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Abstract. This paper establishes the well-posedness of reflected backward
stochastic differential equations in non-convex domains that satisfy a weak ver-
sion of the star-shaped property. The main results are established (i) in a
Markovian framework with Hölder-continuous generator and terminal condi-
tion and (ii) in a general setting under a smallness assumption on the input
data. We also investigate the connections between this well-posedness result
and the theory of martingales on manifolds, which, in particular, illustrates the
sharpness of some of our assumptions.

1. Introduction

Backward stochastic differential equations (BSDEs), originally introduced in
[2] and fully developed in [43, 41], can be viewed as the probabilistic analogues
of semi-linear partial differential equations (PDEs). In particular, BSDEs are
used to describe the solutions of stochastic control problems (see, among many
others, [42, 16, 25]). If the control variable of such an optimization problem has
a discrete component – e.g., an option to switch the state process to a different
regime or to terminate the process and obtain an instantaneous payoff – then,
the associated PDE obtains a free-boundary feature and the associated BSDE
becomes reflected: i.e., its solution lives inside a given domain and is reflected
at the boundary of this domain. The theory of reflected BSDEs in dimension
one – i.e., when the reflected process is one-dimensional – is well developed in
a very high generality: see, e.g. [15, 11, 14, 23, 24]. However, the multidimen-
sional case presents significant additional challenges, e.g., due to the lack of the
comparison principle. To date, the well-posedness of general multidimensional
reflected BSDEs (or, systems of reflected BSDEs) has only been established in
the case of convex reflection domains: see, e.g., [22, 34, 10, 19]. The systems of
reflected BSDEs in convex domains appear in certain types of stochastic control
problems, such as the switching problems: see, among others, [26, 29, 9, 8, 38, 1].
On the other hand, [21] describes a class of control-stopping stochastic differen-
tial games where the equilibria are described by the systems of reflected BSDEs

0The authors would like to thank Marc Arnaudon for the enlightening discussions about
martingales on manifolds. The authors also thank the Illinois Institute of Technology for hosting
the meetings during which this research was initiated. Partial support from the NSF CAREER
grant 1855309 is acknowledged.
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in non-convex domains (see also the closely related [20]). We also refer to [6],
which considers another example of a system of reflected BSDEs in a non-convex
domain. This paper presents the first general well-posedness result for the sys-
tems of reflected BSDEs in non-convex domains under the assumption of a weak
star-shape property (see Assumption 1.1 below).

In addition to the control-stopping games, the reflected BSDEs in non-convex
domains have a direct connection to the theory of martingales on manifolds. We
refer to [17] for an introduction and an overview of this theory. One of the key
questions therein is the following: given a random variable ξ with values in a
manifold M , is it possible to define a martingale Y in M such that the terminal
value of this martingale (at time T ą 0) is given by ξ (i.e., YT “ ξ), and is such a
martingale unique? A positive answer to this question, in particular, allows one
to define the notions of conditional expectation and barycenter for a manifold
(see e.g. [18, 46]). We refer to [32, 33, 45, 12] for other applications, and to
[3, 4] for the theory of BSDEs on manifolds. As explained in [12], it is possible to
give a positive answer to the above question by solving a BSDE with quadratic
non-linearities with respect to the z-variable, stated in Rd – the Euclidean space
in which the manifold is embedded. It turns out that for a certain class of non-
convex reflection domains D, the reflected BSDE in D gives rise to a martingale
on the manifold BD, see Section 5. In particular, our results provide a new proof
of the existence and uniqueness of a martingale with a prescribed terminal value
in a given strict sub-sector of a hemisphere of Sd´1, in the Markovian framework
or under the appropriate smallness assumptions (see the example in Section 5).

On a technical level, our analysis is connected to the theory of BSDEs with
quadratic growth in the z-variable. This connection is made precise in Section
3, but it can also be seen if one attempts to map a given non-convex domain
into a convex one: the resulting reflected BSDE in a convex domain will have
quadratic terms in z. Thus, the reflected BSDEs in non-convex domains can be
viewed as the quadratic reflected BSDEs in convex domains. This observation
also explains the additional mathematical challenges caused by the non-convexity
of the reflection domain – these challenges are similar to those arising in the well-
posedness theory for the systems of quadratic BSDEs [47, 30, 48, 27]. The present
work uses some of the results developed in the latter theory: in particular, the
results of [48] are crucial for our analysis.

Another important connection is to the methods of [36, 37], which establish the
well-posedness of the forward stochastic differential equations (SDEs) reflected at
the boundary of a given domain. In particular, we use the arguments of [37] to
establish the stability of solutions to the reflected BSDEs considered herein, see
Section 2. It is important to mention, however, that many crucial arguments
used in the proof of the well-posedness of a reflected (forward) SDE cannot be
applied to the case of a reflected BSDE due to the adaptedness issues which, in
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particular, prohibit the application of the Skorokhod’s mapping, used in [37], and
of the standard localization methods.

The remainder of this paper is organized as follows. Section 1.1 states the
reflected BSDE (equation (1.2)) and the main assumptions (Assumptions 1.1
and 1.2) which hold throughout the paper. Section 2 describes various auxil-
iary properties and a priori estimates, as well as the stability (Proposition 2.2)
and uniqueness (Corollary 2.2) of solutions to the reflected BSDE in a certain
class. Section 3 describes a sequence of penalized quadratic BSDEs in a Markov-
ian framework, shows that their solutions converge to a solution of the reflected
BSDE, and verifies that this solution belongs to the class in which the unique-
ness holds, thus establishing the well-posedness of the target reflected BSDE in
a Markovian framework (Theorem 3.1). In Section 4, we approximate a general
reflected BSDE by the Markovian ones, to obtain the well-posedness of the for-
mer (Theorem 4.2) under an additional smallness assumption (Assumption 2.1).
Finally, Section 5 provides a more detailed description of the connection between
the reflected BSDEs in non-convex domains and the martingales on manifolds,
which, in particular, illustrates the sharpness of some of our assumptions.

1.1. The setup and main assumptions. Let D be a subset of Rd given by

D “ ty P Rd : φpyq ă 0u,

with a function φ : Rd Ñ R. We denote by∇ the gradient, and by∇2 the Hessian,
of a given function. For any subset A of a Euclidean space, we denote its closure
by Ā and, if A ‰ H, we denote by dp., Aq the distance function to A.

Assumption 1.1. We assume that φ satisfies the following:
‚ (Compactness) There exists R ą 0, such that φpyq ą 0 for all |y| ě R.
‚ (Smoothness) φ P C2pRdq, |∇φpyq| ą 0 for all y P BD, and ∇2φ is locally
Lipschitz.

‚ (Weak star-shape property) There exists a non-empty open convex set C Ă
D such that
– 0 P C,
– there exists a convex function φC : Rd Ñ R satisfying: φC P C

2pRdq,

C “ ty P Rd : φCpyq ă 0u,

φC ě φCp0q, and φCpyq “ |y ´ PC̄pyq| for all y P RdzC, where PC̄
denotes the projection onto C̄,

– it holds that

(1.1) γ :“ inf
yPBD

∇φCpyq ¨
∇φpyq
|∇φpyq|

ą 0.
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‚C

D
0

(a) A weak star-shaped domain which is
strictly star-shaped.

‚0

D

C

(b) A weak star-shaped domain
which is not star-shaped.

D

(c) A simply connected domain
which is not weak star-shaped.

Figure 1. Examples of domains with and without the (weak) star-
shaped property.

Remark 1.1. (i) If D is a star-shaped domain with respect to 0, i.e., if it satisfies

inf
yPBD

y

|y|
¨
∇φpyq
|∇φpyq|

ą 0,

then the weak star-shape property also holds for D, with C being a ball of radius
ε ą 0 centered at 0, and with

φCpyq “ %εp|y| ´ εq,

where %ε : R Ñ R is a convex increasing function satisfying %ε P C2pRq, %εpxq “
´ε{2 for x ă ´ε and %εpxq “ x for x ą 0.
(ii) As shown in Figure 1, a weak star-shaped domain is not necessarily star-
shaped.

All stochastic processes and random variables appearing in this paper are con-
structed on a fixed stochastic basis pΩ,F,Pq, with the filtration F being a com-
pletion of the natural filtration of a multidimensional Brownian motion W in Rd1

on a time interval r0, T s.
For p ě 1, we denote by Lp the space of (classes of equivalence of)1 FT -

measurable random variables ξ (with values in a Euclidean space), such that

1We drop this clarification in further definitions.
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}ξ}Lp :“ Er|ξ|ps1{p ă 8. The space L8 stands for all FT -measurable essen-
tially bounded random variables. We also define H 2 as the space of progres-
sively measurable processes Z (with values in a Euclidean space), such that

}Z}H 2 :“ E
”

şT

0
|Zt|

2dt
ı1{2

ă 8. Next, for p ě 1, we define Mp as the space

of all continuous local martingales M with }M}Mp :“ E
”

xMy
p{2
T

ı1{p

ă 8. For
p P r1,8s, we denote by S p the set of continuous adapted process U such that
›

›suptPr0,T s |Ut|
›

›

L p
ă 8. We also denote by VartpKq the variation of a process

K¨ (with values in a Euclidean space) on the time interval r0, ts and by K p, for
p P r1,8s, the set of all finite-variation process K such that

›

›Varr0,T spKq
›

›

L p ă 8

and K0 “ 0. Finally, we denote by B2 the set of processes V P H 2, satisfying

}V }B2 :“

›

›

›

›

suptPr0,T sE
„
ż T

t

|Vs|
2ds|Ft


›

›

›

›

1
2

L8

ă `8.

Let us remark that V P B2 implies that the martingale
ş.

0
VsdWs is a BMO

martingale, and }V }B2 is the BMO norm of
ş.

0
VsdWs. We refer to [31] for further

details about BMO martingales.

We are investigating the well-posedness of the following reflected BSDE pY, Z,Kq P
S 2 ˆH 2 ˆK 1

$

’

’

’

&

’

’

’

%

piq Yt “ ξ `

ż T

t

fps, Ys, Zsqds´

ż T

t

dKs ´

ż T

t

ZsdWs, 0 ď t ď T,

piiq Yt P D̄ a.s., Kt “

ż t

0

npYsqdVarspKq, 0 ď t ď T,

(1.2)

where n is the unit outward normal to BD, extended as zero into D:

npyq “
∇φpyq
|∇φpyq|

, @y P BD and npyq “ 0, @y P D.

Assumption 1.2. We assume that ξ takes values in D̄, fp¨, y, zq is progressively
measurable, fpt, ¨, ¨q is globally Lipschitz (Kf,y-Lipschitz in y and Kf,z-Lipschitz
in z), uniformly in pt, ωq, and }|fp¨, 0, 0q|}L8 ă 8. In addition, without loss
of generality (in view of the boundedness of D), we assume that there exists a
compact K Ă Rd, such that fpt, y, zq “ 0 whenever y R K.

Assumptions 1.1 and 1.2 hold throughout the rest of the paper even if not cited
explicitly.



6 JEAN-FRANÇOIS CHASSAGNEUX, SERGEY NADTOCHIY, ADRIEN RICHOU

2. Geometric properties and a priori estimates

In this section, we derive cetain useful geometric properties of the domain D,
expressed via the corresponding properties of the function φ. We construct an
auxiliary function ψ which is used in the next section to define a sequence of
approximating equations to (1.2). We also present some key a priori estimates
and properties of the solutions to the RBSDEs (1.2).

2.1. Absolute continuity of the process K. As noticed in [22], we can take
advantage of the smoothness of D to show that the process K is absolutely con-
tinuous with respect to the Lebesgue measure.

Lemma 2.1. Assume that pY, Z,Kq P S 2ˆH 2ˆK 1 solves (1.2). Then, almost
every path of K is absolutely continuous with respect to the Lebesgue measure.

Proof. Applying Itô’s formula to t ÞÑ φpYtq, we obtain

dφpYtq “

ˆ

´∇φpYtq ¨ fpt, Yt, Ztq `
1

2
TrrZJt ∇2φpYtqZts

˙

dt

`∇φpYtq ¨ dKt `∇φpYtq ¨ ZtdWt(2.1)
Then, the Itô-Tanaka formula applied to the positive part of the semi-martingale
´φpYtq reads

dr´φpYtqs
`
“ 1t´φpYtqą0udr´φpYtqs `

1

2
dL0

t ,(2.2)

where L0 is the local time of the semi-martingale ´φpY q at zero. Since φpYtq ď 0,
we have dr´φpYtqs

` “ ´dφpYtq which yields, combining (2.1)–(2.2),

1tφpYtq“0u

ˆ

´∇φpYtq ¨ fpt, Yt, Ztq `
1

2
TrrZJt ∇2φpYtqZts

˙

dt` |∇φpYtq|dVartpKq

` 1tφpYtq“0u∇φpYtq ¨ ZtdWt `
1

2
dL0

t “ 0 .

In particular, we deduce that

|∇φpYtq|dVartpKq ď 1tφpYtq“0u

„

∇φpYtq ¨ fpt, Yt, Ztq ´
1

2
TrrZJt ∇2φpYtqZts

`

dt,

(2.3)

which proves the absolute continuity of K. l

2.2. The exterior sphere property. The following lemma states the well known
observation that, for any boundary point of a smooth domain, there exists a small
enough tangent external sphere, see e.g. [37].

Lemma 2.2. There exists R0 ą 0, such that

py ´ y1q ¨ npyq `
1

2R0

|y ´ y1|2 ě 0 , @ y P BD, y1 P D̄.(2.4)
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Proof. Due to the smoothness of φ, for any y P BD and y1 P D̄, there exists
λ P r0, 1s, such that
(2.5)

0 ě φpy1q “ φpyq ` py1´ yq ¨ npyq|∇φpyq| ` 1

2
py´ y1qJ∇2φpλy` p1´ λqy1qpy´ y1q,

It only remains to notice that: φ “ 0 and |∇φ| is bounded away from zero on BD,
and |∇2φ| is bounded from above on D̄. Thus, we obtain the statement of the
lemma. �

Using the above lemma, we can define the projection operator that is used in
the subsequent sections. To this end, we first introduce the set

Q “ ty P Rd : dpy,Dq ă R0u,

and the set-valued projection operator
Ppyq “ argminxPD̄|x´ y|, y P Rd.

Corollary 2.1. For any y P Q, Ppyq is a singleton.

Proof. It is easy to see that, for a ball Brpyq Ă Rd, with radius r ą 0 and center
at y, we have:

(2.6) px´ x1q ¨
y ´ x

|y ´ x|
`

1

2r
|x´ x1|2 “ 0, @x, x1 P BBrpyq.

Next, assume that there exist y P RdzD̄ and x ‰ x1 P D̄, such that
|x´ y| “ |x1 ´ y| “ argminzPD̄|z ´ y|.

Then, it is clear that x, x1 P BBr X BD, with r “ minzPD̄ |z ´ y| ă R0, and the
equations (2.4), (2.6) yield a contradiction. �

Without loss of generality, we will identify the value of Ppyq with its only
element, for any y P Q.

Remark 2.1. Using (2.5) and (2.3), we easily deduce that, for any solution
pY, Z,Kq P S 2 ˆH 2 ˆK 1 of (1.2),

dVartpKq ď 1tφpYtq“0u

˜

„

∇φpYtq
|∇φpYtq|

¨ fpt, Yt, Ztq

`

`
1

2R0

|Zt|
2

¸

dt,

with R0 satisfying (2.4).

The following lemma provides an alternative to (1.2)(ii), and it becomes useful
in the subsequent sections.

Lemma 2.3. Assume that pY, Z,Kq P S 2 ˆH 2 ˆK 1 solves (1.2)(i) and that
Yt P D̄ a.s. for all t P r0, T s. Then

Kt “

ż t

0

npYsqdVarspKq, t P r0, T s,
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holds if and only if there exists a constant c ą 0, depending only on D, such that
for all essentially bounded continuous adapted process V in D, we have

ż T

0

`

pYs ´ Vsq ` c|Ys ´ Vs|
2npYtq

˘

dKs ě 0 .(2.7)

Proof. One implication is a direct consequence of Lemma 2.2. The other impli-
cation is a minor extension of Lemma 2.1 in [22]. l

2.3. The pseudo-distance function. In this subsection, we modify the function
φ in order to construct a new smooth function ψ which satisfies the inequality
(1.1) in RdzD instead of BD. We denote by ϑ : R Ñ r0, 1s an infinitely smooth
nondecreasing function which is equal to zero on p´8, 0s and to one on r1,8q.
We also choose a large enough R ą 1, such that D Ă BR´1p0q, and a small enough
ε P p0, 1q, such that, for all y P BR`1p0qzD, we have:

φpyq ď ε ñ y P BRp0q, ∇φCpyq ¨∇φpyq ą 0.

Then, we define

(2.8) φ̃pyq :“ φ`pyqp1´ϑp|y|´R´1qq`ϑp|y|´Rq, ψpyq :“ φ̃pyq`κ|y|ϑpφ̃pyq{εq,

for an arbitrary constant κ ą 0.
We refer to ψ as the pseudo-distance function.
Notice that

∇φCpyq ¨∇ψpyq “ ∇φCpyq ¨∇φ̃pyq ` κ∇φCpyq ¨
y

|y|
ϑpφ̃pyq{εq

` κ∇φCpyq ¨∇φ̃pyq|y|ϑ1pφ̃pyq{εq{ε

“ ∇φCpyq ¨∇φ̃pyq
´

1` κ|y|ϑ1pφ̃pyq{εq{ε
¯

` κ∇φCpyq ¨
y

|y|
ϑpφ̃pyq{εq.

It is clear that ψ P C2pRdzD̄q and that its derivatives up to the second order are
locally Lipschitz-continuous on RdzD. It is also easy to see that φ̃pyq P p0, εs if
and only if y P BR`1p0qzD and φpyq ď ε, in which case y P BRp0q, φ̃pyq “ φpyq,
∇φ̃pyq “ ∇φpyq, and

∇φCpyq ¨∇ψpyq ě ∇φCpyq ¨∇φpyq ą 0,

where we also observed that infyPRdzD ∇φCpyq ¨ y{|y| ą 0, which follows from the
convexity of C and from the fact that 0 P C. If φ̃pyq ď 0, then y P D̄. If φ̃pyq ą ε,
then

∇φCpyq ¨∇ψpyq “ ∇φCpyq ¨∇φ̃pyq ` κ∇φCpyq ¨
y

|y|
,

which can be made positive for all y P RdzD by choosing large enough κ ą 0, as
|∇φ̃| is bounded on RdzD and infyPRdzD ∇φCpyq ¨ y{|y| ą 0.

The following lemma summarizes the above properties of ψ and states several
additional properties which can be easily verified.
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Lemma 2.4. There exist constants R, ε, κ ą 0, such that the function ψ defined
in (2.8) satisfies the following properties.

(1) ψ is globally Lipschitz-continuous in Rd.
(2) There exist constants c, C ą 0, such that c dpy,Dq ď ψpyq ď C dpy,Dq for

y P Rd.
(3) ψ P C2pRdzD̄q, and its derivatives up to the second order are globally

Lipschitz-continuous in RdzD.
(4) infyPRdzD ∇φCpyq ¨∇ψpyq ą 0.
(5) infyPRdzD |∇ψpyq| ą 0.
(6) ψpyq “ φpyq “ 0, ∇ψpyq “ ∇φpyq, and ∇2ψpyq “ ∇2φpyq, for y P BD.

In the remainder of the paper, we fix pR, ε, κq as in the above lemma and
consider the associated pseudo-distance function ψ. For convenience, we also
extend the vector-valued function n to Rd as follows:

npyq “
1

|∇ψpyq|
∇ψpyq1tRdzDupyq.

2.3.1. Asymptotic convexity of the squared pseudo-distance. Due to Lemma 2.4,
the Hessian of ψ2, denoted ∇2ψ2, is well defined in RdzD (it is extended to the
boundary of the latter set by continuity). The following lemma shows that ∇2ψ2,
viewed as a bilinear form, becomes positive semidefinite close to D.

Lemma 2.5. There exists a constant C ą 0, such that, for all y P RdzD and
z P Rd,

zJ∇2ψ2
pyqz ě ´Cψpyq|z|2.

Proof. Notice that, for y P RdzD and z P Rd,

∇2ψ2
pyq “ 2∇ψpyq∇Jψpyq ` 2ψpyq∇2ψpyq,

zJ∇2ψ2
pyqz “ 2p∇ψpyq ¨ zq2 ` 2ψpyqzJ∇2ψpyqz ě 2ψpyqzJ∇2ψpyqz.

Using the fact that ∇2ψ is bounded (cf. the third property in Lemma 2.4) and
the second property in Lemma 2.4, we complete the proof. �

2.4. A priori estimates. In this subsection, we establish a priori estimates of
the solutions to (1.2) for general terminal condition ξ and generator f . We first
introduce the appropriate “smallness assumption”.

Assumption 2.1. We assume that at least one of the following four conditions
is fulfilled with some θ ě 1:
(i) |φ`C pξq|L8 ă

γR0

θ
and ∇φCpyq¨fps, y, zq ď 0, @s, y, z P r0, T sˆD̄zCˆRdˆd1,

(ii) or supxPD φ
`
C pxq ă

γR0

θ
,

(iii) or C is the Euclidean ball centered at 0 with radius λ ą 0, and

|ξ|2L8 ă λ2
`

2R2
0

θ
, ∇φCpyq ¨ fps, y, zq ď 0, @s, y, z P r0, T s ˆ D̄zC ˆ Rdˆd1 ,
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(iv) or C is the Euclidean ball centered at 0 with radius λ ą 0, and

sup
xPD

|x|2 ă λ2
`

2R2
0

θ
,

with R0 satisfying (2.4) and γ appearing in Assumption 1.1.

It is worth mentioning that Assumption 2.1 is not a standing assumption and
is cited explicitly whenever it is invoked. In particular, the well-posedness results
in the Markovian framework do not require the smallness assumption, see Section
3 .

Next, we consider the following class of solutions.

Definition 2.1. For any θ ě 1, we denote by U pθ, ξ, f, T q the set of all solutions
pY, Z,Kq P S 2 ˆH 2 ˆK 1 to (1.2) such that

E
”

e
θp
R0

VarT pKq
ı

ă 8,(2.9)

with some p ą 1 and with R0 satisfying (2.4).

In what follows, we often drop pξ, f, T q in the notation for the class U pθq. Note
also that we mainly consider θ “ 1 and θ “ 2.

The following proposition clarifies the link between Assumption 2.1 and the
class U pθq.

Proposition 2.1. Let pY, Z,Kq P S 2 ˆH 2 ˆK 1 be a solution to the RBSDE
(1.2). Then, Z P B2. Moreover, if Assumption 2.1 holds for some θ ě 1,
then, there exist constants C and p ą 1, which depend only on Kf,y, Kf,z, γ,
λ, supyPD |y|, supyPD̄ φ

`
C pyq, }φ

`
C pξq}L8, }fp., 0, 0q}L8 and R0 (recall Assumption

1.1 and (2.4)), such that

(2.10) E
”

e
θp
R0

VarT pKq
ı

ď C.

Thus, under Assumption 2.1, any solution pY, Z,Kq belongs to U pθ, ξ, f, T q.

Proof. 1. We start by applying Itô-Tanaka’s formula to φ`C pYtq (note that φ`C is
convex): for all t ď t1,

Et

«

ż t1

t

∇φ`C pYsq ¨ dKs

ff

ď Et

«

φ`C pYt1q `

ż t1

t

∇φ`C pYsq ¨ fps, Ys, Zsqds

ff

.(2.11)

In the equation above and in the remainder of the proof, we use the shorter
notation Etr¨s for Er¨|Fts.

Recalling Assumption 1.1, we obtain

γEt

«

ż t1

t

dVarspKq

ff

ď Et

«

ż t1

t

∇φ`C pYsq ¨ npYsqdVarspKq

ff

“ Et

«

ż t1

t

∇φ`C pYsq ¨ dKs

ff

.

(2.12)
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This yields, for t1 “ T ,

γEt
„
ż T

t

dVarspKq



ď Et
„

φ`C pξq `

ż T

t

∇φ`C pYsq ¨ fps, Ys, Zsqds


.(2.13)

Next, we consider an arbitrary ε ą 0 and apply Itô’s formula to ε|Yt|2 between t
and t1, to obtain:

εEt

«

ż t1

t

|Zs|
2ds

ff

ďεEt
“

|Yt1 |
2
‰

` C1εEt

«

ż t1

t

p1` |fps, 0, 0q| ` |Zs|qds

ff

` εC1E

«

ż t1

t

dVarspKq

ff

,

where we recalled that |Y | is bounded. The above inequality implies

ε

2
Et

«

ż t1

t

|Zs|
2ds

ff

ďεEt
“

|Yt1 |
2
‰

` CεEt

«

ż t1

t

p1` |fps, 0, 0q|qds

ff

` εC1E

«

ż t1

t

dVarspKq

ff

.

(2.14)

Setting t1 “ T and ε “ 1 in (2.14) and combining it with (2.13), we obtain

1

2
Et

„
ż T

t

|Zs|
2ds



ďEt
„

|ξ|2 `
C1

γ
φ`C pξq



` CEt
„
ż T

t

p1` |fps, 0, 0q|qds



`
C

γ
E
„
ż T

t

∇φ`C pYsq ¨ fps, Ys, Zsqds


.(2.15)

Next, we observe that

C1

γ
E
„
ż T

t

∇φ`C pYsq ¨ fps, Ys, Zsqds


ď CEt

«

ż t1

t

p1` |fps, 0, 0q|qds

ff

`
1

4
Et

„
ż T

t

|Zs|
2ds



.

Inserting the above estimate into (2.15), we obtain

1

4
Et

„
ż T

t

|Zs|
2ds



ďEt
„

|ξ|2 `
C

γ
φ`C pξq



` CEt
„
ż T

t

p1` |fps, 0, 0q|qds



,

which proves that Z P B2.
2. We now turn to the estimation of the exponential moments of VarT pKq, under
the smallness Assumption 2.1.
2.a Combining Assumption 2.1(i) with (2.13), we obtain

θ

R0

›

›

›

›

›

sup
tPr0,T s

Et
„
ż T

t

dVarspKq



›

›

›

›

›

L8

ă 1.(2.16)

Then, we apply the energy inequalities for non-decreasing processes with bounded
potential (see, e.g., (105.1)–(105.2) in [13]) to obtain (2.10) in this case.
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2.b Let Assumption 2.1-(ii) hold. Using (2.11)–(2.12) and recalling that |Y | is
bounded, we obtain, for all 0 ď t ă t1 ď T and for any ε ą 0,

γEt

«

ż t1

t

dVarspKq

ff

ď sup
yPD̄

φ`C pyq ` C
1
εpt

1
´ tqp1` |fp., 0, 0q|L8q `

ε

2
Et

«

ż t1

t

|Zs|
2ds

ff

.

Using the above inequality and (2.14) (with the same ε ą 0), we obtain:

pγ ´ CεqEt

«

ż t1

t

dVarspKq

ff

ď ε sup
yPD̄

|y|2 ` sup
yPD̄

φ`C pyq ` C
2
ε pt

1
´ tqp1` |fp., 0, 0q|L8q.

In particular, by taking ε small enough, we conclude that, for any ε1 ą 0, there
exists Cε1 ą 0 such that

Et

«

ż t1

t

dVarspKq

ff

ď
supyPD̄ φ

`
C pyq

γ
p1` ε1q ` Cε1pt

1
´ tq.(2.17)

Next, using (2.17) and Assumption 2.1(ii), we conclude that there exist 0 ă
ε2 ă 1, p ą 1, andN ě 1, depending only onKf,y,Kf,z, γ, supyPD |y|, supyPD̄ φCpyq

`,
}fp., 0, 0q}L8 and R0, such that, a.s.:

Et

«

ż T pk`1q{N

t

dVarspKq

ff

ď
R0

θp
p1´ ε2q, @0 ď k ă N, @t P rTk{N, T pk ` 1q{N s.

(2.18)

Then, we apply the energy inequalities for non-decreasing processes with bounded
potential (see, e.g., (105.1)–(105.2) in [13]), to obtain, for all 0 ď k ă N ,

ETk{N
”

e
θp
R0

şT pk`1q{N
Tk{N

dVarspKq
ı

ď C̃,(2.19)

with C̃ that depends only onKf,y,Kf,z, γ, supyPD |y|, supyPD̄ φCpyq
`, }fp., 0, 0q}L8

and R0. We now observe that

E
”

e
θp
R0
V arT pKq

ı

“ E
”

e
θp
R0

VarT pN´1q{N pKqET pN´1q{N

”

e
θp
R0

şT
T pN´1q{N dVarspKq

ıı

ď C̃E
”

e
θp
R0

VarT pN´1q{N pKq
ı

,

where we used (2.19) with k “ N ´ 1 to obtain the last inequality. Iterating the
above procedure, we conclude the proof of (2.10) in this case.
2.c Let Assumption 2.1(iii) hold. Using (2.3), the linear growth of f and Young’s
inequality, we deduce, for all ε ą 0,

VarT pKq ď Cε `
1` ε

2R0

ż T

0

1tφpYtq“0u|Zt|
2dt.(2.20)
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Moreover, we apply Itô-Tanaka formula to p|Ys|2 ´ λ2q` to obtain, for all t ď t1,

Et

«

ż t1

t

1tφpYsq“0u|Zs|
2ds

ff

ď Et

«

ż t1

t

1tφCpYsqą0u|Zs|
2ds

ff

ďEt

«

p|Yt1 |
2
´ λ2

q
`
` 2

ż t1

t

1tφCpYsqą0u|Ys|∇φCpYsq ¨ fps, Ys, Zsqds

ff

,(2.21)

where we also recall that 1tφCpYsqą0u|Ys|∇φCpYsq “ 1tφCpYsqą0uYs since C is a Eu-
clidean ball centered at zero. Then, by taking t1 “ T in (2.21) and using Assump-
tion 2.1(iii), we obtain, for ε ą 0 and p ą 1 small enough,

θpp1` εq

2R2
0

›

›

›

›

›

sup
tPr0,T s

Et
„
ż T

t

1tφpYsq“0u|Zs|
2ds



›

›

›

›

›

L8

ă 1.

It remains to apply the John-Nirenberg inequality for BMO Martingales (see
Theorem 2.2 in [31]) and recall (2.20), to conclude that

E
”

e
θp
R0

VarT pKq
ı

ď CεE
„

e
θpp1`εq

2R2
0

şT
0 1tφpYsq“0u|Zs|

2ds


ă `8,

which yields (2.10).

2.d The proof of (2.10) in the case of Assumption 2.1(iv) follows from (2.20) and
(2.21), by partitioning r0, T s into small time intervals as in step 2.b. For brevity,
we skip these routine calculations. l

2.5. Stability and uniqueness in U pθq. Using a priori estimates established
in the previous subsection, we prove the following stability property of solutions
to (1.2).

Proposition 2.2. Let us consider pY, Z,Kq P S 2ˆH 2ˆK 1 (resp. pY 1, Z 1, K 1q P

S 2ˆH 2ˆK 1) which solve the RBSDE (1.2) with a domain D (resp. D1), with
a terminal condition ξ (resp. ξ1), and with a generator f (resp. f 1). Assume,
moreover, that there exists p ą 1 such that

(2.22) κ :“ E
”

e
p
R0
pVarT pKq`VarT pK

1qq
ı

ă `8,

with R0 satisfying (2.4) for D and D1. Let us denote by P̄ (resp. P̄1) a measurable
selection of the projection operator onto D (resp. D1). Then, the following stability
result holds: there exists a constant C ą 0, which depends only on Kf,y, Kf 1,y,
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Kf,z, Kf 1,z (recall Assumption 1.2), supyPDYD1 |y|, R0, and on κ, and is such that

}Y ´ Y 1}S 2 ` }Z ´ Z 1}H 2 ` }K ´K 1
}S 2

ďCEr|ξ ´ ξ1|2p{pp´1q
s
pp´1q{p2pq

` CE

«

ˆ
ż T

0

|fps, Ys, Zsq ´ f
1
ps, Ys, Zsq|ds

˙2p{pp´1q
ffpp´1q{p2pq

` CE

«

sup
sPr0,T s

|Ys ´ P̄1
pYsq|

p{pp´1q

ffpp´1q{p2pq

` CE

«

sup
sPr0,T s

|Y 1s ´ P̄pY 1s q|
p{pp´1q

ffpp´1q{p2pq

.

Proof. We apply Itô’s formula to the process

e
βt` 1

R0
pVartpKq`VartpK1qq

|Yt ´ Y
1
t |

2,

with the constant β to be determined later. By denoting

δft :“ fpt, Yt, Ztq ´ f
1
pt, Y 1t , Z

1
tq, δξ :“ ξ ´ ξ1,

Γt :“ e
βt` 1

R0
pVartpKq`VartpK1qq, δY :“ Y ´ Y 1, δZ “ Z ´ Z 1,

we obtain

Γt|δYt|
2
`

ż T

t

Γs|δZs|
2ds

“ΓT |δξ|
2
` 2

ż T

t

ΓsδYs ¨ δfsds´ 2

ż T

t

ΓsδYs ¨ dKs ` 2

ż T

t

ΓsδYs ¨ dK
1
s

´ β

ż T

t

Γs|δYs|
2ds´

1

R0

ż T

t

Γs|δYs|
2dVarspKq ´

1

R0

ż T

t

Γs|δYs|
2dVarspK

1
q

´ 2

ż T

t

ΓsδYs ¨ δZsdWs.(2.23)

Using Burkholder-Davis-Gundy inequality, as well as Hölder inequality (with
q “ p{pp´1q ą 1 being the conjugate exponent) and the fact that |δY | is bounded,
we obtain:

E

«

sup
tPr0,T s

ˇ

ˇ

ˇ

ˇ

ż t

0

ΓsδYs ¨ δZsdWs

ˇ

ˇ

ˇ

ˇ

ff

ď CE

«

ˆ
ż T

0

|ΓsδZs|
2 ds

˙

1
2

ff

ď CErpΓT qps
1
p E

«

ˆ
ż T

0

|δZs|
2ds

˙rq{2s
ff

1
q

ă 8,

where the last inequality is due to (2.22) and to the Energy Inequality (since
Z,Z 1 P B2). Hence, we conclude that the local martingale term in the right hand
side of (2.23) is a true martingale.
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Next, we estimate the second term in the right hand side of (2.23) using the
Lipschitz property of f 1:

δYs ¨ δfs ď |δYs||fps, Ys, Zsq ´ f
1
ps, Ys, Zsq| ` β|δYs|

2
`

1

4
|δZs|

2,

provided β ą 0 is large enough. In addition, the condition (1.2)(ii) and the
exterior sphere property (recall (2.4)) yield

´ 2

ż T

t

ΓsδYs ¨ dKs ´
1

R0

ż T

t

Γs|δYs|
2dVarspKq

“ ´ 2

ż T

t

ΓspP̄pY
1
s q ´ Y

1
s q ¨ dKs ´ 2

ż T

t

Γs
`

Ys ´ P̄pY 1s q
˘

¨ dKs ´
1

R0

ż T

t

Γs|δYs|
2dVarspKq

“ ´ 2

ż T

t

Γs
`

Ys ´ P̄pY 1s q
˘

¨ dKs ´
1

R0

ż T

t

Γs|Ys ´ P̄pY 1s q|
2dVarspKq

`
1

R0

ż T

t

Γsp|P̄pY
1
s q ´ Y

1
s |

2
´ |δYs|

2
qdVarspKq ´ 2

ż T

t

ΓspP̄pY
1
s q ´ Y

1
s q ¨ dKs

ďC

ż T

t

Γs|P̄pY
1
s q ´ Y

1
s |dVarspKq ď CΓT sup

sPr0,T s

|P̄pY 1s q ´ Y
1
s |,

where we used
şT

t
exp

´

VarspKq
R0

¯

dVarspKq ď R0 exp
´

VarT pKq
R0

¯

to establish the last
inequality. Using the same arguments, we obtain

2

ż T

t

ΓsδYs ¨ dK
1
s ´

1

R0

ż T

t

Γs|δYs|
2dVarspK

1
qq ď CΓT sup

sPr0,T s

|P̄1
pYsq ´ Ys|.

Using the above estimates, we take expectations on both sides of 2.23, with t “ 0,
and apply Hölder inequality to obtain

}Γ1{2δZ}H 2 ď E
„

ΓT |δξ|
2
` 2

ż T

0

Γs|δYs||fps, Ys, Zsq ´ f
1
ps, Ys, Zsq|ds

1{2

` E

«

ΓT

˜

sup
sPr0,T s

|P̄1
pYsq ´ Ys| ` |P̄pY

1
s q ´ Y

1
s |

¸ff1{2

ď CEr|δξ|2qs1{p2qq

` 2E

«

sup
sPr0,T s

pΓ1{2
s |δYs|qΓ

1{2
T

ż T

0

|fps, Ys, Zsq ´ f
1
ps, Ys, Zsq|ds

ff1{2

` CE

«

sup
sPr0,T s

`

|P̄1
pYsq ´ Ys| ` |P̄pY

1
s q ´ Y

1
s |
˘q

ff1{p2qq

.(2.24)
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Using (2.23) and (2.24), we apply Burkholder-Davis-Gundy, Hölder and Young’s
inequalities to obtain

}Γ1{2δY }S 2 ď CEr|δξ|qs1{p2qq

` CE

«

sup
sPr0,T s

pΓ1{2
s |δYs|qΓ

1{2
T

ż T

0

|fps, Ys, Zsq ´ f
1
ps, Ys, Zsq|ds

ff1{2

` CE

«

sup
sPr0,T s

`

|P̄1
pYsq ´ Ys| ` |P̄pY

1
s q ´ Y

1
s |
˘q

ff1{p2qq

ď CEr|δξ|qs1{p2qq `
1

2
}Γ1{2δY }S 2 ` CE

«

ˆ
ż T

0

|fps, Ys, Zsq ´ f
1
ps, Ys, Zsq|ds

˙2q
ff1{p2qq

` CE

«

sup
sPr0,T s

`

|P̄1
pYsq ´ Ys| ` |P̄pY

1
s q ´ Y

1
s |
˘q

ff1{p2qq

.(2.25)

Then, combining (2.24), Young’s inequality, and (2.25), yields

}Y ´ Y 1}S 2 ` }Z ´ Z 1}H 2 ď }Γ1{2δY }S 2 ` }Γ1{2δZ}H 2

ďCEr|ξ ´ ξ1|2qs1{p2qq ` CE

«

ˆ
ż T

0

|fps, Ys, Zsq ´ f
1
ps, Ys, Zsq|ds

˙2q
ff1{p2qq

` CE

«

sup
sPr0,T s

`

|P̄1
pYsq ´ Ys| ` |P̄pY

1
s q ´ Y

1
s |
˘q

ff1{p2qq

.(2.26)

Finally, we recall that

Kt ´K
1
t “ δYt ´ δY0 `

ż t

0

fps, Ys, Zsq ´ f
1
ps, Y 1s , Z

1
sqds´

ż t

0

δZsdWs.

Then, the Burkholder-Davis-Gundy inequality inequality, the Lipschitz property
of f 1, as well as (2.26), yield

}K ´K 1
}S 2 ďCEr|ξ ´ ξ1|2qs1{p2qq ` CE

«

ˆ
ż T

0

|fps, Ys, Zsq ´ f
1
ps, Ys, Zsq|ds

˙2q
ff1{p2qq

` CE

«

sup
sPr0,T s

`

|P̄1
pYsq ´ Ys| ` |P̄pY

1
s q ´ Y

1
s |
˘q

ff1{p2qq

,

which completes the proof of the proposition. l

In a general non-Markovian framework, we obtain the following uniqueness
result as a direct consequence of Proposition 2.2.
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Corollary 2.2. The reflected BSDE (1.2) has at most one solution in the class
U p2q.

Proof. Indeed, it suffices to check that, for any two solutions in the class U p2q,
(2.22) holds. This follows directly from the Cauchy-Schwarz inequality. l

This uniqueness result is improved in the Markovian setting: see Theorem 3.1
and Remark 3.6.

3. Well-posedness in a Markovian framework

In this section, we establish the existence and uniqueness of the solution to
(3.3) under the assumption that the terminal condition and the generator of the
reflected BSDE are functions of a Markov diffusion process X in Rd1 :

(3.1) Xt “ x`

ż t

0

bps,Xsqds`

ż t

0

σps,XsqdWs, x P Rd1 .

Namely, we make the following assumptions.

Assumption 3.1. We assume that pb, σq are bounded measurable functions, uni-
formly Lipschitz with respect to x, and such that σJσ is uniformly positive definite
(i.e. uniformly elliptic).

Note that Assumption 3.1, in particular, implies that the matrix σ is invertible.

Assumption 3.2. We assume that

ξ :“ gpXT q and fpt, y, zq :“ F pt,Xt, y, zq,

where g is α-Hölder and D̄-valued, F is measurable in all variables, globally Lip-
schitz in py, zq, and such that |F p¨, ¨, 0, 0q| is bounded.

Recall that Assumptions 1.1 and 1.2 hold throughout the paper, even if they
are not cited explicitly.

3.1. Penalized equation. We begin by noticing that ψ2 P C1pRdq and denoting

Ψpyq :“
1

2
∇ψpyq2 “ ψpyq∇ψpyq, y P Rd,

where we extend (naturally) ∇ψ to D by zero. We also extend ∇2ψ2 to D by
zero.

It is useful to note that there exist constants c, C, such that

(3.2) 0 ă cψ ď |Ψ| ď Cψ.

Next, we consider the following penalized equation:

Y n
t “ ξ `

ż T

t

fps, Y n
s , Z

n
s qds´

ż T

t

nΨpY n
s qp1` |Z

n
s |

2
qds´

ż T

t

Zn
s dWs.(3.3)
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Let us remark that, in contrast with the convex framework tackled in [22], it is
natural (and necessary) to include |z|2 in the penalization term, as can be seen,
e.g., from (2.3). For convenience, we introduce

Φn
t :“

ż t

0

nΨpY n
s qds, Θn

t :“

ż t

0

nΨpY n
s q|Z

n
s |

2ds,

Kn
t :“ Φn

t `Θn
t .(3.4)

3.2. Existence of a solution to the penalized equation. We start by consid-
ering the following family of approximating BSDEs, indexed by a pair of positive
integers M “ pM1,M2q:

Y n,M
t “ gpXT q `

ż T

t

F n,M
ps,Xs, Y

n,M
s , Zn,M

s qds´

ż T

t

Zn,M
s dWs,(3.5)

with

F n,M
pt, x, y, zq :“ fpt, x, y, zq´nρM1pψpyqq∇ψpyqp1`ρM2p|z|

2
qq, ρkpxq :“ x^k.

The above BSDE has a globally Lipschitz generator and, therefore, is known to
have a unique Markovian solution pY n,M , Zn,Mq P S 2 ˆH 2 (see, e.g., Theorem
4.1 in [16]). The following Proposition uses the weak star-shape property of D,
stated in Assumption 1.1, to establish a uniform estimate on pY n,M , Zn,Mq.

Lemma 3.1. There exists a constant C ą 0, such that, for any n ě 1, any
M “ pM1,M2q, and any t P r0, T s, the following holds a.s.:

|Y n,M
t |

2
` Et

„
ż T

t

|Y n,M
s |

2
` |Zn,M

s |
2ds



ď C Et
„

|ξ|2 `

ż T

t

p1` |fps, 0, 0q|2qds



,

(3.6)

Et
„
ż T

t

nρM1pψpY
n,M
s qqp1` ρM2p|Z

n,M
s |

2
qqds



ď C Et
„

|ξ|2 `

ż T

t

p1` |fps, 0, 0q|2qds



.

(3.7)

Proof. Without loss of generality, we assume that φC attains its minimum at
zero. Then, we consider arbitrary t P r0, T s and constants α ą 0, β ą 0, to be
determined later, and define

rt, T s ˆ Rd
Q ps, yq ÞÑ hps, yq :“ eβps´tq

`

α|y|2 ` pφCpyq ´ φCp0qq
2
˘

P R.

We observe that pφC ´φCp0qq
2 is convex and that hps, yq ď eβpT´sqc0|y|

2, for some
positive constant c0. Then, we apply Itô’s formula to the process hps, Y n,M

s q
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(recalling (3.3)), to obtain

α|Y n,M
t |

2
ď hpt, Y n,M

t q ď hpT, ξq

` 2

ż T

t

eβps´tqpαY n,M
s ` pφCpY

n,M
s q ´ φCp0qq∇φCpY

n,M
s qq ¨ fps, Y n,M

s , Zn,M
s qds

´

ż T

t

nρM1pψpY
n,M
s qq∇yhps, Y

n,M
s q ¨ ∇ψpY n,M

s qp1` ρM2p|Z
n,M
s |

2
qqds

(3.8)

´ 2

ż T

t

∇yhps, Y
n,M
s q ¨ Zn,M

s dWs ´ α

ż T

t

eβps´tq|Zn,M
s |

2ds´ β

ż T

t

eβps´tq|Y n,M
s |

2ds.

As Y n,M P S 2 and Zn,M P H 2, the local martingale in the above representation
is in M1 and, hence, is a true martingale.

Next, we notice that the fourth property in Lemma 2.4 implies the existence of
a constant c1 ą 0, such that

∇φCpY
n,M
s q ¨∇ψpY n,M

s q ě c11tY n,ms RDu.

Then, there exist constants c2, c3 ą 0 such that

´

ż T

t

nρM1pψpY
n,M
s qq∇yhps, Y

n,M
s q ¨ ∇ψpY n,M

s qp1` ρM2p|Z
n,M
s |

2
qqds

ď´ 2

ż T

t

neβps´tqρM1pψpY
n,M
s qqpc1pφCpY

n,M
s q ´ φCp0qq ´ αc2|Y

n,M
s |qp1` ρM2p|Z

n,M
s |

2
qqds

ď´ 2

ż T

t

neβps´tqρM1pψpY
n,M
s qq

“

c1pφCpY
n,M
s q ´ φCp0qq

(3.9)

´ αc2pφCpY
n,M
s q ` |PC̄pY

n,M
s q|q

‰ `

1` ρM2p|Z
n,M
s |

2
q
˘

ds

ď´ c3

ż T

t

neβps´tqρM1pψpY
n,M
s qqp1` ρM2p|Z

n,M
s |

2
qqds,

provided α is small enough. In the rest of the proof, we assume that α is chosen
so that the above inequality holds.

Next, we remark that
ˇ

ˇ

ˇ

ˇ

2

ż T

t

eβps´tq
`

αY n,M
s ` pφCpY

n,M
s q ´ φCp0q

˘

∇φCpY
n,M
s qq ¨ fps, Y n,M

s , Zn,M
s qds

ˇ

ˇ

ˇ

ˇ

ď C1

ż T

t

eβps´tq
`

pα ` 1q|Y n,M
s | ´ φCp0q

˘ `

|fps, 0, 0q| ` C2|Y
n,M
s | ` C2|Z

n,M
s |

˘

ds

ď

ż T

t

eβps´tq
´

C3|Y
n,M
s |

2
` C3 ` |fps, 0, 0q|

2
`
α

2
|Zn,M

s |
2
¯

ds.



20 JEAN-FRANÇOIS CHASSAGNEUX, SERGEY NADTOCHIY, ADRIEN RICHOU

Combining the above estimates and (3.8), we conclude that, for a large enough
β ą 0, there exists a constant C4 ą 0, such that

α|Y n,M
t |

2
` Et

„

c3

ż T

t

nρM1pψpY
n,M
s qq

`

1` ρM2p|Z
n,M
s |

2
q
˘

ds`
α

2

ż T

t

|Y n,M
s |

2
` |Zn,M

s |
2ds



ď eβpT´tqEt
„

c0|ξ|
2
`

ż T

t

pC4 ` |fps, 0, 0q|
2
qds



,

which yields the statement of the lemma. l

Proposition 3.1. Under Assumptions 3.1 and 3.2, for any n ě 1, the BSDE
(3.3) has a Markovian solution pY n, Znq. In particular, there exists a measurable
function un such that Y n

t “ unpt,Xtq. Moreover, the estimates (3.6)–(3.7) hold
with pY n,M , Zn,Mq and ρMi

replaced, respectively, by any solution pY n, Znq of (3.3)
and by the identity function.

Proof. The main statement of the proposition follows from Theorem 2.8 in [48]
(without the localization used in [48]). To be able to apply the latter theorem,
we first consider the following auxiliary BSDE, which can be viewed as a middle
ground between (3.3) and (3.5):

Ỹ n,M1
t “ gpXT q `

ż T

t

F̃ n,M1ps,Xs, Ỹ
n,M1
s , Z̃n,M1

s qds´

ż T

t

Z̃n,M1
s dWs,(3.10)

with
F̃ n,M1pt, x, y, zq :“ fpt, x, y, zq ´ nρM1pψpyqq∇ψpyqp1` |z|2q

and recalling that ρM1pxq “ x^M1. We claim that the unique solution pY n,M , Zn,Mq

of (3.5) converges (along a subsequence) to a Markovian solution pỸ n,M1 , Z̃n,M1q

of (3.10), as M2 Ñ 8. Indeed, this claim follows directly from Theorem 2.8 in
[48]. To verify the assumptions of the latter theorem, we first notice that, due
to (3.6), there exists a constant c ą 0 such that |Y n,M

t | ď c, for all t P r0, T s
and n,M . Moreover, for large enough C ą 0 (independent of n and M), hpyq :“
C pα|y|2 ` pφCpyq ´ φCp0qq

2q is a global c-Lyapunov function for pF n,MqM , in the
sense of Definition 2.3 in [48], where α is the constant chosen in the proof of
Lemma 3.1. Indeed, there exists a large enough C ą 0, such that, for all |y| ď c,
we have:

1

2
C TrrpzσqJp∇2hpyqqzσs ´ C∇hpyq ¨ F n,M

ě CαTrrpzσqJzσs ´ 2C rαy ` pφCpyq ´ φCp0qq∇φCpyqs ¨ fpt, x, y, zq

` 2Cn rαy ` pφCpyq ´ φCp0qq∇φCpyqs ¨∇ψpyqρM1pψpyqqp1` ρM2p|z|
2
qq

ě |z|2 ´ C 1,

where we used the uniform ellipticity of σJσ, Assumption 1.2, and the fourth
property in Lemma 2.4, and repeated the estimates used in (3.9). In addition,
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we have |F n,Mpt, x, y, zq| ď C ` Cn|z|
2, with the constants pC,Cnq independent

of M2. Observing that F n,M converges to F̃ n,M1 locally uniformly, as M2 Ñ

8, we conclude that the assumptions of Theorem 2.8 in [48] are satisfied and
that (3.10) has a Markovian solution pỸ n,M1 , Z̃n,M1q which is a limit point of
tpY n,M , Zn,MquM2 .

Next, we recall that, due to (3.6), |Y n,M | is bounded uniformly over M . Hence,
|Ỹ n,M1 | can be bounded uniformly overM1 ě 1, and, in turn, pỸ n,M1 , Z̃n,M1q solve
(3.3) for any large enough M1 ą 0.

The estimates (3.6)–(3.7) are obtained by repeating the proof of Lemma 3.1 for
the equation (3.3) in place of (3.5). l

3.3. A priori estimates. The following result relies on the asymptotic convexity
of the squared pseudo-distance function, stated in Lemma 2.5.

Lemma 3.2. Under Assumptions 3.1 and 3.2, there exists a constant C ą 0,
such that, for any n ě 1, any solution pY n, Znq of (3.3), and any t P r0, T s, the
following holds a.s.:

nψ2
pY n

t q`Et
„
ż T

t

n2
|ΨpY n

s q|
2
`

1` |Zn
s |

2
˘

ds



ď C Et
„

|ξ|2 `

ż T

t

|fps, 0, 0q|2ds



,

and, in particular,

dpY n
t ,Dq ď Cn´1{2.

Proof. We begin by applying Itô’s formula to |ψpY n
t q|

2, to obtain

ψ2
pY n

t q “ 2

ż T

t

ΨpY n
s q ¨ fps, Y

n
s , Z

n
s qds´ 2

ż T

t

n|ΨpY n
s q|

2ds

´ 2

ż T

t

n|ΨpY n
s q|

2
|Zn

s |
2ds´ 2

ż T

t

ΨpY n
s q ¨ Z

n
s dWs(3.11)

´
1

2

ż T

t

TrrpZn
s q
J∇2ψ2

pY n
s qZ

n
s sds

Remark 3.1. Note that the Hessian of ψ2 has a discontinuity at BD. To jus-
tify the use of Itô’s formula, we approximate ψ2 by a sequence of C2 functions
tgmu, such that gm, ∇gm and ∇2gm converge, respectively, to ψ2, ∇ψ2 and ∇2ψ2

everywhere in Rd, and |∇gm|, |∇2gm| are locally bounded uniformly over m. To
construct such a sequence, we first define

φ̂pyq :“ φpyqp1´ϑp|y|´R´1qq`ϑp|y|´Rq, ψ̂pyq :“ φ̂pyq`κ|y|ϑpφ̂pyq{εq, y P Rd,
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where we recall the original function φ, appearing in Assumption 1.1, and use the
same ϑ, R, and ε, as the ones used in Subsection 2.3 to define ψ (see (2.8)). It
is clear that ψ̂pyq “ ψpyq, for y P RdzD, and that ψ̂pyq “ φpyq, for y P D. Thus,
ψ̂ is a smooth extension of ψ into D. Next, we consider an infinitely smooth
nondecreasing function ρ : RÑ R, such that ρpxq “ ´1 for x ď ´1 and ρpxq “ x
for x ě 0, and define

gmpyq :“
1

m2
ρ2

´

mψ̂pyq
¯

, y P Rd.

It is easy to check by a direct computation that gmpyq, ∇gmpyq and ∇2gmpyq
converge to zero as m Ñ 8, for any y P D. On the other hand, gmpyq and its
first two derivatives coincide with ψ2pyq and with its respective derivatives, for all
y P RdzD and all m. Thus, we obtain the desired sequence tgmu. Applying Itô’s
formula to gmpY n

t q and using the dominated convergence theorem to pass to the
limit as mÑ 8, we establish (3.11).

As |Ψ| is linearly bounded (see Lemma 2.4), we conclude, as in the proof of
Lemma 3.1, that the local martingale in (3.11) is a true martingale.

Next, we note that

2ΨpY n
s q ¨ fps, Y

n
s , Z

n
s q ď n|ΨpY n

s q|
2
` n´1

|fps, Y n
s , Z

n
s q|

2

and use Lemma 3.1, to obtain:

Et
ż T

t

2ΨpY n
s q ¨ fps, Y

n
s , Z

n
s qds

(3.12)

ď Et
ż T

t

n|ΨpY n
s q|

2ds` Cn´1Et
„

|ξ|2 `

ż T

t

p1` |fps, 0, 0q|2qds



.

In addition, Lemmas 2.4 and 2.5 yield

TrrpZn
s q
J∇2ψ2

pY n
s qZ

n
s s ě ´CΨpY n

s q|Z
n
s |

2.

Then,

´ n

ˆ

1

2
TrrpZn

s q
J∇2ψ2

pY n
s qZ

n
s s ` 2n|ΨpY n

s q|
2
|Zn

s |
2

˙

ď
`

Cn|ΨpY n
s q| ´ cn

2
|ΨpY n

s q|
2
˘

|Zn
s |

2.(3.13)

Next, we observe that
`

Cn|ΨpY n
s q| ´ Cn

2
|ΨpY n

s q|
2
˘

|Zn
s |

2
ď C|Zn

s |
2.(3.14)
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Collecting (3.13)–(3.14) and using Lemma 3.1, we obtain

´ Et
ż T

t

`

TrrpZn
s q
J∇2ψ2

pY n
s qZ

n
s s ` 2n|ΨpY n

s q|
2
|Zn

s |
2
˘

ds(3.15)

ď Cn´1Et
ż T

t

|Zn
s |

2ds ď Cn´1Et
„

|ξ|2 `

ż T

t

p1` |fps, 0, 0q|2qds



.

Taking the conditional expectation in (3.11), multiplying both sides by n, and
using (3.12), (3.15), we complete the proof. l

The following proposition improves the rate of convergence of Y n to D.

Proposition 3.2. Under Assumptions 3.1 and 3.2, there exist N, C ą 0, such
that, for any n ě N, any solution pY n, Znq of (3.3), and any t P r0, T s, the
following holds a.s.:

nψpY n
t q ď C.

Proof. First, we denote by }∇2ψpyq}˚ the maximum absolute value across all
negative parts of the entries of the matrix ∇2ψpyq. Then, we fix arbitrary ε, ε ą 0
satisfying

ε ď

ˆ

ε` sup
yPBD

}∇2ψpyq}˚
|∇ψpyq|2

˙´1

, ε ď

˜

ε` 2 sup
yPBD, zPRdˆm, sPr0,T s

}npyq ¨ fps, y, zq}L8

|∇ψpyq|

¸´1

,

and define

Ψn
pyq :“ pψpyq ´ 1{pεnqq`∇ψpyq “ 1

2
∇
`

pψpyq ´ 1{pεnqq`
˘2
,

H̃pyq :“ ∇2
`

pψpyq ´ 1{pεnqq`
˘2
“ 2∇ψpyq∇Jψpyq1ψě1{pεnq`2pψpyq´1{pεnqq`∇2ψpyq.

Next, we apply Itô’s formula to ppψpY n
t q ´ 1{pεnqq`q2 (the validity of Itô’s

formula for the function ppψ ´ 1{pεnqq`q2 is justified similarly to Remark 3.1), to
obtain

ppψpY n
t q ´ 1{pεnqq`q2 “ 2

ż T

t

Ψn
pY n

s q ¨ fps, Y
n
s , Z

n
s qds´ 2

ż T

t

n|ΨpY n
s q||Ψ

n
pY n

s q|ds

´ 2

ż T

t

n|ΨpY n
s q||Ψ

n
pY n

s q||Z
n
s |

2ds´ 2

ż T

t

Ψn
pY n

s q ¨ Z
n
s dWs(3.16)

´
1

2

ż T

t

TrrpZn
s q
JH̃pY n

s qZ
n
s sds.

As |Ψn| is linearly bounded (see Lemma 2.4), we conclude, as in the proof of
Proposition 3.1, that the local martingale in the above representation is a true
martingale.
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Next, we note that

2Ψn
pY n

s q ¨ fps, Y
n
s , Z

n
s q ´ n|ΨpY

n
s q||Ψ

n
pY n

s q|

ď |Ψn
pY n

s q| p2|npY
n
s q ¨ fps, Y

n
s , Z

n
s q| ´ nψpY

n
s q|∇ψpY n

s q|q .

Notice that, whenever ΨnpY n
s q ą 0, we have ψpY n

s q ě 1{pεnq and, hence, nψpY n
s q ě

1{ε. Then, since ε ą 0 satisfies

ε ď

˜

ε` 2 sup
yPBD, zPRdˆm, sPr0,T s

}npyq ¨ fps, y, zq}L8

|∇ψpyq|

¸´1

,

and since Y n
s is close to D for large enough n (due to Lemma 3.2), we conclude

that

nψpY n
s q|∇ψpY n

s q| ě |∇ψpY n
s q|

˜

ε` 2 sup
yPBD, zPRdˆm, sPr0,T s

}npyq ¨ fps, y, zq}L8

|∇ψpyq|

¸

ě |∇ψpY n
s q|ε{2` 2|npY n

s q ¨ fps, Y
n
s , Z

n
s q|

and, in turn,

2Ψn
pY n

s q ¨ fps, Y
n
s , Z

n
s q ´ n|ΨpY

n
s q||Ψ

n
pY n

s q| ď 0.(3.17)

Next, we recall that

1

2
TrrpZn

s q
JH̃pY n

s qZ
n
s s ě pψpY

n
s q ´ 1{pεnqq` TrrpZn

s q
J∇2ψpY n

s qZ
n
s s

and, hence,

´
1

2
TrrpZn

s q
JH̃pY n

s qZ
n
s s ď }∇2ψpY n

s q}˚ pψpY
n
s q ´ 1{pεnqq` |Zn

s |
2.

In addition,

´|ΨpY n
s q||Ψ

n
pY n

s q||Z
n
s |

2
“ ´|∇ψpY n

s q|
2ψpY n

s q pψpY
n
s q ´ 1{pεnqq` |Zn

s |
2.

Collecting the two equations above, we deduce

´
1

2
TrrpZn

s q
JH̃pY n

s qZ
n
s s ´ n|ΨpY

n
s q||Ψ

n
pY n

s q||Z
n
s |

2

ď pψpY n
s q ´ 1{pεnqq` |Zn

s |
2
`

}∇2ψpY n
s q}˚ ´ |∇ψpY n

s q|
2nψpY n

s q
˘

.

Recall that, whenever ψpY n
s q ě 1{pεnq, we have nψpY n

s q ě 1{ε. Then, since ε ą 0
satisfies

ε ď

ˆ

ε` sup
yPBD

}∇2ψpyq}˚
|∇ψpyq|2

˙´1

,
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and since Y n
s is close to D for large enough n, we conclude that

|∇ψpY n
s q|

2nψpY n
s q ě |∇ψpY n

s q|
2

ˆ

ε` sup
yPBD

}∇2ψpyq}˚
|∇ψpyq|2

˙

ě |∇ψpY n
s q|

2ε{2` }∇2ψpY n
s q}˚

and, in turn,

´
1

2
TrrpZn

s q
JH̃pY n

s qZ
n
s s ´ n|ΨpY

n
s q||Ψ

n
pY n

s q||Z
n
s |

2
ď 0.(3.18)

Taking the conditional expectation in (3.16), we make use of equations (3.17)
and (3.18), and of the fact that |Ψn| ď |Ψ|, to obtain

ppψpY n
t q ´ 1{pεnqq`q2`Et

ż T

t

n|Ψn
pY n

s q|
2
`

1` |Zn
s |

2
˘

ds ď 0

and complete the proof. l

Using Proposition 3.2, we can improve the statement of Proposition 3.1 and
deduce that the Hölder norms of the Markovian solutions of the penalized BSDEs
are bounded uniformly over n.

Corollary 3.1. Under Assumptions 3.1 and 3.2, there exist constants N ě 1,
α1 P p0, 1s, and C ą 0 (independent of n), such that, for any n ě N, the BSDE
(3.3) has a Markovian solution pY n, Znq, with Y n

t “ unpt,Xtq, and any such
solution satisfies

sup
pt,xq‰pt1,x1q

|unpt, xq ´ unpt1, x1q|

|t´ t1|α1{2 ` |x´ x1|α1
ď C.(3.19)

Proof. The statement of the corollary follows from Theorem 2.5 in [48] (without
the localization used in [48]). To verify the assumptions of the latter theorem, we
consider the following capped version of (3.3):

Ŷ n,N
t “ gpXT q `

ż T

t

F̂ n,N
ps,Xs, Ŷ

n,N
s , Ẑn,N

s qds´

ż T

t

Ẑn,N
s dWs,(3.20)

with
F̂ n,N

pt, x, y, zq :“ fpt, x, y, zq ´ ρNpnψpyqq∇ψpyqp1` |z|2q
and recalling ρNpxq “ x ^ N . Propositions 3.1 and 3.2 imply the existence of
(large enough) N,N ą 0, such that, for every n ě N, there exists a Markovian
solution pY n, Znq of (3.3), with Y n

t “ unpt,Xtq, and any such solution also solves
(3.20). Moreover, there exists c ą 0 such that |un| ď c for all n.

Next, we fix N as above and verify easily (as in the proof of Proposition
3.1) that, for large enough C ą 0 and small enough α ą 0 (independent of
n), Cpα|y|2 ` pφCpyq ´ φCp0qq

2q is a global c-Lyapunov function for pF̂ n,Nqn, in
the sense of Definition 2.3 in [48]. In addition, |F̂ n,Npt, x, y, zq| ď C ` CN |z|

2,
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with the constants pC,CNq independent of n. Thus, Theorem 2.5 in [48] yields
the uniform boundedness of the Hölder norm of un. l

Without loss of generality, we assume that the statements of Proposition 3.2
and Corollary 3.1 hold with N “ 1. From Corollary 3.1, we deduce that there
exists a subsequence of tununě1 converging locally uniformly to a function u sat-
isfying (3.19). To alleviate the notation, this subsequence is still denoted punqně1.
Recalling that Y n

t “ unpt,Xtq and introducing Yt :“ upt,Xtq, for t P r0, T s, we
observe that

E

«

sup
tPr0,T s

|Y n
t ´ Yt|

2

ff

ÝÑ
nÑ`8

0 ,(3.21)

since t ÞÑ pt,Xtq is a.s. continuous and t|Y n|u is bounded uniformly by a constant,
see Lemma 3.2.

We conclude this section with the following lemma, which is used in the next
section. This lemma provides a uniform upper bound on the second moment of
the auxiliary process

Γn,mt :“ exp

ˆ
ż t

0

´

1` | 9Kn
s | ` |

9Km
s |

¯

ds

˙

, t P r0, T s,

where we recall (3.4).

Lemma 3.3. Under Assumptions 3.1 and 3.2, for any ε ą 0, there exists N ě 1
(independent of n) such that, for all n ě 1 and all 0 ď k ă N , we have, a.s.:

Et

«

ż T pk`1q{N

t

|Zn
s |

2
` | 9Kn

s |ds

ff

ď ε, @t P rTk{N, T pk ` 1q{N s.

In particular, for any β ą 0, there exists a constant C “ Cpβq (independent of
pn,mq) such that

ErpΓn,mT q
β
s ď C, @n,m ě 1.

Remark 3.2. It is worth noticing that the constant C appearing in Lemma 3.3
does not depend on the initial value x of the diffusion X, as follows from the proof
of the lemma.

Proof. The proof of the first statement of the lemma is an improvement of
the estimates in the proof of Lemma 3.1, with the use of Corollary 3.1. We
fix t ă t1 P r0, T s, β1 ą 0 and α ą 0, and apply Itô’s formula to the process
peβ

1ps´tqpα|Y n
s |

2`pφCpY
n
s q´φCp0qq

2qsPrt,t1s (recall (3.3)), to obtain, as in the proof
of Lemma 3.1,

|Y n
t |

2
` cEt

«

ż t1

t

|Zn
s |

2
` | 9Kn

s |ds

ff

ď Et

«

eβ
1pt1´tq

|Y n
t1 |

2
` C

ż t1

t

eβ
1ps´tq

p1` |F ps,Xs, 0, 0q|
2
qds

ff

,



REFLECTED BSDES IN NON-CONVEX DOMAINS 27

which holds for large enough β1 and small enough α.
Then, by using the upper bounds on |Y n| (see Proposition 3.2) and on |F p., ., 0, 0q|

(see Assumption 3.2), we obtain:

Et

«

ż t1

t

|Zn
s |

2
` | 9Kn

s |ds

ff

ďEt

«

eβ
1pt1´tq

|Y n
t1 |

2
´ |Y n

t |
2
` C

ż t1

t

eβ
1ps´tq

p1` |F ps,Xs, 0, 0q|
2
qds

ff

ďEt
„

peβ
1pt1´tq

´ 1q|Y n
t1 |

2
` |Y n

t1 ` Y
n
t ||u

n
pt1, Xt1q ´ u

n
pt,Xtq| `

C

β1
peβ

1pt1´tq
´ 1q



ďCpβ1qpt1 ´ tq ` CEt
”

pt1 ´ tqα
1{2
` |Xt1 ´Xt|

α1
ı

ď C 1pβ1qpt1 ´ tqα
1{2,

where C 1 is independent of n, and we made use of Jensen’s inequality and of
standard SDE estimates on X in the last inequality. The above proves the first
statement of the lemma.

To prove the second statement, we fix an arbitrary β ą 0 and consider N
corresponding to ε “ 1{p8βq. Then, the first statement of the lemma and the
John-Nirenberg inequality yield:

E
”

e2β
şT
0 |

9Kn
s |`|

9Km
s |ds

ı

ď E
”

e2β
şT pN´1q{N
0 | 9Kn

s |`|
9Km
s |dsET pN´1q{N

”

e2β
şT
T pN´1q{N |

9Kn
s |`|

9Km
s |ds

ıı

ď 2E
”

e2β
şT pN´1q{N
0 | 9Kn

s |`|
9Km
s |ds

ı

.

Iterating the above, we obtain the desired estimate. l

3.4. Existence and uniqueness. We denote by tpY n, Znquně1 a sequence of
Markovian solutions to (3.3) satisfying (3.21) (whose existence is established
in the previous subsection). The goal of this subsection is to establish that
tpY n, Zn, Knq P S 2 ˆ H 2 ˆ K 1uně1 (with Kn defined in (3.4))2 converges to
a solution of the reflected BSDE (1.2) and that this solution is unique in the
appropriate class.

Theorem 3.1. Let Assumptions 3.1 and 3.2 hold. Then, there exists a triplet
pY, Z,Kq P S 2 ˆH 2 ˆK 1, such that

lim
nÑ8

p}Y n
´ Y }S 2 , }Zn

´ Z}H 2 , }Kn
´K}S 2q “ 0 ,

and pY, Z,Kq solves (1.2). The process K is absolutely continuous and satisfies,
for all β ą 0:

E
“

eβVarT pKq
‰

ă 8 .(3.22)

2The fact that Kn P K 1 follows from the inequality (3.7) and from the second statement of
Proposition 3.1.
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Moreover, this solution to (1.2) is unique in the class U p1q (recall Definition 2.1).

Remark 3.3. If, in addition to Assumptions 3.1 and 3.2, g and F are globally
Lipschitz in x (i.e., α “ 1 in Assumption 3.2), then there exists a constant C
such that

|Z| ď C, dtˆ dP-a.e.

Indeed, using the same arguments as in the proof of Corollary 3.1, we conclude
that the conditions of Theorem 2.16 in [27] are satisfied. The latter theorem yields
the existence of a constant C, such that |Zn

t | ď C for a.e. pt, ωq and for all n. It
follows then that |Z| ď C.

Remark 3.4. It is worth noticing that every exponential moment of VarT pKq
can be bounded by a constant that does not depend on the initial value x of the
diffusion X, as follows from Remark 3.2 and from the proof of Theorem 3.1.

Remark 3.5. As explained in the discussion preceding (3.21), there exists a
measurable function u such that Yt “ upt,Xtq. In addition, since pY n, Znq is
Markovian (see Corollary 3.1), there exists a measurable function vn such that
Zn
t “ vnpt,Xtq. Then, using the convergence of Zn (see Theorem 3.1) and the

strict ellipticity of X, we easily deduce the existence of a measurable v, such that
Zt “ vpt,Xtq. In this sense, the solution constructed in Theorem 3.1 is Markov-
ian. One may naturally wonder if this Markovian solution yields a solution to
an associated partial differential equation (PDE). Adapting the PDE formulation
provided in [35] for a convex reflection domain, we conjecture the following PDE
for the Markovian solution u constructed in Theorem 3.1: for all admissible test
functions w : r0, T s ˆ Rd1 Ñ D,
$

&

%

piq

B

Bu

Bt
`Ltu` fpt, x, u, σ

J∇uq, u´ w ` c|w ´ u|2npuq
F

ě 0, 0 ď t ď T,

piiq upT, .q “ g, upt, .q P D, 0 ď t ď T,

with Lt being the infinitesimal generator of X at time t and with c being a large
enough constant that appears in Lemma 2.3. An alternative, though related, for-
mulation can be obtained using [39]. In any case, studying the precise connection
between the Markovian solution to (1.2) constructed in Theorem 3.1 and the as-
sociated PDE is outside of the scope of this article and is left for future research.

Proof. 1.a We first prove the uniqueness of the solution in the desired class. For
any solution pY 1, Z 1, K 1q in U p1q, we have

(3.23) E
„

e
p1

R0
VarT pK

1q



ă `8,
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for some p1 ą 1. Setting 1 ă p :“ p1`p1q{2 ă p1, q1 :“ p1{p ą 1 and q “ q1{pq1´1q,
we obtain, using Hölder inequality:

E
”

e
p
R0
pVarT pKq`VarT pK

1qq
ı

ď E
”

e
qp
R0

VarT pKq
ı

1
q E

„

e
q1p
R0

VarT pK
1q


1
q1

.(3.24)

By (3.23), we have E
„

e
q1p
R0

VarT pKq



“ E
„

e
p1

R0
VarT pKq



ă 8. Then, using (3.22),

which is proved below, we obtain

E
”

e
p
R0
pVarT pKq`VarT pK

1qq
ı

ă `8.(3.25)

Proposition 2.2, then, yields the desired uniqueness stated in the theorem.
1.b The fact that K is absolutely continuous is proved in Lemma 2.1.
2. Turning to the existence part of the proof, we recall that the convergence of
tY nu is established in (3.21). Moreover, it follows easily from Proposition 3.2
that, with probability one, Yt takes values in D̄ for all t P r0, T s.

We now turn to the convergence of tZnu. For n,m ě 1, we denote

δft :“ fpt, Y n
t , Z

n
t q ´ fpt, Y

m
t , Z

m
t q, δK :“ Kn

´Km,

δY :“ Y n
´ Y m, δZ “ Zn

´ Zm.

Applying Itô’s formula to peβ1s|δYs|2qsPrt,T s, we obtain

|δYt|
2
`

ż T

t

eβ
1ps´tq

|δZs|
2ds “ 2

ż T

t

eβ
1ps´tqδYs ¨ δfsds´ 2

ż T

t

eβ
1ps´tqδYs ¨ δ 9Ksds

´ 2

ż T

t

eβ
1ps´tqδYs ¨ δZsdWs ´ β

1

ż T

t

eβ
1ps´tq

|δYs|
2ds.

(3.26)

Choosing a large enough β1 ą 0 and using the standard estimates, we deduce

E
„
ż T

0

|δZs|
2ds



ď CE
„
ż T

0

ˇ

ˇ

ˇ
δYs ¨ δ 9Ks

ˇ

ˇ

ˇ
ds



.(3.27)

Note that Lemma 3.3 yields the existence of a constant C, such that E
„

´

şT

0
|δ 9Ks|ds

¯2


ď

C for all n,m. Then, using Cauchy-Schwartz inequality, we obtain

E
„
ż T

0

|δYs ¨ δ 9Ks|ds



ď E

«

sup
sPr0,T s

|δYs|
2

ff
1
2
«

E
ˆ
ż T

0

|δ 9Ks|ds

˙2
ff

1
2

.

The above estimate, along with (3.27) and (3.21), implies that tZnuně1 is a Cauchy
sequence. Thus, there exists pY, Zq P S 2 ˆH 2 such that pY n, Znq Ñ pY, Zq.
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Next, we recall that

Kn
t “ Y n

t ´ Y
n

0 `

ż t

0

fps, Y n
s , Z

n
s qds´M

n
t , Mn

t :“

ż t

0

Zn
s dWs.

Doob’s maximal inequality implies that tMnu converges to M in S 2, with Mt :“
şt

0
ZsdWs. As fpt, ¨, ¨q is Lipschitz, we conclude that

(3.28) }Kn
´K}S 2 Ñ 0,

with the continuous process K defined as

Kt :“ Yt ´ Y0 `

ż t

0

fps, Ys, Zsqds´

ż t

0

ZsdWs.

Let us now prove that K P K 1, and that dKt is directed along n and is
active only when Y touches the boundary. To this end, we define the auxiliary
nondecreasing processes

K̂n
t :“

ż t

0

nψpY n
s qp1` |Z

n
s |

2
qds, t P r0, T s.

From Lemma 3.1 we deduce the existence of a constant C, such that E
”

K̂n
T

ı

ď

C for all n. Then, using Proposition 3.4 in [7], we know that there exists a
nondecreasing nonnegative process K̂, two sequences of integers tp ď Npu, with
pÑ 8, and a family of numbers tλpru, with

řNp
r“p λ

p
r “ 1, such that

P

˜

pK̂t :“

Np
ÿ

r“p

λprK̂
r
t Ñ K̂t , @t P r0, T s

¸

“ 1 .(3.29)

The above implies that the measure induced by d pK̂t on r0, T s converges a.s. to
dK̂t. Then, for any bounded continuous process χ and any 0 ď t1 ă t2 ď T ,

ηppt1, t2q :“

ż t2

t1

χt

Np
ÿ

r“p

λprrψpY
r
t qp1` |Z

r
t |

2
qdt “

ż t2

t1

χtd
pK̂t Ñ

ż T

0

χtdK̂t, a.s.

(3.30)

From the first statement of Lemma 3.3 (with the use of Proposition 3.2), we
conclude that, for any ε ą 0, there exists N ě 1 (independent of n) such that for
all p and all 0 ď k ă N we have, a.s.:

Etr|ηppt, T pk ` 1q{Nq|s ď ε, @t P rTk{N, T pk ` 1q{N s.

Then, repeating the last part of the proof of Lemma 3.3, we conclude that, for
any β ą 0, there exists a constant C such that

E
“

eβη
pp0,T q

‰

ď C, @ p.
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Thus, the family texppβηpp0, T qqup is uniformly integrable. The latter implies,
in particular, that the convergence in (3.30) holds in L1 and that all exponential
moments of K̂T are finite.

Next, we define

pKt :“

Np
ÿ

r“p

λprK
r
t , t P r0, T s.

We also denote by Ą∇ψ a Lipschitz extension of ∇ψ into D (constructed as in
Remark 3.1). Then, for any event A and any t P r0, T s, we have:

ErpKt 1As “ E

«

ż t

0

Np
ÿ

r“p

λpr
Ą∇ψpY r

s qrψpY
r
s qp1` |Z

r
s |

2
qds1A

ff

“ E

«

ż t

0

Ą∇ψpYsq
Np
ÿ

r“p

λprrψpY
r
s qp1` |Z

r
s |

2
qds1A

ff

`O

˜

E

«

Np
ÿ

r“p

λpr sup
sPr0,ts

|Y r
s ´ Ys|

ż t

0

p1` |Zr
s |

2
qds

ff¸

Ñ E
„
ż t

0

Ą∇ψpYsqdK̂sds1A



,

where we used (3.30), along with its L1 version, and the estimate

E

«

sup
sPr0,ts

|Y r
s ´ Ys|

ż t

0

p1` |Zr
s |

2
qds

ff

ď C}Y r
´Y }S 2E

”

e
şt
0p1`|Z

r
s |

2q
ı1{2

ď C}Y r
´Y }S 2 ,

which follows from Lemma 3.3.
On the other hand, asKn converges toK in S 2, ErpKt 1As converges to ErKt1As.

Since A is arbitrary and K¨ is continuous, we conclude:

(3.31) P
ˆ

Kt “

ż t

0

Ą∇ψpYsqdK̂sds, @ t P r0, T s

˙

“ 1.

Note that the integrability of K̂T and the above representation, in particular,
imply K P K 1.

It only remains to show that

(3.32)
ż T

0

1DpYtqdK̂t “ 0.

To this end, we choose an arbitrary Lipschitz f supported in D and any event A,
to obtain:

E
„
ż T

0

fpYtqdK̂t 1A



“ lim
nÑ8

E

«

ż T

0

fpYtq

Np
ÿ

r“p

λprrψpY
r
t qp1` |Z

r
t |

2
qdt1A

ff
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“ lim
nÑ8

E

«

ż T

0

Np
ÿ

r“p

λprfpY
r
t qrψpY

r
t qp1` |Z

r
t |

2
qdt1A

ff

`O

˜

E

«

Np
ÿ

r“p

λpr sup
tPr0,T s

|Y r
t ´ Yt|

ż T

0

p1` |Zr
t |

2
qdt

ff¸

“ 0.

As A is arbitrary, we conclude that, for any Lipschitz f supported in D, we
have

şT

0
fpYtqdK̂t “ 0 a.s.. Approximating 1D with a sequence of such f , we use

the monotone convergence theorem to deduce (3.32). Combining the latter with
(3.31), we obtain (1.2)(ii) and conclude the proof of the first part of Theorem 3.1.

l

Remark 3.6. Theorem 3.1 implies that, under Assumptions 3.1, 3.2, and 2.1 with
θ “ 1, there exists a solution pY, Z,Kq to (1.2) that is unique in S 2ˆH 2ˆK 1.

4. Well-posedness beyond Markovian framework

4.1. Discrete path-dependent framework. In this subsection, we extend the
existence and uniqueness result obtained in a Markovian framework (see Theorem
3.1) to a discrete path-dependent framework.

Assumption 4.1. Let ` be an arbitrary strictly positive integer and consider the
partition 0 “ t0 ă t1 ă ... ă t` “ T of r0, T s. We assume that

ξ “ gpXt1 , ..., Xt`q and fps, y, zq “ F ps,Xt1^s, ¨ ¨ ¨ , Xt`^s, y, zq,

where
(i) g is α-Hölder and takes values in D̄,
(ii) F is measurable in all variables, globally Lipschitz in py, zq uniformly over

px1, ..., x`q, globally α-Hölder in px1, ..., x`q uniformly over py, zq, and |F p¨, ¨ ¨ ¨ , 0, 0q|
is bounded.

We note that ` “ 1 corresponds to the Markovian framework of the previous
section, with an extra regularity assumption on the generator with respect to x.
We also recall that Assumptions 1.1 and 1.2 hold throughout Section 4 even if
not cited explicitly.

Theorem 4.1. Let Assumptions 3.1 and Assumption 4.1 hold. Then, there exists
a triplet pY, Z,Kq P S 2 ˆH 2 ˆK 1 that solves (1.2). Moreover, all exponential
moments of VarT pKq are finite, and this solution is unique in the class U p1q
(recall Definition 2.1).

Proof. Once the finiteness of the exponential moments of VarT pKq is proven,
the uniqueness of the solution in the class U p1q follows from the same arguments
as in step 1.a of the proof of Theorem 3.1. Let us now prove the existence part of
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the theorem. To this end, we use the backward recursion to construct a solution
on each interval rti, ti`1s for 0 ď i ď `´ 1.

Since the case ` “ 1 corresponds to the Markovian framework of the previous
section, we assume that ` ą 1 and consider the time interval rt`´1, T s. For any
pt, xq P r0, T s ˆ Rd1 , we denote by X t,x the unique solution of (3.1) on rt, T s,
which starts from x at time t. We shall use the notation X for the original
diffusion started at time zero. For any x “ px1, ...,x`´1q P pRd1q`´1, we denote
by pY x, Zx, Kxq the solution of (1.2) on rt`´1, T s, with the terminal condition
gpx, X

t`´1,x`´1

T q and with the generator F p.,x, X t`´1,x`´1
. , ., .q, whose existence fol-

lows from Theorem 3.1 and whose uniqueness in the appropriate class follows
from Theorem 2.2.

Next, we denote by pY x,n, Zx,nq a Markovian solution of the penalized BSDE
(3.3) on rt`´1, T s, whose existence follows from Proposition 3.1. In particular,
there exist measurable functions unpx, ., .q and vnpx, ., .q such that

Y x,n
t “ unpx, t, X

t`´1,x`´1

t q, Zx,n
t “ vnpx, t, X

t`´1,x`´1

t q.

By considering a sequence of Lipschitz approximations of (3.3), given by (3.5),
we apply Theorem 5.4 in [28] and, passing to the limit for the Lipschitz approxi-
mations as in the proof of Proposition 3.1, we conclude that a Markovian solution
to (3.3) can be constructed so that un and vn are jointly measurable in all vari-
ables. Passing to the limit in n along a subsequence, we use Theorem 3.1 and
the uniform Hölder estimate in Corollary 3.1, to deduce the existence of jointly
measurable functions u and v satisfying

(4.1) Y x
t “ upx, t, X

t`´1,x`´1

t q, Zx
t “ vpx, t, X

t`´1,x`´1

t q.

Then, by denotingX “ pXt1 , ...Xt`´1
q, we consider the progressively measurable

processes pY X
t , Z

X
t qtPrt`´1,T s and define

KX
t :“ Y X

t ´Y
X
t`´1
`

ż t

t`´1

F ps,X, X
t`´1,Xt`´1
s , Y X

s , Z
X
s qds´

ż t

t`´1

ZX
s dWs, t`´1 ď t ď T.

We note that X
t`´1,Xt`´1
s “ Xs and that pY X

t , Z
X
t , K

X
t qtPrt`´1,T s is a solution of

(1.2) on the time interval rt`´1, T s, satisfying KX
t`´1

“ 0.

In order to iterate this construction and to extend the solution to the time
interval rt`´2, t`´1s, we have to verify that the associated terminal condition Y X

t`´1

of the reflected BSDE (1.2) on rt`´2, t`´1s is an α-Hölder function of X. To this
end, we recall the function u in (4.1) and define, for all x̃ “ px1, ...,x`´2q P pRd1q`´2

and x`´1 P Rd1 , the deterministic function

g̃px̃,x`´1q :“ upx̃,x`´1, t`´1,x`´1q “ Y
x̃,x`´1

t`´1
.
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Let us prove that this function is α-Hölder. Indeed, for any x :“ px̃,x`´1q P

pRd1q`´1 and x1 :“ px̃1,x1`´1q P pRd1q`´1, Proposition 2.2 with p “ 2 yields

|g̃pxq ´ g̃px1q| ď }Y x
´ Y x1

}S 2

ďCE
„

ˇ

ˇ

ˇ
gpx, X

t`´1,x`´1

T q ´ gpx1, X
t`´1,x

1
`´1

T q

ˇ

ˇ

ˇ

4
1{4

` CE

«

ˆ
ż T

0

|F ps,x, X t`´1,x`´1
s , Y x

s , Z
x
s q ´ F ps,x

1, X
t`´1,x

1
`´1

s , Y x
s , Z

x
s q|ds

˙4
ff1{4

ďC

˜

|x´ x1|α ` E
„

sup
0ďsďT

|X t`´1,x`´1
s ´X

t`´1,x
1
`´1

s |
4α

1{4
¸

,

with a constant C that does not depend on x (see Remark 3.4). Then, the Jensen’s
inequality and the standard SDE estimates yield

|g̃pxq ´ g̃px1q| ď C|x´ x1|α,

which proves the α-Hölder property of g̃. Considering the reflected BSDE (1.2)
on rt`´2, t`´1s, with the terminal condition Y X

t`´1
“ g̃pXt1 , ..., Xt`´1

q and with the
generator

F ps,Xt1^s, ..., Xt`´2^s, Xt`´1^s, Xt`´1^s, y, zq,

we deduce, as in the first part of the proof, that it has a solution in the form (4.1).
Finally, iterating the above construction, we concatenate the “Y ” and “Z” parts

of the solutions constructed on the individual sub-intervals, and we sum up the
“K” parts (assuming that every individual “K” part is extended continuously as
a constant to the left and to the right of the associated sub-interval). It is easy
to see that the resulting process pY, Z, K̃q P S 2ˆH 2ˆK 1 is a solution of (1.2)
on r0, T s. l

4.2. General case.

Theorem 4.2. Let Assumption 2.1 hold with θ “ 2. Then, there exists a triplet
pY, Z,Kq P S 2 ˆH 2 ˆK 1 that solves (1.2), and this solution is unique in the
class U p2q.

Proof. The uniqueness part of the theorem is a direct consequence of Proposition
2.1 and Corollary 2.2. Let us prove the existence part. To this end, we construct
a Cauchy sequence of solutions to the approximating reflected BSDEs.

First, we observe that the terminal condition ξ can be approximated by a
sequence of random variables of the form ξn :“ gnpWt1 , ...,Wtnq, where gn is
infinitely differentiable. The sequence pξnqnPN˚ can be chosen so that it converges
to ξ in L q, for any q ě 1 (see, e.g., [40]). In particular,

(4.2) lim
nÑ8

E
“

|ξ ´ ξn|2p{pp´1q
‰

“ 0,
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with p ą 1 appearing in Proposition 2.1. Replacing gn by gn ^ }ξ}L8 , we can
assume }ξn}L8 ď }ξ}L8 . We observe that ξn satisfies Assumption 4.1(i) with
X “ W .

Second, to approximate the generator, for every n P N˚, we denote by Kn the
closed ball in Rdˆd1 of radius n centered at zero, and choose a sequence of numbers
εn Ó 0. We set

`n :“ }fp¨, 0, 0q}L8 `Kf,y sup
yPD̄

|y| ` nKf,z,

recalling Assumption 1.2. For each n, we denote by Ln the compact convex subset
of C pD̄ ˆKnq (the space of continuous function endowed with the uniform norm
} ¨ }s) consisting of all Lipschitz functions with the Lipschitz coefficients Kf,y and
Kf,z in the y P D̄ and z P Kn variables, respectively, and with the (uniform) norm
bounded by `n. Note that the stochastic process f|D̄ˆKn takes values in Ln.

Let us now construct an approximation of f|D̄ˆKn in Ln that satisfies Assump-
tion 4.1 (for X “ W ). To this end, we denote by tφmn u

Mn
m“1 an εn-cover of the

compact set Ln, with Mn being a positive integer. We denote by f̃npt, ¨q the
(measurable selection of the) proximal projection of f|D̄ˆKnpt, ¨q on tφmn u

Mn
m“1 . It

satisfies

f̃npt, ¨q “
Mn
ÿ

m“1

φmn p¨qpη̃
n
t q
m
“: φnp¨qη̃

n
t and }f̃npt, ¨q ´ f|D̄ˆKnpt, ¨q}s ď εn a.s.,

where η̃n is a progressively measurable process taking values in the (non-empty)
set of extremal points of SMn :“ tx P RMn | 0 ď xm ď 1,

řMn

m“1 x
m ď 1u. Then,

using the dominated convergence theorem, we obtain

E
„
ż T

0

}f|D̄ˆKnpt, ¨q ´ f̃
n
pt, ¨q}2p{pp´1q

s dt



ď T pεnq
2p{pp´1q.(4.3)

Next, we consider a standard approximation of pη̃nt qtPr0,T s by an adapted process
pη̂nt qtPr0,T s that is piecewise constant on the time grid Πn :“ tt0 “ 0 ă ¨ ¨ ¨ ă tnk ă
¨ ¨ ¨ ă tnκn “ T u. This process can be chosen to be SMn-valued and satisfying

E
„
ż T

0

|η̃nt ´ η̂
n
t |

2p{pp´1qdt



ď
εn

pMn`2
nq
p{pp´1q

.

Setting

f̂npt, ¨q “
κn´1
ÿ

k“0

φnp¨qη̂
n
tnk
1ptnk ,tnk`1s

ptq,(4.4)

which is Ln-valued, as a random convex combination of tφmn u
Mn
m“1, we deduce

E
„
ż T

0

}f̃npt, ¨q ´ f̂npt, ¨q}2p{pp´1q
s dt



ď εn.(4.5)
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Next, we apply the approximation result of [40] for each η̂ntnk . Introducing, if
necessary, a finer grid <n Ă Πn, we set

ηntnk :“ PS
“

rnk
`

pWrqrP<n,rďtnk

˘‰

,

where rnk is a smooth function with values in RMn and PS the (orthogonal) pro-
jection onto SMn . We can chose rnk so that

E
“

|ηntk ´ η̂
n
tk
|
2p{pp´1q

‰

ď
εn

pMn`2
nq
p{pp´1q

.(4.6)

Setting fnpt, ¨q “
řκn´1
k“0 φnp¨qη

n
tnk
1ptnk ,tnk`1s

ptq, which belongs to Ln, we have

E
„
ż T

0

}f̂npt, ¨q ´ fnpt, ¨q}2p{pp´1q
s dt



ď Tεn.(4.7)

Collecting the above, we conclude that

(4.8) lim
nÑ8

E
ż T

0

sup
yPD̄, zPKn

|fpt, y, zq ´ fnpt, y, zq|2p{pp´1qdt “ 0.

We extend fnpt, y, ¨q to Rdˆd1zKn as a constant in each radial direction, so that
its uniform norm and the Lipschitz coefficient do not change.

It is easy to see that, if f satisfies Assumption 2.1-(i) (resp. Assumption 2.1-
(iii)), the above construction allows us to build an approximating sequence fn

having the same properties. Indeed, we simply work with L̃n instead of Ln, where
L̃n is the closed convex subset of Ln whose elements satisfy Assumption 2.1-(i)
(resp. Assumption 2.1-(iii)).

Thus, for any n P N˚, we have constructed the approximations ξn and fn that
satisfy Assumption 4.1. Therefore, we can invoke Theorem 4.1 to obtain the
unique solution pY n, Zn, Knq P S 2ˆH 2ˆK 1 of (1.2) associated with the input
data pξn, fnq. Thanks to Proposition 2.1, we can apply Proposition 2.2, to deduce
that, for all n,m P N˚,

}Y n
´ Y m

}S 2 ` }Zn
´ Zm

}H 2 ` }Kn
´Km

}S 2

ď CE
“

|ξn ´ ξm|2p{pp´1q
‰pp´1q{p2pq

(4.9)

` CE

«

ˆ
ż T

0

|fnps, Y n
s , Z

n
s q ´ f

m
ps, Y n

s , Z
n
s q|ds

˙2p{pp´1q
ffpp´1q{p2pq

,

with a constant C that does not depend on n and m.
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Applying Cauchy-Schwartz, Jensen’s and Chebyshev’s inequalities, we obtain

E

«

ˆ
ż T

0

p1` |Zn
t |q1t|Znt |ąnudt

˙2p{pp´1q
ff

ď T p{pp´1q´1{2E

«

ˆ
ż T

0

p1` |Zn
t |q

2dt

˙2p{pp´1q
ff1{2

E
„
ż T

0

1t|Znt |ąnudt

1{2

ď
T p{pp´1q´1{2

n
E

«

ˆ
ż T

0

p1` |Zn
t |q

2dt

˙2p{pp´1q
ff1{2

E
„
ż T

0

|Zn
t |

2dt

1{2

.

Using Proposition 2.1 and the energy inequality for BMO martingales, we bound

E
´

şT

0
p1` |Zn

t |q
2dt

¯2p{pp´1q

uniformly over n. Then, for all m ě n, we obtain from
the above estimate:

E

«

ˆ
ż T

0

|fnpt, Y n
t , Z

n
t q ´ f

m
pt, Y n

t , Z
n
t q|dt

˙2p{pp´1q
ffpp´1q{p2pq

ď CE

«

ˆ
ż T

0

p1` |Zn
t |q1t|Znt |ąnudt

˙2p{pp´1q
ffpp´1q{p2pq

` CE

«

ˆ
ż T

0

|fnpt, Y n
t , Z

n
t q ´ f

m
pt, Y n

t , Z
n
t q|1t|Znt |ďnudt

˙2p{pp´1q
ffpp´1q{p2pq

(4.10)

ď
C

npp´1q{p2pq
` CE

„
ż T

0

|fnpt, Y n
t , Z

n
t q ´ fpt, Y

n
t , Z

n
t q|

2p{pp´1q1tY nt PD̄,|Znt |ďnudt

pp´1q{p2pq

` CE
„
ż T

0

|fmpt, Y n
t , Z

n
t q ´ fpt, Y

n
t , Z

n
t q|

2p{pp´1q1tY nt PD̄,|Znt |ďmudt

pp´1q{p2pq

.

In view of (4.8), the right hand side of the above vanishes as n,mÑ 8. Collecting
(4.2), (4.9) and (4.10), we conclude:

}Y n
´ Y m

}S 2 ` }Zn
´ Zm

}H 2 ` }Kn
´Km

}S 2
n,mÑ`8
ÝÝÝÝÝÝÑ 0.

In other words, pY n, Zn, KnqnPN˚ is a Cauchy sequence in S 2ˆH 2ˆS 2. Then,
there exists pY, Z,Kq P S 2ˆH 2ˆS 2 such that pY n, Zn, Knq

nÑ`8
ÝÝÝÝÑ pY, Z,Kq.

Moreover, Y takes values in D̄. Recall that pY n, Zn, Knq is the unique solution to
(1.2) associated with the terminal condition ξn and the generator fn. In addition,
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we have

E
„
ż T

t

|fnps, Y n
s , Z

n
s q ´ fps, Ys, Zsq|ds



ďE
„
ż T

t

|fnps, Ys, Zsq ´ fps, Ys, Zsq|ds



` CE
„
ż T

t

|Y n
s ´ Ys| ` |Z

n
s ´ Zs|ds



.

Then, we can easily pass to the limit in (1.2)(i) to show that pY, Z,Kq satisfies
(1.2)(i).

It remains to prove that K P K 1, that dKt is directed along npYtq, and that
it is active only when Y touches the boundary (the latter two properties will be
shown via the alternative characterization given by Lemma 2.3). Repeating the
derivation of (2.11)-(2.12) for pY n, Zn, Knq, but without taking the conditional
expectations and with β “ 0, we obtain:

ż T

0

dVarspK
n
q ď C

ˆ

|ξn|2 `

ż T

0

2Y n
s ¨ fps, Y

n
s , Z

n
s qds´

ż T

0

2Y n
s Z

n
s dWs

˙

,

where the constant C does not depend on n. The right hand side of the above
inequality converges in probability, as n Ñ 8, hence it also converges a.s. up
to a subsequence which we still denote tpY n, Zn, Knqu. Then, tVarT pKnqunPN˚ is
a.s. bounded uniformly over n, and Fatou’s lemma yields that VarT pKq is a.s.
bounded – i.e., K is a bounded variation process. Thanks to Proposition 2.1,
tVarT pKnqunPN˚ is uniformly integrable and, hence, K P K 1. As pY n, Zn, Knq

solves (1.2) with the terminal condition ξn and the generator fn, Lemma 2.3
yields the existence of a constant c, independent of n, such that, for all continuous
adapted process V with values in D̄, we have

ż T

0

pY n
s ´ VsqdK

n
s ` c|Y

n
s ´ Vs|

2npY n
s qdK

n
s ě 0 a.s.

Finally, we use Lemma 5.8 in [22] to pass to the limit in the above inequality and
obtain

ż T

0

pYs ´ VsqdKs ` c|Ys ´ Vs|
2npYsqdKs ě 0 a.s.,

which completes the proof of the theorem via another application of Lemma 2.3.
l

5. Connection to Brownian Γ-martingales

It turns out that the solutions to reflected BSDEs in non-convex domains,
defined via (1.2) and constructed in the previous sections, are naturally connected
to the notion of martingales on manifolds (also named Γ-martingales – see [17]). In
this section, we investigate this connection more closely, in particular, discovering
a new proof of the existence and uniqueness of a Brownian martingale with a
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prescribed terminal value on a section of a sphere and illustrating the sharpness
of the weak star-shape assumption on D (see Assumption 1.1).

The connection to martingales on manifolds is made precise by the following
proposition, which states that, under certain assumptions, one can ensure that
the Y -component of the solution to (1.2) always stays on the boundary of the
domain D. Treating BD as a manifold and expressing dKt via ∇2φpYtq and Zt,
we discover that Y satisfies the definition of a Brownian Γ-martingale on the
manifold BD, given in [17].

Proposition 5.1. Assume the following:
‚ there exists a convex domain A, satisfying ĀX D̄ Ă BD,
‚ 1tyPBDzĀu∇dpy,Aq ¨∇φpyq ě 0,
‚ f ” 0 and ξ P ĀX BD almost surely,
‚ pY, Z,Kq P S 2 ˆH 2 ˆK 1 solve (1.2).

Then, Y P ĀX D̄ Ă BD almost surely. Moreover, we have

(5.1) dVartpKq “

„

´
1

2
TrrZJt ∇2φpYtqZts

`

dt.

Finally, Y is a Γ-martingale with the terminal value ξ on the manifold BD endowed
with the Riemannian structured inherited from Rd and its canonical connection
Γ, as defined in [17].

Remark 5.1. It is worth mentioning that the assumptions made in Proposition
5.1 imply that the set A cannot be smooth. To obtain an intuitive understanding
of what the set A may look like, we refer the reader to the example that follows.

Proof. We apply Itô’s formula for general convex functions (in the form of an
inequality, as in [5]) to the process dpYt,Aq to obtain

0 ď dpYt,Aq ď Et
„

dpξ,Aq ´
ż T

t

1tYsPBDzĀu∇dpYs,AqdKs



ď 0, t P r0, T s,

which yields Y P Ā X D Ă BD. Applying Itô’s formula to φpYtq yields (5.1).
Finally, using (5.1), the fact that dKt is orthogonal to the tangent space of BD at
the point Yt, as well as (4.9), (4.10), and (5.6)(ii) from [17], we conclude that Y
is a Γ-martingale on BD. l

In the remainder of this section, we assume that f “ 0 and present a simple
example of the domains D and A for which the assumptions of Proposition 5.1
hold. This example allows us to obtain an alternative proof of a known result
on Γ-martingales using the reflected BSDEs and to illustrate the sharpness of the
weak star-shape assumption (see Assumption 1.1).

In this example, we first construct the functions φ and φC, which define the
domains D and C as in Assumption 1.1, on the plane P :“ Rˆ t0ud´2 ˆR of Rd.
These functions and the associated domains are designed to be symmetric with
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respect to the yd-axis – see the precise description below. Then, we extend these
functions and domains to Rd via

φpyq “ φpprpyq, 0, ..., 0, ydqq, φCpyq “ φCpprpyq, 0, ..., 0, ydqq,

with rpyq :“
´

řd´1
i“1 |y

i|2
¯1{2

. For convenience, we use the same symbols D and C
to denote the desired domains in Rd and their intersections with P .

Consider the three parameters α P p0, π{2q, η ą 0, ε P p0, π{2 ´ αq, and the
domains Dα,η,ε, Cα,η, Aα,ε given in Figure 2, which satisfy the following properties:

‚ Cα,η is obtained from a square centered at p0,´1 ´ η ´ sinpαqq, with the
sides being parallel to the axes and having length 2 sinpαq`2η, by rounding
its corners (in their η-neighborhoods), such that BCα,η is a C2 curve and
Cα,η is convex,

‚ Dα,η,ε is symmetric with respect to the axis yd.
‚ BDα,η,ε is C2 and is made up of the following pieces:

– the arc Sα of angle 2α, symmetric with respect to the axis yd, of the
circle centered at zero and with the radius one,

– the arc of angle 2α, symmetric with respect to the axis yd, of the
circle centered at zero and with the radius p2 sinpαq`2η`1q{ cospαq,

– and two smooth curves L1 and L2,, symmetric to each other with
respect to the axis yd, which connect the two arcs described above
forming a C2 closed curve that does not intersect itself nor Cα,η.

‚ We denote by A1 (respectively, A2) the end point of the curve Sα that
belongs to the right (respectively, left) half-plane with respect to the axis
yd.

‚ Let us assume that L1 (respectively, L2) belongs to the right (respectively,
left) half-plane with respect to the axis yd. We also assume that the
curve L1 is constructed so that, in its natural parameterization with the
starting point A1, the slope of its tangent vector has exactly one change of
monotonicity. Namely, we assume that there exists a point B1

ε , such that
the angle between B1

ε and A1 relative to the origin is ε and such that the
derivative of the slope of the aforementioned tangent vector is continuous,
nonincreasing, and equal to zero at B1

ε . The curve L2, then, satisfies the
analogous property due to symmetry, with the associated point B2

ε .
‚ As the curve BDα,η,ε is C2, closed, and without self-intersections, we con-
struct φ as the signed distance to BDα,η,ε in a neighborhood of BDα,η,ε and,
then, extend it in a smooth way to R2. φC is constructed similarly.

‚ We define Sα,ε as the concatenation of the curves
"

B2
εA

2, Sα,
"

A1B1
ε , and

we define Aα,ε as the interior of the convex hull of Sα,ε.
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Dα,η,ε

Cα,η

Aα,ε

Sα L1L2

‚

A1
‚

A2

‚

B1
ε

‚

B2
ε

‚

P 1
‚

P 2

‚ aα,η

1

η

η

η

η

α ε
‚

0

Figure 2. Domains Dα,η,ε, Cα,η, Aα,ε

‚ Finally, we assume that η ą 0 is small enough, so that Cα,η is included
in the triangle with vertices P 1, P 2 and the origin, as shown in Figure 2.
This ensures that C̄α,η Ă Dα,η,ε for any ε ą 0.

Let us now consider a terminal condition ξ P Sα and verify that Dα,η,ε, Aα,ε and
ξ satisfy the desired assumptions. We easily deduce that R0 “ 1. Then, for any
α P p0, π{2q and η ą 0, there exists ε0 P p0, π{2´αq, such that, for all 0 ă ε ă ε0,
the condition (1.1) holds up to the shift of coordinates in Rd that maps the origin
to aα,η :“ p0, ..., 0,´1´η´sinpαqq. The other conditions of Assumption 1.1 follow
easily.

Next, we notice that, in the discrete path-dependent framework and under
Assumption 4.1, we can apply Theorem 4.1 to conclude that there exists a unique
(in U p1q) triplet pY ε, Zε, Kεq P S 2 ˆH 2 ˆK 1 that solves (1.2) in the domain
D “ Dα,η,ε (we suppress the dependence of the solution on η and α as they
are fixed in what follows). An application of Proposition 5.1 to D “ Dα,η,ε and
A “ Aα,ε (the assumptions of the proposition are satisfied by the construction of
Aα,ε, L1 and L2) yields that Y ε takes all its values in Sα,ε. Then, the stability
result of Proposition 2.2 implies that tpY 1{n, Z1{n, K1{nqu8n“1 is a Cauchy sequence
and, hence, has a limit pY, Z,Kq. It is clear that Y stays in Sα. Then, applying
the arguments similar to those used in the proof of Theorem 3.1, one can deduce
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that pY , Z,Kq solves the reflected BSDE (1.2) in the domain D “ Dα,η,ε1 , for any
ε1 P p0, ε0q. Applying Proposition 5.1 once more and recalling that Y takes all
its values in Sα, we conclude that Y is a Γ-martingale on the manifold Sα with
the terminal condition ξ. The uniqueness part of Theorem 4.1 yields that such a
Γ-martingale is unique (in U p1q).

We now study the case of a general terminal condition. We first notice that
Proposition 2.1 holds for any solution pY, Z,Kq P S 2 ˆH 2 ˆK 1 of (1.2) that
stays in Sα and satisfies Assumption 2.1(i) with γ replaced by

γα :“ inf
yPSα

∇φCpyq ¨
∇φpyq
|∇φpyq|

.

We can easily compute γα “ cospαq. Moreover, we have R0 “ 1 and

|φ`C pξq|L8 ď 1´ cospαq.

Thus, we conclude that Assumption 2.1(i) is fulfilled with θ “ 2 as long as
cospαq ą 2{3. Considering a sequence of discrete path-dependent terminal con-
ditions that approximate the given (general) terminal condition and take values
in Sα, we repeat the proof of Theorem 4.2 obtaining the unique (in U p2q) triplet
pY , Z,Kq P S 2 ˆ H 2 ˆ K 1 that solves (1.2) in the domain D “ Dα,η,ε1 , for
any ε1 P p0, ε0q, and is such that Y stays in Sα. Applying Proposition 5.1 once
more, we conclude that Y is a Γ-martingale on the manifold Sα with the terminal
condition ξ. The uniqueness part of Theorem 4.1 yields that such a Γ-martingale
is unique in U p2q.

To sum up, the above construction proves the existence and uniqueness of a
Brownian Γ-martingale with a prescribed discrete path-dependent terminal condi-
tion ξ, satisfying Assumption 4.1, on any sector of the sphere Sd´1 (we understand
a sector as an intersection of a sphere and a half-space) that is strictly contained
in a hemisphere. For a general terminal condition ξ, we are only able to tackle
the case α ă arccosp2{3q. These results provide an alternative proof of some of
the facts established in [32, 45], where the existence and uniqueness is shown for
any α ă π{2. Considering the case α “ π{2, we notice that, for any D that
is included in the compliment of an open ball and whose boundary contains a
hemisphere (on the boundary of this ball), it is impossible to find a convex do-
main C Ă D that can “see” all points on the boundary of this hemisphere with
a strictly positive angle: in other words, (1.1) can not be fulfilled. In particular,
our existence and uniqueness results fail for such D. On the other hand, consider-
ing directly the problem of existence and uniqueness of a Brownian Γ-martingale
with a prescribed terminal condition on a closed hemisphere of Sd´1, we notice
a major challenge that stems from the non-uniqueness of geodesics, when d ě 3.
Indeed, let us assume that ξ takes its values in the set tz1, z2u consisting of two
antipodes on the sphere: i.e., the line connecting the two points goes through
the center of the sphere. Note that Sπ{2 does contain such points. Then, for any
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shortest arc "
z1z2 Ă Sπ{2, there exists a Γ-martingale on the manifold "

z1z2 with
the terminal condition ξ. As any such arc "

z1z2 is a geodesic, we conclude that
the resulting Γ-martingale is also a Γ-martingale in the larger manifold Sπ{2. As-
suming that ξ takes each of its two values with a strictly positive probability and
recalling that there are infinitely many geodesic arcs "

z1z2 on Sπ{2, we conclude
that the uniqueness of a Γ-martingale on Sd´1 with the terminal condition ξ does
not hold. Proposition 5.1, in turn, implies that the uniqueness fails for solutions
to (1.2) with the terminal condition ξ, with f ” 0, and with D described above.
This observation, in particular, illustrates the sharpness of the weak star-shape
assumption (condition (1.1) in Assumption 1.1) for general terminal conditions
and general d ě 2.

Let us also mention that the non-uniqueness described above does not occur
for d “ 2, which indicates that it may be possible to relax our assumptions for
reflected BSDEs in planar non-convex domains. In particular, we refer to [44]
for a complete treatment of Γ-martingales on S1. The latter result also yields
the existence and uniqueness of a solution to the reflected BSDE in the domain
D “ ty P R2, 1 ă |y| ă 2u, which does not possess the weak star-shape property,
with zero generator and with a terminal condition satisfying |ξ| “ 1.

Moreover, in Section 3 of [45], Picard was able to prove the existence and
uniqueness of a Brownian Γ-martingale with a prescribed terminal condition in a
closed hemisphere of Sd´1, and in an even bigger domain, for a small enough T and
under a smoothness assumption on the terminal condition3. The latter indicates
that in a smooth Markovian or discrete path-dependent framework, under an
additional smallness assumption, it may also be possible to relax the requirement
of a weak star-shape property even for d ą 2.

Finally, let us give a simple example showing that a priori estimates of Propo-
sition 2.1 are not sharp.4 Mimicking [44], we consider a FT -measurable random
variable ν with values in r´α, αs, where 0 ă α ă π{2 is a given parameter, and let
pθt, ηtqtPr0,T s be the solution of the BSDE θt “ ν ´

şT

t
ηsdWs for t P r0, T s. We set

Yt “ pcospθtq, sinpθtqq
J for all t P r0, T s, and we easily check that Y is a solution

to the BSDE

Yt “ ξ `

ż T

t

|Zs|
2

2
Ysds´

ż T

t

ZsdWs, 0 ď t ď T,

where ξ “ pcospνq, sinpνqqJ and Zt “ p´ηt sinpθtq, ηt cospθtqq
J. Notice that this

multidimensional quadratic BSDE can also be seen as a reflected BSDE in the
domain Dα,η,ε, with sufficiently small η, ε ą 0, rotated by π{2. Indeed, Y takes

3To be precise, it is assumed that the process Z, defined by ξ “ Erξs `
şT

0
ZsdWs, has

sufficiently small
şT

0
ess supΩ|Zs|

2ds.
4Note that these estimates are not needed in a Markovian or discrete path-dependent case.
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all its values in (rotated) Sα, and its drift points along the outer normal vector to
(rotated) Sα. Recall that Dα,η,ε satisfies the weak star-shape property and note
that dVartpKq “ |ηt|2

2
. Then, an application of Itô’s formula to θ2

t yields

Et
„
ż T

t

dVarspKq


“
1

2
Et

„
ż T

t

|ηs|
2ds



“
1

2
Et

“

ν2
´ pEtνq2

‰

ď
α2

2
.

Moreover, the above becomes an equality for t “ 0 and ν “ signpWT qα. Then,
recalling that R0 “ 1 for Dα,η,ε, we deduce from John-Nirenberg inequality that

E
”

e
2p
R0

VarT pKq
ı

ă 8,

for some p ą 1, provided α ă 1, which is weaker than the condition α ă

arccosp2{3q ă 1 required by Assumption 2.1(i) with θ “ 2, as computed ear-
lier in this subsection.
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