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Abstract 
Traditional models for stress-strain behavior of glassy polymers are based on the assumption that the critical 
features of the stress-strain response can be explained by changes in the molecular mobility. The four-step 
deformation experiments consisting of (i) an initial constant strain rate loading, (ii) unloading to specified 
stress, (iii) creep under that stress and (iv) second constant strain rate loading, challenges that assumption. 
Specifically, existing models fail to predict the experimentally observed large second stress overshoot in 
case of a slight unloading. Until now there has remained a possibility that the mobility was actually lower 
in case of a partial rather than complete unloading, which would preserve the main assumption, if not 
particular details, of these specific constitutive models. By performing direct optical experiments using the 
photobleaching technique simultaneously with the mechanical four-step experiments it is shown that a 
lower molecular mobility upon partial unloading does not take place.  As traditional models cannot account 
for these experimental results, a new model has been developed where the changes of molecular structure 
manifest not in the relaxation time, but in the shear modulus, which is function of an internal variable that 
is the fraction of the efficiently packed material. This fraction obeys a population balance equation, where 
the steady-state fraction is controlled by the applied stress. In the absence of deformation, the efficiently 
packed fraction increases, which explains the increase in the modulus in the course of physical aging below 
Tg. The model qualitatively describes the four-step experiment as well as single step loading experiments.   

 

Introduction 
A key signature of mechanical response of glassy polymers is the stress-strain curve in a constant strain 
rate deformation as shown schematically as the A-B-C curve in Figure 1.  The stress-strain response exhibits 
a nearly elastic region before reaching yield (i.e., point B) followed by post-yield softening after which the 



flow stress becomes constant.  This stress-strain response is observed for a wide variety of glassy polymers 
in extension, compression and shear1-3 as well as for metallic glasses,4, 5 provided brittle failure is avoided.  
For polymeric glasses stress-hardening i.e., a post-yield increase in stress, is observed at still larger strains, 
but hardening behavior is beyond the scope of this paper.   

  

Figure 1.  Schematics of the stress-strain behavior of glassy polymers in a four-step deformation 
comprising (i) constant strain rate (CSR) loading: A-B-C, (ii) unloading to specified stress: C-D, (iii) creep 
under that stress: D-E and (iv) second CSR loading: E-F-G. The strain rate during second CSR is the same 
as during the first CSR. Colors indicate three unloading/creep stresses: blue – zero i.e., complete unloading, 
green – intermediate i.e., partial unloading and red – large i.e., slight unloading. 

 

The physical mechanism behind the observed stress-strain behavior has been investigated for over sixty 
years, where the consensus view attributes the dramatic change from nearly elastic response below yield to 
the flow response above yield to a change in the molecular mobility, which is effectively defined as the 
inverse of the current relaxation time. This view arises naturally as many characteristics of glassy behavior 
are clearly related to mobility. Specifically, vitrification itself is thought to be a manifestation of the slowing 
down of the relevant molecular motions, so that in the vicinity of the glass transition the average relaxation 
time of the material exceeds the observation time. From this perspective, the material prior to deformation 
(i.e., in the state A in Figure 1) has low mobility and the material past yield (i.e., in the states B and C in 
Figure 1) has high mobility, the latter presumably having resulted from the work of the deformation. In this 
traditional view, the deformation is roughly equivalent to heating the glass, where yield occurs when the 
mobility in the material being deformed below Tg is roughly equivalent to the mobility of an undeformed 
material near Tg.   

The intuition that there is a dramatic increase in mobility as a glassy material is deformed through yield has 
been confirmed by direct observation. Ediger and co-workers used a photobleaching technique to optically 
observe the reorientation of probe molecules during deformation of a polymer matrix.6 Specifically, it was 
observed that in a constant strain rate, extensional deformation experiment the average reorientation time 



of the probe molecules dispersed in poly(methyl methacrylate) and poly(lactic acid) decreased by up to two 
orders-of-magnitude as the material was brought through yield (i.e., from A to C in Figure 1).7, 8  

For constant strain rate loading experiments on glassy polymers, the data can be well-described with  the 
basic postulate that the nonlinear viscoelastic behavior is due to an acceleration of the relaxation processes 
by deformation, where this is the key idea that underlies the existing constitutive models for the nonlinear 
viscoelastic behavior of polymeric glasses.9  However, if this postulate truly represents the underlying 
physics of the deformation process, it should also work for more complex deformation histories.  Of 
particular interest is a four-step experiment, where a polymer in the glassy state is (i) subjected to a constant 
strain rate deformation, (ii) unloaded to a predetermined stress, (iii) allowed to creep for some period-of-
time and (iv) then reloaded at a constant strain rate.  This particular multi-step protocol was used by 
Dreistadt et al for polycarbonate,10 where the results are schematically shown in Figure 1.  Specifically, 
when the material is unloaded to zero stress, there is no overshoot seen upon reloading; however, if the 
material is only partially unloaded like from C to D and then allowed to creep, then a second overshoot is 
observed upon being reloaded at a constant strain rate.  As will be described in detail in the next section, a 
large second overshoot upon partial unloading is inconsistent with the basic postulate that all aspects of the 
nonlinear mechanical response can be explained by just accelerating the rate of relaxation. 

The objective of this communication is to critically study the four-step deformation experiment shown 
schematically in Figure 1.  In the next section a toy model will be constructed that has the essential idea 
that deformation only accelerates the rate of relaxation.  It will be shown that models with this structure are 
incapable of predicting key features of the second overshoot seen experimentally; specifically, the increase 
in the magnitude of the second overshoot as the creep stress is increased.   Then, an experimental study will 
be described where both the deformation behavior of a PMMA glass will be measured along with the 
simultaneous measurement of the molecular mobility using an optical probe.  The key result of this 
experimental study is that the observed change in mobility cannot explain the second stress overshoot – this 
data unambiguously eliminates the primary postulate that the nonlinear viscoelastic behavior of polymeric 
glasses is solely due to acceleration of the rate of relaxation by deformation.  Then, a second toy model will 
be introduced where deformation affects the modulus of the material as opposed to just the rate of 
relaxation, where this toy model qualitatively captures the features of the four-step deformation experiment.  
Finally, there will be a discussion of the implications of the experimental findings and the new toy model 
for the constitutive description of the nonlinear deformation of glassy materials.  

Background 
Single Step Constant Strain Rate Experiments 
The point-of-departure for a description of the deformation behavior of polymers is the well-known 
Maxwell model, where a one-dimensional toy model will now be used to explain the essential features of 
the postulate that deformation accelerates the rate of viscoelastic relaxation. The Maxwell model is a linear 
model given by 

   (1) 

where is the stress, is the strain, and there are two material constants - the relaxation time and the 
elastic modulus . Stress and strain are formally tensorial quantities, but the key features of the model are 
exposed by the one-dimensional scalar form given by eq 1. Under constant strain rate (CSR) deformation, 

is constant and eq 1 has a solution for stress that after the initial rise reaches a steady-state value of 
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. This looks like experimentally observed yielding with the steady-state stress being the yield 
stress. However, if the values of and obtained in small deformation, linear viscoelastic experiments are 
used, then the predicted “yield stress” is unreasonably high. However, when the actual measured during 
deformation by the optical probe rotation experiments is used, then eq 1 approximately predicts the correct 
value of yield stress. Thus, the measured mobility behavior in conjunction with the constitutive model given 
by eq 1 accounts for single step yielding behavior, where the key nonlinear generalization of the linear 
Maxwell model is having the relaxation time depend upon the deformation.    

An important feature of the stress-strain response for CSR loading is the post-yield stress softening (i.e., 
the B to C portion of the stress-strain curve in Figure 1), where the causative physical mechanism is the key 
question. Based on eq 1, one possible scenario would be that upon passing yield point the relaxation time
continues to decrease for a while so that the steady-state stress that is eventually reached is lower than 

the yield stress. However, Bending et al found that within the experimental scatter post-yield softening was 
not accompanied by noticeable decrease int,7 thereby invalidating the above hypothesis. A key observation 
about the post-yield softening is that the magnitude of the stress overshoot depends critically on the age of 
the material prior to deformation, provided all other experimental parameters like temperature, strain rate, 
etc. are kept constant. Specifically, a material that has been rapidly quenched from above Tg to the 
temperature at which the mechanical experiment is conducted, exhibits no stress overshoot; alternatively, 
an aged material exhibits a large stress overshoot, where the magnitude of the overshoot increases roughly 
as a logarithm of the sub-Tg aging time.11-15 This “physical aging” is typically described as a relaxation of 
some structural variable, . After material is cooled into a nonequilibrium glassy state the initial value of 
the structural variable is which is higher than the equilibrium value ; then, during physical aging 

under isothermal conditions, the structural variable decreases from to . The physical nature of the 
structural variable is still a subject of debate, where several candidates have been proposed such as free 
volume,16, 17 fictive temperature,18 configurational entropy19 and configurational internal energy.20  

A candidate physics-based description of the post-yield softening is the combination of the Maxwell model 
given in eq 1 with an equation for structural relaxation. In the constitutive models that have been developed 
to describe the stress-softening behavior of glassy polymers,18-29 it has been postulated that the effect of the 
deformation induced structural relaxation is to have the relaxation time  in eq 1 depend upon .The 
functional form of the dependence and the equation for the structural relaxation, describing evolution 
of , vary from one model to another, but the basic idea remains. As a representative example, consider the 
following equations: 

  (2) 

and 

             (3) 

where is the relaxation time in a reference state and in eq 2 and in eq 3 are parameters. Eqs 1-3 form 

a complete set, which is solved with initial conditions of and .  In the absence of 

deformation i.e., at , structural relaxation/aging takes place, where decreases toward its 
equilibrium value, . When a large deformation is applied, the decrease in is arrested and even reversed 
due to the second term on the RHS of eq 2. This term is proportional to the power (i.e., work per unit time) 
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of the deformation.  Eq 2 is similar, but not exactly identical, to the underlying structure of a number of 
constitutive models; specifically, (1) in the Fielding-Larson-Cates (FLC) model29 the second term on the 
RHS of eq 2 is and in the Buckley et al model18 it is where is the viscous strain, (2) in 

the Chen-Schweizer (CS) model28 the second term on the RHS of eq 2 is  and (3) in the Boyce-
Argon-Park (BAP)21 and Eindhoven13 models the RHS of eq 2 is , where is the plastic 
strain.  The FLC model does not have a correct small deformation limit, where application of a small 
amplitude, high frequency sinusoidal strain prevents material from aging, which is not supported by 
experiments – eq 2 avoids this pitfall. The form of eq 2 for the BAP and Eindhoven models is such that 
when then and the structure  remains mired at  which causes problems in multi-

step experiments – eq 2 does not have that problem, since even if   can evolve due to the second 

term on the RHS.  Eqs 1 and 2 are 1st order ODEs, whereas a general nonlinear viscoelastic model derived 
from the rational thermodynamics’ framework30, 31 is properly described by a set of integral equations, 
including single-, double-, etc. integral terms.32 From this perspective eqs 1 and 2 are a special limiting 
case; however, the predictions of the differential and the more general integral constitutive models are 
qualitatively similar.  Also, a constitutive model must formally use finite stress and strain measures versus 
the infinitesimal stress and strain used in eqs 1 and 2, where there is some stress-strain nonlinearity due to 
the finite deformation measures; however, these finite stress/strain effects are small and do not account for 
the strong nonlinear stress-strain behavior including yield and post-yield softening. The dominant 
nonlinearity controlling the response in all these models is the strong dependence of the relaxation time on 
the structural variable, where eqs 1-3 capture the key physical idea that deformation affects the rate of 
relaxation through an internal structural variable S that depends upon the deformation that also evolves with 
time. 

Despite their simplicity, eqs 1-3 qualitatively predict the basic deformation experiments, including the 
single-step CSR deformation experiment i.e., the A-B-C portion of the stress-strain response in Figure 1. 
The reason for successful prediction of the post-yield softening is the indirect dependence of the relaxation 
time on deformation via a differential equation for the internal variable .  If dependence of the relaxation 
time on deformation were via an algebraic equation of the form , there would have been no stress 
overshoot.  The magnitude of the stress overshoot depends on the initial (i.e., prior to deformation) value 
of the structural variable. Large results in no overshoot and small that is close to the equilibrium value 
of results in large overshoot. It should not be concluded that any model having the structure similar to 

eqs 1-3 will result in successful prediction of the post-yield softening under CSR deformation. The specific 
form of the equations and the values of the model parameters matter. For example, a much more 
sophisticated nonlinear thermo-viscoelastic model of Caruthers et al, where the role of the structural 
variable controlling mobility is played by the configurational internal energy, does not predict the post-
yield softening.33   

The toy model described by eqs 1-3 captures the essence of the state-of-the-art in constitutive modeling of 
glassy polymers, where much more elaborate models of Anand and collaborators25, 34 and the stochastic 
model of Medvedev and Caruthers27 give qualitatively similar predictions. The shape of the stress-strain 
curve predicted by the eqs 1-3 model is reasonably close to what is observed in a typical experiment. This 
is unusual for a single relaxation time model. For example, the original single relaxation time versions of 
the BAP model,21 the Eindhoven model,13 and the Buckley model18 exhibited yield that was much too abrupt 
as compared to experimental data, where later versions of these models employed a spectrum of relaxation 
times rather than a single relaxation time to rectify this problem.35, 36  
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Multi-step Deformation Experiments 
The single-step constant strain rate loading experiment shown schematically in Figure 1 (A-B-C curve) is 
an important, but very simple, deformation history.  There have been a few studies where unloading to zero 
stress has been measured for polymeric glasses,37-39 but there are very few studies of more complex 
protocols that have cyclical loading-unloading-reloading deformation steps.10, 15, 40, 41 Dreistadt et al 
performed a multi-step experiment shown schematically in Figure 1 (A-B-C-D-E-F-G curve) for 
polycarbonate in uniaxial compression at 25oC (i.e., Tg-130oC). Specifically, their deformation protocol 
consists of the following steps: (i) a constant strain rate (CSR) loading is carried out from A to C, (ii) at C 
the specimen is partially unloaded so that the stress becomes that of D, (iii) this unloading stress is 
maintained and the specimen is allowed to creep for a period of time until strain reaches E and (iv) a CSR 
deformation (with the original strain rate) is resumed and the stress goes from E to F to G. The remarkable 
feature of the experimentally measured stress response shown in Figure 1 is the ‘second stress overshoot’ 
F to G. The second overshoot is observed even when the unloading is slight, i.e., when the creep stress D 
is only slightly smaller than the flow stress C. In fact, Dreistadt et al reported that the magnitude of the 
second overshoot increases with an increase in the creep stress. This is illustrated by the green curve in 
Figure 1, where unloading is to a lower stress, and by the blue curve, where unloading is to zero stress (note 
that during ‘creep’ at zero stress the specimen begins to recover toward its pre-deformed strain). Recently, 
we pointed out that the stress-strain behavior observed in this four-step experiment is not predicted even 
qualitatively by existing constitutive models;9 specifically, the increase in the second stress overshoot with 
increase in the creep stress is not predicted. 

It is instructive to observe the failure of predicting the four-step experiment by the toy model contained in 
eqs 1-3. Predictions are shown in Figure 2. The stress-strain curves in Figure 2b show the trend that is 
exactly opposite to the one observed in the experiments of Dreistadt et al.10 Increasing the creep stress i.e., 
the stress to which the material is unloaded following initial CSR loading, results in a decrease and eventual 
disappearance of the second stress overshoot. The reason for the failure of the model is apparent from the 
corresponding vs strain curves shown in Figure 2d. As stated above, the magnitude of the stress overshoot 
is controlled by the value of the structural variable prior to the CSR ramp; specifically, when the initial is 
larger, the overshoot is smaller. This is exactly what is seen in Figure 2. The initial is the lowest for the 
first CSR loading and correspondingly the first stress overshoot is the largest. Next lowest initial is for the 
case of unloading to zero stress (the blue curve); correspondingly, the subsequent stress overshoot is second 
largest. Finally, the smallest unloading (the red curve) results in the largest initial , where the subsequent 
stress overshoot is the smallest.  
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Figure 2. The predicted (b) stress, (c) relaxation time and (d) internal variable  vs strain for the 
deformation histories shown in (a).  The internal variable model is defined by eqs 2 and 3 with model 
parameters: , MPa, , , and the initial condition ; the strain 

rate is s-1.  

 

The monotonic relationship between the deformation and the structural variable is at the heart of the model 
contained in eqs 1-3. Aging without deformation results in a lower value of the structural variable, where 
performing mechanical work on the material results in a reversal of the effect of aging, i.e., the larger the 
work the more “rejuvenated” the material becomes. Upon unloading to zero stress, the aging/structural 
relaxation resumes; where if the material is then re-loaded the response will be that of a somewhat aged 
material i.e., it will exhibit a stress overshoot. In contrast, when unloading is only partial, the mechanical 
work continues to be applied so that material remains “young”, where upon re-loading the response will be 
that of a freshly quenched material and thus will exhibit no overshoot. Details vary, but all existing models, 
including those much more sophisticated than eqs 1-3, exhibit this basic behavior as has been discussed in 
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detail by Medvedev and Caruthers,9 where the stress-strain responses shown in Figure 2b are representative 
of the predictions of these models. It is of course impossible to prove that all possible modifications of a 
constitutive model where the internal variable just affects the relaxation time will be unable to describe the 
four-step loading experiment, but the arguments given above clearly show that the second overshoot 
following a slight unloading does not naturally occur in this class of models.  

It seems inescapable that the eqs 2-3 (or the various constitutive models that all have a similar structure9) 
have to be abandoned as they lead straightforwardly to the failed predictions outlined above. But what about 
eq 1 (or rather its multi-relaxation time generalization) which is known to be successful in describing linear 
viscoelasticity? Perhaps it can still serve as a basis for describing large deformations provided a different 
model for structural relaxation than the one contained in eqs 2-3 is developed. The first step in developing 
a new model is to pose a question: what happens to the mobility (i.e., the relaxation time ) during the 
course of the four-step deformation experiment?  It is well-known that the magnitude of the first stress 
overshoot is larger in an aged material, i.e., when prior to the first CSR loading (i.e., point A in Figure 1) 
is much greater than in the flow regime (i.e., point C). Thus, it is reasonable to expect that for the larger 
second stress overshoot to occur, the prior to the second CSR loading (i.e., point E in Figure 1) should be 
much greater than in the flow regime (i.e., point G).  According to this logic, since the second stress 
overshoot is larger when the second CSR ramp follows slight unloading (the red curve in Figure 1) and 
smaller when the second CSR ramp follows unloading to zero stress (the blue curve in Figure 1), one might 
expect somewhat counter-intuitively that during creep under high stress would be larger than during 
creep under zero stress. In the experimental part of this paper, this hypothesis is tested by performing the 
in situ optical monitoring of the molecular mobility during the four-step deformation experiment, where it 
will be shown by direct observation that the relaxation time during the creep step is ordered in an intuitive 
way – larger creep stress corresponds to smaller , i.e., the deformation enhances mobility. Thus, the 
deformation induced change in mobility is not why a slight unloading produces the second stress overshoot 
while a complete unloading does not. There must be a different physical mechanism that is responsible for 
the observed nonlinear deformation behavior of glassy polymers, not the effect of the structural relaxation 
as described by eqs 2-3. Despite this failure, we believe that the idea of the evolution of the internal structure 
affecting mechanical response is still physically sound. In the modeling part of this paper, we propose a 
second toy model that, while preserving the Maxwell model in eq 1, replaces eqs 2-3 with a different set of 
equations, where the effect of structure is manifested in the modulus rather than the relaxation time . It 
will be shown that this model successfully predicts the behavior observed in the four-step deformation 
experiment. 

Experimental   
Sample preparation: 
Lightly-crosslinked poly(methyl methacrylate) (PMMA) glasses were synthesized from a stock solution of 
98.5 wt% methyl methacrylate (MMA), 1.5 wt% ethylene glycol dimethacrylate (EGDMA) as a crosslinker 
and ~5×10-6M of N,N′-dipentyl-3,4,9,10-perylenedicarboximide (DPPC) as the optical probe. The stock 
solution was mixed with the initiator (benzoyl peroxide, 0.1 wt %) and pre-polymerized in a water bath at 
approximately 345 K to reach the desired viscosity, and then was transferred to molds, which are made with 
two 2×3 in. glass slides separated with 70μm thick aluminum foil spacers and clamped with binder clips.  
This mold produces polymer films that have a curved thickness profile that is thinnest in the middle and 
thickest at each end. The clamped samples were kept at 345 K for 24 h under nitrogen. Subsequently, the 
films were removed from the molds by sonication and “dog bone-shaped” samples were cut with a custom 
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die. Before deformation, the samples were annealed at 415 K for another 24 h, also under nitrogen. More 
detailed description of the sample preparation method can be found in previous publications.6, 7  

Two samples from the same batch were used in the current work - one of which generated data for Figures 
3 and 4 in the main text and Figures S3 and S4 in the SI the β results in SI are also from this sample, while 
the other sample generated data for Figures S1 and S2. The samples’ thicknesses at their thinnest part are 
41 μm and 46 μm, respectively. The glass transition temperature Tg of these samples, as determined from 
the midpoint of the glass transition from the second DSC scan at 10 K/min, is 399±1 K. Before the 
experiments, the samples were annealed at 415 K for 30 min to reach equilibrium and then cooled at 2K/min 
to the testing temperature of 375 K.  The deformation started after 20 min at the testing temperature. 

Photobleaching technique: 
The photobleaching technique measures the reorientation time of the DPPC probe,6, 7 which has been shown 
to be closely correlated with the segmental dynamics of the polymer glass matrix.42, 43 In these experiments, 
a linearly polarized 532 nm laser beam was used to preferentially photobleach the dye molecules whose 
transition dipole moments were aligned with the laser light’s polarization state. Then the bleached area was 
exposed to a weak circularly polarized 532 nm laser beam and the fluorescent light from the unbleached 
probes were collected and separated into two channels, with polarization states parallel and perpendicular 
to that of the bleaching laser beam. The time-dependent orientational anisotropy of the dye molecule 
population, r(t), can be calculated based on the fluorescence intensities of these two channels. By fitting 
the evolution of r(t) with Kohlrausch−Williams−Watts (KWW) function: 𝑟(𝑡) = 𝑟(0)exp(−+𝑡 𝜏! "⁄⁄ .$), 
the averaged probe reorientation time, τ1/e, is obtained, along with the anisotropy value at time zero, r(0), 
and the nonexponentiality factor, β.  We refer to τ1/e as the segmental relaxation time.6, 8  When fitting the 
reorientation dynamics of the undeformed sample, the β value was fixed at 0.31 to minimize the uncertainty 
for relaxation time results as was done previously.42  

Mechanical control and data collection: 
For these experiments, the tensile deformation was controlled by a programable linear actuator while the 
force was measured by a load cell in between the linear actuator and the sample, which was held by two 
clips in a temperature-controlled cell. A more detailed description can be found in previous publications.6, 
7  

The optical set-up during uniaxial deformation of the specimen has been previously described.7, 44 The 
optical signals characterizing probe reorientation were collected from  the strain localization region of the 
sample, and its location was identified by an initial experiment in which the samples were stretched by 
~15%. As in the work of Lee et al,6 the local deformation behavior was measured in the same region as the 
optical signals, by creating photobleached lines that are either perpendicular or parallel to the deformation 
direction (x-axis) on the undeformed sample and taking images of this pattern during the deformation. The 
local strain was calculated based on the change of distance between lines perpendicular to the deformation 
direction. To calculate the true stress value, the contraction of the sample can be determined from the 
distance of the photobleached lines parallel to the deformation direction. The time-dependent cross section 
area was calculated with the assumption that the contraction is identical along the y and z-axes.  

Results 
The segmental relaxation in PMMA glass during the four-step deformation experiments was monitored 
using the photobleaching technique. The photobleaching method has been previously used in case of a 
constant strain rate (CSR) deformation, creep deformation, as well as creep loading and then unloading 
experiments.6, 7, 42, 45 Note that the deformation reported here is uniaxial extension, unlike the previous 



reports on the four-step protocol, where the deformation was uniaxial compression.10 Also, the current 
experiment is carried out on PMMA at a temperature significantly closer to Tg (Tg-24 K) than the 
polycarbonate experiments of Dreistadt et al (Tg-127 K).   

 

Figure 3. True stress plotted against global strain for a PMMA sample deformed using the four-step 
protocol at Tg-24 K, together with a single-step reference experiment. For all the constant strain rate 
deformations, a global strain rate of 2.1×10-5 s-1 was used. Between two constant strain rate steps, creep 
deformation with a constant engineering stress was applied for 1500 s. Experiments using three creep stress 
levels are shown, all of which show substantial second stress overshoots.  

 

Figure 3 shows the stress-strain profiles of experiments, including the single-step CSR experiment, which 
is used as a reference, and three four-step experiments, where the creep step was at different stress values.  
In the four-step protocol, the PMMA glass was first deformed beyond yield at a constant global engineering 
strain rate of 2.1×10-5 s-1, and then was partially unloaded and allowed to creep at a constant engineering 
stress for about 1500 s, and then again deformed into the flow state using the same global strain rate as 
during the first step. During the creep deformation, the sample extended under 18.5 MPa and 17.3 MPa 
creep stresses but retracted under a 10.0 MPa creep stress. When the constant strain rate deformation 
resumed, the second stress overshoot appeared for all three creep stresses, and eventually, the results from 
the experiments with the two higher creep stresses merged with the single-step reference experiment at a 
global strain larger than 0.08. Note that the sample was only minimally aged prior to the deformation 
experiment, where the details of the thermal history are described in the Experimental section. As a result, 
the first CSR loading exhibits virtually no stress softening after yield, which occurs at the strain of 
approximately 0.04, where the hardening for this material begins at strains larger than 0.08. The absence of 
the first stress overshoot makes the second stress overshoot more prominent. In qualitative agreement with 
the results of Dreistadt et al,10 the magnitude of the second stress overshoot increases with increase in creep 
stress. 

Because of the strain localization during these tensile deformations, the local strain rate was 3 to 4 times 
higher than the global value during the first yielding process.  At the second yield point in the four-step 
deformations, the local strain rate was higher than the value at the first yield point by a factor of up to 3.  
To check whether the second stress overshoot was a result of this increase in strain rate, we performed a 
second set of experiments in which we reduced the global strain rate in the second constant strain rate step 
to 1.2×10-5 s-1. As shown in Figure S1, the second stress overshoot still occurs, with a magnitude comparable 
to that of the first yielding process.  This is consistent with the fact that it takes order-of-magnitude changes 



in the strain rate to significantly affect the yield stress, as compared to the approximately 40% change in 
the strain rate from 2.1×10-5 s-1 to 1.2×10-5 s-1. 

The photobleaching technique provides information about the average segmental relaxation time and the 
width of the relaxation time spectrum during the deformations shown in Figure 3. The instantaneous 
relaxation time over a 200-500 s window was fit to the empirical KWW function46, 47 with the two free 
parameters: the segmental relaxation time t and b, which describes the width of the stretched exponential 
function. Figure 4 shows the segmental relaxation time τ1/e measured by the photobleaching technique for 
the deformations shown in Figure 3.   

 

Figure 4. Evolution of the segmental mobility as a function of deformation time during the deformations 
shown in Figure 3. The segmental mobility is represented by the logarithm of τ1/e, which is the averaged 
segmental relaxation time, on the y-axis. The black arrow indicates the value of log(τ1/e) before deformation 
started. And the gray shaded area shows the time period during which creep deformation was performed in 
the four-step deformation experiments. The acceleration of the segmental mobility during the second 
constant strain rate step was at least one order of magnitude smaller than that in the first step.  

 

In agreement with previous results,7 during a single step loading experiment the average segmental 
relaxation time τ1/e decreased by about two orders of magnitude from 104.1s in the undeformed state to 102.1s 
in the flow state, where it remained constant. In the four-step experiments, during the 1500 s creep step, log 
τ1/e increased from the flow state value of 2.1 to a value that depended on the creep stress. These values 
were 3.1, 2.8, and 2.7 for the creep stresses of 10.0, 17.3, and 18.5 MPa, respectively. This monotonic 
ordering of the mobility (i.e., the inverse ) vs. stress agrees with the expectation that upon reduction of 
the applied deformation the molecular mobility decreases. After resumption of the CSR deformation, log 
τ1/e decreased to the flow state value of 2.1. In experiments where following the creep step the stress goes 
to zero, log τ1/e gradually increases toward the pre-deformation value of 4.1 (Figures S3 and S4 in the SI). 
The evolution of width parameter β in the KWW function for the deformations shown in Figure 3 is given 
in the SI, where β is approximately constant at 0.6 during the constant strain rate deformation portions of 
the loading history but decreases during the creep portion of the deformation. 

As discussed in the Introduction, in case of a single-step CSR loading there is a correlation between the 
pre-deformation relaxation time and the magnitude of the stress overshoot; specifically, a larger pre-
deformation relaxation time (which is characteristic of an aged material) corresponds to larger stress 
overshoot. However, examining Figures 3 and 4, a similar correlation does not hold with respect to the 
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second stress overshoot in the four-step experiment. In fact, the exact opposite trend is observed, where the 
larger relaxation time reached under 10.0 MPa creep corresponds to a smaller second stress overshoot and 
the smaller relaxation time reached under 18.5 MPa creep corresponds to larger second stress overshoot.  

The behavior of the average relaxation time shown in Figure 4 is in qualitative agreement with the 
predictions of the traditional constitutive models as exemplified by Figure 2c for the model described by 
eqs 1-3. However, the stress-strain response predicted by the model as shown in Figure 2b is in direct 
contradiction to the experimentally measured response given in Figure 3. The mechanism that is responsible 
for the occurrence of the stress overshoot during the second yielding process is not captured by the model, 
where the key physics is that the primary effect of deformation is to change the relaxation time. 

Toy Model for Deformation of Glasses 
In the spirit of the simplified model given by eqs 1-3, we want to develop a second toy model to examine 
what type of deformation physics is required to describe both the single-step and four-step loading 
experiments.  In developing such a model, we would like to retain the Maxwell element eq 1 for stress. We 
also believe that the evolution of the structure of the material under the influence of (i) physical aging and 
(ii) deformation plays a crucial role in the mechanical response. In the previous model the effect of structure 
was incorporated via the dependence of the relaxation time on the structural variable, but that model has 
failed to predict the four-step deformation experiment. As an alternative, we propose that the structural 
dependence enters the eq 1 via the modulus . Specifically, we postulate that a glass forming material 
exists in two states: efficiently packed and inefficiently packed. Efficiently packed material has a value of 
the shear modulus  and an inefficiently packed material has a modulus . By assumption  is 
significantly larger than . The new structural variable, , is the fraction of the material in an efficiently 
packed state; correspondingly, the fraction is in a state that is packed inefficiently, where is bounded 
as . At any instant the material has the shear modulus 

  (4) 

As the variable changes with time, so does the shear modulus. Evolution of is governed by a population 
balance equation, where the efficiently packed fraction grows at the expense of the inefficiently packed 
fraction and vice versa. Specifically, the efficiently packed material is being ‘formed’ at a rate, , and 

‘broken’ at a rate, . Thus, 

  (5) 

Eq 5 can be rewritten as 

  (6) 

where is the equilibrium constant. The steady-state fraction  occurs when in eq 6 ; 
consequently, 

  (7) 
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The model parameters and , and hence the steady-state fraction , will in general be functions of both 
the temperature and the deformation.  

The temperature dependent behavior is not the focus of this communication so that the functional form of
and need not be specified. Still, the following assumptions appear reasonable: in a supercooled 

melt well above inefficient packing is favored, where will be large,  vanishingly small and the shear 

modulus will be on the order of . In a glassy state below  efficient packing is favored, where will be 
small, will be large and the equilibrium shear modulus will thus be large. However, by another 
assumption both formation and breakage rates are expected to decrease with decrease in temperature so that 
below the equilibrium may not be reached within experimentally accessible times. Still below  the 

modulus described by eq 4 is expected to be on the order of because the fraction , although not as large 
as the equilibrium value of , is significant. During the isothermal physical aging below , the current

increases toward with increase in aging time. Note that this effect in the evolution of n is in addition to 
the evolution of the relaxation time in eq 1 with the aging time. 

The key to the model is how and depend on the deformation. We postulate the following forms: 

  (8) 

  (9) 

where are model parameters that are all positive. According to eqs 8-9, both the formation rate,
, and the breakage rate, , are accelerated by application of stress, but the breakage rate is 

accelerated more. As a result, the steady-state fraction given by eq 7 decreases under deformation. It is 
preferable to call it steady-state fraction rather than equilibrium fraction as a material under active 
deformation is not in equilibrium. 

In order to fully specify the model that includes eq 1 for the stress and eq 6 for the internal variable, the 
deformation dependence of the relaxation time in eq 1 needs to be specified. To better expose the behavior 
of the model, the preferred choice would be to set to a constant value; in that case the nonlinear effects 
are solely due to eq 6 i.e., to what the internal variable is doing. On the other hand, if we believe that in 
the stress equation is the one observed by the optical technique reports, then that is definitely not a 
constant. We consider two cases: 

  (10) 

According to eq 10, in Case I the inverse relaxation time has the same dependence on the deformation as 
the formation rate in the structural variable equation eq 6, and in Case II the relaxation time is a constant. 
We argue that other possible behaviors of vs deformation, including the one that is experimentally 
determined, will fall in between these two limiting cases.  
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The initial condition for stress is straightforward – in the absence of deformation (i.e., ) the stress 
is zero. The initial condition for the efficient packing fraction depends on the thermal history. When the 
material is at equilibrium at , we have . As the material is cooled to , is unable to 

keep up with increase in ; consequently, . To know the exact value of n, one must describe the 
cooling process, which in turn requires knowledge of the functional form of . This is beyond the scope 
of this preliminary study. As a compromise, when modeling a sub- experiment, the efficient packing 

fraction is assigned an initial value that is lower than the corresponding , where the latter is given by 
eq 7. This allows for modeling the effect of physical aging, i.e., the more aged material has larger . 

Predictions of the four-step experiment using the Case I model are shown in Figure 5, where the strain rate 
during loading and unloading steps was 10-3 s-1. The values of the model parameters are given in the Table 
1.  As shown in Figure 5a the model defined in eqs 1, 4, 6 and 8-10 exhibits the main experimentally 
observed features of the stress-strain data including (i) yield with post-yield softening for the first CSR step, 
(ii) small overshoot during the second CSR ramp in case of a fully unloaded sample and (iii) larger stress 
overshoot for the second CSR ramp in case of a partially unloaded sample.  The behavior of the inverse 
formation rate and the efficient packing fraction is shown in Figures 5b and 5c, respectively. 
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Figure 5. Model of the multi-step 
experiment. (a) Stress, (b) inverse formation 
rate , and (c) efficient packing fraction . 
Unloading to zero stress – blue curve, partial 
unloading – red curve.   
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Table 1. Values of the parameters for the second toy model. 

         
104 10 10 0.01 0.35 6.3 0.1 0.4 0.1 
 

 

It is instructive to observe which features of the model are responsible for the successful prediction of the 
four-step experiment.  The first stress overshoot is a result of the following sequence of events: 

1. At the initial state is and .  In accordance with Eq 6, wants to relax towards the 
equilibrium value of ,but it cannot do so because the formation rate given by eq 8 is too 
slow. The equilibrium value is dictated by via eq 7.    

2. When deformation is applied the and rate dramatically increase, so (i) is now able to relax 
and (ii) the value of decreases because increases with deformation in accordance with eq 9. As 
a result, in its pursuit of the variable briefly begins to increase and then sharply reverses course 
and decreases, as seen in Figure 5c. When the steady-state state is finally reached, we have

, where the subscript stands for ‘steady-state’.  
3. The decrease in causes a decrease in the modulus via eq 4, which results in decrease in the stress 

i.e., the post-yield softening seen in Figure 5a. Thus, the stress overshoot is predicted. 

The height of the overshoot is controlled by two quantities: the initial value of the internal variable  
and the steady-state value in the flow regime . The larger the difference between and  the larger 
the stress overshoot, where if there is no difference between and  there is no overshoot. As 
discussed above, the larger corresponds to longer aging time so the model qualitatively predicts the 
experimentally observed effect of aging on the yield stress and the associated post-yield stress softening.  

The behavior during the creep step depends significantly on whether the creep stress is near zero (blue 
curve) or is 75% of the flow stress (red curve). The duration of creep in both cases is 100 s. Again, there 
are two determining factors: (i) the drive of toward and (ii) the rate of relaxation being high enough (or 
not) for to move to its target. In case of a creep that follows unloading to zero stress, is frozen at a low 
value of 0.215 (Figure 5c – blue curve) because the formation rate is slow (Figure 5b – blue curve). In 
contrast, in case of a creep that follows partial unloading the formation rate is faster (Figure 5b – red curve) 
and increases almost to (Figure 5c – red curve). As a result of the previous histories, the second 
CSR loading begins from different values of for the blue and red responses. According to the new model 
proposed here, a partially unloaded material is akin to an aged material and a fully unloaded material is 
akin to a quenched material. This is exactly opposite to what happens in the traditional models based solely 
on the effect of deformation on the relaxation time. That is why the traditional constitutive models for glassy 
polymers are incapable of predicting the second stress overshoot behavior. Predictions of the four-step 
experiment using the Case II model (i.e., with the constant ) are virtually indistinguishable from the ones 
shown in Figure 5 (see SI). This shows that the success of the current model is entirely due to the mechanism 
contained in the dependence of the modulus on the efficient packing variable . 

Effect of temperature. As stated above, although not explicitly modeled here, decreasing the temperature is 
expected to cause and to decrease as compared to the values given in the Table 1. When smaller values 
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of the parameters are used, the shape of the response shown in Figure 5a is preserved, except the yield stress 
and the flow stress become larger in agreement with the experimental observations. 

Effect of strain rate. Increasing the strain rate results in an increase in the steady-state stress, which in turn 
leads to lower steady-state . As mentioned above, a larger difference results in a larger stress 
overshoot. So, for a constant , i.e., a fixed aging time, a lower means larger stress overshoot. Thus, 
the experimentally observed increase in stress overshoot with the strain rate is also predicted. 

The choice of the model parameters listed in Table 1 is for illustrative purposes, where the predicted 
behavior is robust with respect to significant changes in the values of parameters. Of course, while the main 
features of the stress-strain response shown in Figure 5a remain, some finer details of the shape of the curve 
can be adjusted. For example, a factor of three decrease in the values of the moduli and given in Table 
1, while keeping the ratio the same, results in a 35% decrease in the steady-state stress with a corresponding 
steady-state of 0.365. Then using the initial value of , no stress overshoot during the first 
CSR loading is observed. The second stress overshoot is still there, making the stress-strain response similar 
to the experimental one shown in Figure 3.  

 

Discussion 
The significance of the four-step deformation experiment is that it exposes the inadequacy of the traditional 
models of the mechanical behavior of glassy polymers that postulate that the primary effect of deformation 
is a change in a structural variable S that only affects the relaxation time(s). The failure of the models is 
qualitative, where the predicted trend is exact opposite of what is observed experimentally. Specifically, 
experiments show that the magnitude of the second stress overshoot, observed after the sample had been 
partially unloaded and allowed to creep for some time, increases with the creep stress. In other words, only 
slightly unloaded sample exhibits a large second stress overshoot and completely unloaded sample exhibits 
either a small overshoot or no overshoot at all. The failure to predict this behavior is characteristic of all 
classes of existing constitutive models, including the viscoplastic models,18, 21, 23, 25, 34 viscoelastic models19, 
20 and the stochastic constitutive model.27 Although all these models differ greatly in the mathematical form 
and complexity, they are based on a single physical idea – that the mechanical behavior is dictated by the 
molecular mobility; roughly, when mobility is low material behaves elastically and when mobility is high 
material flows. In the plasticity-based models this idea is expressed in the plastic flow criterion and in the 
viscoelasticity-based models in the dependence of the relaxation time on deformation. The idea that the 
mobility is enhanced under active deformation is physically sound and has been confirmed by direct 
observations via optical means.6 However, as the failure to describe the four-step experiment proves, this 
idea alone is insufficient. Here we proposed a different physical mechanism which is based on the 
postulated effect of deformation on the elastic modulus rather than the relaxation time. A toy model based 
on this mechanism successfully predicts the four-step experiment. 

The traditional constitutive models predict that when the relaxation time just prior to a constant strain rate 
deformation is larger there will be a larger stress overshoot, where for single-step constant strain rate 
loading experiments this is in agreement with the optical probe measurements.7, 8 This postulate was 
critically examined for the four-step experiment with PMMA, where (i) the magnitude of the stress 
overshoot increased as the creep stress was decreased in agreement with the four-step experiments of 
Dreistadt et al10 but (ii) the molecular mobility at the end of the creep step as measure by optical probe 
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rotation was only slightly larger than the steady-state mobility, which is insufficient to explain the second 
stress overshoot observed experimentally.  This critical experiment conclusively shows that second stress 
overshoot peak is not controlled by the molecular mobility which is the key postulate in the traditional 
constitutive models for glassy polymers. 

In the previous sections we introduced two toy models: the model described by eqs 1-3 that represents the 
traditional constitutive models (and although having a simple mathematical form, reproduces the basic 
features of the more elaborate models) and a new model described by eqs 1,4,6, 8-10. Both models have 
similar mathematical form being the sets of the 1st order ODEs for two variables, where the first variable is 
stress and the second variable is a structural descriptor. It is instructive to see why the traditional model 
fails and the new model succeeds in capturing the trends observed in the four-step deformation experiment. 
In both models the magnitude of the first, second and any subsequent stress overshoot is controlled by the 
difference between the value of the structural variable (i.e., for the traditional model or for the new 
model, respectively) prior to the CSR ramp and the steady-state value of this variable (i.e., or ) 
reached during the CSR ramp. The value of the structural variable prior to the second CSR ramp is 
determined by the previous step in the deformation protocol, e.g., the creep step in the four-step deformation 
experiment. In the traditional model, the larger the creep stress (i.e., the smaller the unloading has been 
after the first CSR ramp) the closer is to . That is why the traditional model predicts large overshoot 
in case of a zero creep stress and no overshoot in case of a creep stress that is slightly below the flow stress, 
in contradiction to the experiment. The situation is completely reversed in the new model, where the value 
of is farther from the in case of a large creep stress and closer to in case of a small creep stress, 
resulting in larger stress overshoot with increasing creep stress in agreement with the experiment.  

The reason for this behavior of the traditional structural variable is that it is inextricably and monotonically 
fused with mobility, which in turn is strongly correlated with deformation. During the creep step, a material 
under larger stress possesses higher mobility and, hence, a higher value of ; conversely, a material under 
smaller stress possesses lower mobility and, hence, a lower value of . This forces to be closer to in 
case of a larger creep stress with an inescapable consequence of smaller overshoot during subsequent CSR 
loading. In light of this monotonic relationship between the structural variable and the mobility, there is 
one possible scenario under which the traditional approach could possible predict the four-step deformation 
experiment; specifically, if for some unknown reason the mobility during the creep step was ordered in a 
counter-intuitive way, where material possessed a lower mobility under higher creep stress and a higher 
mobility under a lower creep stress. If this were the case the specific form of the eqs 2 and 3 would have to 
be replaced, but the approach itself may have been salvaged. The significance of the direct optical 
observation of the mobility reported here is that it obviates such a scenario. As we have demonstrated above, 
the mobility during the four-step experiment behaves in accordance with expectations, where during the 
creep step it is higher when the creep stress is higher. Now there is no choice but to jettison the traditional 
form of the constitutive models used to describe the nonlinear viscoelastic behavior of glassy polymers.  In 
the new model, the structural variable is not fused with the mobility. The new model produces qualitatively 
similar stress-strain response for two substantially different assumptions about the behavior of the 
relaxation time :  Case 1 where was the same function of stress as the one governing the kinetics of the 
structural variable and Case 2 where was a constant, albeit one that is significantly smaller than that of 
the undeformed glass. 

As an added benefit, the new model offers a possible resolution of a long-standing problem found in the 
aging behavior of glassy polymers. This problem is a need for vertical shifting when attempting to effect 
the time-aging time superposition of the creep compliance or stress relaxation isotherms obtained at 
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different aging times, i.e., the glass becomes less compliant as it becomes slower. There is an extensive 
body of physical aging experiments, including the initial work of Struik48 and subsequent work by the 
McKenna group,49-51 where the need for vertical shifting, in addition to the standard horizontal shifting 
along the log(time) axis, has been documented. While the horizontal shifting can be explained by the 
increase in the relaxation time that results from aging, there is no agreed upon explanation for the vertical 
shifting. Obviously, the toy model described by eqs 1,4,6, 8-10 readily provides one. In the absence of large 
deformation, eq 6 describes the relaxation of the efficient packing fraction toward the equilibrium value
. In accordance with eq 4, as increases so does the modulus and an increase in the modulus manifests 

in a vertical shift of the compliance curve as illustrated in Figure 6.  

 
Figure 6. Model predictions for the Struik creep experiment – compliance vs time curves corresponding to 
different aging times. The model parameters are given in Table 1. The initial value for the blue curve is

(where the equilibrium value is ). The initial values for the magenta and the green 
curves have been increased by 0.3% and 1%, respectively.  

Our primary target in the current communication is not an explanation for the vertical shifting of the linear 
compliance and stress relaxation curves upon aging. Rather it is the nonlinear deformation experiments and 
specifically the second stress overshoot. So, we readily grant that alternative explanations for the vertical 
shifting exist. Whether these alternative models also predict the multi-step deformation experiments is a 
question that the authors of the models will have to contend with. 

Another long-standing controversy52 to which the model proposed here offers a possible resolution is the 
question whether deformation of glass results in rejuvenation or accelerated aging. As a reminder, from the 
perspective of the model, a material with a low value of the efficiently packed fraction is ‘young’ and a 
material with a high value of is aged; a fully equilibrated material possesses the highest value of (at a 
given temperature and in the absence of deformation). According to Eqs 6 and 8-9, applied stress affects 
the evolution equation for the packing fraction variable in two ways: first, it accelerates the overall kinetics 
and, second, it shifts the steady-state value lower (as breakage is favored over formation). Importantly 
however, these two effects do not manifest synchronously, where which is activated first depends on the 
values of the model parameters. This is seen in Figure 5c, where briefly begins to increase before turning 
direction and decreasing. The explanation for this behavior is as follows: at first, i.e., when the stress is still 
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small, the rate of evolution is already high enough for to ‘unfreeze’ but the steady-state value to which it 
is heading is still large. Only when the stress becomes sufficiently large the target steady-state value 
decreases causing to begin decreasing as well. Thus, the model predicts that small (pre-yield) 
deformations result in the accelerated aging and large (post-yield) deformations result in the rejuvenation. 
This conclusion is in agreement with the molecular simulations of Lacks and Osborne53 and Zhou et al.54 

What is a possible molecular mechanism behind the model proposed here? When introducing the model, 
we invoked the admittedly vague idea of efficiently and inefficiently packed environments co-existing in 
the material, where the efficiently packed environments were assumed to have a large shear modulus and 
the inefficiently packed – a smaller shear modulus. The macroscopic modulus was then obtained as a 
weighted average given by eq 4, which implies that the environments are connected in parallel. This is an 
unavoidably crude attempt to describe with a single macroscopic equation what is essentially a mesoscopic 
phenomenon. At this point we have no experimental evidence that domains with different values of local 
modulus exist, although the picture of a glass forming material being a patchwork of solid-like and liquid-
like domains has been a fixture in the field. A suggestive result comes from computer simulation of a glassy 
medium at a microscale. De Pablo and co-workers investigated the distribution of the elastic modulus at an 
atomic scale using a combination of MD and Monte Carlo methods,55 where they found a normal 
distribution that was extremely broad, where a significant fraction of the micro-environments even had a 
negative modulus. Thus, in the simplest approximation one has two different moduli like the current toy 
model with its two discrete values of the modulus. 

Finally, a comment about our perspective with respect to the two toy models.  Since the point-of-departure 
for nonlinear viscoelastic models is the linear Maxwell model, i.e., eq 1, (or its multi-modal generalization), 
this is the place to expose the critical nonlinear components needed to describe the multi-step loading 
experiments, although there are other possible points-of-departure, e.g., the fractional calculus 
representation of linear relaxation.56 The Maxwell model has just two material parameters into which to 
introduce nonlinearity: the relaxation time t and the modulus G.  The approach that underlies the current 
constitutive models for glassy materials is that G is not affected by deformation andt is affected either (i) 
directly by deformation, i.e., via or  or , or (ii) indirectly via , where S is a structural 
variable that can evolve under the influence of the deformation.  This was the key postulate in the first toy 
model, i.e., eqs 1-3, where it has been shown that although can describe key features of a constant 
strain rate loading experiment, it is unable to describe the second overshoot peak (and how it depends upon 
the unloading stress) for the four-step experiment.  The other limiting case is to consider a structural variable 
S that affects the modulus G, while not affecting the relaxation time t – this was the second toy model, i.e., 
eqs 1, 4, 6 and 8-10.   This second toy model was able to qualitatively describe the stress strain response 
for the four-step deformation, even for the case when t was a constant, although prediction of the yield 
stress for the constant t case requires using a t associated with the deformed state not the t in the linear 
viscoelastic limit (see SI for a more detailed discussion).  The second toy model showed that having the 
limiting case of G depend upon a structural variable is able to predict the four-step experiment.  Thus, we 
have examined the two limiting cases for a Maxwell model: with constant G that is unable to predict 
the four-step experiment but that can predict linear viscoelastic relaxation as well as the yield stress with 
post-yield softening and a second limiting case where and t is independent of n that predicts the four-
step deformation as well as yield with post-yield softening.  The two limiting case toy models examined in 
this paper show the critical features of including a structural variable dependence in the two material 
parameters in the Maxwell model, where a profitable topic of future research would be the investigation of 
a model that includes two structural variables S and n  with two associated evolution equations and 
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and as well as including a spectrum of relaxation times – all of which may be required to quantitatively 
describe multi-step deformation of glassy polymers.  Although the toy model described in this paper 
exposes the key understanding needed to describe the nonlinear mechanical behavior of glassy polymers, 
the development of a full constitutive description will require the use of proper finite strain and stress 
tensors as well as any constraints imposed by the second law of thermodynamics. 

Conclusions 
A four-step deformation experiment on PMMA glass was performed while simultaneously monitoring the 
molecular mobility in the material using the photobleaching technique. In agreement with previous reports, 
the magnitude of the second stress overshoot increased as the stress level during the partially unloaded 
creep deformation increased, which is in contradiction to the predictions of the existing constitutive models 
for the deformation of glassy polymers. A representative toy model of the traditional constitutive models 
was able to show the reason for the discrepancy.  Specifically, traditional models postulate that the stress-
strain behavior of a glassy polymer is governed by the mobility (i.e., the inverse of the relaxation time) that 
is controlled by an internal variable describing structure of the material, where there is a monotonic 
relationship between the structural state of material and its molecular mobility such that a ‘young’ material 
has higher mobility than an aged one. Mechanical deformation rejuvenates the material increasing its 
mobility, which is supported by the optical probe measurements for both single step and the four-step 
deformations that showed that a partially unloaded material has higher mobility than a fully unloaded 
material. Since in the traditional glassy constitutive models the magnitude of the stress overshoot increases 
with a decrease in the mobility prior to the constant strain rate loading, the optical experiments have 
identified a fundamental flaw in the traditional constitutive models for glassy polymers. Using a second toy 
model an alternative approach has been proposed, where the effect of structural variable is contained in that 
the modulus vs. the relaxation time. The new model successfully describes the four-step experiment. It also 
explains the need for vertical shifting when describing the effect of physical aging on linear creep 
compliance – a long-standing problem in the field of polymeric glasses.  

Supporting Information 
Evolution of the KWW parameter β as determined from the photobleaching experiment accompanying 
four-step deformation shown in Figure 3; assessment of the effect of varying local strain rate on the 
magnitude of the second stress overshoot in the four-step deformation experiment; predictions of the four-
step experiment using the Case II model. 
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The effect of strain rate on the second stress overshoot 
 
When using the same global strain rate in the first and second constant strain rate steps, the local strain rate 
at the second yield point could be up to 3 times higher than that at the first yield point, which could 
potentially explain the existence of the second stress overshoot. To determine if this was the source of the 
second overshoot, the global strain rate was reduced from 2.1×10-5 s-1 to 1.2×10-5 s-1 in the second constant 
strain rate step, so that the local strain rates at both the first and the second yield points were approximately 
2.5×10-5 s-1. The results of these experiments are shown in Fig. S1 and S2. 

 

In Fig. S1, multistep constant strain rate deformations with similar local strain rates at the first and second 
yield points show second stress overshoots with a magnitude (about 1 MPa) comparable to that of the first 
yielding process. Thus, the second stress overshoot shown in Fig. 3 in the main text is not a result of the 
increased local strain rate.   

The results in Fig. S1, in the conventional view, imply a large acceleration of the segmental mobility during 
the second yielding process.  This hypothesis was tested using the photobleaching measurements for the 
deformations reported in Fig. S1. In Fig. S2 the segmental dynamics are shown for the multistep constant 
strain rate deformations shown in Fig. S1, where a much smaller acceleration during the second constant 
strain rate step is observed (i.e., approximately 0.5 decade) than that during the first constant strain rate step 

Figure S1. True stress plotted with respect to 
global strain for PMMA glasses deformed by 
multistep constant rate deformation and single-
step constant strain rate deformation. The strain 
rate for the first step of the multistep constant 
strain rate deformations and the single-step 
constant strain rate deformation was 2.1×10-5 s-
1, while that of the second step of the multistep 
constant strain rate deformations was reduced to 
1.2×10-5 s-1. Multistep constant strain rate 
deformations with two creep stress levels were 
tested, both of which showed the second stress 
overshoots with a magnitude (about 1 MPa) 
comparable to that of the first yielding process. 

 



(i.e., approximately 1.7 decades).  This is consistent with data shown in Fig. 3 in the main text; thus, even 
when the local strain rate is approximately constant, the change of the segmental dynamics still cannot 
explain the appearance of the second stress overshoot. 

 

 

 

Multistep constant strain rate deformations without second constant strain rate step 

Control experiments were performed in which the stress was released after the creep step in a 
multistep constant strain rate deformation in order to determine how the segmental mobility 
evolves without the second constant strain rate deformation. As shown in Fig. S3 and S4, in the 
absence of loading the segmental relaxation time τ1/e measured by the photobleaching technique 
gradually returns to the pre-deformation value. 

 

Figure S2. Evolution of the 
segmental mobility, log(τ1/e), 
with respect to the deformation 
time for deformations shown in 
Fig. S1. The acceleration of the 
segmental dynamics during the 
second constant strain rate step of 
the multistep constant strain rate 
deformations was much smaller 
than that during the first constant 
strain rate step.   

 

Figure S3. True stress 
profile with respect to 
global strain for 
deformations in which 
the stress was released 
after the creep 
deformation step.  

 



 

 

Evolution of β during deformations using four-step protocol 

Fig. S5 shows the evolution of β during four-step deformations. The value of β increased from 0.31 in the 
undeformed state to around 0.6 after deformations started. And during creep, β decreased, where lower 
creep stress gave smaller β. However, this decrease in β was partly caused by the deceleration of segmental 
dynamics, which broadened the spectrum of relaxation times over the course of one photobleaching 
measurement.  

 

 
 

 

Figure S4. The evolution 
of the segmental 
dynamics for 
deformations shown in 
Fig. S3.  

 

Figure S5. Evolution of β as a 
function of deformation time 
during the deformations shown 
in Fig. 3 in the main text. The 
black arrow indicates β value of 
undeformed samples. The gray 
shaded area shows the time 
period during which creep 
deformation was performed in 
the four-step deformation 
experiments. 

 



Predictions by the Toy Model in Case of Constant τ (Case II) 
As stated in the main text, qualitative predictions of the toy model remain unchanged even in case of the 
relaxation time in eq 1 being kept constant. This is called the Case II in the main text, as opposed to the 
Case I, where has the same dependence on the deformation (specifically, the stress ) as the inverse 
formation rate as given by eq 8. Predictions of the four-step experiment using the Case II model are 
shown in Fig S6, where the strain rate during loading and unloading steps was 10-3 s-1. The values of the 
model parameters are the same as in the Case I and are given in the Table 1 in the main text.  

  

 

 

 

Figure S6. Multi-step experiment: (a) stress and (b) efficiently packed fraction. Unloading to zero stress – 
blue curve, partial unloading – red curve. 

 

The behavior shown in Fig S6 is an almost exact copy of the behavior shown in Fig. 5 in the main text. 
Obviously, such a close resemblance is a result of a particular choice of the value of , which is 10 s for 
the predictions in Fig. S6.  Since is a constant, it is the same both prior to deformation and in the flow 
state; however, in Case I the value prior to deformation is i.e., 5.4×103 s, which then decreases 
to 10 s in the flow state in line relaxation time measured by the optical technique for a material at 
approximately Tg-20 K. In other words, in the Case II the relaxation time , although constant, is already 
set to a value it would have in the flow regime, but it is unrealistically small in the undeformed glassy state. 
When a constant is set at a larger value, for example , the second stress overshoot disappears.  
Notwithstanding the difficulties of the Case II model to describe the relaxation behavior both prior to 
deformation and in the flow state, Case II when is constant predicts the second stress overshoot. 
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