Cooperative Task Allocation in Edge Computing
Assisted Vehicular Crowdsensing

Yili Jiang!3, Kuan Zhang', Yi Qian', and Rose Qingyang Hu?
!Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, USA
2Department of Electrical and Computer Engineering, Utah State University, USA
3College of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, China

Abstract—As a popular scenario of mobile crowdsensing, edge
computing assisted vehicular crowdsensing (EVCS) encourages
vehicles to participate in sensing data with the equipped devices.
Due to the vehicular mobility, vehicles may dynamically enter and
leave the coverage area of an edge node, leading to recurrent
task allocations that consume excessive communication and
computational resources. How to avoid recurring recruitment
in task allocation is challenging. In this paper, we propose an
optimization framework to facilitate task allocation by utilizing
the cooperation between edge nodes. The proposed framework
avoids complicated recruitment procedures while maximizing the
connection time between the recruited vehicles and the edge node.
Due to the NP-hardness of the formulated optimization problem,
we design a reinforcement learning based algorithm to solve the
problem with high accuracy and efficiency. Simulation results
show the effectiveness of our proposed framework.

Index Terms—task allocation, cooperation, edge computing,
vehicular crowdsening.

I. INTRODUCTION

The ubiquitous smart devices have promoted the mobile
crowdsensing, which encourages mobile nodes to participate
in collecting data for diverse applications. Vehicular crowd-
sensing is a special popular scenario of mobile crowdsensing.
Equipped with onboard unit (OBU), global positioning system
(GPS), cameras, and various sensors, vehicles are able to
sense the information of surrounding environment to assist
in parking navigation, traffic monitoring and road surface
condition inspection [1-3]. In vehicular crowdsensing, a cen-
tralized cloud server generally allocates sensing tasks to the
qualified vehicles based on their locations, reputations, costs,
etc. According to the evaluated quality of the collected data,
the recruited vehicles (also know as workers) receive monetary
reward from the cloud server. Due to the wide coverage of
vehicles, vehicular crowdsensing has superior advantages in
terms of financial cost compared with the conventional sensor
networks [4-6].

Although vehicular crowdsensing shows great benefits, re-
mote data transmission and centralized data processing are
not recommended, since these may lead to longer latency and
reduce the system efficiency. To solve the problem, edge com-
puting is used to distribute computation, communication, and
storage closer to vehicles [7, 8]. In contrast with the centralized
task allocation in conventional vehicular crowdsensing, EVCS
allocates tasks at the edge node. In other words, instead of
the cloud server, each edge node is responsible for recruiting

workers in its coverage area to sense data. However, due to
the mobility of vehicles, task allocation has the following
two challenges in EVCS: 1) Since vehicles have various
velocities, their connection time with edge node is different,
affecting data collection. For instance, a vehicle that has
longer connection time senses and contributes more data to the
task. 2) Efficient task allocation is crucial. Since recruitment
generally involves a sequence of steps, such as task release,
task competition, reputation verification, etc. Performing these
steps leads to longer latency. As the sensed data (e.g., traffic
flow data) could be time-sensitive, the latency affects the
validity of data.

To tackle these challenges, diverse optimization frameworks
for mobility-based task allocations are proposed. Wang et
al. 9, 10] designed both offline and online algorithms to
dynamically maximize the system utility in task allocation,
where the mobility of vehicles is represented by the probability
of appearing in a specific location. Wu et al. [11] proposed
a framework which minimizes system latency via introducing
mobility prediction. By predicting the location of vehicles,
the system can promote proactive task allocation, reducing
the computation latency. Since the mobility model only de-
pends on the vehicle’s acceleration, the prediction may not
be accurate. Li ef al. [12] focused on maximizing the system
utility through prediction-based dynamic task allocation. Semi-
Markov model is used to predict the transition probability
of a worker from a position to another position. However,
since the above frameworks perform the task allocation within
independent edge nodes, vehicles may dynamically enter and
leave the coverage area of an edge node, leading to rapid
changes in the vehicular network topology. When a worker
leaves, the edge node needs to recruit new workers, resulting in
recurrent task allocations with excessive resource consumption
and longer latency.

In this paper, we propose a novel scheme to avoid recurrent
task allocation by exploring cooperative benefits of edge
nodes. Specifically, the edge nodes can cooperatively exchange
the mobility information and work status of vehicles between
each other. Then an edge node E can be informed by the
availability of vehicles in the next time interval. If these
vehicles are workers from other edge nodes, F can assign tasks
to them without processing all recruitment steps (e.g., task
release, reputation calculation). Then the procedures of task
allocation can be facilitated, reducing resources consumption

(]
m—

Cloud
Customer et e
Q (5 (S Edge nodes
"""""""""" T e -~ Vehicles
i | i | h
==Y - o C
o7 s ‘@) %{

Fig. 1. System model.

and system latency. Considering such cooperative task alloca-
tion, we propose a framework which maximizes the connection
time while avoiding to perform all recruitment procedures. The
main contributions of this paper are summarized as follows.

« Utilizing the cooperation between edge nodes, we pro-
pose an optimization framework for task allocation in
EVCS. The proposed framework maximizes the workers’
connection time with edge nodes and avoids processing
all recruitment steps.

e Due to the NP-hardness of the formulated problem,
we propose to relax the optimization problem into two
subproblems. A reinforcement learning based algorithm
is designed to solve the transformed problems efficiently.

e We conduct simulation experiments to evaluate our
scheme. The performance evaluation indicates that the
proposed framework can optimize task allocation with
high accuracy and efficiency.

The rest of this paper is organized as follows. In Section
II, the system model is provided. In Section III, the problem
statement is described. After that, the proposed approaches
are discussed in Section IV. Simulation results are evaluated
in Section V and conclusions are provided in Section VI.

II. SYSTEM MODEL
A. System Overview

Four types of entities (customer, cloud server, edge nodes,
and vehicles) are generally involved in the EVCS system
shown in Fig. 1. The detailed descriptions of each type of
entity are presented as follows.

e Customer: A customer is a service requestor, which aims
to collect data from some specific locations and perform
data analysis or data mining. A customer can be an
individual or a company. For example, a company may
need to collect real-time data of road surface to monitor
the road surface condition and schedule maintenance
accordingly. However, since a customer generally has
limited or constrained communication and computation
resources, it is unable to finish the task by itself. Thus,
the customer outsources such a sensing task to the cloud
Server.

' Next/Predicted
Vehicle V, ‘ Current Edge Node ‘ Edge Node
measure s(t);
predict s(t+1)
s(t), s(t+1)
Predict next edge
node based on s(t+1)
V,, s(t+1)

Update worker
list for t+1

Update worker
list for t+1

t+1
Fig. 2. Procedure of cooperative task allocation in EVCS.

e Cloud Server: The cloud server is the service provider for
customers. It releases the task to the edge nodes whose
coverage is in the task area. Assisted by the edge nodes,
the cloud server obtains data collected from the task area.
By performing data mining and information aggregation,
the cloud server returns the final results to the customer.

e Edge Nodes: As part of service provider, edge nodes
provide assistance to the cloud server in task allocation
and data transmission. Specifically, in its coverage, each
edge node is responsible for recruiting vehicles to collect
data and transmitting the extracted information to cloud
server. Edge nodes are close to vehicles and have suffi-
cient resources for communication and computation.

e Vehicles: Equipped with OBU and other smart devices,
vehicles are able to sense data from their surroundings. If
a vehicle is interested in the task, it sends its information
(e.g., location, reputation, expected reward, etc.) to the
edge node to compete with other candidates. The candi-
dates with good reputation have high probability to be
selected. The recruited vehicles are referred as workers.

Without loss of generality, nine steps are considered in such
a EVCS system. Complete task allocation involves Steps 2-5.

Step 1: The customer sends a task requirement and budget
information to the cloud server.

Step 2: The cloud server releases the task to the correspond-
ing edge nodes based on the location of task area.

Step 3: Bach edge node broadcasts the task to the vehicles
within its coverage.

Step 4: Vehicles upload their information to the edge node
to compete the task.

Step 5: The edge node recruits qualified vehicles and assigns
the task accordingly.

Step 6: The vehicles sense data from the environment and
submit the collected data to the edge node.

TABLE I
NOTATION DEFINITIONS

Variable | Definition
O(t) Vehicular status
(pz,py) | Position information
(vz,vy) | Velocity information
(az,ay) | Acceleration information
(uz,uy) | Noise coefficients
& Set of edge nodes
o Edge node n
Vn () Set of vehicles
Vi Vehicle i
Dy (1) Set of vehicles that are workers at time ¢ — 1
Gn (1) Set of vehicles that are not workers at time ¢ — 1
Ci(t) Reward cost of V;
T;(t) Connection time of V;
0 Reward limitation
K Number of required workers
pi(t) p;i(t) = 1, if V; is recruited,;

pi(t) = 0, otherwise.
Q Large constant
w(t) w(t) = 1, if all recruitment steps are required to process;

w1(t) = 0, otherwise.

Step 7: The edge node extracts information and sends
aggregated data to the cloud server.

Step 8: The cloud server aggregates the final report and
returns to the customer.

Step 9: The cloud server issues rewards to the edge nodes
according to the data quality. The edge nodes distribute
rewards to the corresponding vehicles.

B. Mobility Prediction

Equipped with GPS and sensors, a vehicle can measure its
location, velocity, and acceleration. Within a 2D surface, we
define the status of a vehicle as O = (s, Py, Uz, Uy, Gz, Qy),
where (pg,py). (Va,vy), (ag,ay,) are the components of
location, velocity, and acceleration in directions = and y
respectively. Then we can use the status at time ¢ to predict
the status at time ¢ + 1 following

O(t+1)=AO(t), (1)

1 0 At 0 1A 0 pa(t)
01 0 At 0 LA pygz?
00 1 0 At 0 v, (t
A4=1o 0 0 1 o ar [POO=1, 0|
00 0 0 14u, O ag(t)
00 0 0 0 14w, ay(t)

time interval. u, and u, represent the noise coefficients. All
notations used in this paper are listed in Table I.

III. PROBLEM FORMULATION

Fig. 2 shows the procedure of cooperative task allocation
in the edge node. At time ¢, each vehicle measures its status
O(t) with equipped devices and predicts the status O(¢ + 1)
following Eq. (1). Then O(t) and O(t + 1) are sent to
the current edge node. Based on the position information
(pz(t+1),p,(t+ 1)) in O(t + 1), the edge node can predict

the next edge node that the vehicle is going to connect at time
t 4 1. Practically, the predicted edge node is either the current
edge node or an adjacent edge node. After that, the current
edge node sends the vehicle’s information (e.g., identity, work
status) and O(t + 1) to the predicted edge node. By doing
this, each edge node knows details of vehicles which are
going to leave or enter the coverage area. Then the edge node
performs proactive task allocation for the next time interval. As
discussed in the previous section, if the workers have longer
connection time with the edge node, they contribute more data
to the task. In addition, recruiting previous workers can avoid
performing all recruitment steps. Therefore, how to select
workers to maximize their connection time while avoiding
performing all recruitment steps is the targeted problem in
this paper.

We consider a set of edge nodes & = {F;, Es, ..., E,,
...}. Each edge node E,, involves a set of vehicles V,(t) =
{V1, Va, ..., Vag, v} at time £. V), (t) can be further divided
into two sets D,,(t) and G, (t), where V,,(t) = D,,(t) UG, (),
D, (t) N Gn(t) = 0. Dy,(t) stands for the vehicles that are
workers at time ¢ — 1. Note that these workers can be either
under the current edge node or an adjacent edge node at time
t—1. G, (t) denotes the vehicle that does not work at time ¢—1.
Similarly, these vehicles can be either under the current edge
node or an adjacent edge node at time ¢ — 1. For each vehicle
V;, we introduce a binary parameter p;(t). If V; is selected as a
worker at time ¢, p;(t) = 1. Otherwise, p;(t) = 0. The reward
cost and predicted connection time of V; at time ¢ are denoted
as C;(t) and T;(t). u(t) denotes if all recruiting steps are
required. To maximize the connection time while facilitating
recruitment for each edge node at time ¢, we formulate the
optimization problem as follows.

; T;(t)pi(t)
P1: Maxm 2)

st. Y _Cilt)pi(t) <6, VVieVa(t), 3
D pilt) = K, WV € Vo(t), 4)

Zpi(t) < ut)Q, VVi € Galt), (&)

pi(t) € {0,1}, VV; € V,(t), (6)
u(t) €{0,1}, @)

where § is the reward budget of the edge node. (3) represents
the budget limitation. (4) is the constraint of worker number.
To collect sufficient data, the number of recruited workers
cannot be less than K. In (5), @ is a large constant that forces
u(t) =0 when Y. p;i(t) = 0,VV; € G,(t) and p(t) = 1 when
> pi(t) > 0,¥V; € G,(t). It indicates that when the edge
node selects new workers from G, () at time ¢, all recruitment
steps are required to process. Since u(t) is possible to be 0,
1(t) + 1 is used force the denominator to be positive in (2).

Theorem 1: P1 is NP-hard.
Proof: P1 is a non-linear integer programming problem.
By setting p(t) = 1 and K = 0, P1 is degenerated to 0 — 1
knapsack problem, which is NP-hard. Therefore, P1 is NP-
hard.]

IV. PROPOSED APPROACHES

Since P1 is NP-hard, it is infeasible to find optimal solution
in polynomial time. We are motivated to solve P1 within
two stages: 1) As discussed previously, x(t) = 1 means all
recruitment steps are required to process given that a worker
is selected from G, (t). To avoid recurrent task allocation, we
prefer to recruit workers from D,,(t) first without considering
constraint (4). 2) If the number of the recruited workers satis-
fies constraint (4), we use the corresponding recruitment result
as the suboptimal solution to P1. Otherwise, we consider to
recruit more workers from G, (¢).

To implement the two stages, we divide P1 into two
subproblems depending on the value of u(t). Given u(t) = 0,
P1 is transformed into a simplified linear integer programming
as follows,

P2 : Max Z T (1) ps (t) (8)

Vi
st. Y Ci()pi(t) <6, WieDu(t), (9

> pilt) = K, WV € Dy (1), (10)
pi(t) € {0,1}, VV; € D,(1).
Given pu(t) =1, P1 can be relaxed to
1
P3 : Max; ;Ti(t)pi(t) (11)
st Y Cipi(t) <6, YVieWn(t), (12)
D pilt) = K, WV € Vu(t), (13)
pi(t) =1, YV; € Dy(t), (14)
pi(t) € {0,1}, VV; € Vu(t). (15)

Theorem 2: P2 and P3 are NP-hard.

Proof: By setting K = 0, P2 and P3 can be degenerated
to 0 — 1 knapsack problem, which is NP-hard. Therefore, P2
and P3 are both NP-hard. [|

P2 and P3 represent the optimization problems in stage 1)
and stage 2) respectively. Then following the above two stages,
we first solve P2, if we can find a feasible solution for P2,
we use that solution for P1. Otherwise, we continue to solve
P3 and use the solution of P3 for P1. Due to the hardness
of P2 and P3, we are motivated to design an algorithm of
reinforcement learning based task allocation (RLTA) to find
suboptimal solutions for the problems. Specifically, we employ
@-learning, which is a well-established method in the class of
reinforcement learning, in the proposed algorithm. To perform

Q-learning algorithm, we model the problem with state space,
action space, reward function, and Q-function as follows.

e Action Space A: In P2 and P3, if we only consider
constraints (9) and (12), then the problem becomes to
pick multiple candidates one by one within the reward
budget while maximizing their connection time. For each
candidate, we can take three actions, involving a;: taking
the candidate as a worker and adding into the worker
list directly; as: taking the candidate as a worker and
replace an existing worker on the worker list to improve
the connection time; ag: not taking the candidate. These
three actions form the action space .A.

o State Space S: For each candidate, since we can take
different actions, the temporary worker list may involve
various combinations of candidates. We calculate the ratio
of connection time to cost for each vehicle that is on the
temporary worker list. The vehicle that has the lowest
ratio is denoted as V;. The connection time and reward
cost of V, are T, and Cj. The present candidate is
denoted as V;. Similarly, the connection time and reward
cost of V; are T; and C;. Assuming the residual budget is
o', we use three parameters X, Y, Z to represent different
states as following

o >C,
¥ — 0 Cp+ 2 C (16)
1 Otherwise,
0 C,>C;
Y = L 17
1 Otherwise,
;>
z={" izt (18)
1 Otherwise.

e Reward Function: At each state, taking an action receives
the immediate reward following the reward function

0 ai is true

T ag is true, C; > ¢

ay is true, C; < 4
r=<7" asis true,C; <

as is true,C; > ¢’ + C,,
T azistrue, V; <V,

7+t Otherwise,

19)

where 77 is penalty and 77 is positive reward.

e Q-Function: Q-function is defined to represent the ex-
pected accumulative rewards when action a is taken in
state s. In this work, the Q-function is derived from
Bellman equation as following

Qui1(5,0) = Qils,)+5 (r + ymax Qu(sh, ar) - Qu(s,0))
(20)

Algorithm 1 depicts the learning procedure of RLTA. In
each iteration, we first initialize the worker list W, residual
budget ¢’, and state s. For each candidate, we take actions

Algorithm 1 The Learning of RLTA

Algorithm 2 The Execution of RLTA

Input: S, A, 5, 7, ¢, 0.

QOutput: Q-table.

Initialization: Q(s,a) =0,Vs € S,a € A.
1: fori=1,2,... do

2 W=

3: =40 ;

4 s+ S(X,Y,Z);

5: for each candidate do

6: Generate random number e.

7: if ¢ > ¢ then

8: a + argmax,, Q(s,a’).

9: else

10: Randomly pick a € A.

11: end if

12: Calculate immediate reward based on (19);
13: Update Q(s,a) based on (20);

14: Calculate X,Y, Z based on (16) (17) (18);
15: s+ S(X,Y, Z);

16: Update W;

17: Update 4.

18: end for

19: end for

20: return (-table.

under e-greedy policy to balance exploration and exploita-
tion. Specifically, the agent can take a random action with
probability e or take the best action in the given state with
probability 1 — e. The best action is derived by searching
the maximum value in the Q-table given the present state.
After that, the immediate reward for the selected action is
obtained by calculating the reward function (19). Based on
the immediate reward, we can update the Q-table following
the Q-function (20). Subsequently, by updating WV and ¢’, the
environment turns to the next state. With sufficient iterations,
the Q-table is well-established.

Algorithm 2 summarizes the execution of RLTA. As dis-
cussed previously, we are motivated to solve P2 first. For each
candidate in the set D,,(t), we can get the present state through
calculating X, Y, Z. By searching the Q-table, the best action
for the current state is selected. Then based on the selected
action, we may add new worker to W. We keep updating
W until all candidates in D,,(t) are considered. At the end,
we obtain the final)V, which is the solution for P2. If the
number of workers in W is greater than K, we return W
as the solution for P1. Otherwise, we continue to solve P3
following the lines 11-18 in Algorithm 2. Similarly, for all
candidates in the set G,,(t), we can derive the best actions for
them by searching Q-table. Thus new workers can be selected
from G, (t). At the end, the W is updated accordingly and
returned as the solution for P1.

V. PERFORMANCE EVALUATIONS

In the simulation results presented in this section, we
consider a network with one cloud and ten edge nodes. The

Input: Q-table, K, 0, D, (t), G (t).
Qutput: W.
Initialization: W = 0, §' = 4.
1: for V; € D, (t) do
2: Calculate XY, Z based on (16) (17) (18);
3: s+ S(X,Y, 2);
4: a < argmax, Q(s,a’);
5: Update W;
6
7
8

: Update §’.
: end for
. if lenOWV?) > K then
9: return V.
10: else
11: for V; € G, (t) do
12: Calculate X,Y, Z based on (16) (17) (18);
13: s+ S(X,Y, 2);
14: a + argmax,, Q(s,a’);
15: Update W;
16: Update o.
17: end for
18: return W.
19: end if

communication range of an edge node is 400 meters. In
the system, the number of vehicles varies within [50,150]
at different time intervals. The velocity of each vehicle is
randomly set from 20 to 45 miles/hour. Due to the vehicular
mobility, the connection time between the vehicles and the
edge node are various. We compare the proposed algorithm
with [12] (where a greedy algorithm is proposed). In addition,
we evaluate a heuristic algorithm, which tests all possible
combinations of candidates to find the best solution. Since this
algorithm tests all possible solutions, we use its performance
as the benchmark to estimate our proposed algorithm. The
simulation results show the performance under the comparison
of the three methods. Each point in the following figures is
based on the average values of 1000 simulation runs.

Fig. 3 shows the vehicles’ connection time at each edge
node. With the increasing of time intervals, although all
the three methods obtain relatively stable connection time,
our proposed algorithm outperforms the greedy algorithm
significantly with a higher value of connection time. Compared
with the heuristic algorithm, our proposed algorithm degrades
slightly. Fig. 4 quantifies the performance. Since the heuristic
algorithm is the benchmark, we set its optimization accuracy
as 100%. Comparing with the benchmark, our proposed algo-
rithm achieves high accuracy at around 95%. It means that our
proposed algorithm is effective to find the optimal solution.

Fig. 5 describes the occurrence of reccruent task allocation,
indicating the number of times that all recruitment steps are
processed over time. In greedy algorithm, with the increasing
of time interval, the number of times is increased linearly.
The performance of our proposed algorithms is much better
than the greedy algorithm benefiting from the cooperation of

195 / SN / S
~ +—— - 1
~ —+— —
190 , 0.95

185 /\9\9/3\9_6,_—@\//(

—6—Proposed | |
—+— Heuristic
165 Greedy

=
3

0.9

—&— Proposed

—+— Heuristic
Greedy

Accuracy (x 100%)

]
3

0.85

Connection Time (s)
3 2oz
3

160 q 0.8

—o—Proposed
—+— Heuristic
Greedy

Number of Occurrences
o 4 M w & O o N ® ©

3 4 5 6 7 8 9 10 1 2 3 4
Time Intervals

Fig. 3. Optimized connection time.

edge nodes. Although the heuristic algorithm slightly outper-
forms our proposed algorithm, the proposed algorithm has
less computational complexity. As shown in Algorithm 2, the
computational complexity is O(N), where N is the number
of candidates. For the heuristic algorithm, its computational
complexity is O(N?). Overall, our proposed algorithm can
solve the problem accurately with higher efficiency.

VI. CONCLUSION

In this paper, we have proposed an optimization framework
for cooperative task allocation in EVCS, where the edge
nodes collaborate to exchange vehicles’ mobility informa-
tion and recruitment status. The proposed framework aims
to avoid performing all recruitment steps in task allocation
and maximize the connection time of workers. A non-linear
integer programming problem has been formulated to describe
the optimization goals. We have designed a reinforcement
learning based algorithm to solve the optimization problem.
The simulation results have demonstrated that our proposed
framework achieves the optimization goals with high accuracy
and efficiency. In future work, we will investigate the accuracy
of mobility prediction and its relationship with recurrent
recruitment in the proposed cooperative task allocation.

ACKNOWLEDGMENT

This work was partially supported by National Science
Foundation under grants CNS-2007995 and CNS-2008145.

REFERENCES

[1] C. Wang, Z. Xie, L. Shao, Z. Zhang, and M. Zhou,
“Estimating travel speed of a road section through sparse
crowdsensing data,” IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 9, pp. 3486-3495,
2019.

S. Basudan, X. Lin, and K. Sankaranarayanan, “A
privacy-preserving vehicular crowdsensing-based road
surface condition monitoring system using fog comput-
ing,” IEEE Internet of Things Journal, vol. 4, no. 3, pp.
772-782, 2017.

S. Abdul Rahman, A. Mourad, and M. El Barachi,
“An infrastructure-assisted crowdsensing approach for

(2]

(3]

6

Time Intervals

Fig. 4. Accuracy over time.

(4]

(5]

(6]

(7]

(8]

(9]

[11]

Time Intervals

Fig. 5. Occurrence of recurrent task allocation.

on-demand traffic condition estimation,” IEEE Access,
vol. 7, pp. 163 323-163 340, 2019.

L. Xiao, T. Chen, C. Xie, H. Dai, and H. V. Poor,
“Mobile crowdsensing games in vehicular networks,”
IEEE Transactions on Vehicular Technology, vol. 67,
no. 2, pp. 1535-1545, 2018.

W. Guo, W. Zhu, Z. Yu, J. Wang, and B. Guo, “A survey
of task allocation: contrastive perspectives from wireless
sensor networks and mobile crowdsensing,” IEEE Ac-
cess, vol. 7, pp. 78406-78 420, 2019.

J. Guo, B. Song, Y. He, F. R. Yu, and M. Sookhak,
“A survey on compressed sensing in vehicular infotain-
ment systems,” IEEE Communications Surveys Tutorials,
vol. 19, no. 4, pp. 2662-2680, 2017.

J. Li, Z. Su, D. Guo, K.-K. R. Choo, Y. Ji, and H. Pu,
“Secure data deduplication protocol for edge-assisted
mobile crowdsensing services,” IEEE Transactions on
Vehicular Technology, vol. 70, no. 1, pp. 742-753, 2021.
J. Ni, A. Zhang, X. Lin, and X. S. Shen, “Security, pri-
vacy, and fairness in fog-based vehicular crowdsensing,”
IEEE Communications Magazine, vol. 55, no. 6, pp. 146—
152, 2017.

X. Wang, R. Jia, X. Tian, and X. Gan, “Dynamic task
assignment in crowdsensing with location awareness and
location diversity,” in IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, 2018, pp.
2420-2428.

X. Wang, R. Jia, X. Tian, X. Gan, L. Fu, and X. Wang,
“Location-aware crowdsensing: Dynamic task assign-
ment and truth inference,” IEEE Transactions on Mobile
Computing, vol. 19, no. 2, pp. 362-375, 2020.

X. Wu, S. Zhao, R. Zhang, and L. Yang, ‘“Mobility
prediction-based joint task assignment and resource al-
location in vehicular fog computing,” in 2020 IEEE
Wireless Communications and Networking Conference
(WCNC), 2020, pp. 1-6.

D. Li, J. Zhu, and Y. Cui, “Prediction-based task alloca-
tion in mobile crowdsensing,” in 2019 15th International
Conference on Mobile Ad-Hoc and Sensor Networks
(MSN), 2019, pp. 89-94.

