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ABSTRACT. This paper establishes the well-posedness of reflected backward
stochastic differential equations in non-convex domains that satisfy a weak ver-
sion of the star-shaped property. The main results are established (i) in a
Markovian framework with Ho6lder-continuous generator and terminal condi-
tion and (ii) in a general setting under a smallness assumption on the input
data. We also investigate the connections between this well-posedness result
and the theory of martingales on manifolds, which, in particular, illustrates the
sharpness of some of our assumptions.

1. INTRODUCTION

Backward stochastic differential equations (BSDEs), originally introduced in
[2] and fully developed in [43] [41], can be viewed as the probabilistic analogues
of semi-linear partial differential equations (PDEs). In particular, BSDEs are
used to describe the solutions of stochastic control problems (see, among many
others, [42] [16, [25]). If the control variable of such an optimization problem has
a discrete component — e.g., an option to switch the state process to a different
regime or to terminate the process and obtain an instantaneous payoff — then,
the associated PDE obtains a free-boundary feature and the associated BSDE
becomes reflected: i.e., its solution lives inside a given domain and is reflected
at the boundary of this domain. The theory of reflected BSDEs in dimension
one — i.e., when the reflected process is one-dimensional — is well developed in
a very high generality: see, e.g. [15, [11] [14] 23] [24]. However, the multidimen-
sional case presents significant additional challenges, e.g., due to the lack of the
comparison principle. To date, the well-posedness of general multidimensional
reflected BSDEs (or, systems of reflected BSDEs) has only been established in
the case of convex reflection domains: see, e.g., [22] 34} 10, 19]. The systems of
reflected BSDEs in convex domains appear in certain types of stochastic control
problems, such as the switching problems: see, among others, [26] 29] 9, 8] 38} [1].
On the other hand, [21] describes a class of control-stopping stochastic differen-
tial games where the equilibria are described by the systems of reflected BSDEs

9The authors would like to thank Marc Arnaudon for the enlightening discussions about
martingales on manifolds. The authors also thank the Illinois Institute of Technology for hosting
the meetings during which this research was initiated. Partial support from the NSF CAREER
grant 1855309 is acknowledged.
1



2 JEAN-FRANCOIS CHASSAGNEUX, SERGEY NADTOCHIY, ADRIEN RICHOU

in non-convex domains (see also the closely related [20]). We also refer to [6],
which considers another example of a system of reflected BSDEs in a non-convex
domain. This paper presents the first general well-posedness result for the sys-
tems of reflected BSDEs in non-convex domains under the assumption of a weak
star-shape property (see Assumption below).

In addition to the control-stopping games, the reflected BSDEs in non-convex
domains have a direct connection to the theory of martingales on manifolds. We
refer to [17] for an introduction and an overview of this theory. One of the key
questions therein is the following: given a random variable ¢ with values in a
manifold M, is it possible to define a martingale Y in M such that the terminal
value of this martingale (at time 7" > 0) is given by & (i.e., Y7 = &), and is such a
martingale unique? A positive answer to this question, in particular, allows one
to define the notions of conditional expectation and barycenter for a manifold
(see e.g. [18 46]). We refer to [32] [33] [45, 12| for other applications, and to
I3, 4] for the theory of BSDEs on manifolds. As explained in [12], it is possible to
give a positive answer to the above question by solving a BSDE with quadratic
non-linearities with respect to the z-variable, stated in R? — the Euclidean space
in which the manifold is embedded. It turns out that for a certain class of non-
convex reflection domains D, the reflected BSDE in D gives rise to a martingale
on the manifold 0D, see Section |5, In particular, our results provide a new proof
of the existence and uniqueness of a martingale with a prescribed terminal value
in a given strict sub-sector of a hemisphere of S*~!, in the Markovian framework
or under the appropriate smallness assumptions (see the example in Section |5).

On a technical level, our analysis is connected to the theory of BSDEs with
quadratic growth in the z-variable. This connection is made precise in Section
[B, but it can also be seen if one attempts to map a given non-convex domain
into a convex one: the resulting reflected BSDE in a convex domain will have
quadratic terms in z. Thus, the reflected BSDEs in non-convex domains can be
viewed as the quadratic reflected BSDEs in convex domains. This observation
also explains the additional mathematical challenges caused by the non-convexity
of the reflection domain — these challenges are similar to those arising in the well-
posedness theory for the systems of quadratic BSDEs [47, (30, 48] 27]. The present
work uses some of the results developed in the latter theory: in particular, the
results of [48] are crucial for our analysis.

Another important connection is to the methods of |36} 37], which establish the
well-posedness of the forward stochastic differential equations (SDEs) reflected at
the boundary of a given domain. In particular, we use the arguments of [37] to
establish the stability of solutions to the reflected BSDEs considered herein, see
Section It is important to mention, however, that many crucial arguments
used in the proof of the well-posedness of a reflected (forward) SDE cannot be
applied to the case of a reflected BSDE due to the adaptedness issues which, in
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particular, prohibit the application of the Skorokhod’s mapping, used in [37], and
of the standard localization methods.

The remainder of this paper is organized as follows. Section states the
reflected BSDE (equation (1.2)) and the main assumptions (Assumptions
and (1.2) which hold throughout the paper. Section 2| describes various auxil-
iary properties and a priori estimates, as well as the stability (Proposition
and uniqueness (Corollary of solutions to the reflected BSDE in a certain
class. Section [3| describes a sequence of penalized quadratic BSDEs in a Markov-
ian framework, shows that their solutions converge to a solution of the reflected
BSDE, and verifies that this solution belongs to the class in which the unique-
ness holds, thus establishing the well-posedness of the target reflected BSDE in
a Markovian framework (Theorem . In Section {4, we approximate a general
reflected BSDE by the Markovian ones, to obtain the well-posedness of the for-
mer (Theorem [4.2) under an additional smallness assumption (Assumption 2.1).
Finally, Section [5 provides a more detailed description of the connection between
the reflected BSDEs in non-convex domains and the martingales on manifolds,
which, in particular, illustrates the sharpness of some of our assumptions.

1.1. The setup and main assumptions. Let D be a subset of R? given by

D={yeR’: ¢(y) <0},

with a function ¢ : R? — R. We denote by V the gradient, and by V? the Hessian,
of a given function. For any subset A of a Euclidean space, we denote its closure
by A and, if A # ¢J, we denote by d(., A) the distance function to A.

Assumption 1.1. We assume that ¢ satisfies the following:

o (Compactness) There exists R > 0, such that ¢(y) > 0 for all |y| = R.
o (Smoothness) ¢ € C*(R?), |Vé(y)| > 0 for all y € 0D, and V> is locally
Lipschitz.
o (Weak star-shape property) There exists a non-empty open convex set C <
D such that
—0eC,
— there exists a convex function ¢ : R? — R satisfying: ¢c € C*(R?),

C={yeR’: ¢c(y) <0},
dc = ¢c(0), and ¢cly) = |y — Pe(y)| for all y € RAC, where P

denotes the projection onto C,
— 1t holds that




4 JEAN-FRANCOIS CHASSAGNEUX, SERGEY NADTOCHIY, ADRIEN RICHOU

) A weak star-shaped domain which is (B) A weak star-shaped domain
strlctly star-shaped. which is not star-shaped.

QD

(c) A simply connected domain
which is not weak star-shaped.

FIGURE 1. Examples of domains with and without the (weak) star-
shaped property.

Remark 1.1. (i) If D is a star-shaped domain with respect to 0, i.e., if it satisfies
y  Vo(y)

inf —. —— >0,

veeD [yl [Vo(y)|
then the weak star-shape property also holds for D, with C being a ball of radius
e > 0 centered at 0, and with

de(y) = o-(ly| — ),

where 9. : R — R is a convex increasing function satisfying 0. € C*(R), o.(z) =
—&/2 for x < —¢ and o-(x) = x for x > 0.

(1) As shown in Figure |1, a weak star-shaped domain is not necessarily star-
shaped.

All stochastic processes and random variables appearing in this paper are con-
structed on a fixed stochastic basis (Q2,F,P), with the filtration F being a com-
pletion of the natural filtration of a multidimensional Brownian motion W in R¥
on a time interval [0, 7).

For p > 1, we denote by LP the space of (classes of equivalence of) Fr-
measurable random variables £ (with values in a Euclidean space), such that

We drop this clarification in further definitions.
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I€]zr := H|E[P]? < oo. The space £* stands for all Fp-measurable essen-
tially bounded random variables. We also define .72 as the space of progres-
sively measurable processes Z (with values in a Euclidean space), such that

1/2
|Z| 2 = E[S§|Zt|2dt] < . Next, for p > 1, we define MP as the space

1/p
of all continuous local martingales M with || M|, = E[(Mﬁ/z] < . For

p € [1,00], we denote by .#? the set of continuous adapted process U such that
HSUPte[o,T] U4 o < . We also denote by Vary(K) the variation of a process
K. (with values in a Euclidean space) on the time interval [0,¢] and by P, for
p € [1, 0], the set of all finite-variation process K such that ||Varpoz(K)|| oy <O
and Ky = 0. Finally, we denote by %2 the set of processes V € 2, satisfying

1
3
1V g2 := < 400.

Lo

T
supte[O’T]]E[J |V;|2d8|-7:t]

t

Let us remark that V € 2? implies that the martingale So V,dW, is a BMO
martingale, and |V 4. is the BMO norm of §; V.dW,. We refer to [31] for further
details about BMO martingales.

We are investigating the well-posedness of the following reflected BSDE (Y, Z, K) €
S x A x A1
T T T
O Yi- ¢+ [ fevizds— | ak- [ zaw, o<e<r,
(12) t . t t
(i) Ve Das., K — J n(Yy)dVar,(K), 0<t<T.
0

where n is the unit outward normal to 0D, extended as zero into D:

n(y) = M Vye 0D and n(y) =0, VYyeD.

Vel

Assumption 1.2. We assume that £ takes values in D, f(-,y, z) is progressively
measurable, f(t,-,-) is globally Lipschitz (Ky,-Lipschitz in y and Ky ,-Lipschitz
in z), uniformly in (t,w), and ||f(-,0,0)|]| 4 < 00. In addition, without loss
of generality (in view of the boundedness of D), we assume that there exists a
compact KK < R, such that f(t,y,z) = 0 whenever y ¢ K.

Assumptions[l.1]and [1.2]hold throughout the rest of the paper even if not cited
explicitly.
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2. GEOMETRIC PROPERTIES AND A PRIORI ESTIMATES

In this section, we derive cetain useful geometric properties of the domain D,
expressed via the corresponding properties of the function ¢. We construct an
auxiliary function ¢ which is used in the next section to define a sequence of
approximating equations to . We also present some key a prior: estimates
and properties of the solutions to the RBSDEs .

2.1. Absolute continuity of the process K. As noticed in [22], we can take
advantage of the smoothness of D to show that the process K is absolutely con-
tinuous with respect to the Lebesgue measure.

Lemma 2.1. Assume that (Y, Z,K) € S*x % x #" solves (1.2). Then, almost

every path of K s absolutely continuous with respect to the Lebesgue measure.

Proof. Applying I[t6’s formula to ¢ — ¢(Y;), we obtain

a0() = (~Vo) - f16.%1.2) + STUZ Vo) ) at
Q1) VoY) dK, + V(Y - ZAW,

Then, the It6-Tanaka formula applied to the positive part of the semi-martingale
—¢(Y}) reads

(22) A-6)]" =1 srmpdl-6(Y)] + 3L

where L° is the local time of the semi-martingale —¢(Y") at zero. Since ¢(V;) < 0,

we have d[—¢(V;)]" = —d¢(Y;) which yields, combining (2.1)-(2.2),
1
Lig(vi)=0) (—W(Yt) f(4 Y5 Z) + §Tr[ZtT v%s(yt)zt]) dt + |V (Y;)|dVary(K)

1
+ Lgr-0p VoY) - ZedW; + ZdL) = 0.

In particular, we deduce that
(2.3)

1 T2 !
V < ) _ -
t)= t
|Vo(Y;)|dVar, (K) < Lio(vy)=0} [W)(Yt) f(t,Ys, Zy) 2Tr[Z Vep(Yy)Zy] | dt,
which proves the absolute continuity of K. []

2.2. The exterior sphere property. The following lemma states the well known
observation that, for any boundary point of a smooth domain, there exists a small
enough tangent external sphere, see e.g. [37].

Lemma 2.2. There exists Ry > 0, such that

1 .
(2.4) (y—y’)'n(y)+2—}%0|y—y’|2>07 VyedD, y €D.
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Proof. Due to the smoothness of ¢, for any y € 0D and 3’ € D, there exists
A € [0, 1], such that
(2.5)

0= o) =dy) + (' —y) ny)|Voy)| + %(y — ) V2o + (L= Ny )y =),

It only remains to notice that: ¢ = 0 and |V¢| is bounded away from zero on 0D,
and |V2¢| is bounded from above on D. Thus, we obtain the statement of the
lemma. O

Using the above lemma, we can define the projection operator that is used in
the subsequent sections. To this end, we first introduce the set

Q={yeR: d(y,D) < Ry},
and the set-valued projection operator
;’B(y) = argminx€ﬁ|m - y|7 ye Rd‘
Corollary 2.1. For any y € Q, B(y) is a singleton.

Proof. It is easy to see that, for a ball B,(y) = R?, with radius r > 0 and center
at y, we have:

Yy—2x 1

(2.6) (x—a')- lz —2'>=0, Va,2'€dB.(y).

[ + R

ly —xf  2r

Next, assume that there exist y € R/\D and z # 2’ € D, such that
|z —y| = |2" = y| = argmin,cp|z —y|.

Then, it is clear that z, 2’ € 0B, n 0D, with r = min,.p |z — y| < Ro, and the

equations (2.4)), (2.6) yield a contradiction. O

Without loss of generality, we will identify the value of PB(y) with its only
element, for any y € Q.

Remark 2.1. Using (2.5) and (2.3), we easily deduce that, for any solution
(Y,Z,K)e S x A? x K" of (1.2),

Vo(Y, T
dVary(K) < 1ggv)—0 <lﬂ -t Y, Zt)] + 2—R0|Zt|2) dt,

Vo (Yy)
with Ry satisfying (2.4).

The following lemma provides an alternative to (1.2)(ii), and it becomes useful
in the subsequent sections.

Lemma 2.3. Assume that (Y, Z,K) € /? x % x X" solves (1.2) (i) and that
Y, €D a.s. forallte|0,T]. Then

K, - f a(Yo)dVar,(K), te[0,T],
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holds if and only if there exists a constant ¢ > 0, depending only on D, such that
for all essentially bounded continuous adapted process V' in D, we have

(2.7) f ! ((Ye = Vi) + Yy = Vi’n(Y)) dK, > 0 .

0

Proof. One implication is a direct consequence of Lemma The other impli-
cation is a minor extension of Lemma 2.1 in [22]. O

2.3. The pseudo-distance function. In this subsection, we modify the function
¢ in order to construct a new smooth function ¢ which satisfies the inequality
in RN\D instead of 0D. We denote by ¥ : R — [0, 1] an infinitely smooth
nondecreasing function which is equal to zero on (—o0,0] and to one on [1,00).
We also choose a large enough R > 1, such that D < Br_1(0), and a small enough
e € (0,1), such that, for all y € Bgy1(0)\D, we have:

¢(y) <e = yeBg(0), Voc(y) Vo(y) > 0.
Then, we define

(2.8) o(y) == ¢" (y)A=V(Jyl-R-1))+0(|y|=R), (y) := d(y)+klyld(e(y)/e),
for an arbitrary constant x > 0.

We refer to ¢ as the pseudo-distance function.

Notice that

Voc(y) - Vi(y) = Voe(y) - Voly) + sVecl(y) %v@»@/e)

+ 6V ée(y) - Vowlyl' (6(y)/e) /e

= Voc(y) - Vo(y) (1 + sluld (30)/e)fe) + xVoe(y) - 0(G(w)/e)
It is clear that ¢ € C*(RY\D) and that its derivatives up to the second order are
locally Lipschitz-continuous on RA\D. It is also easy to see that ¢(y) € (0, €] if
and only if y € Br11(0)\D and ¢(y) < €, in which case y € Br(0), ¢(y) = é(y),

Vo(y) = Vé(y), and

Voe(y) - Vi(y) = Ve(y) - Vo(y) > 0,

where we also observed that inf crap Voc(y) - y/|y| > 0, which follows from the
convexity of C and from the fact that 0 € C. If ¢(y) < 0, then y € D. If ¢(y) > e,
then
7 Y
Voe(y) - Vi(y) = Voe(y) - Voly) + xVece(y) - Tl

which can be made positive for all y € R?\D by choosing large enough x > 0, as
V4| is bounded on RN\D and infcgap Ve (y) - y/ly| > 0.

The following lemma summarizes the above properties of ) and states several
additional properties which can be easily verified.



REFLECTED BSDES IN NON-CONVEX DOMAINS 9

Lemma 2.4. There exist constants R, e,k > 0, such that the function v defined
m satisfies the following properties.
(1) 9 is globally Lipschitz-continuous in RY.
(2) There exist constants ¢,C > 0, such that cd(y,D) < ¢¥(y) < Cd(y,D) for
y e R?.
(3) ¥ € C2(RND), and its derivatives up to the second order are globally
Lipschitz-continuous in RN\D.
(4) infyepap Ve (y) - Vi(y) > 0.
(5) infyegarp [Vip(y)| > 0.
(6) (y) = ¢(y) = 0, Vib(y) = Vé(y), and V*Y(y) = V>¢(y), for y € ID.

In the remainder of the paper, we fix (R, €, k) as in the above lemma and
consider the associated pseudo-distance function . For convenience, we also
extend the vector-valued function n to R? as follows:

1

n(y) = Wvﬂ)(y) Lirapy (y)-

2.3.1. Asymptotic convezity of the squared pseudo-distance. Due to Lemma [2.4]
the Hessian of 12, denoted V21?2, is well defined in R\D (it is extended to the
boundary of the latter set by continuity). The following lemma shows that V2?2,
viewed as a bilinear form, becomes positive semidefinite close to D.

Lemma 2.5. There exists a constant C > 0, such that, for all y € R\D and
z e RY,
ZIVHA(y)z = —Cy(y)|zf.

Proof. Notice that, for y € R\D and z € R,

V2 (y) = 2V (y) V0 (y) + 20 (y) Ve (y),

2TVEA(y)z = 2(Vi(y) - 2)° + 20(y)2 " VE(y)z = 20(y)z " V2(y)z.
Using the fact that V2% is bounded (cf. the third property in Lemma and
the second property in Lemma we complete the proof. O

2.4. A priori estimates. In this subsection, we establish a priori estimates of
the solutions to (1.2) for general terminal condition ¢ and generator f. We first
introduce the appropriate “smallness assumption”.

Assumption 2.1. We assume that at least one of the following four conditions
1s fulfilled with some 6 = 1:
(i) |6E ()] 2= < B2 and Ve(y)- f(s,y,2) <0, Vs,y,z€[0,T]xD\CxR>,
(it) or sup,ep o (x) < 5,
(iii) or C is the Euclidean ball centered at O with radius A > 0, and
2R

e <X+ 200 Voely) Fls,0,2) <0, Vs,yze [0,7] x DIC x RS,
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(iv) or C is the Fuclidean ball centered at 0 with radius A > 0, and

2R3
sup |z]? < A? 4+ =2,
zeD 0

with Ry satisfying (2.4) and ~y appearing in Assumption .

It is worth mentioning that Assumption is not a standing assumption and
is cited explicitly whenever it is invoked. In particular, the well-posedness results
in the Markovian framework do not require the smallness assumption, see Section

3.
Next, we consider the following class of solutions.

Definition 2.1. For any 6 > 1, we denote by % (0,&, f,T) the set of all solutions
(Y,Z,K)e S* x A#* x K" to (1.2)) such that

(2.9) E [e%varT(K)] < o,
with some p > 1 and with Ry satisfying (2.4).

In what follows, we often drop (§, f, T') in the notation for the class % (0). Note
also that we mainly consider § = 1 and 6 = 2.

The following proposition clarifies the link between Assumption and the
class % (6).

Proposition 2.1. Let (Y, Z,K) € %% x 7% x A be a solution to the RBSDE
(1.2). Then, Z € %°. Moreover, if Assumption [2.1] holds for some 6 > 1,
then, there exist constants C and p > 1, which depend only on Ky,, K;., 7,

A, SUDyep [y], SUp,ep o5 (W), |0 ()| .z, If(.,0,0)| 2= and Ry (recall Assumption

and (2.4)) ), such that
(2.10) E [e%VaFT(K)] <C.
Thus, under Assumption[2.1], any solution (Y, Z, K) belongs to % (0,¢, f,T).

Proof. 1. We start by applying Ito-Tanaka’s formula to ¢} (Y;) (note that ¢F is
convex): for all ¢t < ¥/,

(2.11) E, Ut Vg (Ys) - sz] < By | of (V) + f Vg (Y,) - f(s,Y;,,Zs)dS] .

In the equation above and in the remainder of the proof, we use the shorter
notation E/-| for H-|F].
Recalling Assumption [1.1, we obtain

(2.12)

4
")/Et f dVarS(K)] < ]Et
t

fl Ve (Ys) - ﬂ(Ys)dVars(K)] = E,

f VoY) sz] .
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This yields, for ¢/ = T,
T

(2.13)  AE U dVars(K)] <F, lqsc J Voi (Y.) - f(s, Yo, Zo)ds ]
t

k

Next, we consider an arbitrary € > 0 and apply It6’s formula to £]Y;|* between ¢

and t’, to obtain:

¢/ t'
E, U \ZSPds] <eE, [|[Yy[*] + CieE, U (1+[f(s,0,0)[ + \Zs!)ds]
t t

[ ' dVars<K>] ,

where we recalled that |Y| is bounded. The above inequality implies

(2.14)
c t/ t t/
iEt f | Z,[*ds | <cEq [|Ye|?] + C-E; f (14 ]f(5,0,0)))ds | +cC,E J dVar,(K) | .
t t t
Setting ' = T'and € = 1 in and combining it with (2.13), we obtain
1 T C r
°E, U |Zs|2ds] <E, [|g|2+71¢g(g>] + CE, U (1+\f(s,0,0)|)ds]
t t
C [ T

+ SClE

(2.15) +—E

e | [ voron- f(s,Ys,zs)ds] .

| "+ |f<s,o,o>\>ds] = ' 20|

Inserting the above estimate into (2.15), we obtain

i]Et UtT|Zs|2d5} - l|§|2 N %d%(f)] | CE, Uf“ + \f(s,0,0)|)ds],

which proves that Z € 2.

2. We now turn to the estimation of the exponential moments of Vary(K'), under
the smallness Assumption

2.a Combining Assumption E ) with - we obtain

[S—

t
Next, we observe that

. _
Cl]EU Vg (Ye) - f(s,Ys, Zs)ds | < CE,
Y t i

(2.16) i

1.
Ro =

gCO
Then, we apply the energy inequalities for non-decreasing processes with bounded
potential (see, e.g., (105.1)—(105.2) in [13]) to obtain (2.10) in this case.

sup E, [ Jt : dVars(K)]

te[0,T]
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2.b Let Assumption [2.1}(ii) hold. Using (2.11)-(2.12) and recalling that |Y| is

bounded, we obtain, for all 0 <t <t < T and for any € > 0,

VE, f dVars(K)] < sup ¢ (y) + CLE = )(1+|£(,0,0)|2) + SE, U !Zs|2ds]-
t t

yeD

Using the above inequality and (2.14) (with the same € > 0), we obtain:

(v — Ce)E;

yeD yeD

"
f dVars(K)] < esup ly[? + sup ¢ (y) + CZ(t" = t)(1 + [ f(.,0,0)] 2).

In particular, by taking ¢ small enough, we conclude that, for any ¢’ > 0, there
exists C > 0 such that

(2.17) E,

f dVars(K)] < wu L)+ Ot — ).

Next, using (2.17) and Assumption (ii), we conclude that there exist 0 <
e”<1,p>1,and N > 1, depending only on Ky, K., 7, Sup,cp Y|, Sup,ep ¢c(y) ™,
|f(.,0,0)| 2~ and Ry, such that, a.s.:

(2.18)

T(k+1)/N Ry
E, f Var (K) | < 52(1=<"), Y0 <k < N, Vi [Th/N,T(k + 1)/N].
t p

Then, we apply the energy inequalities for non-decreasing processes with bounded
potential (see, e.g., (105.1)—(105.2) in [13]), to obtain, for all 0 < k < N,

0p (T(k+D/N 4370, ~
(219) ETk/N |:6R0 Y S(K)] <C,

with C that depends only on Kyy Kizy s SUDyep |y, supyep de(y)™, 15 0,0)] g
and Ry. We now observe that

]E[e%VWT(K)] — E[Q%VMTW_H/N(K)ET(NA)/N [e%’;ﬁw,w dvarS(K)]]

b

< éE[e%VarT(Nfl)/N(K):l

where we used (2.19) with & = N — 1 to obtain the last inequality. Iterating the
above procedure, we conclude the proof of (2.10) in this case.

2.c Let Assumption [2.1(iii) hold. Using (2.3)), the linear growth of f and Young’s
inequality, we deduce, for all £ > 0,

1+e (7 9
(2.20) VarT(K) <C.+ 2Ry o 1{¢(y;5):0}|Zt| dt.
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Moreover, we apply It6-Tanaka formula to (]Y;|*> — A?)* to obtain, for all ¢ < ¢/,

/

t’ t
E J 1{¢<Ys>=0}|Zs\2d8] < E, U Lige(va)>0}| Zs[*ds
t t

t/
@21)  <E (VP -2 2 1{¢C<Ys>>0}|m|v¢c<m>-f(s,Ys,zs)ds],
t

where we also recall that 1is.v,)=03|Ys|Vde(Ys) = 1ise(vy)=03Ys since C is a Eu-
clidean ball centered at zero. Then, by taking ¢ = 7" in (2.21) and using Assump-
tion [2.1(iii), we obtain, for ¢ > 0 and p > 1 small enough,

Op(1 +¢)

1.
2R =

T
sup E, lj 1{¢(YS)=0}‘ZS|Zd5]
t

te[0,T']

F0

It remains to apply the John-Nirenberg inequality for BMO Martingales (see
Theorem 2.2 in [31]) and recall (2.20), to conclude that

Op(l+e) (T 2
O Vary (K S0 L{s(vs)=0}1Zs|?ds
E[eRO ary( )] <C.E le 2r2 0 Le(s)=o) < 4o,

which yields (2.10).

2.d The proof of (2.10) in the case of Assumption [2.1fiv) follows from (2.20) and
(2.21)), by partitioning [0, 7] into small time intervals as in step 2.b. For brevity,

we skip these routine calculations. OJ

2.5. Stability and uniqueness in %/ (). Using a priori estimates established
in the previous subsection, we prove the following stability property of solutions
to (1.2).

Proposition 2.2. Let us consider (Y, Z,K) € ?*x#?x %" (resp. (Y', 7', K') €
S x A% x H) which solve the RBSDE with a domain D (resp. D'), with
a terminal condition & (resp. &), and with a generator f (resp. f'). Assume,
moreover, that there exists p > 1 such that

(2.22) pim B [edaCmr (Ot oo

with Ry satisfying (2.4) for D and D'. Let us denote by B (resp. B') a measurable
selection of the projection operator onto D (resp. D'). Then, the following stability
result holds: there exists a constant C' > 0, which depends only on Ky, Ky ,,
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Ky, Kp . (recall Assumption , sup,epopr Y], Ro, and on k, and is such that
Y =Ygz + |Z = Z'| 2 + | K = K| 52

T 2p/(p—1)7 (P—1)/(2p)
(J ‘f(SanS;Zs) —f/(S,}/;,ZS)’dS) ]

0
] (p—1)/(2p)

<CE[[¢ - ¢ #/e-V)e-0/e) 1 O

+CE | sup [V — Py

s€[0,T7]

+ CE | sup [|Ys — ‘F(Y;)]p/(p_l)

(p—1)/(2p)
s€[0,T] ]

Proof. We apply Itd’s formula to the process

1 r r !
€Bt+ 7g (Var:(K)+Var, (K ))th B Yt/|2’

with the constant § to be determined later. By denoting
6ft = f(t,Y;,Zt)—f/(t,Y;/,Zé), (55 :25_6/7

Ty = R VeIVl sy y Y 7= 72— 7

)

we obtain

T
I AR f .107,*ds
t
T

T T
oY, - 0fsds — QJ oY, - dK, + 2f [0Y; - dK;
t t

T 1 T 1 T
- ﬁf I,[5Y,[2ds — —f T[8Y,[2dVar,y(K) — —J T,[8Y,[2dVar,(K')
¢ Ro J; Ry J;

=Tp|6* + 2f

t

T
(2.23) — 2f I0Y, - 6 Z,dW.
t

Using Burkholder-Davis-Gundy inequality, as well as Holder inequality (with
q = p/(p—1) > 1 being the conjugate exponent) and the fact that |0Y| is bounded,

we obtain:
T 3
< CE U \F5525|2ds)
0

< CH(Tr)] E[ (JT |6Z8|2ds) W] % < oo,

t
fl“&Y; 02 AW

0

E[ sup

te[0,T]

0

where the last inequality is due to (2.22) and to the Energy Inequality (since
Z,7'" € $%). Hence, we conclude that the local martingale term in the right hand

side of (2.23)) is a true martingale.
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Next, we estimate the second term in the right hand side of (2.23)) using the
Lipschitz property of f':

1
5}/:9 : 5.f8 < ’53/:9‘|f(87Y;a Zs) - f/(87m7 ZS)| + 5|5}/:9’2 + 1‘528‘27

provided f > 0 is large enough. In addition, the condition (1.2))(ii) and the
exterior sphere property (recall (2.4))) yield
rT 1 T
— 2j [,0Y, - dK, — —f [,|0Y,|* dVar,(K)
t Ry J;
T _ 1 T
| remo -y -2 [ (- B - ak - o [ LY. Pavar, ()

t 0 Jt

=2 DL (- BO)) A - = f LY, — ) PV, ()

1 T T B
" o ), Ly(IB(Y)) = VI — [0Y[*)dVar,(K) —2£ L (BY)) = Y)) - dK

0 [ TR0 - ViV () < 0Ty sup 1B~
t

s€[0,T]

where we used S? exp <Var—> dVary(K) < Rpexp <M> to establish the last
inequality. Using the same arguments, we obtain

T T
1 _
ZJ [,0Y, - dK. — — | T,|6Y.|*dVar,(K')) < CTr sup [B'(Y;) — Yil.
t RO t s€[0,T]
Using the above estimates, we take expectations on both sides of [2.23], with ¢t = 0,
and apply Holder inequality to obtain

T 1/2
ITY25Z| 02 < E [FT|6§|2 + QJ L, |0Ys|| f(s, Yy, Zs) — f/(s,Ys, Zs)|ds]
0
1/2
+E[ (sup B (Ys) — Y| + [B(Y) —Y;’|)

se(0,T

< CE[j6¢ )

. 1/2
+2F [ sup (Fi/z\Wsl)FlT/?J |f(s,Ys, Zg) — f'(8,3@7Zs)!d8]
s€[0,T] 0

1/(2q)
(2.24) + CE [ qup (IV(Y) — Vil + RO — YI))?

s€[0,T7]
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Using (2.23) and (2.24), we apply Burkholder-Davis-Gundy, Holder and Young’s
inequalities to obtain

[TY26Y | 2 < CE[|o€]7]"/7

. 1/2
+CE [ sup (P§/2|5YSI)F1T/2J |f(s,Ys, Zg) — f'(S,Ys,Zs)ldS]
0

s€[0,T]

1/(29)
+CE | sup (|P'(Y,) — Y| + [BY]) - YZ|)1

s€[0,T]

1 T 2¢71/(24)
< CE[|6¢|9]V 4 5]\p1/z(syuﬂ + CE !(J \f(s,Ys, Z) — f/(s,Ys, Zs)\ds) ]
0

(2.25) + CE

s€[0,T]

1/(29)
sup (|B'(Ys) = Ya| + [B(YY) —Ys’!)q] :

Then, combining (2.24]), Young’s inequality, and (2.25), yields
Y =Y'|p2 + | Z — Z'| o= < |TV26Y | 02 + |[TV%6Z

%2

(LT Y220 = (6. 20 ]

1/(20)
sup (19'(Y;) — Yol + [B(YY) —Y;’I)q] :

s€[0,T]

1/(2q)
<CE[¢ — ¢V + CE

(2.26) +CE

Finally, we recall that

t t
K, — K| = §Y, — 6Yy + f F(s,Ys, Z) — f'(s,Y!, Z)ds — f 5 Z, AW,
0 0

Then, the Burkholder-Davis-Gundy inequality inequality, the Lipschitz property

of f, as well as (2.26)), yield
T 2¢71/(29)
(J |f(37 Y:97 Zs) - f/(S, YS, ZS>|dS> ]
0

1/(20)
+CE [ sup (|9'(Y;) = Yi| + [B(Y) — Ys’\)q] :

|K — K| 52 <CE[|¢ — ¢']7]Y?0) + CE

s€[0,T]

which completes the proof of the proposition. ]

In a general non-Markovian framework, we obtain the following uniqueness
result as a direct consequence of Proposition
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Corollary 2.2. The reflected BSDE (1.2) has at most one solution in the class

U (2).
Proof. Indeed, it suffices to check that, for any two solutions in the class % (2),
(2.22) holds. This follows directly from the Cauchy-Schwarz inequality. O

This uniqueness result is improved in the Markovian setting: see Theorem
and Remark

3. WELL-POSEDNESS IN A MARKOVIAN FRAMEWORK

In this section, we establish the existence and uniqueness of the solution to
(3.3) under the assumption that the terminal condition and the generator of the
reflected BSDE are functions of a Markov diffusion process X in R?:

t

¢
(3.1) Xi=x+ f b(s, X,)ds + J o(s, Xs)dW,, zeR?.
0 0

Namely, we make the following assumptions.

Assumption 3.1. We assume that (b, o) are bounded measurable functions, uni-
formly Lipschitz with respect to x, and such that oo is uniformly positive definite
(i.e. uniformly elliptic).

Note that Assumption[3.1} in particular, implies that the matrix o is invertible.

Assumption 3.2. We assume that

f = g(XT) and f(tvya Z) = F(t7Xt7y7Z)a

where g is a-Holder and D-valued, F is measurable in all variables, globally Lip-
schitz in (y, z), and such that |F(-,-,0,0)| is bounded.

Recall that Assumptions and hold throughout the paper, even if they
are not cited explicitly.

3.1. Penalized equation. We begin by noticing that ¢? € C*(R?) and denoting

U(y) = VU0 = YW)VH(), yeR,

where we extend (naturally) Vi to D by zero. We also extend V?i? to D by
Zero.

It is useful to note that there exist constants ¢, C, such that
(3.2) 0<cp <P <C.

Next, we consider the following penalized equation:

T T T
(33) Yr—6+ f f(s,Y:,Z:)ds—f WYL+ [ 27P)ds — f Zraw,.
t t t
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Let us remark that, in contrast with the convex framework tackled in [22], it is
natural (and necessary) to include |z|? in the penalization term, as can be seen,
e.g., from (2.3). For convenience, we introduce

t t

B i | av(y)ds, OF = [ nu(ry)|ZiPas,
0 0

(3.4) Ki' = o + 6.

3.2. Existence of a solution to the penalized equation. We start by consid-
ering the following family of approximating BSDEs, indexed by a pair of positive
integers M = (M, Ms):

T T
FrM(s, X, ymM zmMyds — J ZmMaw,,

t

(35) VM= g(Xp) + f

with
FrM(t,x,y, 2) o= f(t,y,2) =npan (@) VO @) 1+ pan(127),  pr(z) := 2 Ak,

The above BSDE has a globally Lipschitz generator and, therefore, is known to
have a unique Markovian solution (Y™ ZnM) e 72 x 37 (see, e.g., Theorem
4.1 in [16]). The following Proposition uses the weak star-shape property of D,
stated in Assumption to establish a uniform estimate on (Y™™ ZmM).

Lemma 3.1. There exists a constant C > 0, such that, for any n > 1, any
M = (M, Ms), and any t € [0,T], the following holds a.s.:

(3.6)
T T
mww+mUwaHH@M%4<OEWP+JO+V@&®W®L
: t

(3.7)
| | o (VM) (1 + (122 P)as| < o6+ | s 5.0.0)7)ds .

Proof. Without loss of generality, we assume that ¢ attains its minimum at
zero. Then, we consider arbitrary ¢ € [0,T] and constants « > 0, 5 > 0, to be
determined later, and define

[t,T] x R? 3 (s,) = h(s,y) := e’ (aly* + (¢c(y) — ¢c(0))?) € R.

We observe that (¢¢ — ¢c(0))? is convex and that h(s,y) < e?T=¢|y|?, for some
positive constant cy. Then, we apply Itd’s formula to the process h(s, Y»M)
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(recalling (3.3)), to obtain
o V"M P < h(t, VM) < (T, €)

T
+ 2f @Y + (9o (VM) = ¢e(0) Ve (VM) - f(s, VMM, 20 ds
(3.8) )
—J npan, (WY M)Vyh(s, Y - V(Y M)(1+ par, (125M]))ds

T T T
— 2f YV h(s, YMY . Z20MAW, — J P ZnM12qs — 5f Pty M2,
t t

t

AsY™M e 72 and Z™M e 52, the local martingale in the above representation
is in M! and, hence, is a true martingale.

Next, we notice that the fourth property in Lemmal2.4]implies the existence of
a constant ¢; > 0, such that

VﬁbC(st’M) : V@/)(YSH’M) = c11gyrmgpy.
Then, there exist constants ¢, c3 > 0 such that
T
- f noan (VY)Y (s, M) - VoY) (1 + pag (120 ))ds
t
rT

<—2] e par, (VM) (1 (@ (VM) = ¢e(0) — aca YY) (1 + pary (|20 2))ds

t

rT

<=2 ], e par, (P(YM) [er (6 (VM) = 6e(0))
—acy(¢e (VM) + [Be(Y D] (1 + pae(12717)) ds

T
<o j 0”5 pary (B(YPM)) (14 pary (1Z27M]2))ds,
t

provided « is small enough. In the rest of the proof, we assume that « is chosen
so that the above inequality holds.

Next, we remark that

T
2 [ e @ el ) < 6e(0) T M) - (5, 2, 2

T
<O f P (o + D)[YM] = ¢e(0)) (| £(5,0,0)] + Col VM| + Co| Z2M)) ds
t

N

T
| e (culyz i 4 ot 110,00 + 5120 as.
t
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Combining the above estimates and (3.8), we conclude that, for a large enough
£ > 0, there exists a constant Cy > 0, such that

T T
n n n a n n
a2+ o [ opan OO (1 a2 ) ds 5 [ 2 |
t t

T
< ewT—ﬂEt[cow +] (ot |f<s,o,0>|2>ds] ’
t

which yields the statement of the lemma. ]

Proposition 3.1. Under Assumptions and[3.2, for any n > 1, the BSDE
has a Markovian solution (Y™, Z™). In particular, there exists a measurable
function u™ such that Y;" = u"(t, X;). Moreover, the estimates (3.6)—(3.7) hold
with (Y™M  Z™MY) and pyy. replaced, respectively, by any solution (Y™, Z™) of
and by the identity function.

Proof. The main statement of the proposition follows from Theorem 2.8 in [48]
(without the localization used in [48]). To be able to apply the latter theorem,
we first consider the following auxiliary BSDE, which can be viewed as a middle

ground between (3.3) and (3.5):

T T
(3.10)  YM = g(Xp) + f FrMi(s X, YmM gz s J ZmMaw,
t t

with B

F0(t,w,y, 2) == f(t 2y, 2) = npan (0 () V() (1 + |2]%)
and recalling that pys, (r) = zA M;. We claim that the unique solution (Y™™  ZmM)
of (3.5)) converges (along a subsequence) to a Markovian solution (?”’Ml, ZmMr)
of (3.10), as My — 0. Indeed, this claim follows directly from Theorem 2.8 in
[48]. To verify the assumptions of the latter theorem, we first notice that, due
to (3.6), there exists a constant ¢ > 0 such that [Y;""| < ¢, for all ¢ € [0,7]
and n, M. Moreover, for large enough C' > 0 (independent of n and M), h(y) :=
C (aly* + (¢c(y) — ¢¢(0))?) is a global c-Lyapunov function for (F™™),, in the
sense of Definition 2.3 in [48], where « is the constant chosen in the proof of
Lemma [3.1] Indeed, there exists a large enough C' > 0, such that, for all |y| < ¢,
we have:

%C Tr[(z0)" (V2h(y))zo] — CVh(y) - F™M

> CaTr[(z0) " z0] — 2C [ay + (de(y) — ¢c(0))Voe(y)] - f(t, 2.y, 2)
+2Cn [ay + (¢c(y) — 6c(0))Vee(y)] - Voo (y)par, (b (y) (1 + pas(|2[7))
> [z =

where we used the uniform ellipticity of oo, Assumption , and the fourth
property in Lemma and repeated the estimates used in (3.9). In addition,
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we have |F"M(t,z,y, 2)] < C + C,|z|?, with the constants (C,C,) independent
of M,. Observing that F™M converges to E™M locally uniformly, as M, —
0, we conclude that the assumptions of Theorem 2.8 in [48] are satisfied and
that has a Markovian solution (Y™™t Z™M1) which is a limit point of
{(Yn’M’ Zn’M)}MT

Next, we recall that, due to (3.6]), |Y"™*| is bounded uniformly over M. Hence,
|Y"M1| can be bounded uniformly over M; > 1, and, in turn, (Y™, ZM1) solve
for any large enough M; > 0.

The estimates f are obtained by repeating the proof of Lemma for

the equation (3.3) in place of (3.5). O

3.3. A priori estimates. The following result relies on the asymptotic convexity
of the squared pseudo-distance function, stated in Lemma [2.5]

Lemma 3.2. Under Assumptions and [3.2, there exists a constant C' > 0,
such that, for any n = 1, any solution (Y™, Z") of (3.3), and any t € [0,T], the
following holds a.s.:

w0y [ (1o 227 s

T
< CEtllélz - rf<s,o,o>|2ds] |

and, wn particular,
d(Y;", D) < Cn~ 2.

Proof. We begin by applying It6’s formula to |1)(Y;")|?, to obtain

T T
SRV =2 f YY) f(s, Y7 Z0)ds — 2 f n (V)|

T T
(3.11) 2 [ mlwpziPs -2 [ v zzaw,
t t

T
-5 | e ez

Remark 3.1. Note that the Hessian of 1? has a discontinuity at éD. To jus-
tify the use of Ité’s formula, we approximate ? by a sequence of C* functions
{g™}, such that g™, Vg™ and Vg™ converge, respectively, to 1*, Vi? and V?1)?
everywhere in R, and |Vg™|, |V2g™| are locally bounded uniformly over m. To
construct such a sequence, we first define

~

o(y) := o(y)(1-0(|ly|-R—-1))+9(jy|—R), d(y) := d(y)+ly[d(d(y)/e), yeR?,
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where we recall the original function ¢, appearing in Assumption|1.1, and use the
same ¥, R, and €, as the ones used in Subsection to define 1 (see ) It
is clear that ¥(y) = ¥(y), for y € RAD, and that )(y) = ¢(y), for y € D. Thus,
1[) 1s a smooth extension of 1 into D. Next, we consider an infinitely smooth
nondecreasing function p : R — R, such that p(x) = —1 forz < —1 and p(z) =z
for x =0, and define

9" (y) = %/ﬁ (mﬂ(y)> , yeRY

It is easy to check by a direct computation that g™ (y), Vg™ (y) and Vg™ (y)
converge to zero as m — o, for any y € D. On the other hand, ¢"(y) and its
first two derivatives coincide with 1?(y) and with its respective derivatives, for all
y € R\D and all m. Thus, we obtain the desired sequence {g™}. Applying Ito’s

formula to ¢g"(Y;") and using the dominated convergence theorem to pass to the
limit as m — o0, we establish (3.11)).

As |¥| is linearly bounded (see Lemma , we conclude, as in the proof of
Lemma , that the local martingale in (3.11) is a true martingale.

Next, we note that
2U(Y) - f(s, Y Z0) < nRYD)P + 07 | f (s, Y] 20
and use Lemma to obtain:
(3.12)

T
B 2007 1(s, Y2 2200
t
T T
<E, f n|\v<n">|2ds+on—lxat[|s|2+ f (1 + [f(s,0,0)2)ds]
t t

In addition, Lemmas [2.4] and [2.5] yield
Te[(Z7) VAR (Y 2] = —CO (Y| 2] .
Then,

2
(3.13) < (Cn|O(Y)| = en®|O(YD)[?) 1227,

n (1Tr[<zs>Tv2w2<w>Z:] n 2nrw<3;">12|z:|2)

Next, we observe that

(3.14) (Crlw(y?)] - Cn?[e(v2P) |22 < ¢z P
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Collecting (3.13)—(3.14) and using Lemma we obtain

(315)  —E, f (Te[(22) V20 (V) Z2] + 20w (V) P|Z7 ) ds

T T
< Cnl]Etf |Z7?ds < CnlEtl\ﬂQ + f (1+|f(s,0, O)]Q)ds] :
t t

Taking the conditional expectation in (3.11)), multiplying both sides by n, and

using (3.12), (3.15), we complete the proof. O

The following proposition improves the rate of convergence of Y™ to D.

Proposition 3.2. Under Assumptions[3.1 and 3.3, there exist M, C > 0, such
that, for any n = M, any solution (Y",Z") of (3.3), and any t € [0,T], the
following holds a.s.:

n(¥;") < C.

Proof. First, we denote by |V?%(y)|+ the maximum absolute value across all
negative parts of the entries of the matrix V21 (y). Then, we fix arbitrary €, > 0
satisfying

-1
V20 (y) ]« ) o In(y) - f(s,9,2)| g0
e< |+ sup =5 , e |e+2 sup ,
( yedD ’v¢(y)’2 yedD, zeRax™ se[0,T] ’VQ/J(?J)’
and define

2

U(y) := (¥(y) — 1/(en)) "V (y) = %V (((y) = 1/(en))™)",

H(y) := V2 () = 1/(en)")" = 2V (y) V() Lys1ien +2(4(y)—1/(en)) " V*(y).

Next, we apply Ito’s formula to ((¢(Y*) — 1/(en))™)? (the validity of Ito’s
formula for the function ((¢) — 1/(en))™)? is justified similarly to Remark|3.1), to
obtain

(W) — 1/(en)))? = 2£ TV - f(s Y Z0)ds — 2 f A (Y| [T (V)| ds

T T
(3.16) 2 [ ez s -2 [ e ziaw,
t t

I -
-5 | mlE Rz

t

As |U"| is linearly bounded (see Lemma [2.4)), we conclude, as in the proof of
Proposition [3.1] that the local martingale in the above representation is a true
martingale.
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Next, we note that

20 (YY) - f s, Y Z0) — R (Y[ (Y]]
< UV InYS) - (s, Y 28] = np (V) [VE(Y)]) -

Notice that, whenever ¥™(Y) > 0, we have ¢)(Y*) > 1/(en) and, hence, ny)(Y") >
1/e. Then, since € > 0 satisfies

—1
€ < (E +2 sup [n(y) - £ (s, v, Z)z°°> ;

yedD, zeRix™ sc[0,T] ]V¢(y)]

and since Y" is close to D for large enough n (due to Lemma , we conclude
that

n n n Hn<y> ’ f(sayaz)HJ/w
Y| V(Y]] = V(Y. 2
np (Y V(Y) = V(Y]] <€+ oD o Vo)) )

= [VO(Y)|e/2+ 2n(Y]) - f(s, Y, Z0)|
and, in turn,
(3.17) 20n(Y ) - fs, Y, Z8) = n|U (Y)Y < 0.
Next, we recall that
1 .
S T(Z) T HY)ZE] = ((Y]) = 1/ (en)) " Tr[(29) V2 (Y]) 2]
and, hence,
1 7 + n
—5Tl(29) H(Y) 2] < VPR (V) | (0 (Y]) = 1/(en) ™ 1277
In addition,
=T YZP =~V Y)Pe) () = 1/(en) ™ |27 .
Collecting the two equations above, we deduce
1 .
— 5 Tl(Z0) H(Y)Z7] = nl e (Y[ (V)| 27
< @) = 1/(en)"1Z [ (IV0 (V) e = [V (7)) Prap(v])

Recall that, whenever ¢(Y") = 1/(en), we have ny(Y]") = 1/e. Then, since € > 0
satisfies

\W(y)r*)‘l
< (v i)
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and since Y is close to D for large enough n, we conclude that

ny|2 n ny|2 ||V2¢(?J)H*
T P (r2) > VP (= + sup [EEU: )
> (Vo) /2 + [ V2607

and, in turn,
1 .
(3.18) — 5 Tl(Z0) T H(Y) 28] = n| R (V)| e (Y] 277 < 0.

Taking the conditional expectation in (3.16), we make use of equations (3.17)
and (3.18), and of the fact that [¥"| < ||, to obtain

(V") = 1/(€n))+>2+Et£ [PV (1+127)7) ds < 0

and complete the proof. ]

Using Proposition we can improve the statement of Proposition and
deduce that the Hélder norms of the Markovian solutions of the penalized BSDEs
are bounded uniformly over n.

Corollary 3.1. Under Assumptions and there exist constants M > 1,
o' € (0,1], and C > 0 (independent of n), such that, for any n = N, the BSDE
has a Markovian solution (Y™, Z™), with Y;* = u™(t,X}), and any such
solution satisfies

(319) Sup |un(t, LE) — Un(t/7 l'/)|
(t,x)#(tx) ‘t — tl|a//2 + |ZU - I/|al

< C.

Proof. The statement of the corollary follows from Theorem 2.5 in [48] (without
the localization used in [48]). To verify the assumptions of the latter theorem, we

consider the following capped version of (3.3):

T T
(3.20) v = g(Xp) + f FN (s, X, YN 20NV ) ds — f ZmNaw;,

t t
with R

PNt ayy, 2) o= f(t @y, 2) = pn(m (1)) Vi (y) (1 + [2)

and recalling py(z) = x A N. Propositions and imply the existence of
(large enough) N,91 > 0, such that, for every n > N, there exists a Markovian
solution (Y™, Z") of (3.3)), with ¥;" = u™(¢, X;), and any such solution also solves
(3-20). Moreover, there exists ¢ > 0 such that |u"| < ¢ for all n.

Next, we fix N as above and verify easily (as in the proof of Proposition
3.1) that, for large enough C' > 0 and small enough o > 0 (independent of
n), C(alyl? + (¢c(y) — ¢c(0))?) is a global ¢-Lyapunov function for (F™V),, in
the sense of Definition 2.3 in [48]. In addition, |[F™N(t,z,y,2)| < C' + Cy|2|?,
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with the constants (C,Cy) independent of n. Thus, Theorem 2.5 in [48] yields
the uniform boundedness of the Holder norm of u™. ]

Without loss of generality, we assume that the statements of Proposition
and Corollary [3.1] hold with 91 = 1. From Corollary we deduce that there
exists a subsequence of {u"},>; converging locally uniformly to a function u sat-
isfying (3.19). To alleviate the notation, this subsequence is still denoted (u"),>1.
Recalling that Y;* = w"(¢, X;) and introducing Y; := u(t, X;), for ¢t € [0,T], we
observe that

(3.21) E[ sup |Y," —Y}]Q] — 0,

t€[0,T] n—+0

since t — (¢, X;) is a.s. continuous and {|Y™|} is bounded uniformly by a constant,
see Lemma [3.2]

We conclude this section with the following lemma, which is used in the next
section. This lemma provides a uniform upper bound on the second moment of
the auxiliary process

t
™ .= exp (J (1 K+ |K;n|) ds> tef0,T7,
0
where we recall (3.4)).

Lemma 3.3. Under Assumptions and[3.2, for any € > 0, there exists N = 1
(independent of n) such that, for alln =1 and all 0 < k < N, we have, a.s.:

T(k+1)/N .
E, J |ZM? + |KMds | <e, Yte[Tk/N,T(k+1)/N].
t

In particular, for any B > 0, there exists a constant C = C(B) (independent of
(n,m)) such that
E[(Tx™P1<C, ¥n,mz=1.

Remark 3.2. [t is worth noticing that the constant C' appearing in Lemma
does not depend on the initial value x of the diffusion X, as follows from the proof
of the lemma.

Proof. The proof of the first statement of the lemma is an improvement of
the estimates in the proof of Lemma (3.1 with the use of Corollary We
fixt <t e[0,T], 5/ >0 and o > 0, and apply Itd’s formula to the process
(=Y 2+ (¢e (V) — ¢e(0))?)sefr (recall (3.3)), to obtain, as in the proof
of Lemma

Y

t/
Y72 + By [ f \Z?\2+u<;‘!d5] = [eﬁl(tl‘”lm“cf (1 4 [F(s, X,,0,0)2)ds |
t t
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which holds for large enough (" and small enough a.
Then, by using the upper bounds on [Y™| (see Proposition[3.2) and on |F(., ., 0,0)|
(see Assumption , we obtain:

E, f |Z:|2+|K:\ds]
t

t/
<B | S CONPP - P eﬂ'<s—t><1+|F<s,Xs,0,0>l2>ds]
t

"t~ n n n n n C 14
<K [ (70 — DY+ Yo+ Y e, Xp) —u (t,Xt)|+E(eﬁ(t t)—l)]

<O 1) + OB [~ 172 + X0 — X ] < @) — 0"

where C’ is independent of n, and we made use of Jensen’s inequality and of
standard SDE estimates on X in the last inequality. The above proves the first
statement of the lemma.

To prove the second statement, we fix an arbitrary f > 0 and consider N
corresponding to € = 1/(8/). Then, the first statement of the lemma and the
John-Nirenberg inequality yield:

E [62/3&? IK?IHKTIds] <E [626 §§ TN R |+ K sy, [625§§(N71>/N |1'<g|+u'<;n|ds]]

(N-1)/N

< 9F [62555 (V= |Ky|+|Kr\ds]
Iterating the above, we obtain the desired estimate. ]

3.4. Existence and uniqueness. We denote by {(Y", Z")},>1 a sequence of
Markovian solutions to satisfying (whose existence is established
in the previous subsection). The goal of this subsection is to establish that
(Y™, Z", K") € 92 x A% x H '}, (with K" defined in (3.4) )] converges to
a solution of the reflected BSDE and that this solution is unique in the
appropriate class.

Theorem 3.1. Let Assumptions and [3.2 hold. Then, there exists a triplet
(Y, Z,K) e % x 2 x A", such that

Tim (Y™ =Y]p2, [2" = Z] 2, |[ K" = K] 52) = 0,
and (Y, Z, K) solves (1.2). The process K is absolutely continuous and satisfies,
for all > 0:
(3.22) Ee”VerrH)] < oo .

2The fact that K™ € #* follows from the inequality (3.7) and from the second statement of

Proposition
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Moreover, this solution to (1.2) is unique in the class % (1) (recall Definition[2.1)).

Remark 3.3. If, in addition to Assumptions and (3.2, g and F are globally
Lipschitz in x (i.e., a = 1 in Assumption , then there exists a constant C
such that

1Z| < C, dt x dP-a.e.

Indeed, using the same arguments as in the proof of Corollary[3.1, we conclude
that the conditions of Theorem 2.16 in [27] are satisfied. The latter theorem yields
the existence of a constant C, such that |Z}'| < C for a.e. (t,w) and for all n. It
follows then that |Z| < C.

Remark 3.4. It is worth noticing that every exponential moment of Varp(K)
can be bounded by a constant that does not depend on the initial value x of the

diffusion X, as follows from Remark[3.2 and from the proof of Theorem|[3.1.

Remark 3.5. As explained in the discussion preceding , there exists a
measurable function u such that Yy = u(t,X;). In addition, since (Y™, Z") is
Markovian (see Corollary , there exists a measurable function v"™ such that
Z = v"(t, X;). Then, using the convergence of Z" (see Theorem [3.1) and the
strict ellipticity of X, we easily deduce the existence of a measurable v, such that
Zy = v(t, Xy). In this sense, the solution constructed in Theorem 15 Markov-
tan. One may naturally wonder if this Markovian solution yields a solution to
an associated partial differential equation (PDE). Adapting the PDE formulation
provided in [35] for a convex reflection domain, we conjecture the following PDE
for the Markovian solution u constructed in Theorem[3.1]: for all admissible test
functions w : [0,T] x RY — D,

<—+.,2”tu—|-f(ta:uaTVu) u—w + clw —ul*n(u )>>0, 0<t<T,

u(t,.)eD, 0<t<T,

with £, being the infinitesimal generator of X at time t and with ¢ being a large
enough constant that appears in Lemma (2.5, An alternative, though related, for-
mulation can be obtained using [39]. In any case, studying the precise connection
between the Markovian solution to constructed in Theorem and the as-
sociated PDE is outside of the scope of this article and is left for future research.

Proof. 1.a We first prove the uniqueness of the solution in the desired class. For
any solution (Y, 7', K') in % (1), we have

(3.23) E [eﬁoV”T(K"] < 40,
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for some p’ > 1. Setting 1 <p:=(1+p)/2<p,¢ :=p'/p>1landq=q/(d—-1),
we obtain, using Holder inequality:
1

(3.24) E[G%(VarT(KHvarT(K,))] < ]E[e%"arT(K)]flz E[e‘};g\/arT(K’)] v

By (3.23), we have E[e%gv""”(m} = ElelgovarT(K)] < . Then, using (3.22),

which is proved below, we obtain
(3.25) E[eRLU(VarT(K)JrVarT(K/))] .

Proposition then, yields the desired uniqueness stated in the theorem.
1.b The fact that K is absolutely continuous is proved in Lemma

2. Turning to the existence part of the proof, we recall that the convergence of

{Y"} is established in (3.21). Moreover, it follows easily from Proposition
that, with probability one, Y; takes values in D for all ¢ € [0, T].
We now turn to the convergence of {Z"}. For n,m > 1, we denote

Sfy = f,Y,", 20 — f(t,y,y", Z2"), oK :=K"—K™,
§Y (=Y Y™ §Z =2 — 7™,
Applying It6’s formula to (65/3|5Ys|2)56[t,T], we obtain

T T T
0Y;|% + f P57, 2ds = 2 f P EVY, 6 fds — 2 J eP5Y, L 6K ds
t t t

(3.26)
T !/ T /
—2 f CNSY, 5 Z.dW, — B f P05y, |2 ds.
t t

Choosing a large enough ' > 0 and using the standard estimates, we deduce

. |

. 2
Note that Lemma|3.3|yields the existence of a constant C', such that E (Sg |5Ks|ds> ] <

T T,
(3.27) EU |5ZS|2ds] < (JEU ‘53/5 K,
0 0

C for all n,m. Then, using Cauchy-Schwartz inequality, we obtain

T 2]
E <J |5Ks|ds>

O I
The above estimate, along with (3.27) and (3.21), implies that {Z"},>; is a Cauchy
sequence. Thus, there exists (Y, Z) € 2 x s? such that (Y",Z") — (Y, Z).

(ST

1
2

sup [6Y;|?
s€[0,T]

T
EU h 5Ks|ds] <E
0
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Next, we recall that
t t
K'=Y"-Y/+ J f(s, Y, ZMds — M, M := J Z7dWs.
0 0

Doob’s maximal inequality implies that {M™} converges to M in .72, with M, :=
Sf) Z,dW,. As f(t,-,-) is Lipschitz, we conclude that
(3.28) K"~ K]y =0,

with the continuous process K defined as

t t
K =Y, = Yo+ | f(s,Y,, Z,)ds — J Z,dW.,.
0 0

Let us now prove that K € #1 and that dK, is directed along n and is
active only when Y touches the boundary. To this end, we define the auxiliary
nondecreasing processes

t
K%=anﬁwbﬂﬁﬂ®,temﬂ-
0

From Lemma we deduce the existence of a constant C', such that ]E[K%] <

C for all n. Then, using Proposition 3.4 in [7], we know that there exists a
nondecreasing nonnegative process K, two sequences of integers {p < N,}, with
p — 0, and a family of numbers {\?}, with ZN” AP =1, such that

Np
(3.29) P (Pf(t = Y INE] > K, Vte [O,T]) —1.
r=p
The above implies that the measure induced by d”K; on [0, T] converges a.s. to
dK;. Then, for any bounded continuous process x and any 0 < t; <ty < T,
(3.30)
to . T R
Pty ) : J th Nerp (V) (1 + | ZF[?)dt —f xdPK —>J xedKy, as.
0

t1

From the first statement of Lemma (with the use of Proposition , we
conclude that, for any € > 0, there exists N > 1 (independent of n) such that for
all pand all 0 < k < N we have, a.s.:

E{|n*(t, T(k+1)/N)|] <e, Vtel|Tk/N,T(k+ 1)/N].
Then, repeating the last part of the proof of Lemma [3.3] we conclude that, for
any 3 > 0, there exists a constant C' such that

E[GBUP(O’T)] <C, Vp.
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Thus, the family {exp(81?(0,7))}, is uniformly integrable. The latter implies,
in particular, that the convergence in (3.30) holds in £' and that all exponential
moments of Kr are finite.

Next, we define

NP
Ky o= Y NK], te(0,T).
r=p

We also denote by % a Lipschitz extension of V1 into D (constructed as in
Remark [3.1). Then, for any event A and any ¢ € [0, ], we have:

]E{pKt 1A] - E

t Np
| S wwaron iz s 1A]

0=

=E

t Np
f V(Y)Y NV (1 + | 27 )ds 1A]
0

T=p

N, ¢
+O | E 2 AL sup Y] — Y5|J (1+1Z7))ds
= sl 0

t
- EU Vi (Y,)dK,ds 1A] :
0
where we used (3.30), along with its £' version, and the estimate

t Ly Y2
]E[ sup [V — YS|J (1+121°)ds | < C||Y’“—YHy2E[eSO(1+|ZS‘2)] < CIY"=Y| g,
0

s€[0,t]

which follows from Lemma [3.3]
On the other hand, as K™ converges to K in . K, 14] converges to F K;14].
Since A is arbitrary and K. is continuous, we conclude:

(3.31) P <Kt = ft%(}g)dksds, Vie [O,T]) —1.
0

Note that the integrability of Kr and the above representation, in particular,
imply K € ¢

It only remains to show that

T
(3.32) J 1p(Y;)dK, = 0.
0
To this end, we choose an arbitrary Lipschitz f supported in D and any event A,
to obtain:

0

T . T Np
g [ oiari | - in EUO ) 3 X070+ 127 L4
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n—0o0

T Np
~ lim E[ R RaEARTY 1A]

r=p

Np T
+0 (E’Z AP sup ]Y[—Yt\f (1+ Z;"|2)dt]> = 0.
0

r=p te[0,T7]

As A is arbitrary, we conclude that, for any Lipschitz f supported in D, we
have Sg f(Y)dK; = 0 a.s.. Approximating 1p with a sequence of such f, we use
the monotone convergence theorem to deduce (3.32). Combining the latter with

(3.31)), we obtain (1.2)(ii) and conclude the proof of the first part of Theorem 3.1]
L]

Remark 3.6. Theorem[3.1implies that, under Assumptions|3.1} and[2.1 with
6 = 1, there exists a solution (Y, Z, K) to (1.2) that is unique in #* x H* x K.

4. WELL-POSEDNESS BEYOND MARKOVIAN FRAMEWORK

4.1. Discrete path-dependent framework. In this subsection, we extend the
existence and uniqueness result obtained in a Markovian framework (see Theorem

to a discrete path-dependent framework.

Assumption 4.1. Let ¢ be an arbitrary strictly positive integer and consider the
partition 0 =ty <t; < .. <t, =T of [0,T]. We assume that

6 = g(Xt17 "-7Xte) and f(S,y,Z) = F(SaXt1A57 e ath/\sayvz)a
where

(i) g is a-Hélder and takes values in D,

(i1) F is measurable in all variables, globally Lipschitz in (y,z) uniformly over
(1, ..., ), globally a-Hélder in (xq, ..., x¢) uniformly over (y, z), and |F (-, - -
15 bounded.

We note that ¢ = 1 corresponds to the Markovian framework of the previous
section, with an extra regularity assumption on the generator with respect to x.
We also recall that Assumptions and hold throughout Section [4] even if
not cited explicitly.

Theorem 4.1. Let Assumptions|3.1] and Assumption[].1 hold. Then, there exists
a triplet (Y, Z,K) € /% x % x A that solves (1.2). Moreover, all exponential
moments of Varp(K) are finite, and this solution is unique in the class % (1)

(recall Definition [2.1).

Proof. Once the finiteness of the exponential moments of Vary(K) is proven,
the uniqueness of the solution in the class % (1) follows from the same arguments
as in step 1.a of the proof of Theorem [3.1. Let us now prove the existence part of

,0,0)|
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the theorem. To this end, we use the backward recursion to construct a solution
on each interval [t;,t;41] for 0 << ¢ — 1.

Since the case ¢ = 1 corresponds to the Markovian framework of the previous
section, we assume that ¢ > 1 and consider the time interval [t,_;,T]. For any
(t,x) € [0,T] x RY, we denote by X»* the unique solution of on [t,T1,
which starts from x at time ¢. We shall use the notation X for the original
diffusion started at time zero. For any x = (x1,...,x¢_1) € (R¥)*!, we denote
by (Y*, Z* K*) the solution of on [ty_1,T], with the terminal condition
g(x, thf’l’xz’l) and with the generator F(.,x, X'-1*-1_ ) whose existence fol-
lows from Theorem and whose uniqueness in the appropriate class follows
from Theorem 2.2l

Next, we denote by (Y*" Z*") a Markovian solution of the penalized BSDE
on [ty—1,T], whose existence follows from Proposition 3.1 In particular,
there exist measurable functions u™(x, .,.) and v"(x, .,.) such that

xn __ o mn te—1,Xe—1 X,n _ .n to_1,Xp—1
YO =ut(x,t, X, ), 27" =0"(x,t X, ).

By considering a sequence of Lipschitz approximations of , given by ,
we apply Theorem 5.4 in [28] and, passing to the limit for the Lipschitz approxi-
mations as in the proof of Proposition 3.1 we conclude that a Markovian solution
to (3.3) can be constructed so that u™ and v™ are jointly measurable in all vari-
ables. Passing to the limit in n along a subsequence, we use Theorem and
the uniform Hoélder estimate in Corollary to deduce the existence of jointly
measurable functions u and v satisfying

(4.1 Y =l XE), 2 = ot X,

Then, by denoting X = (X,,...Xs, ), we consider the progressively measurable
processes (Y,X, ZX)ep, ) and define

t t

F(s,X,Xﬁé1’Xt“,YSX,Z§()ds—J ZXaw,, t,, <t<T.

ti—1

Kfc = th—Y;fl-i-J

ti—1

to—1,Xe, 4

We note that X = X, and that (V;X, Z¥X, K{)ep, .1 1 a solution of
(1.2) on the time interval [t,_;,T], satisfying KX = 0.

to—1
In order to iterate this construction and to extend the solution to the time
interval [t,_o,t,_1], we have to verify that the associated terminal condition Ytil
of the reflected BSDE on [ty_o,te_1] is an a-Holder function of X. To this
end, we recall the function v in (4.1)) and define, for all X = (x;, ..., x,_5) € (R )2
and x,_; € R?, the deterministic function

g(i7 XZ—I) = u(f(, Xy—1, tf—l; Xf—l) — Y;j;’i(—l‘
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Let us prove that this function is a-Holder. Indeed, for any x := (X,x,.1) €
(R*) and ¥’ := (¥,x,_,) € (R")1, Propositionwith p = 2 yields

G(x) = ) < Y =YX 52
4‘| 1/4

T , 4 1/4
+ CE [(J |F(s,x, Xl-1Xe-1 VX 7%) — F(s,x’,X?_l’xf’l,Y;x, Z;‘)|ds> ]

<CE Ug(X,X;fl’x"l) — (¥, Xy

0

1/4
to—1,%)_
<O | |x—=xX[*+E| sup | XXt — X/t ,
0<s<T

with a constant C' that does not depend on z (see Remark. Then, the Jensen’s
inequality and the standard SDE estimates yield

19(x) = §(x)| < Clx = x|,
which proves the a-Holder property of g. Considering the reflected BSDE
on [ty;_o,ts_1], with the terminal condition Yti: = §(Xy, ..., Xy, ,) and with the
generator
F(SvXt1/\sa ---,th_QAs, th_1A87th_1Asaya Z)v
we deduce, as in the first part of the proof, that it has a solution in the form (4.1).

Finally, iterating the above construction, we concatenate the “Y” and “Z” parts
of the solutions constructed on the individual sub-intervals, and we sum up the
“K” parts (assuming that every individual “K” part is extended continuously as
a constant to the left and to the right of the associated sub-interval). It is easy
to see that the resulting process (Y, Z, K) € /2 x % x # " is a solution of
on [0,77]. O]

4.2. General case.

Theorem 4.2. Let Assumption[2.1] hold with 6 = 2. Then, there exists a triplet
(Y,Z,K) € % x A% x H* that solves (1.2), and this solution is unique in the
class % (2).

Proof. The uniqueness part of the theorem is a direct consequence of Proposition
and Corollary [2.2] Let us prove the existence part. To this end, we construct
a Cauchy sequence of solutions to the approximating reflected BSDEs.

First, we observe that the terminal condition £ can be approximated by a
sequence of random variables of the form ¢" := g,(W,,,...,W,, ), where g, is
infinitely differentiable. The sequence (£™)nen+ can be chosen so that it converges
to £ in £, for any g > 1 (see, e.g., [40]). In particular,

: _¢n12p/(p—1)] =
(4.2) lim E[|¢ - ¢"D] =0,
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with p > 1 appearing in Proposition 2.1 Replacing g, by ¢, A |{].2=, we can
assume [£"| g < [€]g=. We observe that £" satisfies Assumption [4.1{i) with
X=W.

Second, to approximate the generator, for every n € N*, we denote by K" the
closed ball in R**? of radius n centered at zero, and choose a sequence of numbers
€, 1 0. We set

by = Hf(v 0, O)ng + Kf’y sup |y| + nKﬁZ’
yeD
recalling Assumption[1.2] For each n, we denote by £ the compact convex subset
of €(D x K") (the space of continuous function endowed with the uniform norm
|- ||s) consisting of all Lipschitz functions with the Lipschitz coefficients K, and
Ky, in the y € D and z € K" variables, respectively, and with the (uniform) norm
bounded by ¢,,. Note that the stochastic process fipxn takes values in £7.

Let us now construct an approximation of fip,xn in £" that satisfies Assump-
tion (for X = W). To this end, we denote by {¢"} ", an €,-cover of the
compact set £", with M, being a positive integer. We denote by f”(t, -) the
(measurable selection of the) proximal projection of fipycn(t,-) on {@) My Tt
satisfies

Mr ~
fr(t,) = D) on O™ = da()iiy  and  [f"(8,) = fipwn (8, )]s < as,
m=1

where 7" is a progressively measurable process taking values in the (non-empty)

set of extremal points of Sy, := {z € RM |0 < 2™ < 1,2%21 ™ < 1}. Then,
using the dominated convergence theorem, we obtain

T
13 8 [ o) - PRV < 1o 0.

0

Next, we consider a standard approximation of (7}")co,r] by an adapted process
(0" )tefo,r] that is piecewise constant on the time grid II,, := {to =0 < --- < {} <
--- < tp = T}. This process can be chosen to be Syy,-valued and satisfying

T
sno_ on|2p/(p—1) &
E[L ¢ — 7| dt] < (M, 02)p/(p=1)

Setting
Kp—1
(4.4) Fr(t) = 35 oal)i Lo, 1 (0);
k=0
which is £"-valued, as a random convex combination of {¢™}*" we deduce

T ~ ~
(45) J%Lf%»—ﬂw»?@%4<%
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Next, we apply the approximation result of [40] for each ﬁ{% Introducing, if
necessary, a finer grid ®,, < II,,, we set

77?2 = (BS [TZ ((Wr)re%n,rStZ)] )

where 7 is a smooth function with values in RM» and Bs the (orthogonal) pro-
jection onto Syz,. We can chose 77 so that

A

n NG — ‘n
(4.6) Bjh, i) < G e

Setting f™(t,-) = Z’;gl ¢n(-)17t’%l3 1(t2,t2+1](t), which belongs to £", we have

T
47 B [ 1770 = o] < e,
0
Collecting the above, we conclude that
T
(48) B | sup [f(ty2) - )P0 Ve =0
n—@ 0 yeD, zeKn

We extend f™(t,y,-) to R*¥\K" as a constant in each radial direction, so that
its uniform norm and the Lipschitz coefficient do not change.

It is easy to see that, if f satisfies Assumption [2.1}(i) (resp. Assumption
(iii)), the above construction allows us to build an approximating sequence f"

having the same properties. Indeed, we simply work with £ instead of £" where
£" is the closed convex subset of £" whose elements satisfy Assumption (1)
(resp. Assumption [2.1t(iii)).

Thus, for any n € N*, we have constructed the approximations £ and f" that
satisfy Assumption [4.1, Therefore, we can invoke Theorem to obtain the
unique solution (Y™, Z" K") € /% x H#* x H#' of associated with the input
data (£, f™). Thanks to Proposition we can apply Proposition , to deduce
that, for all n,m e N*,

e i e A A PR L i P2
(4.9) < CE[|¢" - §m|2p/(p71)]<p—1>/<2p)

(

with a constant C' that does not depend on n and m.

p—1)/(2p)

T 2p/(p—1)7 (
+CE J If"(s,YsTZ?)—fm(s%",Z;‘)Ids) ] :

0
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Applying Cauchy-Schwartz, Jensen’s and Chebyshev’s inequalities, we obtain

. 2p/(p—1)
E[U (1+|ZZ‘|)1{|Zr>n}dt> ]
0
- /-2 ¢ or
ng/@—l)—l/?E[(f (1+|Zf|)2dt> ] EU 1{|Zf|>n}dt]
0 0

TP/ (p—1)—1/2 T 2p/(p—1)7 /2 - 12
D U “*'Zf')?dt) EU |Zf|2dt] |
n 0 .

Using Proposition and the energy inequality for BMO martingales, we bound

1/2

T 5 L\ 2P/ D) .
E (So (1+121) dt) uniformly over n. Then, for all m > n, we obtain from
the above estimate:
T 2p/(p—1)7 (P=1)/(2p)
E (J |fn(t7}/tnvztn) _fm(t7}/tnvz?)|dt) ]
0
T 2p/(p—1)7 P—1)/(2p)
<CE (f (1+ IZFI)1{|Z?>n}dt> ]
0
(4.10)
T 2p/(p—1)7 (P=1)/(2p)
+ CE <f |f(t, Y, Z) — f™(t, Y, Ztn)|1{|zp<n}dt> ]
0
T (r—1)/(2p)
< n(p_l)/(zp) + OE[L |fn(t7 }/tna Zf) - f(t7 }/tna Ztn)|2p/(p_1)1{ytnep’|zgtgn}dt]

T (p—1)/(2p)
+ CE[J |fm(t7 Y;n7 ZZL) - f(t7 Y;tna Ztn)|2p/(p_1)1{Yt"eD,Zt"|<m}dt:| :
0

In view of (4.8), the right hand side of the above vanishes as n,m — o. Collecting

(4.2)), (4.9) and (4.10]), we conclude:
Y™ = Y™ g2 + | 2" = Z7 |2 + | K™ = K™ 52 2225 0.

In other words, (Y™, Z", K™),en+ is a Cauchy sequence in .? x 52 x .2, Then,
there exists (Y, Z, K) € .#% x #? x .#? such that (Y™, Z" K") =25 (Y, Z, K).
Moreover, Y takes values in D. Recall that (Y, Z", K") is the unique solution to
associated with the terminal condition £" and the generator f™. In addition,
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we have

T
E [J |fn(S’Y:sn> an) o f(37}/;7 ZS)’dS]

T T
<E U [ (s, Y5, Zs) = [ (s, Y5, Zs)lds] +CE U Y — Y|+ |27 — Z|ds | .
t t

Then, we can easily pass to the limit in (L.2)(i) to show that (Y, Z, K) satisfies
(1.2)(1).

It remains to prove that K € £, that dK; is directed along n(Y;), and that
it is active only when Y touches the boundary (the latter two properties will be
shown via the alternative characterization given by Lemma . Repeating the
derivation of (2.11)-(2.12) for (Y™, Z", K™), but without taking the conditional
expectations and with # = 0, we obtain:

T T
J dVarg(K") < C (|§”|2 +J 2V - f(s, Y, Z0)ds —f

0 0 0

T

zygzgdws) :

where the constant C' does not depend on n. The right hand side of the above
inequality converges in probability, as n — oo, hence it also converges a.s. up
to a subsequence which we still denote {(Y™", Z", K™)}. Then, {Vary(K™)},en+ is
a.s. bounded uniformly over n, and Fatou’s lemma yields that Vary(K) is a.s.
bounded — i.e., K is a bounded variation process. Thanks to Proposition [2.1]
{Varp(K™)},en+ is uniformly integrable and, hence, K € #1. As (Y™, Z" K")
solves with the terminal condition £™ and the generator f", Lemma
yields the existence of a constant ¢, independent of n, such that, for all continuous
adapted process V with values in D, we have

T
f (Y = VO)AK? + Y — Vi’n(Y)dK? > 0 as.
0

Finally, we use Lemma 5.8 in [22] to pass to the limit in the above inequality and
obtain

T
f (Y, — VO)dK, + c|Ys — Vi[*n(Y)dK, = 0 as.,
0
which completes the proof of the theorem via another application of Lemma [2.3]

]

5. CONNECTION TO BROWNIAN ['-MARTINGALES

It turns out that the solutions to reflected BSDEs in non-convex domains,
defined via and constructed in the previous sections, are naturally connected
to the notion of martingales on manifolds (also named I'-martingales — see [17]). In
this section, we investigate this connection more closely, in particular, discovering
a new proof of the existence and uniqueness of a Brownian martingale with a
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prescribed terminal value on a section of a sphere and illustrating the sharpness
of the weak star-shape assumption on D (see Assumption .

The connection to martingales on manifolds is made precise by the following
proposition, which states that, under certain assumptions, one can ensure that
the Y-component of the solution to always stays on the boundary of the
domain D. Treating D as a manifold and expressing dK; via V2¢(Y;) and 7,
we discover that Y satisfies the definition of a Brownian I'-martingale on the
manifold 0D, given in [17].

Proposition 5.1. Assume the following:
e there exists a conver domain A, satisfying A nD < 0D,

i 1{yeaD\A}Vd(?/a ‘:4) ’ ng(y) = O?
o =0 and & e An JdD almost surely,
e Y,Z,K)e S?*x H? x " solve (1.2).
Then, Y € AnD < 0D almost surely. Moreover, we have
+

(5.1) dVar,(K) = —%Tr[ZtT V2e(Y)) Z,]| dt.

Finally, Y is a I'-martingale with the terminal value & on the manifold 0D endowed
with the Riemannian structured inherited from R? and its canonical connection

I, as defined in [17].

Remark 5.1. It is worth mentioning that the assumptions made in Proposition
imply that the set A cannot be smooth. To obtain an intuitive understanding
of what the set A may look like, we refer the reader to the example that follows.

Proof. We apply Itd’s formula for general convex functions (in the form of an
inequality, as in [5]) to the process d(Y;,.A) to obtain

T
0<d(Y, A <E, [d(g,A) —J Ly.comoqy Vd(Ys, A)dEK, | <0, te0,T],
t

which yields Y € A n D < dD. Applying Ito’s formula to ¢(Y;) yields (5.1).
Finally, using , the fact that dK; is orthogonal to the tangent space of 0D at
the point Y}, as well as (4.9), (4.10), and (5.6)(ii) from [17], we conclude that Y
is a I'-martingale on 0D. ]

In the remainder of this section, we assume that f = 0 and present a simple
example of the domains D and A for which the assumptions of Proposition
hold. This example allows us to obtain an alternative proof of a known result
on I'-martingales using the reflected BSDEs and to illustrate the sharpness of the
weak star-shape assumption (see Assumption .

In this example, we first construct the functions ¢ and ¢¢, which define the
domains D and C as in Assumption on the plane P := R x {0}972 x R of R

These functions and the associated domains are designed to be symmetric with
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respect to the y4-axis — see the precise description below. Then, we extend these
functions and domains to R? via

gb(y) = gb((r(y))Ov "'70>yd)>7 gbC(y) = ¢C((T(y)707 "'70>yd))7

o\ 12
with r(y) := (Zf;ll |y2\2) . For convenience, we use the same symbols D and C

to denote the desired domains in R? and their intersections with P.
Consider the three parameters o € (0,7/2), n > 0, € € (0,7/2 — «), and the
domains Dq ¢, Copyy Aa,e given in Figure which satisfy the following properties:

e C,, is obtained from a square centered at (0, —1 — 7 — sin(«)), with the
sides being parallel to the axes and having length 2 sin(a))+27, by rounding
its corners (in their 7-neighborhoods), such that 0C,,, is a C? curve and
Ca,n is convex,

e D, ,. is symmetric with respect to the axis yg.

e 0D, is C* and is made up of the following pieces:

— the arc S, of angle 2«, symmetric with respect to the axis y4, of the
circle centered at zero and with the radius one,

— the arc of angle 2a;, symmetric with respect to the axis y4, of the
circle centered at zero and with the radius (2sin(«) + 21+ 1)/ cos(a),

— and two smooth curves £; and Lo, symmetric to each other with
respect to the axis y4, which connect the two arcs described above
forming a C? closed curve that does not intersect itself nor C, .

e We denote by A! (respectively, A%) the end point of the curve S, that
belongs to the right (respectively, left) half-plane with respect to the axis
Ya-

e Let us assume that £ (respectively, £5) belongs to the right (respectively,
left) half-plane with respect to the axis y4. We also assume that the
curve L; is constructed so that, in its natural parameterization with the
starting point A!, the slope of its tangent vector has exactly one change of
monotonicity. Namely, we assume that there exists a point BZ, such that
the angle between B! and A' relative to the origin is € and such that the
derivative of the slope of the aforementioned tangent vector is continuous,
nonincreasing, and equal to zero at Bl. The curve Ly, then, satisfies the
analogous property due to symmetry, with the associated point BZ.

e As the curve 0D, is C?, closed, and without self-intersections, we con-
struct ¢ as the signed distance to 0D, . in a neighborhood of ¢D, ,, . and,
then, extend it in a smooth way to R%. ¢¢ is constructed similarly.

e We define S, . as the concatenation of the curves B>A?, S, A'B!, and
we define A, . as the interior of the convex hull of S, .
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FIGURE 2. Domains D, e, Com, Aae

e Finally, we assume that > 0 is small enough, so that C,, is included
in the triangle with vertices P!, P? and the origin, as shown in Figure [2]
This ensures that C,, < Dq - for any € > 0.

Let us now consider a terminal condition { € S, and verify that D, ., A, and
¢ satisfy the desired assumptions. We easily deduce that Ry = 1. Then, for any
a € (0,7/2) and 1 > 0, there exists €y € (0, 7/2 — «), such that, for all 0 < € < &,
the condition holds up to the shift of coordinates in R¢ that maps the origin
t0 dqy := (0, ...,0, =1—n—sin(a)). The other conditions of Assumption 1.1]follow
easily.

Next, we notice that, in the discrete path-dependent framework and under
Assumption [4.1} we can apply Theorem [4.1]to conclude that there exists a unique
(in 7 (1)) triplet (Y¢, Z°, K¢) € /% x 2? x ¢! that solves in the domain
D = D,,. (we suppress the dependence of the solution on 1 and « as they
are fixed in what follows). An application of Proposition to D = D, and
A = A, - (the assumptions of the proposition are satisfied by the construction of
Aac, L1 and Lo) yields that Y© takes all its values in S, .. Then, the stability
result of Proposition[2.2]implies that {(Y''/", Z'/" K")}*_, is a Cauchy sequence
and, hence, has a limit (Y, Z, K). It is clear that Y stays in S,. Then, applying
the arguments similar to those used in the proof of Theorem [3.1} one can deduce
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that (Y, Z, K) solves the reflected BSDE in the domain D = D, ,, »/, for any
¢’ € (0,e9). Applying Proposition once more and recalling that Y takes all
its values in S,, we conclude that Y is a I'-martingale on the manifold S, with
the terminal condition £&. The uniqueness part of Theorem yields that such a
[-martingale is unique (in % (1)).

We now study the case of a general terminal condition. We first notice that
Proposition holds for any solution (Y, Z, K) € .2 x 22 x " of that
stays in S, and satisfies Assumption (1) with v replaced by

o - Vo(y)
Ta = inf Voely) - oo

We can easily compute 7, = cos(a). Moreover, we have Ry = 1 and

08 (&)] 0 < 1 —cos(a).

Thus, we conclude that Assumption [2.1(i) is fulfilled with § = 2 as long as
cos(a) > 2/3. Considering a sequence of discrete path-dependent terminal con-
ditions that approximate the given (general) terminal condition and take values
in S,, we repeat the proof of Theorem 4.2 obtaining the unique (in % (2)) triplet
(Y, Z, K) e S? x #* x #" that solves in the domain D = D, ., for
any ¢’ € (0,&9), and is such that Y stays in S,. Applying Proposition once
more, we conclude that Y is a I'-martingale on the manifold S, with the terminal
condition £. The uniqueness part of Theorem yields that such a I'-martingale
is unique in % (2).

To sum up, the above construction proves the existence and uniqueness of a
Brownian I-martingale with a prescribed discrete path-dependent terminal condi-
tion &, satisfying Assumption on any sector of the sphere S4~! (we understand
a sector as an intersection of a sphere and a half-space) that is strictly contained
in a hemisphere. For a general terminal condition &, we are only able to tackle
the case a < arccos(2/3). These results provide an alternative proof of some of
the facts established in [32] [45], where the existence and uniqueness is shown for
any a < 7/2. Considering the case @ = 7/2, we notice that, for any D that
is included in the compliment of an open ball and whose boundary contains a
hemisphere (on the boundary of this ball), it is impossible to find a convex do-
main C < D that can “see” all points on the boundary of this hemisphere with
a strictly positive angle: in other words, (1.1) can not be fulfilled. In particular,
our existence and uniqueness results fail for such D. On the other hand, consider-
ing directly the problem of existence and uniqueness of a Brownian [-martingale
with a prescribed terminal condition on a closed hemisphere of S%~!, we notice
a major challenge that stems from the non-uniqueness of geodesics, when d > 3.
Indeed, let us assume that & takes its values in the set {21, 2o} consisting of two
antipodes on the sphere: i.e., the line connecting the two points goes through
the center of the sphere. Note that Sy, does contain such points. Then, for any
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shortest arc 2129 < Sr/2, there exists a I-martingale on the manifold 2129 with

the terminal condition €. As any such arc z;z, is a geodesic, we conclude that
the resulting I'-martingale is also a I-martingale in the larger manifold S, /. As-
suming that & takes each of its two values with a strictly positive probability and
recalling that there are infinitely many geodesic arcs 212, on Sr/2, we conclude
that the uniqueness of a I'-martingale on S¢~! with the terminal condition ¢ does
not hold. Proposition in turn, implies that the uniqueness fails for solutions
to with the terminal condition &, with f = 0, and with D described above.
This observation, in particular, illustrates the sharpness of the weak star-shape
assumption (condition in Assumption for general terminal conditions
and general d > 2.

Let us also mention that the non-uniqueness described above does not occur
for d = 2, which indicates that it may be possible to relax our assumptions for
reflected BSDEs in planar non-convex domains. In particular, we refer to [44]
for a complete treatment of I'-martingales on S'. The latter result also yields
the existence and uniqueness of a solution to the reflected BSDE in the domain
D = {yeR? 1 < |y| <2}, which does not possess the weak star-shape property,
with zero generator and with a terminal condition satisfying |£| = 1.

Moreover, in Section 3 of [45], Picard was able to prove the existence and
uniqueness of a Brownian I'-martingale with a prescribed terminal condition in a
closed hemisphere of S¢~!, and in an even bigger domain, for a small enough 7" and
under a smoothness assumption on the terminal conditio. The latter indicates
that in a smooth Markovian or discrete path-dependent framework, under an
additional smallness assumption, it may also be possible to relax the requirement
of a weak star-shape property even for d > 2.

Finally, let us give a simple example showing that a prior: estimates of Propo-
sition are not sharp|! Mimicking [44], we consider a Fr-measurable random
variable v with values in [—«, a], where 0 < oo < 7/2 is a given parameter, and let
(04, 1¢)te[0,r) be the solution of the BSDE 6, = v — S;‘F nsdWs for t € [0, T]. We set
Y; = (cos(6;),sin(6;))" for all t € [0,T], and we easily check that Y is a solution
to the BSDE

2

where ¢ = (cos(v),sin(v))" and Z; = (—n;sin(6;),n: cos(6;))T. Notice that this
multidimensional quadratic BSDE can also be seen as a reflected BSDE in the
domain D, ., with sufficiently small 7, > 0, rotated by 7/2. Indeed, Y takes

T|Z|2 T
Yt=§+f —Ssts—f ZAW,, 0<t<T,
t t

3To be precise, it is assumed that the process Z, defined by ¢ = E[¢] + SOT ZdWy, has

sufficiently small S(I; ess supq|Zs|?ds.
4Note that these estimates are not needed in a Markovian or discrete path-dependent case.
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all its values in (rotated) S,, and its drift points along the outer normal vector to
(rotated) S,. Recall that D,, . satisfies the weak star-shape property and note

that dVar,(K) = @ Then, an application of 1t6’s formula to 67 yields

T 1 T 1 062
E, Ut dVarS(K)] =SB Ut ynsyzds] =SB [V = (Ew)?] < 5

Moreover, the above becomes an equality for t = 0 and v = sign(Wr)a. Then,
recalling that Ry = 1 for D,, ., we deduce from John-Nirenberg inequality that

E [e;—g\/arT(K):l <,

for some p > 1, provided a < 1, which is weaker than the condition o <
arccos(2/3) < 1 required by Assumption [2.1i) with § = 2, as computed ear-
lier in this subsection.
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