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Abstract—Mobile crowdsensing enables collaborative data
sensing between cloud server and mobile nodes. To participate
in the sensing task, mobile nodes upload their locations to
the centralized cloud for task allocation. However, revealing
locations to an untrusted cloud results in privacy leakage, such as
trajectories tracking and home address exposal, threatening the
personal security. Obfuscation and cryptography based schemes
are two main solutions to protect the location privacy. However,
these schemes may either degrade the accuracy of task allocation
or rely on some strong assumptions. Thus, how to protect
location privacy without strong assumptions while remaining
high accuracy in task allocation is challenging. In this paper, we
propose a secure protocol for edge-assisted mobile crowdsensing,
which removes the assumption that the cloud cannot collude with
mobile nodes. Specifically, we deploy homomorphic encryption
among service requestor, cloud server and edge nodes in a
collaborative manner. Benefiting from the additive property of the
cryptosystem, the cloud is able to securely calculate the mobile
node’s travel distance while knowing nothing about the mobile
mode’s location and task location. Based on the protocol, two
types of location-dependent task allocation, travel distance based
task allocation and spatial distribution based task allocation, can
be implemented with location privacy preservation. Experimental
results show the effectiveness of our work in task allocation.
In addition, comprehensive privacy discussion indicates that the
proposed protocol is secure from the collusion between cloud and
mobile nodes, while preserving the task location and location
privacy of mobile nodes.

Index Terms—location privacy, task allocation, edge intelli-
gence, mobile crowdsensing.

I. INTRODUCTION

The development of smart devices and cloud/edge com-
puting have promoted the newly-emerged mobile corowd-
sensing (MCS). In MCS, the centralized service provider
outsources the sensing tasks to mobile nodes that are equipped
with intelligent devices, such as smartphones, cameras, and
build-in sensors. Since the equipment has sufficient com-
puting/communication abilities, the mobile nodes in MCS
facilitate data collection for various applications. For instance,
smartphones can sense surrounding spatial data to assist with
parking vacancy discovery [1]. Vehicles utilize the on-board
units and global positioning systems to collect road informa-
tion, contributing to traffic monitoring and road surface con-
dition inspection [2] [3] [4]. Compared with traditional sensor
networks, MCS has appealing advantages in financial cost,
attracting great attention from both academia and industry.

Despite the superior benefits, MCS is subject to chal-
lenges in terms of system efficiency and privacy viola-
tions. 1) In large-scale MCS, remote data transmissions

and centralized data processing consume excess communi-
cation/computational resources, resulting in lower time effi-
ciency. To tackle this problem, edge intelligence is utilized to
deploy communication and computational resources closer to
mobile nodes, improving the system efficiency [5] [6]. 2) To
assign sensing tasks, the service provider may recruit mobile
nodes based on their locations. However, for the mobile nodes,
disclosing their location information to an untrusted service
provider leads to potential risks of privacy leakage, such as
trajectories tracking, home/work address exposal, commute
route disclosure, and so on. Since these risks threaten personal
security, preserving location privacy in MCS is essential.

To protect location privacy in MCS, the state-of-the-art solu-
tions mainly rely on obfuscation and cryptographic techniques.
For instance, differential privacy (DP) is widely deployed to
obfuscate the location coordinates by introducing randomized
noise data [7] [8]. However, this approach degrades data
utility due to the randomness, reducing the accuracy in task
allocation. Without loss of data utility, secure protocols for
task allocation are proposed [9]. Shen et al. [10] proposed
a secure protocol by utilizing homomorphic encryption and
Yao’s garbled circuits. Although the protocol protects the
mobile nodes’ locations from the semi-trusted service provider,
the task location is public to all entities in the system. Since
the mobile nodes work in the area of task, their approximate
location can be derived once the task location is revealed.
To protect the task location, Jiang et al. [11] designed a
symmetric key generator and proposed a privacy-preserving
protocol based on the designed key generator, guaranteeing
both enhanced privacy preservation and accurate task allo-
cation without considering the collusion between cloud and
mobile nodes. Under the collusion, preserving both mobile
nodes’ location and task location without degrading data utility
remains challenging in location-dependent MCS.

We are motivated to propose a secure protocol to protect
both the task location and mobile nodes’ locations in edge-
assisted MCS. The protocol is independent of the assumption
that the service provider cannot collude with the mobile nodes.
Compared with DP-based schemes, our approach maintains
high data utility for location-dependent task allocation. The
main contributions of this paper are summarized as follows.

• Deploying additively homomorphic encryption, we pro-
pose a secure protocol for edge-assisted MCS, which
removes the assumption that the service provider cannot
collude with the mobile nodes. The proposed protocol
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preserves the task location and the location privacy of mo-
bile nodes while remaining high data utility for location-
dependent task allocation.

• Under the proposed protocol, we implement two vital
types of location-dependent task allocation in MCS: travel
distance based recruitment and spatial distribution based
recruitment. In addition, formal correctness proof and
detailed privacy discussion of the proposed protocol are
provided.

• We conduct simulation experiments to evaluate the two
types of task allocation under our proposed protocol.
Besides, we provide a comprehensive feature comparison
with the existing work. The performance comparison
indicates that the proposed protocol supports the location-
dependent task allocation with high data utility while
preserving location privacy preservation.

The rest of this paper is organized as follows. In Section II,
the system model and design goals are provided. In Section III,
the preliminary is described. After that, the proposed protocol
and task allocation implementation are discussed in Section
IV. Detailed privacy discussion is provided in Section V.
Simulation results are evaluated in Section VI and conclusions
are provided in Section VII.

II. SYSTEM MODEL

A. System Overview

Four types of entities (service requestor, cloud server, edge
nodes, and mobile nodes) are normally involved in edge-
assisted MCS (EMCS) as shown in Fig. 1. The detailed
descriptions of each type of entity are presented as follows.

• Service requestor: The service requestor refers to an
individual or an organization that intends to collect data
from particular locations and execute data mining to
support intelligent applications. For instance, a company
may sense spatial data of a tourist area for plane re-
construction and passenger flow management. However,
the service requestor may have limited financial budget
to deploy and maintain large-scale sensor devices, or
have limited computational ability to perform data mining
over tremendous data. Consequently, the service requestor
outsources the task to the service provider.
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Fig. 2. Proposed protocol.

• Cloud server: The cloud server plays a role of service
provider that has powerful computational and storage
resources. It releases the task to public and recruits
mobile nodes to collect data from the task area. After
receiving the data, the cloud server extracts conductive
information and aggregates them into a sensing report.
The sensing report is returned to the cloud server. For
the simplification of expression, we may use “cloud” to
denote “cloud server”.

• Edge Nodes: Edge nodes are deployed closer to mobile
nodes, assisting the cloud server in task release, mobile
nodes recruitment, and data transmission. The edge nodes
are assumed to have sufficient communication and com-
putational resources.

• Mobile Nodes: Equipped with smart devices, mobile
nodes have abilities to sense data from their surroundings.
When a mobile node is interested in a task, it sends its
location to the cloud. The mobile nodes that are close to
the task area have a high probability to be recruited.

Without loss of generality, three stages are involved in a
conventional MCS system as follows. In this work, we mainly
focus on the first two stages.

• Task release: The service requestor sends task and budget
information to the cloud. The cloud then releases the
task to the edge nodes and each edge node broadcasts
to mobile nodes within its coverage.

• Task allocation: Mobile nodes submit their locations to
the edge nodes for task competition. The cloud cooperates
with edge nodes to assign tasks to the selected winners.

• Data aggregation: Mobile nodes upload the sensed data
to the corresponding edge node. Cooperating with the
edge nodes, the cloud performs data mining and generates
final report for the service requestor.



TABLE I
NOTATION DEFINITIONS

Variable Definition
(pk, sk) key pair of public key and private key
Γ task content
lcm least common multiple
gcd greatest common divisor
ϵ security parameter, which is a large integer
Z⋆
n {1, 2, 3, ..., n− 1}

(X⋆, Y ⋆) task location
(Xw, Yw) location of mobile node
Dw travel distance of mobile node

B. Privacy Model

• The service requestor is fully trusted. It always provides
real task information and performs activities honestly.

• The cloud and edge nodes are semi-trusted. On the
one hand, it means that they honestly provide services
following the rules. However, they are curious about the
location of mobile nodes. Therefore, the cloud and edge
nodes are possible to be attackers to infer the mobile
nodes’ locations. On the other hand, the cloud cannot
collude with the edge nodes to violate the system.

• The mobile nodes could be malicious to reveal the
legitimate mobile nodes’ locations. To achieve this goal,
these malicious mobile nodes can collude with the cloud
to exchange the received information.

C. Design Goals

Under the privacy model, the following designing goals are
considered in this work.

• Location privacy preservation of mobile nodes: The loca-
tion information of a mobile node is protected from the
cloud, edge nodes, service requestor and other mobile
nodes. In other words, the location of a mobile node is
confidential for all the other entities in the system.

• Location privacy preservation of task area: The task
location is protected from cloud, edge nodes, and mobile
nodes. Considering the fact that the recruited mobile
nodes work within task area, their approximate locations
can be inferred indirectly once the task location is dis-
closed. Therefore, task location preservation is required.

• Accurate task allocation: In task allocation, although the
mobile nodes’ locations are confidential, the cloud is able
to perform location-dependent recruitment with higher
accuracy.

III. PRELIMINARY

In this section, we review the Paillier cryptosystem [12],
which is the design basis of our proposed protocol. As a classi-
cal additively homomorphic encryption (AHE) system, Paillier
cryptosystem is able to perform operations on ciphertext to
implement the additive operation of plaintext. For instance,
given two plaintext m1,m2 and the corresponding ciphertext
c1 = Enc(m1), c2 = Enc(m2), a cloud server can calculate
Enc(m1 + m2) = c1 ⊙ c2, where ⊙ denotes an operation.

Subsequently, by decrypting Enc(m1+m2), the cloud server
can obtain the value of m1+m2 without accessing the plaintext
m1 and m2. Specifically, multiple probabilistic polynomial
time algorithms are involved in the Paillier AHE as follows.

• KeyGen(ϵ) → (pk, sk): A pair of public key and private
key (pk, sk) can be generated given the security param-
eter ϵ. Specifically, let us choose two prime numbers
p, q that satisfy p > 2ϵ, q > 2ϵ. We set n = pq and
have λ = θ(n) = lcm(p − 1, q − 1), where θ() is the
Carmichael’s function. Randomly choose g ∈ Z⋆

n2 with
gcd(L(gλ mod n2), n) = 1, where L(u) = (u − 1)/n.
pk = (n, g) and sk = λ are returned as the key pair.

• Enc(m, pk) → c: This algorithm generates the ciphertext
c for plaintext m with the public key pk. In details, it
randomly chooses r ∈ Z⋆

n and computes c = gmrn mod
n2. c is returned as the ciphertext of m.

• Dec(c, sk) → m: This algorithm recovers the plaintext
m with the corresponding private key sk following

m =
L(cλ mod n2)

L(gλ mod n2)
mod n. (1)

• ⊙ (c1, c2) → c+: Calculate the ciphertext of m1 + m2

with the ciphtertext c1, c2. Specifically, given c1 =
Enc(m1, pk) and c2 = Enc(m2, pk), we can calculate

c+ = Enc(m1 +m2, pk) (2a)

= gm1+m2(r1r2)
n mod n2 (2b)

= gm1rn1 g
m2rn2 mod n2 (2c)

= c1c2 mod n2. (2d)

Therefore, in this algorithm, the operation ⊙ is expressed
as ⊙(c1, c2) = c1c2 mod n2. The Paillier AHE is secure
from chosen plaintext attack [13].

IV. PROPOSED PROTOCOL

A. Overview of the Proposed Protocol

As shown in Fig. 2, the proposed protocol ensures privacy
preservation for the stages of task release and task allocation.
In task release, the service requestor encrypts the task location
with the cloud’s public key. The ciphertext of the task location
is further encrypted with the edge node’s public key. Along
with the task content, all the ciphertexts are transmitted to
the edge nodes through cloud. The edge node then decrypts
the ciphertext with its private key and broadcasts the task
content to the mobile nodes. In task allocation, the mobile
nodes encrypt their locations with the cloud’s public key and
send to the corresponding edge node. The edge node performs
operation ⊙ over the ciphtertexts of task location and mobile
node’s location, and sends the results to the cloud. The cloud
decrypts the results with its private key. Thus, the cloud is
able to calculate the travel distance of a mobile node without
revealing its real locations. Consequently, the cloud can recruit
mobile nodes based on their travel distances.



B. Details of the Proposed Protocol

In this part, we introduce the details of the proposed
protocol as follows. Although we consider multiple edge nodes
and a set of mobile nodes in the system, without loss of
generality, we describe the protocol under one edge node and
one mobile node for simplicity.

1) All entities in the system generate their key pair with
algorithm KeyGen(ϵ). Denote the key pair of service
requestor by (pkr = (nr, gr), skr = λr), the key pair
of cloud by (pkc = (nc, gc), skc = λc), the key pair of
an edge node by (pke = (ne, ge), ske = λe), the key
pair of a mobile node by (pkw = (nw, gw), skw = λw).
Each entity publishes its public key to the system and
keeps its private key secretly.

2) Given a task location (X⋆, Y ⋆), where X⋆, Y ⋆ refer
to the longitude and latitude respectively, the service
requestor encrypts the task location with the cloud’s
public key by calculating

C1
x = Enc(−X⋆, pkc) (3a)

= g−X⋆

c rnc
1 mod n2

c ; (3b)

C1
y = Enc(−Y ⋆, pkc) (4a)

= g−Y ⋆

c rnc
1 mod n2

c . (4b)

Consequently, the service requestor encrypts C1
x with

the edge node’s public key by calculating

C2
x = Enc(C1

x, pke) (5a)

= g
C1

x
e rne

2 mod n2
e; (5b)

C2
y = Enc(C1

y , pke) (6a)

= g
C1

y
e rne

2 mod n2
e. (6b)

The service requestor sends {C2
x, C

2
y ,Γ} to the cloud

and the cloud broadcasts it to the edge node. Γ is the task
content, describing the type of sensed data (e.g., traffic
data, health data, parking availability), reward policy,
sensing hours, and so on.

3) After receiving {C2
x, C

2
y ,Γ}, the edge node first de-

crypts C2
x, C

2
y with its private key, receiving C1

x =
Dec(C2

x, ske), C
1
y = Dec(C2

y , ske). Then it broadcasts
the task content Γ to the mobile nodes within its
coverage.

4) If a mobile node is interested in the task, it encrypts its
location coordinates (Xw, Yw) with the cloud’s public
key by calculating

Cw
x = Enc(Xw, pkc) (7a)

= gXw
c rnc

w mod n2
c ; (7b)

Cw
y = Enc(Yw, pkc) (8a)

= gYw
c rnc

w mod n2
c . (8b)

The mobile node then submits {Cw
x , Cw

y } to the corre-
sponding edge node.

5) The edge node calculates C+
x = ⊙(Cw

x , C1
x) =

Enc(Xw − X⋆) and C+
y = ⊙(Cw

y , C1
y) = Enc(Yw −

Y ⋆). {C+
x , C+

y } is returned to the cloud.
6) The cloud decrypts {C+

x , C+
y } with its private key,

obtaining Dec(C+
x , skc) = ∆x, Dec(C+

y , skc) = ∆y ,
where ∆x = Xw −X⋆, ∆y = Yw −Y ⋆. Then the cloud
is able to calculate the travel distance of the mobile node
following

Dw = (∆2
x +∆2

y)
1
2 . (9)

Subsequently, based on the travel distance, the cloud
selects winners to perform the sensing task.

C. Location-dependent Task Allocation

In this part, we introduce two vital recruitment systems
for location-dependent task allocation: travel distance based
recruitment and spatial distribution based recruitment. 1) In
MCS, mobile nodes have travel costs while sensing data
within a task area. The travel costs are in proportion to the
travel distance. In addition, shorter travel distance results in
lower latency in data collection. Thus, travel distance based
recruitment is popular in MCS. 2) Spatial distribution based
recruitment is important for large-scale MCS, where the cloud
may recruit a set of mobile nodes. Since two mobile nodes may
have overlapping sensing coverage, redundant data could be
collected, leading to unnecessary costs and lower data utility.
Therefore, spatial distribution is significant to avoid these
issues. Under our proposed protocol, we describe how the two
schemes are implemented with location privacy preservation.

• Travel distance based recruitment [8] [14]: In this type of
recruitment system, the service provider prefers to select
candidate that has the minimum travel distance to the
task area for performing the sensing task. Based on the
proposed protocol, the cloud is able to derive the travel
distance Dw for each mobile node without revealing its
locations. By comparing Dw, the cloud can determine
the candidate whose travel distance is the minimum.
Therefore, this recruitment system can be implemented
under our proposed protocol.

• Spatial distribution based recruitment [11]: In this re-
cruitment system, the locations of recruited mobile nodes
are expected to be distributed as even as possible. This
recruitment scheme can be implemented under our pro-
posed protocol as the following.

– The service provider divides the task area into K
subarea, where K is the number of mobile nodes
required to recruit.

– For each subarea, the service provider encrypts its
locations (X⋆

k , Y
⋆
k )(k ∈ [1,K]) following the steps

2) of the protocol.
– Each mobile node encrypts its location and sends the

ciphertext to the edge node following the step 4) of
the protocol.

– The edge nodes perform operation ⊙ on the location
ciphertexts of mobile nodes for each subarea follow-
ing the step 5) of the protocol.
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Fig. 3. Travel distance based task allocation

– The cloud can derive Dk
w, which is the travel distance

of the mobile node to the subarea Sk, ∀k ∈ [1,K].
In each subarea, the cloud chooses the candidate that
has the minimum travel distance as a winner. Then
K winners are selected for the task area. The spatial
distribution of the winners is approximately even.

V. CORRECTNESS AND PRIVACY DISCUSSION

In this section, we provide the correctness proof and privacy
discussion of the proposed protocol.

A. Correctness Proof

Theorem 1: Given two large prime numbers p, q, set n =
pq and λ = lcm(p − 1, q − 1). For any g ∈ Z⋆

n2 , we have
gλ ≡ 1 mod n and gnλ ≡ 1 mod n2 [12].

The proposed protocol is correct. Specifically, only the edge
node can decrypt the ciphertext {C2

x, C
2
y} and only the cloud

can decrypt the ciphertext {C+
x , C+

y }. Given the ciphertexts
{C1

x, C
1
y}, {C2

x, C
2
y}, {Cw

x , Cw
y } as shown in the above, the

correctness at edge side is ensured by the following equations.

Dec(C2
x, ske) (10a)

=
L((C2

x)
λe mod n2

e)

L(gλe
e mod n2

e)
mod ne (10b)

=
L(g

λeC
1
x

e rλene
2 ) mod n2

e)

L(gλe
e mod n2

e)
mod ne (10c)

=
L(g

λeC
1
x

e mod n2
e)

L(gλe
e mod n2

e)
mod ne (10d)

=
neηC

1
x + 1− 1 mod n2

e

neη + 1− 1 mod n2
e

mod ne (10e)

=C1
x, (10f)

where Eq. (10c)-(10e) are derived from Theorem 1. Similarly,
the edge node can achieve Dec(C2

y , ske) = C1
y . To perform

the algorithm ⊙(), the edge node calculates the following over
the ciphertext.

C+
x = ⊙(Cw

x , C1
x) (11a)

= Cw
x C1

x mod n2
c (11b)

= gXw
c rnc

w g−X⋆

c rnc
1 mod n2

c (11c)

= gXw−X⋆

c (rwr1)
nc mod n2

c . (11d)
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Fig. 4. Spatial distribution based task allocation

Similarly, C+
y = gYw−Y ⋆

c (rwr1)
nc mod n2

c is achieved.
Given the ciphertext {C+

x , C+
y }, the correctness at cloud

side is ensured as follows.

Dec(C+
x , skc) (12a)

=
L((C+

x )λc mod n2
c)

L(gλc
c mod n2

c)
mod nc (12b)

=
L(g

λe(Xw−X⋆)
c (rwr1)

λcnc) mod n2
c)

L(gλc
c mod n2

c)
mod nc (12c)

=
L(g

λc(Xw−X⋆)
c mod n2

c)

L(gλc
c mod n2

c)
mod nc (12d)

=
nθ(Xw −X⋆) + 1− 1 mod n2

e

nθ + 1− 1 mod n2
e

mod ne (12e)

=Xw −X⋆ = ∆x. (12f)

Similarly, the cloud can decrypt C+
y and receive ∆y .

B. Privacy Discussion

• Location privacy of mobile nodes: In the proposed pro-
tocol, the mobile nodes encrypt their locations with the
cloud’s public key and generate {Cw

x , Cw
y }. For the other

entities in the system, only the corresponding edge node
can access {Cw

x , Cw
y }. Since the Paillier AHE is secure

from chosen plaintext attack [13], the edge node cannot
decrypt the ciphertext. Thus, the location privacy of
mobile nodes is preserved.

• Location privacy of task area: The service provider
decides the task location and generates the ciphertext
{C1

x, C
1
y} with the cloud’s public key. Since {C1

x, C
1
y}

is further encrypted to {C2
x, C

2
y} with the edge node’s

public key, only the edge node can access {C1
x, C

1
y}.

However, since the Paillier AHE is secure from chosen
plaintext attack, the edge node cannot decrypt {C1

x, C
1
y}

to obtain the task location. At the cloud side, the cloud
only receives the ciphertext {C+

x , C+
y }. Although the

cloud can calculate the travel distance Dw based on the
ciphertext, it cannot derive the task location or mobile
node’s location. In addition, although the cloud is able to
collude with the malicious mobile nodes, the task location
is preserved since the mobile nodes have no knowledge
about {C1

x, C
1
y}. Therefore, the task location is preserved.



TABLE II
FEATURES COMPARISON.

Features Privacy Preservation Task allocation

Location of mobile nodes Task location Secure from collusion of
cloud and mobile nodes

Support travel distance
based task allocation

Support spatial distribution
based task allocation

Wang et al. [8] ✓ × ✓ ✓ ×
Ni et al. [9] ✓ ✓ ✓ × ×

Shen et al. [10] ✓ × ✓ ✓ ×
Jiang et al. [11] ✓ ✓ × ✓ ✓
He et al. [14] × × × ✓ ×

Proposed ✓ ✓ ✓ ✓ ✓
Notes: “✓” represents “satisfy”; “×” represents “not satisfy”.

VI. PERFORMANCE EVALUATIONS

In this section, we first evaluate the performance over the
above two types of task allocation by comparing them with
[8], [10] and [11]. We then provide a comprehensive feature
comparison with other research works. To simulate the task
allocation, the targeted area is a parking lot in Omaha, NE,
USA (the area is approximately 200 meters × 200 meters). 60
candidates are considered in the task area and each candidate
is randomly distributed in spatial.

Fig. 3 shows the performance of travel distance based task
allocation. Compared with [8] and [11], the proposed scheme
and [10] perform the best and achieve the highest accuracy.
This is benefited from the additive property of homomorphic
encryption, which remains high data utility for task allocation.

Fig. 4 describes the performance of spatial distribution
based task allocation. In the comparison, we deploy the
absolute objective value in [11] to evaluate the performance.
It is defined as the absolute difference between the minimum
travel distance and the minimum winner-to-winner distance.
A higher value indicates better performance. As shown in
Fig. 4, our proposed performs worse than [11], since only
one parameter (travel distance) is considered when recruiting
mobile nodes under the proposed protocol. In other words,
our performance is degraded due to a lack of consideration of
other spatial parameters. Even so, it should be noted that our
proposed is able to support spatial based task allocation.

Table II shows the features comparison of the proposed
with the other work. It is noted that our proposed satisfies
all the features in the comparison. In addition, the proposed
scheme outperforms [10] since it protects the task location
and supports spatial based task allocation. Another crucial
observation is that compared with [11], the proposed scheme is
secure from the collusion of cloud and mobile nodes, although
it has performance degradation in spatial based task allocation.

VII. CONCLUSION

In this paper, we have proposed an additively homomorphic
encryption based protocol for EMCS. The protocol supports
travel distance based task allocation and spatial distribution
based task allocation, while preserving location privacy. We
have provided detailed proof and discussion to show the
correctness and privacy preservation of the protocol. The sim-
ulation results have demonstrated that our proposed protocol
achieves high accuracy in task allocation while remaining
location privacy preservation. In future work, we will build

a testbed for the proposed protocol to evaluate the accuracy
of task allocation and time efficiency in practical.
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