{2`δ2 ă t0 ď t`ε´η{2.
Assuming 2η ă t0´ t (notice that we can always make η arbitrarily small) and iterating the
above estimates, we deduce that, as long as δ2p1` L2 ` ¨ ¨ ¨ ` L2kq ď η, we have

pnpt0, x0q ď p1´ cq
k`1 sup

t0´p1`L2`¨¨¨`L2kqδ2ďsďt0, 0ďyďδLk`1

pnps, yq.

Hence, as long as δ2L2pk`1q ď η, we have

pnpt0, x0q ď p1´ cq
k sup
ps,yqPrt`η,t`ε´η{2sˆr0,

?
ηs

pnps, yq.

That is, the above bound holds true if k ` 1 ď lnpδ´2ηq{ lnpL2q, which leads to (choosing
k ` 1 “ tlnpδ´2ηq{ lnpL2qu)

pnpt0, x0q ď p1´ cq
´2
p1´ cqlnpδ

´2ηq{ lnpL2q sup
ps,yqPrt`η,t`ε´η{2sˆr0,

?
ηs

pnps, yq

“ p1´ cq´2
`

δ{
?
η
˘χ

sup
ps,yqPrt`η,t`ε´η{2sˆr0,

?
ηs

pnps, yq,

with χ :“ ´ lnp1´ cq{ lnpLq. For x0 P p0,
?
ηq, we can choose δ “ x0, which yields

pnpt0, x0q ď C xχ0 sup
ps,yqPrt`η,t`ε´η{2sˆr0,

?
ηs

pnps, yq,

for a constant C only depending on η.
In order to complete the proof of (2.16), it suffices to provide a bound for

sup
ps,yqPrt`η,t`ε´η{2sˆr0,8q

pnps, yq,
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uniformly over n ě 1. The latter follows easily from the following observation. For any Borel
A Ă p0,8q and s ě t` η{2,

PpXn
s^τn P Aq ď P

`

Xt`η{2 ´ pΛ
n
s ´ Λn

t`η{2q `Bs ´Bt`η{2 P A
˘

,

and the latter is clearly less or equal to 1{
a

2πps´ t´ η{2q|A|, where |A| stands for the

Lebesgue measure of A. We deduce that pnps, ¨q ď 1{
a

2πps´ t´ η{2q, which completes the
proof of (2.16).

Third Step. In order to complete the proof, it remains to take the limit as nÑ 8. Recall
(2.14), together with the identity

Xs “ Xt`η{2 ´
`

Λs ´ Λt`η{2q `
`

Bs ´Bt`η{2

˘

, s P rt` η{2, t` ε´ η{2s.

Since pΛnqně1 converges to Λ uniformly on rt ` η{2, t ` ε ´ η{2s, we deduce that, for any
η P p0, εq, the sequence of laws pP˝ ppXn

s qsPrt`η{2,t`ε´η{2sq
´1qně1 (seen as probability measures

on Cprt`η{2, t`ε´η{2s;Rq) converges in the weak sense to P˝ppXsqsPrt`η{2,t`ε´η{2sq
´1. Since

the processX goes (with probability 1) into the negative when touching 0, we deduce that pP˝
ppXn

s qsPrt`η{2,t`ε´η{2s, τ
nq´1qně1 (seen as probability measures on Cprt`η{2, t`ε´η{2s;RqˆRq

converges weakly to P ˝ ppXsqsPrt`η{2,t`ε´η{2s, τq
´1. Hence, for any s P rt ` η{2, t ` ε ´ η{2s

and for any bounded and continuous real-valued function ϕ on R, with support in p0,8q,

lim
nÑ8

E
“

ϕ
`

Xn
s^τn

˘‰

“ E
“

ϕ
`

Xs^τ

˘‰

“

ż 8

0

ϕ
`

x
˘

pps, xq dx.

From the above, we easily deduce that p inherits the bound (2.16), which completes the
proof. �

Combining Propositions 2.1, 2.2, and 2.3, we obtain the following corollary, which sum-
marizes the results of this section.

Corollary 2.6. Fix an arbitrary t ě 0 and assume that ρpt, ¨q satisfies at least one of the
following two conditions: (i) limηÓ0 ess supxPp0,ηqρpt, xq ă 1{α, or (ii) ρpt, ¨q has a version
that is locally monotone in a right neighborhood of any point in r0,8q. Then, there exists
an ε ą 0 such that Λ is 1/2-Hölder continuous on pt, t ` εq and pps, ¨q (has a version that)
is vanishing and Hölder continuous at 0, uniformly over s in any compact sub-interval of
pt, t` εq.

3. Lipschitz and Higher Order Regularity

In this section, we keep the same notation as in the previous one: X “ pXtqtě0 is a physical
solution of (1.2); ppt, ¨q is the density of the restriction of the distribution of Xt 1tτětu to
p0,8q; and ρpt, ¨q is the density of the restriction of the distribution of Xt´ 1tτětu to p0,8q.

Our objective is to provide further regularity properties of p: Lipschitz property at
the boundary, regularity of the gradient up to the boundary and (a form of) smooth-
ness/analyticity inside the domain. Throughout the section, we use repeatedly the following
notation: For a given T ą 0 (which shall be understood as a finite time horizon) and a given
t P r0, T q, we let

Tregptq :“ inf
 

s ą t : lim
ηÓ0

ess sup
yPp0,ηq

ρps, yq ą 0
(

^ T.

As a consequence of Corollary 2.6, we deduce:
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Corollary 3.1. Fix an arbitrary time horizon T ą 0, together with a time t P r0, T q, and
assume that ρpt, ¨q has a version that is locally monotone in a right neighborhood of any
point in r0,8q. Then, Tregptq ą t. Moreover, for any η P p0, pTregptq´ tq{2q, Λ is 1{2-Hölder
continuous on rt ` η, Tregptq ´ ηs and there exist a constant Ct,T,η ě 0 and an exponent
χt,T,η ą 0 such that

pps, xq ď Ct,T,η minpxχt,T,η , 1q, s P rt` η, Tregptq ´ ηs, x ě 0.

Proof. Fix η as in the statement and identify ρpt, ¨q with its locally monotone version. It
is an immediate consequence of Corollary 2.6 that Tregptq ą t. Moreover, by construction,
we know that, for any s P rt ` η{2, Tregptq ´ η{2s, lim ess supyÓ0ρps, yq “ 0. Therefore, by
Corollary 2.6 again, for any s P rt`η{2, Tregptq´η{2s, we can find three constants Cs, εs ą 0
and χs P p0, 1q such that Λ is 1{2-Hölder continuous on ps, s ` εsq, the Hölder semi-norm
being less than Cs, and p satisfies

ppr, xq ď Cs minpxχs , 1q, r P ps, s` εsq, x ě 0.

By compactness, we can find N ě 1, s1, . . . , sN P rt`η{2, Treg´η{2s so that rt`η, Treg´ηs Ă
YNi“1psi, si ` εsiq. It remains to let

C “ max
i“1,...,N

Csi,T,η, χ “ inf
i“1,...,N

χsi,T,η.

We easily deduce that Λ is 1{2-Hölder continuous on rt ` η, Tregptq ´ ηs, the Hölder semi-
norm being less than C, and that p satisfies ppr, xq ď C maxp1, xχq, r P rt ` η, Tregptq ´ ηs,
x ě 0. �

3.1. Lipschitz regularity. We now prove

Proposition 3.2. Fix an arbitrary time horizon T ą 0 together with a time t P r0, T q and
assume that (a version of) ρpt, ¨q is locally monotone in a right neighborhood of any point
in r0,8q. Then, the function pt, Tregptqq Q s ÞÑ Λs is continuously differentiable and, for
any η P p0, pTregptq ´ tq{2q, there exists a constant Ct,T,η ě 0 such that, for almost every
s P rt` η, Tregptq ´ ηs,

9Λs ď Ct,T,η.

In particular, Λ is Ct,T,η-Lipschitz continuous on rt` η, Tregptq ´ ηs.
Moreover, p P C1,2ppt, Tregptqq ˆ p0,8qq. For any η P p0, pTregptq ´ tq{2q, it is bounded and

continuous on rt ` η, Tregptq ´ ηs ˆ r0,8q and the space derivative Bxp is also bounded and
continuous on rt` η, Tregptq´ ηsˆ r0,8q. In particular, for any η P p0, pTregptq´ tq{2q, there
exists a constant C 1t,T,η ě 0 such that, for any s P rt` η, Tregptq ´ ηs and x ě 0,

pps, xq ď C 1t,T,η minpx, 1q.

Following the proof of Proposition 2.5, we may assume throughout that Ppτ ą tq ą 0 for
any t ą 0. The proof of Proposition 3.2 relies upon the recent results of [HLS18]. First, we
state the following lemma, which follows directly from [HLS18].

Lemma 3.3. Fix T and t as in the statement of Proposition 3.2. Then, for any η P
p0, pTregptq ´ tq{2q, there exist three positive constants Kt,T,η, εt,T,η P p0, ηq and χt,T,η P p0, 1q
such that, for any s P rt ` η, Tregptq ´ ηs, the function ps, s ` εt,T,ηq Q r ÞÑ Λr is absolutely
continuous and satisfies

ess sup
rPps,s`εt,T,ηq

pr ´ sqp1´χt,T,ηq{2 9Λr ď Kt,T,η.
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Proof. By Corollary 3.1, there exist a constant Ct,T,η and an exponent χt,T,η such that

(3.1) pps, xq ď Ct,T,η minpxχt,T,η , 1q, x ě 0, s P rt` η, Tregptq ´ ηs.

For a given s P rt ` η, Tregptq ´ ηs, we now consider the process pXr`s,Λr`s ´ Λsqrě0. It
is a solution of the state equation (1.2), with pps, ¨q as the initial (sub-)density on p0,8q.
Equation (3.1) implies that the latter (sub-)density has a Hölder decay at the boundary and
is bounded on r0,8q. The fact that the constant on the right-hand side of (3.1) remains
independent of s is the key point to invoke the results of [HLS18].

For the sake of completeness, we introduce the following space (whose definition is taken
from [HLS18]): For two constants A and ε, we denote by SpA, εq the collection of elements
` of H1pp0, εqq (the space of absolutely continuous paths on p0, εq whose derivative is square

integrable) such that ess suprPr0,εsr
p1´χt,T,ηq{2 9̀prq ď A. Then, [HLS18, Theorem 1.7] says

that there exist a constant K and a time ε ą 0, only depending on t, T and η (through the
constants in (3.1))1 such that the state equation (1.2), whose initial condition has pps, ¨q as
its sub-density on p0,8q, has a unique solution in the space SpK, εq. A priori, uniqueness
is within SpK, εq, but [HLS18, Theorem 1.8] shows that our solution pΛr`s ´ Λsqrě0 must
coincide with the one in SpK, εq on r0, εs. This completes the proof. �

Proof of Proposition 3.2. First Step. Replacing η by η{2 and choosing r P ps` εt,T,η{2{2, s`
εt,T,η{2q in the supremum appearing in the statement of Lemma 3.3, we deduce that Λ is
Lipschitz continuous on rt` η, Tregptq´ ηs, proving one of the statements in Proposition 3.2.

Second Step. Next, we deduce that p has linear decay in x at the boundary x “ 0 uniformly
in s P rt` η, Tregptq ´ ηs, for η P p0, pTregptq ´ tq{2q. To this end, we proceed as in the proof
of Proposition 2.5 and consider mollified versions ppΛn

s qsPrt,Tregptqqqně1 of Λ. By the first step,
we can assume that, for a given η P p0, pTregptq ´ tq{2q, the functions ppΛn

s qsPrt`η,Tregptq´ηsqně1

are Lipschitz continuous, uniformly in n. With a slight abuse of notation, we still denote
the Lipschitz constant by Ct,T,η.

Consider the collection of stochastic processes:

Xn
s “ Xt`η ´

`

Λn
s ´ Λn

t`η

˘

`Bs ´Bt`η, s ě t` η,

for n ě 1. For each n ě 1 and any s ě t ` η, we denote by pnps, ¨q the density of the
restriction of the distribution of Xn

s 1tsěτnu to p0,8q, where τn :“ inftr ě s : Xn
r ď 0u.

Following [DIRT15a, Lemma 4.2], we know that pn is continuous on pt` η,8q ˆ r0,8q and
that it is a classical solution of the PDE

(3.2) Btp
n
´

1

2
Bxxp

n
´ 9Λn

Bxp
n
“ 0, s ą t` η, x ą 0.

By [DIRT13, Lemmas 2.1 and 3.1] (up to an obvious modification, as the absorption herein
occurs at the boundary of p0,8q and not at the boundary of p´8, 1q), we know that, for
each n ě 1 and each s P pt` η, Tregptq´ ηs, the function pnps, ¨q is differentiable at any point

1We draw the reader’s attention to the fact that the statement in [HLS18] is not entirely clear on the
dependence of ε upon the shape of p, but a careful inspection of the argument shows that our claim is indeed
correct.
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x ě 0. Moreover,

Bxp
n
ps, xq “

ż 8

0

Byqps´ pt` ηq, z, xq p
n
pt` η, zq dz

`

ż s

t`η

ż 8

0

9Λn
r Bxp

n
pr, zq Byqps´ r, z, xq dr dz,

(3.3)

where

qpr, x, yq “ gpr, x´ yq ´ gpr, x` yq, r ą 0, x, y ą 0,

is the kernel of the heat equation with absorption at x “ 0, and the function gpr, ¨q denotes
the usual Gaussian kernel of variance r (and of zero mean). We make the following key
observations. First, we know that each pn solves (3.2). As the ppnqně1 are bounded uniformly
in n, we deduce from standard results on the smoothing effect of the heat equation that, on
any closed ball included in pt ` η, Tregptq ´ ηq ˆ p0,8q, the functions pps, xq ÞÑ pnps, xqqně1

are in Cp1`αq{2,1`αppt ` η, Tregptq ´ ηq ˆ p0,8qq, for some α P p0, 1q, uniformly in n ě 1
(namely pn and Bxp

n are locally Hölder continuous in time and space, uniformly in n ě 1).
As pn converges to p on pt ` η, Tregptq ´ ηq ˆ p0,8q (see Proposition 2.5), this shows that
p is differentiable in x on pt ` η, Tregptq ´ ηq ˆ p0,8q and that pBxp

nps, xqqně1 converges to
Bxpps, xq for any ps, xq P pt` η, Tregptq ´ ηq ˆ p0,8q.

Another observation is that [DIRT13, Propositions 3.2 and 4.2] imply the existence of a
constant C (possibly depending on t, T , η, but independent of n) such that, for any n ě 1
and ps, xq P pt` η, Tregptq ´ ηq ˆ p0,8q,

(3.4) |Bxp
n
ps, xq| ď

C
a

s´ pt` ηq
.

Also, we have, for all r P pt` η, sq and z ą 0,

(3.5) |Byqps´ r, z, xq| ď
C

s´ r
exp

´

´
|x´ z|2

Cps´ rq

¯

.

In particular, we have the following bound for the second integrand in (3.3) (allowing for a
new value of the constant C):

ˇ

ˇ 9Λn
r Bxp

n
pr, zqByqps´ r, z, xq

ˇ

ˇ ď
C

a

r ´ pt` ηq ps´ rq
exp

´

´
|x´ z|2

Cps´ rq

¯

,

which is integrable in pr, zq P pt ` η, sq ˆ p0,8q. Since, after passing to a subsequence, 9Λn

converges almost everywhere (in time) to 9Λ, we can take the limit in (3.3) as n Ñ 8 and
deduce that

Bxpps, xq “

ż 8

0

Byqps´ pt` ηq, z, xq ppt` η, zq dz

`

ż s

t`η

ż 8

0

9Λr Bxppr, zq Byqps´ r, z, xq dr dz.

(3.6)

Moreover, taking the limit in (3.4), we also have

(3.7) |Bxpps, xq| ď
C

a

s´ pt` ηq
, s P

`

t` η, Tregptq ´ η
˘

, x ą 0.
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Therefore, we can take the limit as x Ó 0 in (3.6). We deduce that, for any s P pt`η, Tregptq´
ηq, Bxpps, xq has a limit as x Ó 0. In particular, pps, ¨q is differentiable at the point 0 and
Bxpps, 0q is given by (3.6). Since η is arbitrary, this is true for any s P pt, Tregptqq. Moreover,
we deduce from (3.7) (with η replaced by η{2), that for any η P p0, pTregptq ´ tq{2q, we can
find a constant C 1t,T,η such that

(3.8) pps, xq ď C 1t,T,η minpx, 1q, s P rt` η, t` Tregptq ´ ηs, x ě 0.

Fourth Step. By combining the conclusions of the second and third steps, we deduce that,
for any η P p0, pTregptq ´ tq{2q, the function ppt` η, ¨q is differentiable on r0,8q and satisfies
(3.8). In other words, it satisfies all the assumptions of the existence and uniqueness result
stated in [DIRT15a, Theorem 4.1] (which is stated in a slightly different framework, but
which obviously applies in our setting). This latter result says that there exists a unique
solution pX̃, Λ̃q to the state equation (1.2) whose initial condition has ppt ` η, ¨q as its sub-
density on p0,8q, and it is such that Λ̃ is continuously differentiable on rt` η, t` η` εs, for
some ε P p0, Tregptq ´ t ´ 2ηq only depending on the parameter C 1t,T,η in (3.8). By [HLS18,

Theorem 1.8], the process Λ̃ must coincide with Λ´ Λt`η on rt` η, t` η ` εs, which shows
that Λ is continuously differentiable on pt, Tregptqq.

Moreover, (3.7) shows that Bxp is bounded on rt ` η, Tregptq ´ ηs ˆ r0,8q, for any η P
p0, pTregptq ´ tq{2q.

Lastly, using the fact that, for s ą r (and with a new C ă 8),

ˇ

ˇBtByqps´ r, z, xq
ˇ

ˇ ď
C

ps´ rq2
exp

´

´
|x´ z|2

Cps´ rq

¯

,

we see from (3.5) that, for s ą s1 ą r,
ˇ

ˇByqps´ r, z, xq ´ Byqps
1
´ r, z, xq

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż s1

s

BtByqps
2
´ r, z, xq ds2

ˇ

ˇ

ˇ

ˇ

1{8
´

ˇ

ˇByqps´ r, z, xq
ˇ

ˇ

7{8
`
ˇ

ˇByqps
1
´ r, z, xq

ˇ

ˇ

7{8
¯

ď
C|s´ s1|1{8

ps1 ´ rq9{8
exp

´

´
|x´ z|2

Cps1 ´ rq

¯

.

Plugging the above bound in (3.3), we deduce that, for any η P p0, pTregptq ´ tq{2q, Bxp is
continuous in s, uniformly over x, for ps, xq P rt` η, Tregptq ´ ηs ˆ r0,8q. We conclude that
Bxp is continuous on pt, Tregptqq ˆ r0,8q. �

3.2. Smoothness and analyticity inside the domain. Whilst Proposition 3.2 mostly
concerns regularity at the boundary, the next result addresses the regularity of p inside the
domain.

Proposition 3.4. For a physical solution pX,Λq of (1.2), following (1.4), we denote

upt, xq :“ ppt, x´ Λtq, t ą 0, x ą Λt.

Then, u is C8 in pt, xq and satisfies Btu “
1
2
Bxxu pointwise on D̊ :“ tpt, xq P p0,8q2 : xąΛtu.

Moreover, for any pt, xq P D̊, there is a neighborhood of pt, xq in Rˆ C on which there exist
extensions of u and its time derivatives of all orders, such that the extensions are analytic
in the space variable with jointly continuous space derivatives of all orders. In particular,
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for any t ą 0, the function upt, ¨q is real analytic in x on pΛt,8q, and the functions ppt, ¨q,
ρpt, ¨q are real analytic in x on p0,8q.

At first sight, the fact that u solves the heat equation could appear as a simple reformula-
tion of the fact that p satisfies the equation (1.7), but it is not! As we have already explained,
p may have time discontinuities (and, hence, may not be smooth in time) at those times t
when limηÓ0 ess sup

yPp0,ηq

ρpt, yq ě 1{α. This is in contrast with the above statement: Therein,

we assert that u is smooth in D̊ whatever the behavior of ρ at the boundary. Regarding the
smoothness in the sole space variable x, the real analyticity of u in x was already pointed
out in the very recent preprint [LS18b]. In fact, the real analyticity in x of the solutions to
the heat equation is a general result in PDE theory, see for instance [Kry96, exercise 8.4.7].
Here, our result says more since we not only prove the real analyticity in x of u and of its
time derivatives, but also extend u to a complex domain in x, locally uniformly in t. We use
the latter fact in Section 4. Also, our arguments are different from those used in [LS18b], as
we have developed our analysis independently.

Lastly, it is worth noticing that the analyticity of ρpt, ¨q is a not a direct consequence of
the analyticity of upt, ¨q; indeed, the definition of u yields ρpt, xq “ upt, x ` Λt´q, but the
latter only makes sense when x ` Λt´ ą Λt, that is, x ą Λt ´ Λt´. Hence, an additional
(small) argument is needed to prove that, at any given discontinuity time t of Λ, upt, ¨q may
be analytically extended to the entire pΛt´,8q.

Proof. Let 0 ă t1 ă t2 ă 8 and 0 ă x1 ă x2 ă 8 fulfill rt1, t2s ˆ rx1, x2s Ă D̊. Then,
u is a generalized solution of the PDE Btu “

1
2
Bxxu on rt1, t2s ˆ rx1, x2s. Indeed, for any

ϕ P C8c ppt1, t2q ˆ px1, x2qq,
ż t2

t1

ż x2

x1

u
´

Btϕ`
1

2
Bxxϕ

¯

dx dt “

ż t2

t1

ż x2´Λt

x1´Λt

ppt, yq
´

Btϕ`
1

2
Bxxϕ

¯

pt, y ` Λtq dy dt

“

ż t2

t1

E
”´

Btϕ`
1

2
Bxxϕ

¯

pt,Xt ` Λtq1tτětu

ı

dt

“ E
„
ż t2^τ

t1^τ

´

Btϕ`
1

2
Bxxϕ

¯

pt,X0 `Btq dt



“ E
“

ϕpt2 ^ τ,X0 `Bt2^τ q ´ ϕpt1 ^ τ,X0 `Bt1^τ q
‰

“ 0,

where in the second-last equality we used Itô’s formula and the optional sampling theorem
(see e.g. [RY99, chapter II, corollary 3.6]), and in the last equality we used the fact that the
support of ϕ is included in pt1, t2q ˆ px1, x2q. We conclude that u P C8prt1, t2s ˆ rx1, x2sq

and Btu “
1
2
Bxxu pointwise on pt1, t2q ˆ px1, x2q by virtue of Weyl’s lemma in the form of

[McK05, p. 90, step 4]. The analyticity of u, and of its time derivatives, in space is now a
consequence of Lemma 3.5 below, applied to the function

(3.9) w : r0,8q ˆ rx1, x2s Ñ R, pt, xq ÞÑ rwpt` ε, xq,

where rw is the classical solution of the Cauchy-Dirichlet problem

Bt rw “
1

2
Bxx rw on rε,8q ˆ rx1, x2s, with

$

&

%

rwpε, xq “ upε, xq, x1 ď x ď x2,
rwpt, x1q “ upt, x1qϕptq, t ě ε,
rwpt, x2q “ upt, x2qϕptq, t ě ε,

(3.10)
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and with ϕ P C8prε,8qq satisfying ϕ ” 1 on rε, t2s and ϕ ” 0 on rt2 ` ε,8q, for some

ε P p0, t1q such that r0, t2 ` εs ˆ rx1, x2s Ă D̊. Clearly, w̃ coincides with u on rε, t2s. The
analyticity of p in x P p0,8q at positive times follows easily.

It now remains to address the analyticity of ρpt, ¨q in x P p0,8q, for t ą 0. Clearly, it
suffices to treat the case Λt ą Λt´ and x P p0,Λt ´ Λt´s. With the same notation as before,
we consider a rectangle rt1, t2s ˆ rx1, x2s, with t1 ą 0, t2 “ t and x1 ą Λt´ “ Λt2´. For
s P rt1, t2q and x P px1, x2q, we have

ups, xq “ E
“

u
`

s´ σ ^ ps´ t1q, x`Bσ^ps´t1q

˘‰

,

where σ :“ inftr ě 0 : x`Br R px1, x2qu. Since Ppσ ą 0q “ 1 and since u is continuous and
bounded on rt1, t2q ˆ rx1, x2s, the right-hand side of the above has a limit as s Ò t2 “ t. In
fact, by interior estimates for the heat equation, we have uniform bounds on the derivatives
(of any order) of u on any rt11, t2q ˆ rx

1
1, x

1
2s, with t1 ă t11 ă t2 and x1 ă x11 ă x12 ă x2. As

we may play with the choice of t1, x1 and x2, we have uniform bounds on the derivatives (of
any order) of u on rt1, t2q ˆ rx1, x2s. This says that u has a C8prt1, t2s ˆ rx1, x2sq-extension.
Denoting this extension by ũ, we can repeat (3.10) by extending ũps, x1q and ũps, x2q in a
constant way for s ě t2. We deduce that ũpt, ¨q is analytic on pΛt´,8q and, thus, ρpt, ¨q is
analytic on p0,8q. �

Lemma 3.5. Let 0 ă x1 ă x2 ă 8 and w P C8pr0,8q ˆ rx1, x2sq be a classical solution of

(3.11) Btw “
1

2
Bxxw on r0,8q ˆ rx1, x2s

with ϕ1 :“ wp¨, x1q P C
8
c pr0,8qq and ϕ2 :“ wp¨, x2q P C

8
c pr0,8qq. Then, for any pt, xq P

p0,8qˆpx1, x2q, there is a neighborhood of pt, xq in RˆC to which w and its time derivatives
of any order can be extended, the extensions being analytic in the space variable with jointly
continuous space derivatives. In particular, w is real analytic in x on px1, x2q.

Proof. First Step. We pick any x1 ă
˝
x1 ă

˝
x2 ă x2 and any r0, 1s-valued function ϕ0 P

C8prx1, x2sq compactly supported in px1, x2q with ϕ0 ” 1 on r
˝
x1,

˝
x2s. Then, by [LSU68,

chapter IV, Theorem 5.2] there exists a unique classical solution w0 P C8pr0,8q ˆ rx1, x2sq

of the Cauchy-Dirichlet problem

Btw
0
“

1

2
Bxxw

0 on r0,8q ˆ rx1, x2s,

with

"

w0p0, xq “ wp0, xqϕ0pxq, x1 ď x ď x2,
w0pt, x1q “ w0pt, x2q “ 0, t ě 0.

(3.12)

Moreover, w0 is real analytic in pt, xq on p0,8q ˆ rx1, x2s by [Kom79, Theorem 1]. In
particular, for any pt, xq P p0,8qˆpx1, x2q, the function w0 has a complex analytic extension
to a complex neighborhood of pt, xq. Hence, the conclusions of the lemma hold for w0. Thus,
it suffices to show that the conclusions of the lemma also hold for ∆ :“ w ´ w0.
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Second Step. The function ∆ P C8pr0,8qˆ rx1, x2sq is a classical solution of the Cauchy-
Dirichlet problem

Bt∆ “
1

2
Bxx∆ on r0,8q ˆ rx1, x2s,

with

$

&

%

∆p0, xq “ wp0, xqp1´ ϕ0pxqq, x1 ď x ď x2,
∆pt, x1q “ ϕ1ptq, t ě 0,
∆pt, x2q “ ϕ2ptq, t ě 0.

(3.13)

In particular, ∆, Bt∆, Btt∆ P C8pr0,8q ˆ rx1, x2sq are all classical solutions of the forward
heat equation on r0,8q ˆ rx1, x2s and, by the maximum principle, all three are globally
bounded in absolute value. The latter is also true for Bxx∆ “ 2Bt∆ P C8pr0,8q ˆ rx1, x2sq,
so that, with C` :“ tλ P C : Reλ ą 0u, the Laplace transform in time

(3.14) p∆pλ, xq :“

ż 8

0

e´λt ∆pt, xq dt, pλ, xq P C` ˆ rx1, x2s,

solves (using the fact that ∆p0, xq “ 0 for x P r
˝
x1,

˝
x2s)

pBxx p∆qpλ, ¨q “ 2λp∆pλ, ¨q on r
˝
x1,

˝
x2s,(3.15)

for all λ P C`. The solution of the linear ordinary differential equation (3.15) reads

p∆pλ, xq “ C1pλq e
?

2λx
` C2pλq e

´
?

2λx,

C1pλq “
1

2 sinhp
?

2λp
˝
x1 ´

˝
x2qq

´

p∆pλ,
˝
x1q e

´
?

2λ
˝
x2 ´ p∆pλ,

˝
x2q e

´
?

2λ
˝
x1
¯

,

C2pλq “
1

2 sinhp
?

2λp
˝
x1 ´

˝
x2qq

´

´ p∆pλ,
˝
x1q e

?
2λ
˝
x2 ` p∆pλ,

˝
x2q e

?
2λ
˝
x1
¯

,

(3.16)

where
?

2λ is the principal square root of 2λ. It is easy to see that, for any λ P C`, p∆pλ, ¨q

extends to a holomorphic function on p
˝
x1,

˝
x2q ` iR, where i2 “ ´1.

Third Step. Next, we apply the complex Laplace inversion formula, e.g., in the form of
[Rud66, chapter 19], to find

(3.17) ∆pt, xq “
1

2πi

ż r`i8

r´i8

etλ p∆pλ, xq dλ, pt, xq P p0,8q ˆ r
˝
x1,

˝
x2s,

for all r ą 0, with the integral on the right-hand side of (3.17) being absolutely convergent.
The proof of (3.17) is in fact quite straightforward. Whenever λ “ r ` iv,

p∆pr ` iv, xq “

ż 8

´8

e´ivt 1p0,8qptqe
´rt∆pt, xq dt.

Up to the scaling factor
?

2π, the function v ÞÑ p∆pr ` iv, xq is the Fourier transform of the
integrable function t ÞÑ 1p0,8qptqe

´rt∆pt, xq. Formula (3.17) then follows if we can prove that

v ÞÑ p∆pr` iv, xq is integrable. This is where the regularity properties of ∆ come in. Indeed,
using the fact that ∆p0, xq “ 0 and that Bt∆p0, xq “

1
2
Bxx∆p0, xq “ 0 for the value of x in
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consideration, we have, for λ P C`,

(3.18) |p∆pλ, xq| “

ˇ

ˇ

ˇ

ˇ

1

λ2

ż 8

0

e´λt Btt∆pt, xq dt

ˇ

ˇ

ˇ

ˇ

ď
1

|λ|2
1

Reλ
sup

xPr
˝
x1,

˝
x2s

sup
tě0
|Btt∆pt, xq|,

which implies that the right-hand side of (3.17) is absolutely convergent.
Our next goal is to use (3.17) to extend ∆pt, ¨q analytically to a complex neighborhood of

p
˝
x1,

˝
x2q for a given t ą 0, that is, to extend ∆ to pairs pt, xq P p0,8q ˆ C such that Re x P

p
˝
x1,

˝
x2q and |Imx| is small (but possibly non-zero). This is in fact not so straightforward

because, at this stage of the proof, nothing guarantees a priori that the right-hand side of
(3.17) is absolutely convergent whenever x has a non-trivial imaginary part.

In the fourth step below, we prove that, for any ε P p0, p
˝
x2 ´

˝
x1q{2q, λ P C such that

Repλq ě 1, and x P C such that Repxq P p
˝
x1 ` ε,

˝
x2 ´ εq and |Im x| ď ε{2,

(3.19) |p∆pλ, xq| ď
C

|λ|2
exp

´

´
ε

4

a

|λ|
¯

.

Observing from (3.16) that the integrand in the right-hand side of (3.17) is holomorphic
in x P C` and using the Cauchy representation formula for holomorphic functions together
with the Lebesgue differentiation theorem under the integral sign, we deduce that ∆pt, ¨q
and its time derivatives Bkt ∆pt, ¨q, k ě 1, are holomorphic on the domain tx P C : Repxq P

p
˝
x1 ` ε,

˝
x2 ´ εq, |Im x| ď ε{2u. Moreover, for any k P N, the function Bkt ∆ is continuous on

tpt, xq P p0,8q ˆ C : Repxq P p
˝
x1 ` ε,

˝
x2 ´ εq, |Im x| ă ε{2u and, by Cauchy’s formula, the

same is true for all the derivatives Bkt B
`
x∆, k, ` P N. Choosing ε ą 0 as small as needed, this

proves in particular the desired real analyticity of ∆pt, ¨q in x on p
˝
x1,

˝
x2q.

Fourth Step. We now prove the desired strengthening (3.19) of (3.18).

Our first observation is that, in (3.13), Bx∆ is bounded on the whole r0,8q ˆ r
˝
x1,

˝
x2s.

This follows from the interior gradient estimates for the heat equation (see e.g. [LSU68,
chapter IV, Theorem 10.1]) and from the fact that ∆ itself is globally bounded on the whole
r0,8qˆ rx1, x2s. By induction, the same holds for higher order derivatives. We deduce that

BtBx∆ and BttBx∆ are also bounded on r0,8qˆr
˝
x1,

˝
x2s. As a consequence, we can differentiate

under the integral in the right-hand side of (3.14) and obtain a similar representation formula

for Bx p∆pλ, xq. Duplicating the proof of (3.18), we conclude that there exists a constant C
such that

ˇ

ˇBx p∆pλ, xq
ˇ

ˇ ď
C

|λ|2 Re λ
, λ P C`, x P r

˝
x1,

˝
x2s.

Next, we differentiate the first line in (3.16) with respect to x P r
˝
x1,

˝
x2s. We deduce that

?
2λp∆pλ, xq ` Bx p∆pλ, xq “ 2

?
2λC1pλqe

?
2λx.

Modifying the value of the constant C if necessary, we obtain, for Repλq ě 1,

(3.20)
ˇ

ˇC1pλqe
?

2λx
ˇ

ˇ ď
C

|λ|2
, x P r

˝
x1,

˝
x2s

and, similarly,

(3.21)
ˇ

ˇC2pλqe
´
?

2λx
ˇ

ˇ ď
C

|λ|2
, x P r

˝
x1,

˝
x2s.
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Next, we consider x P C with Re x P r
˝
x1,

˝
x2s and write

(3.22) p∆pλ, xq “ C1pλq e
?

2λ
˝
x2 e

?
2λpx´

˝
x2q ` C2pλq e

´
?

2λ
˝
x1 e

?
2λp

˝
x1´xq.

For λ P C with Repλq ě 1, we write
?

2λ “ a` ib, with a ą 0. Then, a2 ´ b2 ě 2 and

Re
`

?
2λpx´

˝
x2q

˘

“ aRepx´
˝
x2q ´ b Impxq.

If |Im x| ď Rep
˝
x2 ´ xq{2, then

Re
`

?
2λpx´

˝
x2q

˘

“ aRepx´
˝
x2q ´ b Impxq ď ´

a

2
Rep

˝
x2 ´ xq ď ´

1

4

a

|λ|Rep
˝
x2 ´ xq.

By the same argument, if |Impxq| ď Repx´
˝
x1q{2, then

Re
`

?
2λp

˝
x1 ´ xq

˘

ď ´
1

4

a

|λ|Repx´
˝
x1q.

Hence, the conclusion is that, for ε P p0, p
˝
x2´

˝
x1q{2q, Repxq P p

˝
x1`ε,

˝
x2´εq and |Im x| ď ε{2,

Re
`

?
2λpx´

˝
x2q

˘

ď ´
ε

4

a

|λ|, Re
`

?
2λp

˝
x1 ´ xq

˘

ď ´
ε

4

a

|λ|,

which, along with (3.20), (3.21) and (3.22), yields

|p∆pλ, xq| ď
C

|λ|2
exp

´

´
ε

4

a

|λ|
¯

.

This completes the proof. �

3.3. Further properties of the gradient. By combining Propositions 3.2 and 3.4, we
obtain the following proposition.

Proposition 3.6. Fix an arbitrary time horizon T ą 0 together with a time t P r0, T s and
assume that ρpt, ¨q is locally monotone in a right neighborhood of any point in r0,8q. Then,
Bxp is continuous on pt, Tregptqq ˆ r0,8q and satisfies, on pt, Tregptqq ˆ p0,8q,

(3.23) BtpBxpq “
1

2
BxxpBxpq ` 9Λt BxpBxpq.

Proof. The first part is a straightforward consequence of Proposition 3.2. Equation (3.23)
follows from the following computation:

Btxppt, xq “
d

dt
Bxupt, x` Λtq “ Bxtupt, x` Λtq ` Bxxupt, x` Λtq 9Λt

“
1

2
Bxxxupt, x` Λtq ` Bxxupt, x` Λtq 9Λt “

1

2
Bxxxppt, xq ` Bxxppt, xqpt, xq 9Λt,

(3.24)

which holds pointwise on pt, Tregptqq ˆ p0,8q. �

Next, we deduce the following result.

Lemma 3.7. Fix an arbitrary time horizon T ą 0 together with a time t P r0, T s and assume
that ρpt, ¨q is locally monotone in a right neighborhood of any point in r0,8q. Then, for any

s P pt, Tregptqq, we have 9Λs “
α
2
Bxpps, 0q ą 0.
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Proof. First, we verify the identity 9Λs “
α
2
Bxpps, 0q for s P pt, Tregptqq. To do so, we follow

the proof of Proposition 3.2. For any η P p0, pTregptq ´ tq{2q, we recall from the fourth step
of the proof that the initial sub-density ppt ` η, ¨q satisfies [DIRT15a, Lemma 5.3] (which

is stated in a slightly different framework). Choosing therein 9Λ as a drift, the latter result
states that, for s P pt` η, Tregptq ´ ηq,

d

ds
Ppτ ď sq “

1

2
Bxpps, 0q,

which yields
9Λs “

α

2
Bxpps, 0q.

For the second part of the statement, it suffices to show that, for every s P pt, Tregptqq,

(3.25)
d2

dx2

ˇ

ˇ

ˇ

x“0
P
`

inf
rPr0,ss

Xr ą 0, Xs P p0, xs
˘

ą 0.

To verify (3.25) we employ the explicit formula for the joint distribution of the value and the
running maximum of a standard Brownian motion (see e.g. [KS91, chapter 2, Proposition
8.1]) and find that, for any η P p0, pTregptq ´ tq{2q and s P pt ` η, Tregptq ´ ηq, the following

holds with rΛ :“ Λ´ Λt`η:

P
`

inf
rPr0,ss

Xr ą 0, Xs P p0, xs
˘

ě

ż 8

rΛs

ppt` η, yq P
`

y ` inf
rPrt`η,ss

pBr ´Bt`ηq ě rΛs, y `Bs ´Bt`η P prΛs, rΛs ` xs
˘

dy

“

ż 8

rΛs

ppt` η, yq

ż y´rΛs

y´rΛs´x

ż y´rΛs

0

2p2b´ aq
a

2πps´ t´ ηq3
e´

p2b´aq2

2ps´t´ηq db da dy

“:

ż 8

rΛs

ppt` η, yqF px, yq dy.

(3.26)

Next, we write (with f defined implicitly by the above):

F px, yq “

ż y´rΛs

y´rΛs´x

ż y´rΛs

0

fp2b´ aq db da “

ż x

0

ż py´rΛsq{2

´py´rΛsq{2

fp2b` aq db da

“

ż x

0

ż py´rΛsq{2

´py´rΛsq{2

ż a

0

f 1p2b` vq dv db da,

where the last equality follows from the fact that f is odd. Therefore, Fubini’s theorem
yields:
ż 8

rΛs

ppt` η, yqF px, yq dy “

ż x

0

ż a

0

ż 8

rΛs

ppt` η, yq

ż py´rΛsq{2

´py´rΛsq{2

f 1p2b` vq db dy dv da

“

ż x

0

ż a

0

ż 8

rΛs

ppt` η, yq
fpy ´ Λ̃s ` vq ´ fp´py ´ Λ̃sq ` vq

2
dy dv da.

Thus, we obtain

d2

dx2

ˇ

ˇ

ˇ

x“0
P
`

inf
rPr0,ss

Xr ą 0, Xs P p0, xs
˘

ě

ż 8

rΛs

ppt` η, yq fpy ´ Λ̃sq dy.
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It remains to observe that
ż 8

rΛs

ppt` η, yq fpy ´ rΛsq dy ą 0,

in view of the probabilistic interpretation of the latter integral. �

We conclude this section by verifying the absolute integrability of Bxppt, ¨q.

Lemma 3.8. For any t ą 0, limxÑ8 ppt, xq “ 0 and Bxppt, ¨q P L
1pp0,8qq.

Proof. Let pX,Λq be a physical solution of (1.2). First, we assume that X0´ “ x ą 0 and,
for any 0 ă y1 ă y2 ă 8, obtain:

P
`

Xt 1tinfrPr0,tsXrą0u P ry1, y2s
˘

“ P
`

inf
rPr0,ts

Xr ą 0
ˇ

ˇXt P ry1, y2s
˘

P
`

Xt P ry1, y2s
˘

.

Recall that a Brownian motion started at x and conditioned to be equal to z at the terminal
time t is a Brownian bridge from x to z on r0, ts. Denote as before by gpt, x´ ¨q the density
at time t of a Brownian motion started at x, and take a limit as y1, y2 Ñ y ą 0, to obtain

ppt, yq “ gpt, x´ y ´ ΛtqP
´

inf
rPr0,ts

`

x`Br ` rpy ` Λt ´ x´Btq{t´ Λr

˘

ą 0
¯

.

(See also [GSV07, Proposition 4] for a direct derivation of this formula.) By Proposition 3.4,
we conclude that ppt, ¨q P C8pp0,8qq. Moreover, limxÑ8 ppt, xq “ 0. Next, we notice that
the function

p̂pt, ¨q : p0,8q Q y ÞÑ P
´

inf
rPr0,ts

`

x`Br ` rpy ` Λt ´ x´Btq{t´ Λr

˘

ą 0
¯

is r0, 1s-valued and non-decreasing. Since p̂pt, ¨q is continuously differentiable (thanks to
ppt, ¨q P C8pp0,8qq) and gpt, ¨q is smooth, we have Bxp̂pt, ¨q P L

1pp0,8qq, with the norm
bounded uniformly over t ą 0.

For a general X0´, we have

ppt, yq “

ż 8

0

gpt, x´ y ´ ΛtqP
´

inf
rPr0,ts

`

x`Br ` rpy ` Λt ´ x´Btq{t´ Λr

˘

ą 0
¯

µpdxq,

where µ is the distribution of the positive part of X0´. Using the observation at the end of
the preceding paragraph, as well as the fast decay (in x) of gpt, xq and of its x-derivative, we
easily obtain the statement of the lemma by means of Fubini’s theorem. �

4. Proof of Theorem 1.1

In addition to the results of Sections 2 and 3, we need the next lemma for our proof of
Theorem 1.1.

4.1. The number of monotonicity-changing points. The next lemma is at the core of
our analysis.

Lemma 4.1. Let X0´ admit a density f on p0,8q that changes monotonicity finitely often
on compacts of r0,8q. Then, the same applies to Xt´ 1tτětu, t ą 0, for every physical
solution pX,Λq of (1.2) started from X0´.
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Proof. First Step. We refer to the property of a random variable described in the lemma as
(P) and argue by contradiction. To this end, we suppose

(4.1) t˚ :“ inf T :“ inf
 

t ą 0 : Xt´ 1tτětu violates (P)
(

ă 8.

The first (easy) step is to check that, necessarily, t˚ P T (which, in particular, implies t˚ ą 0).
Indeed, if t˚ R T , then by Proposition 3.2, Lemma 3.7 and Proposition 3.4, respectively, there
exists an ε ą 0 such that Xs´ 1tτěsu “ Xs 1tτąsu, limxÓ0 Bxρps, xq “ limxÓ0 Bxpps, xq ą 0 and
Bxρps, ¨q “ Bxpps, ¨q are analytic on p0,8q for all s P pt˚, t˚ ` εq. Clearly, this implies that
rt˚, t˚ ` εq Ă T , which contradicts (4.1).

To deduce a contradiction from t˚ P T we pick an arbitrary R ą Λ2t˚ ´ Λt˚´ and aim to
show that ρpt˚, ¨q changes monotonicity finitely often on r0, Rs. For this purpose, it suffices
to obtain a uniform upper bound M ă 8 on the number of monotonicity changes of pps, ¨q on
r0, Rs for all s P rt˚{2, t˚q. Indeed, then the definition of t˚, Lemma 3.7 and a diagonalization

argument would yield a sequence rt˚{2, t˚q Q tn Ò t˚ and 0 ď x
pnq
1 ď x

pnq
2 ď ¨ ¨ ¨ ď x

pnq
M`1 “ R,

n P N converging when n Ñ 8 to 0 ď x1 ď x2 ď ¨ ¨ ¨ ď xM`1 “ R, respectively,

such that each pptn, ¨q is non-decreasing on r0, x
pnq
1 q, rx

pnq
2 , x

pnq
3 q, . . . and non-increasing on

rx
pnq
1 , x

pnq
2 q, rx

pnq
3 , x

pnq
4 q, . . . . Hence, the cumulative distribution function of Xt˚´ 1tτět˚u, as

the pointwise limit on p0,8q of the cumulative distribution functions of Xtn 1tτątnu, n P N,
would be convex on r0, x1q, rx2, x3q, . . . and concave on rx1, x2q, rx3, x4q, . . . . (The convex-
ity/concavity at 0 would follow from the right-continuity of cumulative distribution func-
tions.) Recalling from Proposition 3.4 that ρpt˚, ¨q is smooth on p0,8q, ρpt˚, ¨q would change
monotonicity finitely often on p0, Rs. In particular, ρpt˚, ¨q would have a limit at 0 and the
resulting extension would change monotonicity finitely often on r0, Rs.

Second Step. To find an upper bound M ă 8 as desired (which is the precise purpose of
the remaining steps in the proof), we make the change of variables (1.4) and consider the
zero set of Bxu on D˚ :“ tpt, xq P rt˚{2, t˚s ˆ p0,8q : x ą Λtu. On D˚, the C8-function
Bxu is analytic in x and solves BtpBxuq “

1
2
BxxpBxuq (cf. Proposition 3.4). We conclude that,

for every point pt, xq P D˚, either Bxupt, xq ‰ 0 and the zero set of Bxu is empty on a
neighborhood pt ´ δ1, t ` δ1q ˆ px ´ δ2, x ` δ2q, or Bxupt, xq “ 0 and there exists a smallest
k P Nzt0u with BkxBxupt, xq ‰ 0.

By Lemma 4.2 below, the latter case results in a neighborhood pt´δ1, t`δ1qˆpx´δ2, x`δ2q

on which the zero set of Bxu is the union of k curves, each containing pt, xq. 2tk{2u curves
are given by the graphs (in the (time, space)-coordinate system) of continuous functions on
rt´ δ1, ts that are C8 on rt´ δ1, tq. In the (space, time)-coordinate system, the latter curves
form tk{2u strictly convex smooth paraboloids with graphs in the negative half-space only.
If k is odd, there is another curve given by the graph of a C8-function on rt´ δ1, t` δ1s (in
the (time, space)-coordinate system; in particular, it crosses the x-axis).

Covering the segment rt˚{2, t˚s ˆ tR ` Λt˚´u by such neighborhoods of its elements and
extracting a finite subcover we find a non-trivial rectangle rt˚{2, t˚sˆrR`Λt˚´, R`Λt˚´`δs
contained in the latter. We claim that, consequently, for N P N large enough, Bxu has at
most a finite number of zeros along the curve θ that linearly interpolates between the points

´t˚
2
, R ` Λt˚´

¯

,
´t˚

2
`

t˚
4N

, R ` Λt˚´ ` δ
¯

,
´t˚

2
` 2

t˚
4N

, R ` Λt˚´

¯

,
´t˚

2
` 3

t˚
4N

, R ` Λt˚´ ` δ
¯

,
´t˚

2
` 4

t˚
4N

, R ` Λt˚´

¯

, . . . , pt˚, R ` Λt˚´q.
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Indeed, it suffices to prove that the number of intersection points between θ and the aforemen-
tioned zero curves is finite in a given neighborhood of the form pt´δ1, t`δ1qˆpx´δ2, x`δ2q

(provided we choose N large enough, which is always possible since we just need to handle a
finite number of these neighborhoods). Obviously, by choosing N large enough, we see that,
if it exists, the extra curve (say ζ) that goes through the x-axis has at most one intersection
point with any linear segment of θ (choose the slope of θ greater than the maximum of the

time derivative 9ζ). As for the other zero curves, we know that they are strictly convex or
concave on pt´ δ1, tq. Hence, whatever the value of N , any of those other curves has at most
two intersection points with any linear segment of θ.

Third Step. Next, we fix an s P rt˚{2, t˚q. The purpose of this step is to verify the following
assertion.

Assertion. For all x P pΛs, θsq with Bxups, xq “ 0, there exist a t P rt˚{2, sq and a continuous
function ζ : rt, ss Ñ p0,8q (we shall say that ζ is C0 on rt, ss) such that

(a) ζs “ x and ζt P pΛt, θtq, Bxupt, ζtq “ 0 when t P pt, ss;
(b) for all t P pt, sq, there exists a neighborhood

pt´ δ1, t` δ1q ˆ pζt ´ δ2, ζt ` δ2q Ă tpt, xq P pt˚{2, ss ˆ p0,8q : Λt ă x ă θtu “: Γt˚{2,s

on which Bxupr, yq “ 0, for r ď s, implies y ě ζr;
(c) one has

(4.2)
`

t, ζt
˘

P θrt˚{2,ss Y ptt˚{2u ˆ rΛt˚{2, R ` Λt˚´sq Y Λrt˚{2,ss “: BparΓt˚{2,s.

Let us fix any x as in the statement of the assertion and construct the desired curve ζ. First,
the local description of the zero set of Bxu implies that

T0 :“
 

r P rt˚{2, t˚q : (a), (b) hold, with r replacing t,

for a continuous function ζ : pr, ss Ñ p0,8q
((4.3)

is non-empty. Hence, t :“ inf T0 P rt˚{2, t˚q is well-defined. Next, we notice that, for any
r P T0, the corresponding continuous function ζ is uniquely determined. Indeed, thanks to
Lemma 4.2 (recall also the local description of the zero set of Bxu, provided earlier), there
exists a minimal curve in the left neighborhood of s. This shows that ζ is uniquely determined
in the left neighborhood of s. Then, it is uniquely determined on pr, ss, as otherwise the
property (b) would be violated for the smallest t such that the two candidate functions
agree on rt, ss. Uniqueness also implies that, for any r, r1 P T0, with r1 ă r, the function ζ
corresponding to r1 coincides with the one for r, on pr, ss. Thus, all functions corresponding
to the elements of T0 combine to a continuous function ζ : pt, ss Ñ p0,8q satisfying (a), (b).
Moreover, by the intermediate value theorem, the limit points of ζ as t Ó t form an interval.
However, Bxupt, ¨q ” 0 on its interior, and in view of the analyticity of Bxupt, ¨q this interval
must consist of a single point, which shows that limtÓt ζt is well-defined. Now, we claim that
pt, x :“ limtÓt ζtq R Γt˚{2,s. Indeed, if pt, xq P Γt˚{2,s, we know from Lemma 4.2 that ζ can be
extended to the left of pt, xq by choosing the smallest zero curve in the left neighborhood of
t, obtaining a contradiction to the definition of t. Thus, ζ satisfies (c).

Fourth Step. Let us consider the curves ζ as in the above Assertion, for all possible x P
pΛs, R`Λt˚´q such that Bxups, xq “ 0, and with s fixed. Whenever this causes no ambiguity,
we will refer to them simply as “zero curves”. We claim that no two zero curves intersect in
Γt˚{2,sYBparΓt˚{2,s. Any potential intersection in Γt˚{2,sYθrt˚{2,ssYptt˚{2uˆpΛt˚{2, R`Λt˚´sq
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is ruled out by applying the maximum principle for classical solutions of the heat equation
on the region bounded by the two intersecting curves and recalling the analyticity of Bxu in
x on D˚.

It remains to exclude the scenario that two zero curves, say ζ1 ă ζ2, approach the same
point ps˚,Λs˚q P Λrt˚{2,ss. First, we notice that ζ i restricted to any compact in D˚ is C8 at
all points, except for at most a finite number of them, as follows from the local description
of the zero set of Bxu. This means that, for every ζ i, the only possible accumulation point of
such singular points is s˚. Therefore, we can iterate over the singular points on each curve,
smoothing out the functions at these points, and obtain new curves, ζp1q ă ζp2q, which are
C8-functions on ps˚, ss, taking values in pΛt, θtq for every t P ps˚, ss, and converging to Λs˚

as t Ó s˚. In addition, for any ε̄ ą 0, we can choose ζp1q and ζp2q, respectively, so that they

are ε̄-close to ζ1 and ζ2, and that |Bxupt, ζ
piq
t q| ď ε̄ for all t P ps˚, ss. In fact, by making the

approximation finer as we get closer to s˚, we can also make sure that limtÓs˚ Bxupt, ζ
piq
t q “ 0.

For most of the subsequent derivations in this step, we fix an arbitrary ε̄ ą 0 and the
associated ζp1q, ζp2q.

The main challenge in this step of the proof lies in the lack of a priori continuity and
boundedness of Bxu near the boundary point ps˚,Λs˚q, which does not allow us to directly
apply the maximum principle or the Feynman-Kac formula to obtain a contradiction. We,
therefore, need to justify the Feynman-Kac formula
(4.4)

Bxupt, xq “ ErBxupt´ τ t,x, x`Bτ t,xqs “: vpt, xq, x ě ζ
p1q
t , s˚ ď t ď s, pt, xq ‰ ps˚, ζ

p1q
s˚ q,

where τ t,x :“ inftr ě 0 : x ` Br “ ζ
p1q
t´ru ^ pt ´ s˚q. The proof is deferred to Lemma 4.3

below. As a consequence of (4.4), the function v is well-defined except maybe when t “ s˚
and x “ ζ

p1q
s˚ “ Λs˚ , in the sense that, for x ě ζ

p1q
t and s˚ ď t ď s with pt, xq ‰ ps˚,Λs˚q,

Er|Bxupt´ τ t,x, x`Bτ t,xq|s ă 8.

The Markov property of standard Brownian motion and the Feynman-Kac formula (4.4)

show that, for t P ps˚, sq, x P pζ
p1q
t , ζ

p2q
t q, the process Bxupt´r^τ

t,x, x`Br^τ t,xq, r P r0, t´s˚s
is given by the conditional expectations of its terminal value with respect to the filtration
of Br, r P r0, t ´ s˚s, consequently a martingale. The optional stopping theorem (see e.g.
[RY99, chapter II, corollary 3.6]) renders the process Bxupt´r^τ

t,x^τ t,x, x`Br^τ t,x^τ t,xq “

upt ´ r ^ τ t,x, x ` Br^τ t,xq, r P r0, t ´ s˚s, with τ t,x :“ inf
 

r ě 0 : x ` Br P tζ
p1q
t´r, ζ

p2q
t´ru

(

, a
martingale as well. Therefore,

(4.5) |Bxupt, xq| “
ˇ

ˇErBxupt´pt´s˚q^τ t,x, x`Bpt´s˚q^τ t,xqs
ˇ

ˇ “
ˇ

ˇErBxupt´τ t,x, x`Bτ t,xqs
ˇ

ˇ ď ε̄,

for all x P pζ
p1q
t , ζ

p2q
t q, t P ps˚, sq. Hence, for all t P ps˚, sq and x P pζ1

t , ζ
2
t q, we also

have |Bxupt, xq| ď ε̄, provided ε̄ ą 0 is small enough. In the limit ε̄ Ó 0, we obtain that
Bxupt, ¨q vanishes on a non-trivial interval, contradicting the analyticity of upt, ¨q and ruling
out limtÓs˚ ζ

1
t “ Λs˚ “ limtÓs˚ ζ

2
t .

Fifth Step. To conclude, we denote, for a given s P rt˚{2, t˚q,

(4.6) x :“ sup
 

x P pΛs, θsq : Bxups, xq “ 0 and lim
tÓt

ζt “ Λt

(

_ Λs,
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with t P rt˚{2, sq and ζ : pt, ss Ñ p0,8q of the Assertion in the third step (in particular,
ζs “ x), and claim that Bxups, ¨q ě 0 on pΛs, xs. Indeed, for any fixed zero x P pΛs, xs
of Bxups, ¨q and with the corresponding Tregptq of Proposition 3.2, each pt, ζtq, t P rpt `
Tregptqq{2, sq “: rtreg, sq admits a neighborhood pt ´ δ1, t ` δ1q ˆ pζt ´ δ2, ζt ` δ2q satisfying
the property stated in part (b) of the Assertion in the third step. By adding a rectangle
ps ´ δ1, ss ˆ pζs ´ δ2, ζs ` δ2q on which Bxupr, yq “ 0 implies y ě ζr and extracting a finite
subcover of ζrtreg ,ss we construct left neighborhoods of x and ζtreg on which the signs of
Bxups, ¨q and Bxuptreg, ¨q, respectively, coincide. Moreover, Bxuptreg, yq ą 0, y P pΛtreg , ζtregq,
since otherwise Lemma 3.7, the intermediate value theorem, and the Assertion in the third

step, would imply the existence of a rt and a continuous function rζ : rrt, tregs Ñ p0,8q such
that

(a) rζt P pΛt, ζtq and Bxupt, rζtq “ 0, for all t P prt, tregs;

(b) for all t P prt, tregq, there exists a neighborhood

pt´ δ1, t` δ1q ˆ p
rζt ´ δ2, rζt ` δ2q Ă tpt, xq P prt, tregs ˆ p0,8q : Λt ă x ă ζtu

on which Bxupr, yq “ 0, for r ď treg, implies y ě rζr;

(c) one has rζ
rt P tζrt,Λrtu.

This would contradict the findings of the third step, if rζ
rt “ ζ

rt, and would contradict Lemma

3.7, if rt ą t and rζ
rt “ Λ

rt. Hence, Bxups, ¨q ě 0 on pΛs, xs, as claimed. In particular, ups, ¨q
does not change monotonicity on pΛs, xs.

Finally, for any x P px, θsq with Bxups, xq “ 0, we have ζt ą Λt (with ζ now ending
at ζs “ x) and the set ζpt,ss Y tpt, limtÓt ζtqu “: ζrt,ss can be covered by open rectangles
satisfying the property (b) of the Assertion in the third step, together with the two rectangles
rt, t` δ1q ˆ pζt ´ δ2, ζt ` δ2q and ps´ δ1, ss ˆ pζs ´ δ2, ζs ` δ2q on which Bxupr, yq “ 0 implies
y ě ζr. Extracting a finite subcover we deduce the existence of an ε ą 0 such that Bxu has
the same sign on tsu ˆ px ´ ε, xq and on θpt´ε,tq, if t ą t˚{2, or on tsu ˆ px ´ ε, xq and on
tt˚{2u ˆ pζt ´ ε, ζtq, if t “ t˚{2. Applying this observation first for x P px, x˚s, where

x˚ “ max
 

x P pΛt˚{2, θt˚{2s : Bxupt˚{2, ¨q ě 0 or Bxupt˚{2, ¨q ď 0 on pΛt˚{2, xs
(

,

x˚ “ sup
 

x P pΛs, θsq : Bxups, xq “ 0, and t “ t˚{2, lim
tÓt

ζt P pΛt˚{2, x
˚
s or lim

tÓt
ζt “ Λt

(

_ Λs,

(4.7)

and then for x P px˚, θsq, we see that Bxups, ¨q has at most two sign changes on pΛs, x
˚s,

and its number of sign changes on px˚, θss cannot exceed the number of zeros of Bxu on
θrt˚{2,t˚qY ptt˚{2u ˆ px

˚, R`Λt˚´sq. Since the latter is finite, due to the definition of x˚ and
the analyticity of Bxupt˚{2, ¨q, we complete the proof. �

Our proof of Theorem 1.1 combines Lemma 4.1 and the results of Sections 2 and 3.

Proof of Theorem 1.1. Lemma 4.1 gives the first assertion of the theorem and ensures the
existence of the limit limxÓ0 ρpt, xq for all t ą 0. In case (i), it suffices to use the local
uniqueness result of [HLS18, Theorem 1.8] in conjunction with a straightforward adaptation
of the local existence result in [DIRT15a, Theorem 4.1] to the setting of (1.2). In case (ii),
Propositions 2.1 and 2.2 guarantee the 1{2-Hölder continuity of Λ on rt, t`εq, for some ε ą 0.
In case (iii), the identity (1.6) stems directly from the definition of a physical solution, see
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(1.5). In all cases, Propositions 3.2 and 3.4 yield an ε ą 0 such that Λ P C1ppt, t ` εqq
and the densities pps, ¨q, s P pt, t ` εq are real analytic and form a classical solution of the

Dirichlet problem in (1.7). The relation 9Λs “
α
2
Bxpps, 0q, s P pt, t ` εq is now an immediate

consequence of Λs “ αPpminrPr0,ssXr ď 0q, s P pt, t` εq and [DIRT13, Lemma 2.1(iv)]. �

4.2. Proofs of auxiliary results.

Lemma 4.2. Let t ą 0 and x ą Λt be such that Bxupt, xq “ 0 and call k P Nzt0u the smallest
integer such that BkxBxupt, xq ‰ 0. Then, there is a neighborhood pt´δ1, t`δ1qˆpx´δ2, x`δ2q

on which the zero set of Bxu is the union of k curves. 2tk{2u curves are given by the graphs
(in the (time, space)-coordinate system) of continuous functions on rt´ δ1, ts that are C8 on
rt´δ1, tq. In the (space, time)-coordinate system, the latter curves form tk{2u strictly convex
smooth paraboloids with graphs in the negative half-space only. If k is odd, there is another
curve given by the graph of a C8-function on rt´ δ1, t` δ1s (in the (time, space)-coordinate
system; in particular, it crosses the x-axis).

Proof. The simple fact that BkxBxupt ` s, x ` yq ‰ 0 for ps, yq in the neighborhood of 0
implies that, for a given s in the neighborhood of 0, the equation Bxupt ` s, x ` yq “ 0,
with y in a neighborhood of 0 (the neighborhood being independent of s), has at most k
roots. In fact, by Proposition 3.4, Bxupt ` s, x ` zq can be analytically extended in z to a
complex neighborhood of 0 (again, the neighborhood is independent of s), and, then, for
ps, zq in a neighborhood of 0, it holds BkzBxupt ` s, x ` zq ‰ 0. Therefore, for a given s in
the neighborhood of 0, the equation Bxupt` s, x` zq “ 0, with z in a complex neighborhood
of 0 (the neighborhood being independent of s), has at most k (complex) roots (counting
multiplicity).

First Step. Next, we describe these roots on a case-by-case basis. To do so, we fol-
low [AF88], with the only difference being that the procedure therein is applied to time-
space analytic functions. Arguing as in [AF88, procedure following the display after (5.2)],
we first freeze y (instead of s) in a real neighborhood of 0 and find tk{2u negative roots
s of Bxupt ` s, x ` yq of the form s “ y2σjpyq, for j P t1, . . . , tk{2uu, where σjpyq, j P
t1, . . . , tk{2uu are smooth non-positive-valued functions of y in a neighborhood of 0. The
proof of this fact relies on the expansion of Bxupt ` y2σ, x ` yq as y Ñ 0 in the form
yk

ř

m`2n“kr1{pm!n!qsBmx B
n
t Bxupt, xqσ

n` yk`1Hpσ, yq, for a smooth function H, which allows
us to apply [AF88, procedure following the display after (5.2)]. For y in the neighborhood
of 0, the curves σjpyq, j P t1, . . . ,mu are known to be away from 0, implying via a simple
differentiation argument that the curves y2σjpyq, j P t1, . . . ,mu are (strictly) decreasing for
y ą 0 and (strictly) increasing for y ă 0; moreover, a second derivative computation reveals
that they are strictly convex. In other words, going backward in time from pt, xq, we (lo-
cally) find 2tk{2u curves of zeros of Bxu that are continuous up to and including t but that
are smooth up to and excluding t (because the curves behave like

?
´s as s Ñ 0). If k is

even, we have (locally) exhausted all the roots of Bxupt` s, x` yq for s ă 0.
When s “ 0, the k roots are obviously at y “ 0 (counting multiplicity).
When s ą 0, we may repeat the same procedure as before by expanding Bxupt´y

2σ, x`iyq
as y Ñ 0, with i2 “ ´1 (or, equivalently, by expanding Bxupt` z2σ, x` zq as z Ñ 0, with z
complex, which is licit since the time derivatives are also analytically extended to a complex
neighborhood of pt, xq thanks to Proposition 3.4). We, then, find k purely imaginary roots
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to Bxupt ` s, x ` zq, for s ą 0 close to 0. When k is even, this exhausts all the possible
complex roots of Bxupt` s, x` zq and, in particular, there are no real roots.

Second Step. In order to complete the picture, it remains to address the case of k being
odd. By the above procedure, we already have 2tk{2u roots ps, yq with s ă 0 and 2tk{2u
(purely) imaginary roots ps, iyq with s ą 0. In both cases, we are missing one root. Writing
k “ 2`` 1, we then follow [AF88, procedure following the display after (5.3)], again, paying
attention to the fact that the solution therein is time-space analytic, while it is not the case
here. In this regard, the main difficulty is to handle the case r “ 8, where r is the first
positive integer such that Bk`2r

x upt, xq ‰ 0 (or, equivalently, Brt B
k
xupt, xq ‰ 0). In the time-

space analytic setting, r “ 8 forces Bkxups, xq “ 0 for s in the neighborhood of 0, yielding
y “ 0 as the missing root. This logic does not apply in our setting, and we must argue
differently.

For completeness, we start by considering the case r ă 8. Adapting [AF88, procedure
following the display after (5.3)], we now expand Bxupt` s, x` ηs

rq as sÑ 0 (for a given η):

Bxupt` s, x` ηs
r
q “

ÿ

m`2něk,n`rmď``r

1

2nm!n!
B
m`2n`1
x upt, xqsn`rmηm ` s``r`1Lps, ηq

“ s``r
´ 1

2``rp`` rq!
B
k`2r
x upt, xq `

1

2``!
B
k`1
x upt, xqη

¯

` s``r`1Lps, ηq,

where Lps, ηq is a smooth function that may vary from line to line, and where, in the second
equality, we used the fact that the conditions m`2n ě k and n`rm ď ``r imply m P t0, 1u.
By the implicit function theorem, we find, for any s in a neighborhood of 0, a root of the
form y “ ηpsqsr, where η is a smooth function of s. This yields a smooth curve of zeros
that crosses the y-axis. This root behaves polynomially in s and, hence, must differ from
the roots we have already found. It is the last missing root.

Third Step. It remains to consider the case r “ 8. Although this is not really useful in
our analysis, we notice that this case may only occur when t ă t˚ and lim supyÓ0 ppt, yq ą

0. Indeed, if Bk`2l
x upt, xq “ 0 for any l P N, we obtain Bxupt, xq “ ¨ ¨ ¨ “ B2``1

x upt, xq “
B2``3
x upt, xq “ ¨ ¨ ¨ “ B2``2l`1

x “ 0, for any l P N, which proves that upt, x` yq is even in y in a
neighborhood of 0. Put differently, upt, ¨q is locally symmetric with respect to x. Recalling
that upt, ¨q is analytic on the entire pΛt,8q (see Proposition 3.4), we conclude that upt, ¨q
and upt,´¨q are two (real-)analytic functions (with different domains) that coincide on a
non-empty interval. Hence, upt, ¨q extends to an analytic function on the entire R and is
symmetric with respect to x. Then, following the end of the proof of Proposition 3.4, we
deduce that the density ρpt, ¨q changes monotonicity finitely often on compacts of r0,8q,
from which we conclude that t ă t˚. Now, if lim supyÓ0 pps, yq “ 0, we get ups,Λsq “ 0, so
that, by the symmetry w.r.t. x, upt, ¨q has another zero greater than x. By the maximum
principle for the heat equation and by analyticity, this forces upt, ¨q to be identically zero,
which is of course absurd.

Returning to our analysis, we claim that the conclusion of the second step also holds true
in the case r “ 8: i.e., there exists a smooth curve of zeros of Bxu that crosses the y-axis; in
addition, all of the derivatives of this curve (viewed as a function of time s) vanish at s “ 0.

Indeed, invoking the Malgrange preparation theorem (see [CH82, chapter 2, Theorem 7.1])
we know that, for ps, yq in a neighborhood of p0, 0q, Bxupt ` s, x ` yq can be written in the
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form qps, yqΓspyq, where qps, yq is a smooth non-zero function and, for s fixed, Γspyq :“

yk ´
řk´1
l“0 alpsqy

l is a polynomial function of order k (whose coefficients alpsq are smooth
real-valued functions of s). Clearly, when s “ 0, Γspyq degenerates into yk. In particular, by
continuous dependence of the roots upon the coefficients, all the real roots of Γs are in the
neighborhood of 0 when |s| is small enough. From the first part of our analysis, we already
know that Γs has k ´ 1 “ 2tk{2u simple real roots when s ă 0 and, hence, the missing root
must be simple and real. We also know that it cannot have more than one real root when
s ą 0 (as otherwise Bxupt ` s, x ` yq would have at least two additional zeros) and, hence,
the remaining root must be simple and real as well. Denoting by ζpsq this remaining root,
we deduce from the implicit function theorem that ζ is C8 on pt´ δ, tq and on pt, t` δq, for
some δ ą 0.

Fourth Step. To obtain smoothness at s “ 0, we argue as follows: For s ă 0, the Malgrange
preparation theorem says that the leading term in the expansion of Bxupt`s, xq as sÑ 0 must
behave like the product of all k roots, namely Bxupt` s, xq “ qps, 0qcpsqstk{2uζpsq, where cpsq
is a non-zero smooth function of s. Since r “ 8, we easily deduce from the Taylor expansion
of Bxupt` s, xq that |ζpsq| is less than C|s|%, for all % P N. By differentiating the relationship
Bxupt ` s, xq “ qps, xqstk{2uζpsq with respect to s and by arguing in a similar manner, we
deduce that |ζ 1psq| is less than C|s|%, for all % P N. Iterating this argument, we deduce that
ζpsq is infinitely differentiable on pt ´ δ, ts, with vanishing left-derivatives of all orders at
s “ 0.

A similar argument can be applied to s ą 0, by using the complex roots of Bxupt`s, x`yq,
but the derivation of the identity Bxupt ` s, xq “ qps, 0qcpsqstk{2uζpsq is more involved. It
requires an extension of Malgrange’s decomposition to a complex neighborhood of x. For
this purpose, it is worth recalling that the proof of Malgrange’s theorem, as exposed in
the monograph [CH82] is based upon the polynomial division theorem [CH82, chapter 2,
theorem 7.3] with Gpy, sq “ yk or Gpy, sq “ Bxupt ` s, x ` yq. The key fact in our case
is that both choices have a natural extension to a neighborhood of p0, 0q P C ˆ R, the
extensions zk and Bxupt` s, x` zq being holomorphic in the complex variable z (and having
derivatives in s that are also holomorphic in z). This makes the choice of G̃ in the proof
trivial, see [CH82, page 48]. In particular, G̃ may be assumed to be independent of λ and to
be holomorphic in the first argument. Consequently, q in the statement of [CH82, chapter
2, Theorem 7.3] may be assumed holomorphic in the first variable when considered on a
neighborhood of 0. As a result, the decomposition Bxupt` s, x` yq “ qps, yqΓspyq extends to
Bxupt ` s, x ` zq “ qps, zqΓspzq, for ps, zq in a neighborhood of p0, 0q P R ˆ C, where qps, zq
is holomorphic in the variable z. Obviously, q may be assumed to be non-zero on the latter
neighborhood, from which we deduce that Γspzq and Bxupt ` s, x ` zq have the same zeros.
Hence, the roots of Γs, for s ą 0, are given precisely by ζpsq, and the k ´ 1 “ 2tk{2u purely
imaginary zeros of Bxupt ` s, x ` zq have already been found. Taking z “ 0, we still have
Bxupt` s, xq “ qps, 0qcpsqstk{2uζpsq and we conclude as in the case s ă 0. �

Lemma 4.3. For arbitrary (fixed) ε̄ ą 0 and s ą s˚ ą 0, let ζ : rs˚, ss Ñ R be a continuous
function, such that ζs˚ “ Λs˚ and, on ps˚, ss, ζ is C8, is strictly greater than Λ, and satisfies
|Bxup¨, ζ¨q| ď ε̄. Then, for t P rs˚, ss and x ě ζt, with pt, xq ‰ ps˚,Λs˚q,

(4.8) Bxupt, xq “ ErBxupt´ τ t,x, x`Bτ t,xqs,

where τ t,x :“ inftr ě 0 : x`Br “ ζt´ru ^ pt´ s˚q.
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Proof. The idea of the proof is to show that v, defined by vpt, xq “ ErBxupt´ τ t,x, x`Bτ t,xqs,
for t P rs˚, ss and x ě ζt, with pt, xq ‰ ps˚,Λs˚q, coincides with Bxupt, xq. To achieve this,
we, first, identify ´

ş8

x
vpt, yq dy with upt, xq, which is easier than identifying vpt, xq with

Bxupt, xq, since upt, ¨q is more regular than Bxupt, ¨q in the right neighborhood of Λt.

First Step. We begin by noticing that the function v is well-defined and locally bounded in
the interior of the region Dps˚, sq :“ tpt, xq : t P rs˚, ss, x ě ζtu. Since Bxu remains bounded
along ζ, we only need to verify that Er|Bxupt ´ s˚, x ` Bt´s˚q|1tt´s˚“τ t,xus ă 8. Recalling
the notation gps, yq for the heat kernel at time s and point y, we infer the latter inequality
from

ş8

Λs˚
|Bxups˚, yq| gpt´ s˚, x´ yq dy ă 8, which follows from Lemma 3.8.

Moreover, the absolute integrability of Bxups˚, ¨q also implies that, for a collection of
smooth functions φε : RÑ r0, 1s, ε P p0, 1{2q, with φεpxq “ 0 if x ď Λs˚ ` ε or x ě Λs˚`2{ε
and φεpxq “ 1 if x P rΛs˚ ` 2ε,Λs˚ ` 1{εs, it holds that

vpt, xq “ lim
εÓ0

E
“

Bxupt´ τ
t,x, x`Bτ t,xqφ

ε
px`Bτ t,xq

‰

“: lim
εÓ0

vεpt, xq,(4.9)

for x ě ζt and s˚ ď t ď s, with pt, xq ‰ ps˚,Λs˚q. Notice that, for any ε ą 0, the function
Bxupt, xqφ

εpxq is smooth and bounded in pt, xq P Dps˚, sq. Indeed, by the interior estimates
for the heat equation (see e.g. [LSU68, chapter IV, Theorem 10.1]), Bxupt, xq remains bounded

over pt, xq changing on any compact inside D̊, with D̊ as in the statement of Proposition 3.4.
Hence, letting τ ε,t,x :“ τ t,x ^ pt´ s˚ ´ εq for ε ą 0, we get

vεpt, xq “ lim
εÓ0

E
“

Bxupt´ τ
ε,t,x, x`Bτε,t,xqφ

ε
px`Bτε,t,xq

‰

“: lim
εÓ0

vε,εpt, xq,

for x ě ζt and s˚ ă t ď s. Since Bxupt, xqφ
εpxq is bounded and smooth in pt, xq P Dps˚`ε, sq,

the function vε,ε must coincide with the smooth solution of the heat equation on the domain
Dps˚ ` ε, sq with Bxupt, xqφ

εpxq as the boundary condition on BDps˚ ` ε, sq (see [Kry96,
Theorem 10.4.1], which we can apply here after changing upt, xq to upt, x` ζtq). Hence, for
s˚`ε ă t ď s and x ą ζt, we have Btv

ε,εpt, xq “ 1
2
Bxxv

ε,εpt, xq. Clearly, by the same argument
as the one we used to show the local boundedness of v, we can find, on a neighborhood
of pt, xq, an upper bound for |vε,ε| that is independent of ε and ε (at least for ε ą 0 small
enough). Invoking, again, the interior estimates for the heat equation, we also obtain uniform
bounds for the absolute values of the derivatives of vε,ε on a neighborhood of pt, xq. Letting
ε and then ε tend to 0, we deduce that v is smooth in the interior of Dps˚, sq and satisfies
Btv

ε,εpt, xq “ 1
2
Bxxv

ε,εpt, xq in the classical sense, for x ą ζt and t P ps˚, sq.

Second Step. Next, we claim that limpt,xqÑpr,ζrq vpt, xq “ Bxupr, ζrq, r P ps
˚, ss. The proof

relies on three key observations.
The first observation is that, in the formula (4.9), we can choose ε ą 0 small enough to

make ErBxupt´τ t,x, x`Bτ t,xq1tt´s˚“τ t,x,x`Bτt,xďΛs˚`2εus as small as needed, uniformly in pt, xq

in a neighborhood of pr, ζrq. Indeed, it suffices to make
şΛs˚`2ε

0
|Bxups˚, yq| gpt´ s˚, x´ yq dy

small by means of Lemma 3.8.
The second observation is that, on the event tt´ s˚ “ τ t,x, x`Bτ t,x ą Λs˚` 2εu, |Bxupt´

τ t,x, x ` Bτ t,xq| remains bounded by a constant Cε (since Bxu is bounded away from BD).
Combining this with the fact that, for every ε ą 0, limxÓζt Ppτ t,x ą εq “ 0, uniformly in t in
a neighborhood of r, we obtain

lim sup
xÓζt

E
“

|Bxupt´ τ
t,x, x`Bτ t,xq|1tt´s˚“τ t,x,x`Bτt,xąΛs˚`εu

‰

ď Cε lim
xÓζt

P
`

τ t,x “ t´ s˚
˘

“ 0,
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with the limit on the right-hand side being uniform in t on a neighborhood of r.
The last observation is that, on the event tτ t,x ă t´s˚u, |Bxupt´τ

t,x, x`Bτ t,xq| is bounded
by ε̄ and that Bxup¨, ζ¨q is continuous on ps˚, ss. Therefore,

lim
xÓζt

E
“

Bxupt´ τ
t,x, x`Bτ t,xq1tτ t,xăt´s˚u

‰

“ lim
xÓζt

E
“

Bxupt´ τ
t,x, ζt´τ t,xq1tτ t,xăt´s˚u

‰

“ Bxupt, ζtq,

and, once again, the limit is uniform in t on a neighborhood of r. Invoking, once more, the
fact that Bxup¨, ζ¨q is continuous on ps˚, ss, we deduce that limpt,xqÑpr,ζrq vpt, xq “ Bxupr, ζrq,
r P ps˚, ss.

Third Step. Next, we show that limtÓs˚ vpt, xq “ Bxups˚, xq, x ą Λs˚ locally uniformly.
Indeed, with the same notation as in (4.9), the fact that Bxupt, xqφ

εpxq is smooth in pt, xq P
Dps˚, sq implies that, for any ε ą 0, limtÓs˚ v

εpt, xq “ Bxups˚, xqφ
εpxq, the limit being locally

uniform in x ą Λs˚ .
Thus, it remains to prove that, for δ ą 0, we can make the distance |vpt, xq ´ vεpt, xq| as

small as needed by choosing, uniformly in x P rΛs˚ ` δ,Λs˚ ` 1{δs, t close enough to s˚ and
ε ą 0 small enough. This follows from the following two facts. First,

E
”

ˇ

ˇBxupt´ τ
t,x, x`Bτ t,xq

ˇ

ˇ

`

1´ φεpx`Bτ t,xq
˘

1tt´s˚“τ t,xu

ı

ď

ż Λs˚`2ε

Λs˚

|Bxups˚, yq| gpt´ s˚, x´ yq dy `

ż 8

Λs˚`1{ε

|Bxups˚, yq| gpt´ s˚, x´ yq dy,

with the right-hand side of the above tending to 0 as ε Ñ 0, uniformly in pt, xq P rs˚, ss ˆ
rΛs˚ ` δ,Λs˚ ` 1{δs. Second,

E
”

ˇ

ˇBxupt´ τ
t,x, x`Bτ t,xq

ˇ

ˇ

`

1´ φεpx`Bτ t,xq
˘

1tτ t,xăt´s˚u

ı

ď ε̄Ppτ t,x ă t´ s˚q,

and the latter can be made as small as needed by choosing t close enough to s˚, uniformly
in x P rΛs˚ ` δ,Λs˚ ` 1{δs.

Fourth Step. Our next goal is to identify upt, xq, for x ě ζt and s˚ ď t ď s, with

rupt, xq :“ ´

ż 8

x

vpt, yq dy.

The function ru is well-defined thanks to the estimate

|vpt, xq| ď

ż 8

Λs˚

|Bxups˚, yq| gpt´ s˚, x´ yq dy ` ε̄Ppτ t,x ă t´ s˚q,(4.10)

for x ě ζt and s˚ ď t ď s (the term gpt´ s˚, x´yq dy being understood as the Dirac mass at
x when t “ s˚). By Lemma 3.8 and the sub-Gaussianity of minr0,s´s˚sB, we conclude that
the right-hand side of the above is integrable in x. Hence, ru is a well-defined and bounded
function of pt, xq. We claim that it is smooth in the interior of Dps˚, sq. Indeed, with the
same notation as in (4.9), we can write

rupt, xq “ lim
εÓ0

ruεpt, xq, ruεpt, xq :“ ´

ż 8

x

vεpt, yq dy, x ą ζt, s˚ ă t ď s.

Now, the analogue of (4.10) for vε shows that vεpt, xq decays exponentially fast to 0 as x
tends to 8, uniformly in t P rs˚, ss. Invoking, again, the interior estimates for the heat
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equation, we deduce that the derivatives of vε also decay exponentially fast in x when t is
restricted to a compact subset of ps˚, ss. In particular, it is easy to see that, for any ε ą 0,
ruε satisfies the heat equation in the interior of Dps˚, sq. By (4.10) again, the family ruε,
ε P p0, 1{2q is uniformly bounded on compact subsets of Dps˚, sq. Another application of
the interior estimates for the heat equation shows that the derivatives of ruε, ε P p0, 1{2q are
also uniformly bounded on compact subsets of Dps˚, sq. Thus, we deduce that ũ is smooth
in the interior of Dps˚, sq and satisfies Btrupt, xq “

1
2
Bxxrupt, xq, x ą ζt, t P ps˚, sq.

At the boundary, we clearly have limpt,xqÓpr,ζrq Bxrupt, xq “ limpt,xqÓpr,ζrq vpt, xq “ Bxupr, ζrq,
for r P ps˚, ss. We also claim that limpt,xqÓpr,ζrq rupt, xq “ rupr, ζrq, for r P ps˚, ss. To prove the
latter claim, we split rupt, xq into three parts:

rupt, xq “

ż ζr`ε

x

vpt, yq dy `

ż K

ζr`ε

vpt, yq dy `

ż 8

K

vpt, yq dy,

for ζt ď x ď ζr ` ε, with ε ą 0 small and K ą 0 large. By the continuity of v at pr, ζrq,

we can choose ε ą 0 and |t ´ r| small enough to make
şζr`ε

x
vpt, yq dy ´

şζr`ε

ζr
vpr, yq dy as

small as needed. Then, by (4.10), we can choose K large enough to make
ş8

K
vpt, yq dy small,

uniformly in t changing in a neighborhood of r. Finally, for fixed values of ε and K, we can

decrease |t´ r| if necessary to make
şK

ζr`ε
pvpt, yq ´ vpr, yqq dy as small as needed.

Moreover, we claim that limtÓs˚ rupt, xq “ ´
ş8

x
Bxups˚, yq dy “ ups˚, xq, x ą Λs˚ locally

uniformly. The second of the two equalities is a direct consequence of Lemma 3.8. As
for the first one, we notice that, for any ε ą 0, limtÓs˚ ru

εpt, xq “ ´
ş8

x
Bxups˚, yqφ

εpyq dy,
locally uniformly in x ą Λs˚ . The latter follows from the following two facts: vε decays
exponentially fast in space, uniformly in time, and limtÓs˚ v

εpt, xq “ Bxups˚, xqφ
εpxq, locally

uniformly in x ą Λs˚ . Then, it remains to prove that, for any δ ą 0, we can make the
distance |rupt, xq ´ ruεpt, xq| as small as needed by choosing, uniformly in x P rΛs˚ ` δ,8q,
t close enough to s˚ and ε ą 0 small enough. By the second step, we already know that
we can make the distance |vpt, xq ´ vεpt, xq| as small as needed by choosing, uniformly in
x P rΛs˚ ` δ,Λs˚ ` 1{δs, t close enough to s˚ and ε ą 0 small enough. Hence, it suffices to
establish

(4.11) lim
δÑ0

ż 8

Λs˚`1{δ

|vεpt, yq ´ vpt, yq| dy “ 0,

uniformly in t P rs˚, ss and ε P p0, 1{2q. The latter follows from the appropriate versions of
(4.10).

Fifth Step. All in all, ru is a classical solution of the problem

Btru “
1

2
Bxxru on tpt, xq P ps˚, sq ˆ r0,8q : x ą ζtu,

rups˚, xq “ ups˚, xq, x ą Λs˚ and Bxrupt, ζtq “ Bxupt, ζtq, t P ps˚, sq,
(4.12)

and the same is true for u. Both u and ũ are continuous and have continuous derivatives at
any point pt, ζtq of the boundary, for t P ps˚, sq. Hence, for any t P ps˚, sq, x ą ζt, and with
the reflected Brownian motion Rt,x in the time-dependent domain tpr, yq P r0, t´s˚sˆr0,8q :
y ą ζt´ru, started from x, and its boundary local time `t,x (see [BCS03, section 2] for more
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details on such processes), we have

rupt, xq “ E
„

rups˚ ` ε, R
t,x
t´s˚´εq ´

ż t´s˚´ε

0

Bxupt´ r, ζt´rq d`t,xr



and

upt, xq “ E
„

ups˚ ` ε, R
t,x
t´s˚´εq ´

ż t´s˚´ε

0

Bxupt´ r, ζt´rq d`t,xr



,

(4.13)

for all ε P p0, t´s˚q (cf. [BCS04, Theorem 2.8]). Relying on PpRt,x
t´s˚ “ Λs˚q “ 0 (see [BCS03,

Theorem 2.2]), as well as on the locally uniform convergences limtÓs˚ rupt, xq “ ups˚, xq “
limtÓs˚ upt, xq, x ą Λs˚ , and on the boundedness of ru, u, and |Bxupt, ζtq| ď ε̄, r P rs˚, ts, we
consider ε Ó 0 to obtain:

(4.14) rupt, xq “ E
„

ups˚, R
t,x
t´s˚q ´

ż t´s˚

0

Bxupt´ r, ζt´rq d`t,xr



“ upt, xq.

Thus, Bxupt, xq “ Bxrupt, xq “ vpt, xq “ ErBxupt´ τ t,x, x`Bτ t,xqs, yielding the Feynman-Kac
formula (4.8). �

5. Proof of Theorem 1.4

In this section, we prove the uniqueness of the physical solution pX,Λq of (1.2), under the
assumptions of Theorem 1.1 (which are in force throughout the section). The strategy of the
proof is to represent a physical solution as a fixed point of a mapping that has a contraction
property. We start with the following technical lemma.

Lemma 5.1. Let X ě 0 be a random variable with a bounded density ρ on p0,8q such that

ρpxq ď
1

α
´ ψpxq, x ą 0,

where ψ is non-decreasing and strictly positive on a non-trivial interval p0, δ0q, and ψp0`q “
0. Then, for any t ě 0, there exist T ą t and ε0, δ ą 0 such that, for all s P rt, T s and all

measurable rL : rt, T s Ñ r0, ε0s, we have

P
`

0 ă inf
rPrt,ss

pX ` rBr ´ rLrq ď x
˘

ď
x

α
´

1

2

ż x

0

ψpzq dz, x P r0, δs,

where rB “ p rBrqrět is a standard Brownian motion started from rBt “ 0.

Proof. The proof is a modification of the “Second case” in the proof of Proposition 2.1. We
denote by F the cumulative distribution function of ρ and obtain for s ě t:

P
`

0 ă inf
rPrt,ss

pX ` rBr ´ rLrq ď x
˘

“

ż

p´ε,0s

`

F px´ yq ´ F p´yq
˘

rνspdyq `

ż

p´8,´εs

`

F px´ yq ´ F p´yq
˘

rνspdyq,
(5.1)

with an arbitrary constant ε ą 0 and with rνs being the law of infrPrt,ssp rBr ´ rLrq.
We estimate the right-hand side of (5.1) using methods similar to those in the proof of

Proposition 2.1. We begin with the first integral in (5.1), which poses the main difference to
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the proof of Proposition 2.1. Since ψ is non-decreasing on p0, δ0q, we conclude that, for all
δ1 P p0, δ0q,

F px´yq´F p´yq “

ż x

0

ρpz´yq dz ď
x

α
´

ż x

0

ψpz´yq dz ď
x

α
´

ż x

0

ψpzq dz, x,´y P r0, δ1{2s.

Thus, for all x, ε P p0, δ1{2s, the first term on the right-hand side of (5.1) does not exceed

(5.2)
x

α
rνspp´ε, 0sq ´

ż x

0

ψpzq dz ¨ rνspp´ε, 0sq.

Next, we bound the second integral in (5.1). Notice that, for any z P R,

P
`

inf
rPrt,ss

p rBr ´ rLrq ď z
˘

ď P
`

inf
rPrt,ss

rBr ď z ` ε0

˘

.

In addition, due to the fast decay, as s Ó t, of the density of infrPrt,ss rBr we have, for ε ě ε0,

P
`

inf
rPrt,ss

rBr ď ε0 ´ 2ε
˘

ď e´pε´ε0q
2{p2ps´tqq P

`

inf
rPrt,ss

rBr ď ´ε
˘

ď e´pε´ε0q
2{p2ps´tqq P

`

inf
rPrt,ss

p rBr ´ rLrq ď ´ε
˘

.

Hence, there exists a T “ T pε´ ε0q ą t such that, for all s P rt, T s,

P
`

inf
rPrt,ss

p rBr ´ rLrq ď ´2ε
˘

ď e´pε´ε0q
2{p2ps´tqq P

`

inf
rPrt,ss

p rBr ´ rLrq ď ´ε
˘

“ e´pε´ε0q
2{p2ps´tqq

´

P
`

inf
rPrt,ss

p rBr ´ rLrq ď ´2ε
˘

` P
`

´2ε ă inf
rPrt,ss

p rBr ´ rLrq ď ´ε
˘

¯

.

Setting ε “ δ1{3 (upon decreasing ε0 ą 0 if necessary to ensure ε0 ă δ1{3) we conclude that,
for any γ ą 0, there exists a T ą t such that

P
`

inf
rPrt,ss

p rBr ´ rLrq ď ´2ε
˘

ď γP
`

´2ε ă inf
rPrt,ss

p rBr ´ rLrq ď ´ε
˘

, s P rt, T s.

Moreover, for the same choice of ε, one can find a C1 ă 1{α so that

F px´ yq ´ F p´yq ď C1x, x P r0, δ1 ` yq, y P r´2ε,´εs.

Therefore, for γ ą 0 satisfying γ}ρ}L8 ` C1 ă 1{α and all s P rt, T s, x P p0, δ1{2s,
ż

p´8,´εs

`

F px´ yq ´ F p´yq
˘

rνspdyq ď }ρ}L8 x rνspp´8,´2εsq ` C1 x rνspp´2ε,´εsq

ď xpγ}ρ}L8 ` C1qrνspp´2ε,´εsq

ă
x

α
rνspp´8,´εsq.

(5.3)

Collecting the estimates (5.2) and (5.3), and decreasing T ą t if necessary to guarantee

rνspp´ε, 0sq ě
1

2
, s P rt, T s,

we obtain

P
`

0 ă inf
rPrt,ss

pX ` rBr ´ rLrq ď x
˘

ď
x

α
´

1

2

ż x

0

ψpzq dz,
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for all s P rt, T s, all measurable rL : rt, T s Ñ r0, ε0s, and all 0 ď x ď δ1{2 “: δ. �

The following proposition proves the local uniqueness of the physical solution by establish-
ing the aforementioned contraction property. The proof is similar to the arguments presented
in [FP83] and [LS18b]. Recall that the assumptions of Theorem 1.1 are in force throughout
this section.

Proposition 5.2. Given an initial condition X0´ satisfying the conditions of Theorem 1.1,
let pX1,Λ1q and pX2,Λ2q be two physical solutions of (1.2) starting from X0´ and coinciding
on r0, tq, for some t P r0,8q. (If t “ 0, we just have that pX1,Λ1q and pX2,Λ2q coincide at
t “ 0´.) Then, there exists a T ą t such that

X2
s ´X

1
s “ Λ1

s ´ Λ2
s “ 0, s P rt, T s.

Proof. Notice that Λ1
t “ Λ2

t and X1
t “ X2

t , as the two solutions must have the same jump size
at t. Moreover, X :“ X i

t 1tτ iątu (with τ i defined in an obvious manner as in (1.2)) satisfies
the conditions of Lemma 5.1 by Theorem 1.1.

Next, we write

rΛi
s :“ Λi

s ´ Λi
t “ αP

`

X ą 0, inf
rPrt,ss

pX ` rBr ´ rΛi
rq ď 0

˘

, s ě t.

Thus,

r∆s :“ rΛ1
s ´

rΛ2
s “ α

´

P
`

X ą 0, inf
rPrt,ss

pX` rBr´rΛ1
rq ď 0

˘

´ P
`

X ą 0, inf
rPrt,ss

pX` rBr´rΛ2
rq ď 0

˘

¯

ď αP
`

0 ă inf
rPrt,ss

pX ` rBr ´ rΛ2
rq ď sup

rPrt,ss

r∆r

˘

, s ě t.

Combining this with Lemma 5.1 we deduce that

r∆s ď sup
rPrt,ss

r∆r ´
α

2

ż suprPrt,ss
r∆r

0

ψpzq dz, s P rt, T s.

Decreasing T ą t if necessary to make the right-hand side of the latter display non-

decreasing in suprPrt,ss r∆r (recall that r∆ is right-continuous and ψp0`q “ 0) and taking the
running supremum of both sides we arrive at

0 ď sup
rPrt,ss

r∆r ď sup
rPrt,ss

r∆r ´
α

2

ż suprPrt,ss
r∆r

0

ψpzq dz, s P rt, T s.

Since ψ is strictly positive on p0, δ0q, for some δ0 ą 0, we have suprPrt,ss r∆s “ 0, i.e., rΛ1
s ď

rΛ2
s,

for all small enough s ą t. Reversing the roles of rΛ1 and rΛ2 we complete the proof of the
proposition. �

Theorem 1.4 is an easy consequence of Proposition 5.2. Indeed, assuming that there exist
two distinct physical solutions pX1,Λ1q and pX2,Λ2q of (1.2) and letting

t :“ infts ě 0 : Λ1
s ‰ Λ2

su P r0,8q

we see that Proposition 5.2 contradicts the definition of t.
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Appendix: proof of Proposition 1.6

Let pu,Λq be obtained from a physical solution pX,Λq of (1.2). Then, (a) is immediate
from Λt “ αPpτ ď tq, t ě 0. Turning to (b), the boundedness of u follows from the remarks
at the beginning of Section 2, whereas the other properties are readily inferred from the last
sentence in Theorem 1.1 and the convergence to 1 as t Ó 0, y Ñ x locally uniformly in x ą Λ0

of the probability in the representation

upt, yq “

ż 8

0

fpxq gpt, y ´ xqP
`

inf
sPr0,ts

px`Bs ´ Λsq ą 0
ˇ

ˇx`Bt “ y
˘

dx.

(Here, we recall that gpt, ¨q is the Gaussian kernel of mean 0 and variance t.) For (c), we
employ Λt “ αPpτ ď tq, t ě 0, (1.5), and

P
`

τ ě t, Xt´ P p0, xs
˘

“ P
`

τ ě t, X0´ `Bt P pΛt´,Λt´ ` xs
˘

“ lim
sÒt

P
`

τ ą s, X0´ `Bs P pΛt´,Λt´ ` xs
˘

“ lim
sÒt

ż Λt´`x

Λt´

ups, yq dy,

(5.4)

where we used P
`

X0´ `Bt P tΛt´,Λt´ ` xu
˘

“ 0.

Conversely, let pu,Λq satisfy (a)–(c) and Xt :“ X0´`Bt´Λt, t ě 0. To see that pX,Λq is a
physical solution of (1.2), we fix a t ą 0 and define τ yδ “ infts P r0, ts : y`Bs ď Λt´s`δu^ t

for all y ą Λt and δ ě 0. By Itô’s formula, upt´τ yδ , y`Bτyδ
q´upt, yq“

şτyδ
0
Bxupt´s, y`Bsq dBs,

which thanks to the assumed boundedness of u and y ` Bτy0
“ Λt´τy0

when τ y0 ă t (recall
that Λ is non-decreasing and right-continuous) yields

upt, yq “ E
“

upt´ τ yδ , y `Bτyδ
q
‰ δÓ0
ÝÑ E

“

upt´ τ y0 , y `Bτy0
q
‰

“ E
“

fpy `Btq1tτy0“tu
‰

.

By conditioning on y `Bt, we arrive at the representation

upt, yq “

ż 8

0

gpt, x´ yq fpxqP
`

inf
sPr0,ts

py `Bs ´ Λsq ą 0
ˇ

ˇ y `Bt “ x
˘

dx.

Noting that, conditional on y `Bt “ x, the process y `B is a Brownian bridge from y to x
on r0, ts, we obtain by the time-reversal of the latter and Fubini’s theorem:

ż y2

y1

upt, yq dy “

ż 8

0

ż y2

y1

fpxq gpt, y ´ xqP
`

inf
sPr0,ts

py `Bs ´ Λsq ą 0
ˇ

ˇ y `Bt “ x
˘

dy dx

“ P
`

X0´ `Bt ´ Λt P ry1 ´ Λt, y2 ´ Λts, inf
sPr0,ts

pX0´ `Bs ´ Λsq ą 0
˘

,

for all Λt ă y1 ă y2 ă 8. In other words, upt,Λt`¨q is the density of Xt 1tτątu on p0,8q. The

desired Λt “ αPpτ ď tq, t ě 0 stems from integrating both sides of dΛ¨ “ ´α d
ş8

Λ¨
up¨, yq dy.

Lastly, the jump condition (1.5) results from Λt´Λt´ “ inf
 

xą0: limsÒt

şΛt´`x

Λt´
ups, yq dyă x

α

(

and following the equalities in (5.4) in the reverse direction.
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