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Homonuclear ion-atom collisions: Application to Li+−Li
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We present a theoretical framework for homonuclear, ground-state ion-atom collisions wherein the indis-
tinguishability of direct elastic and resonant charge exchange (RCE) scattering channels is discussed. The
discussion in terms of the total cross section(σtot) is motivated and derived. The standard cross-section ex-
pressions for direct elastic(σ̃el) and RCE (σ̃ce) channels are obtained as high-energy approximations to σtot.
We show that the total cross section resolves the inconsistency, at low energies, between the diffusion cross
section (σD) and the high-energy approximation to the total cross section (σ̃tot). The validity of the equivalence
relation between the σD and 2 × σ̃ce is also discussed. The differences which result in cross sections which are
frequently used in the description of ion-atom collision is illustrated with specific calculations for an Li+−Li
system. The use of σtot is advocated as a correct and consistent way to represent cross sections.
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I. INTRODUCTION

Advances in cold dilute gas physics allow a large range
of experiments. Among these, the study of collisions of a
trapped ion in a dilute gas of trapped ultracold atoms is a
rapidly growing area of interest [1–19]. Such experiments are
performed in hybrid trap systems, where ions and atoms are
confined with overlap. Here a single trapped ion can undergo
binary [16] and ternary collisions [1,18,19] with the atoms.
The present article focuses on collisions of the former type.
In the energy regime where many partial waves contribute,
binary ion-atom collisions can be reliably understood using
a semiclassical description [11,20,21]. However, as the focus
on the ultracold regimes of such interactions intensifies, a
quantum formulation needs to be invoked.

In the particular case of homonuclear ion-atom collisions,
there is inconsistency in literature with respect to how the
binary collision cross sections, computed under the quantum
formalism, are reported. This has happened as some high-
energy approximations have been generalized to all regimes.
The interpretation of the experiments which are under way
now will be sensitive to the details of the cross section, so
it is essential to have an unambiguous formulation in place.
A collision between a homonuclear ion atom pair, which
exhibits inversion symmetry, can occur via two collision
channels, i.e., a direct elastic and a resonant charge ex-
change (RCE) channel. In a collision event, these channels are
experimentally indistinguishable. Nevertheless, it is current
practice to present independent cross sections for direct elas-
tic and RCE channels for homonuclear ion-atom collisions
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[4,11,20,22–25]. In the low-energy limit, this separation of
channels is invalid.

Here we revisit the theoretical formalism for homonuclear
ion-atom collisions and derive the total binary collision cross
section. This analysis closely follows the treatment of Massey
and Smith [24,26,27]. We then obtain the standard expressions
for direct elastic and RCE channels as high-energy approxi-
mations. Further, we show that the total cross section is equal
to the diffusion cross section in the s-wave limit and discuss
that at low collisional energies, no simple equivalence of the
diffusion and RCE cross sections exists. The various relations
are illustrated in the context of the Lithium ion-atom system.
Finally, an average collision rate coefficient is evaluated for a
range of temperatures.

II. Li+–Li POTENTIAL ENERGY CURVES

For illustrating the discussion that follows, we shall con-
sider 6Li+ – 6Li and 7Li+ – 7Li systems. For this purpose,
we calculate here the nonrelativistic potential energy curves
(PECs) for the symmetric(X 2�+

g ) and antisymmetric (A2�+
u )

electronic states of the 6Li+ – 6Li system (see Fig. 1). The
PECs for the 7Li+ – 7Li system have been calculated in
Pandey et al. [28]. For internuclear separations R < 25.60a0,
where a0 is the Bohr radius, the ion-atom interaction energy
is determined by the isotope independent ab initio PECs cal-
culated in Ref. [28]. The ab initio PECs have been calculated
using a body fixed coordinate system with the origin taken
at the geometric center of the molecule. Beyond 25.60a0, the
ab initio PECs are asymptotically extended. The ion-atom
interaction potential is then calculated in terms of the in-
duction energy V a

ind(R) and exchange energy V a
exch(R)[28]. At

very large internuclear distances, V a
exch(R) is negligible and

the interaction potential is well approximated by the leading
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FIG. 1. The asymptotic limit of the first two states of 6Li+2 ,
X 2�+

g , and A2�+
u , calculated using the multireference configuration

interaction (MRCI) method with aug-cc-pCV5Z basis set, are shown.
Also shown are the induction energy V a

ind(R) and −C4/R4. The dis-
sociation limit, E∞, is calculated by fitting the asymptotic form of
the induction energy to the ab initio induction energy in the range
35a0 to 50a0. Further details can be found in Pandey et al. [28]. The
figure and its inset depicts the minima of the A2�+

u and X 2�+
g curves,

respectively.

order term −C4/R4 of the induction energy V a
ind(R), where

C4 = αd/2 and αd is the static atomic dipole polarizability.
The PEC’s have been calculated under the Born-Oppenheimer
(BO) approximation and are used in the discussion that fol-
lows. Effects of including the non-BO terms are discussed in
the Appendix.

The full method for computation of the final scattering
potentials was presented in detail in Ref. [28] and isotope
specific details have been provided in Table I. The calculated
scattering lengths for X 2�+

g and A2�+
u states of 6Li+ – 6Li and

7Li+ – 7Li [28] are provided in Table II.
The doublet electronic states X 2�+

g and A2�+
u are exhib-

ited by homonuclear ion-atom systems where the atom has a
single valence electron like in alkalis or two valence electrons
like in alkaline earth species. As shown in Fig. 1, the states
X 2�+

g and A2�+
u are degenerate in the asymptotic limit. It

is therefore equally probable for the collision to occur along
either X 2�+

g and A2�+
u . Also, for homonuclear ion-atom

systems, additional scattering outcomes manifest apart from

TABLE I. Isotope specific parameters for 6Li and 7Li [28] that
are used in preparation of the PECs, X 2�+

g and A2�+
u , for the

scattering calculations. The static dipole, quadrapole, and octapole
polarizabilities αd , αq, and αo, respectively, are taken from Tang et al.
[29]. All quantities are expressed in atomic units.

αd αq αo Li+2 E∞ (a.u.)

6Li 164.169 1423.439 39654.460 14.756737566228
7Li [28] 164.161 1423.415 39653.720 14.756737566693

TABLE II. 6Li+-6Li and 7Li+-7Li [28] scattering lengths com-
puted for the states X2�+

g and A2�+
u are listed and compared with

Zhang et al. [30] and Schmid et al. [31]. All quantities are expressed
in atomic units.

X 2�+
g , A2�+

u ag ag [30] ag [31] au au [30]

6Li+ – 6Li −874 −918 −1014 −1355 −1425
7Li+ – 7Li [28] 20465 14337 7162 1325 1262

direct elastic scattering. This is discussed in the following
section.

III. HOMONUCLEAR ION-ATOM SCATTERING

First, let’s consider the collision of an ion with a neutral
atom such that they are of different elements or isotopes and
both are in their respective ground states. Given the initial
identification of the ion and atom, the postcollision outcome
can be measured unambiguously. At low energies, where in-
ternal excitation of the colliding partners is energetically not
possible, only direct elastic collisions occur. In this case, given
a known initial configuration, whether the ion and the atom are
forward scattered or backward scattered in the center of mass
representation, is perfectly clear from the measurement of the
scattering products. This is illustrated in Figs. 2(a) and 2(b),
respectively. In contrast, for a homonuclear ion-atom system,
due to the presence of inversion symmetry, other collision pos-
sibilities arise. In a collision, an electron can get exchanged
from the atom to the ion, with no cost of energy, through
RCE. The possibility of RCE which manifests in homonu-
clear systems can lead to collisions of the type illustrated in
Figs. 2(c) and 3(d), in addition to direct elastic collisions. In
any such collision, for the homonuclear case, it is in principle
impossible to determine whether the charge has exchanged or
not, making it problematic to distinguish between the direct
elastic and RCE channels.

A. Total cross section

Since the collision happens along molecular ion PECs as
shown in Fig. 1, the colliding homonuclear ion-atom pair
can be described as two identical ion cores interacting in
the presence of an active electron [27,32,33]. Whether the
ion cores and/or nuclei are fermionic or bosonic determines
the scattering outcome. Hence the overall wave function of
the system is symmetric (for bosons) or antisymmetric (for
fermions) under exchange of the ionic core and/or nuclei.
Putting all this together, the asymptotic form of the wave
function has been obtained by Massey and Smith [26,27], and
the differential scattering cross section can then be written as
[24,27,34]

Itot(θ ) = x

4
| fg(θ ) + fg(π − θ ) + fu(θ ) − fu(π − θ )|2

+ (1 − x)

4
| fg(θ ) − fg(π − θ )

+ fu(θ ) + fu(π − θ )|2, (1)
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FIG. 2. Schematic representation of collisions is in the center-of-
mass frame. The angle θ , in each panel, is defined as the deflection of
the ion (or atom) from its initial trajectory had it just undergone direct
elastic scattering and not RCE. Forward and backward ion-atom
scattering scenarios without any change in the states of the colliding
partners are illustrated in (a) and (b), respectively. The same scenario
for the case where an electron is exchanged between the colliding
partners, leading to charge swapping, is shown in (c) and (d). For
a heteronuclear ion-atom system, only (a) and (b) are elastic and
(c) and (d) become inelastic due to differences in the ionization
energies of the two atoms. However, for a homonuclear ion-atom
system, all four scenarios are elastic with (a) and (b) representing
direct elastic and (c) and (d) representing resonant charge exchange
(RCE) channels. Also, for the homonuclear case, (a) and (d) [(b) and
(c)] cannot be distinguished leading to a superposition of both these
processes for all collisions. Representation of collision with ballistic
trajectories is just for the purpose of visualization.

where x = (i + 1)/(2i + 1) for integer i (nuclear spin of the
ion or atom) and corresponds to the case for bosons, whereas
x = i/(2i + 1) for half integer i corresponding to fermions.
Here fg and fu are the amplitudes for scattering along the
electronic energy states 2�+

g or 2�+
u , respectively.

FIG. 3. Sg(E ) and Su(E ) are compared with semi-classical total
cross section in (a) and σ̃ce(E ) is compared with the Langevin cross-
section in (b), for 6Li+−6Li collisions.

The differential scattering cross section can be conve-
niently written as

Itot(θ ) = x

4
I1(θ ) + (1 − x)

4
I2(θ ),

where I1(θ ) and I2(θ ) can be identified from Eq. (1) above.
The total scattering cross section is given by the expression

σtot =
∫∫

Itot(θ )d�

= x

4
σ1 +

(
1 − x

4

)
σ2, (2)

where σ1 = ∫∫
I1(θ )d�, σ2 = ∫∫

I2(θ )d�, and d� is the in-
finitesimal area element. The partial wave expansion for f (θ )
and f (π − θ ) is

f (θ ) =
∞∑

�=0

(2� + 1)

k
P�(cos θ )eiη

�

(3)

and

f (π − θ ) =
∞∑

�=0

(2� + 1)

k
P�(cos θ )(−1)�eiη

�

, (4)

where � is the angular momentum quantum number, k = p/h̄,
and η� is the phase shift. Using Eq. (3) and (4), we obtain

σ1 = 16π

k2

[ ∞∑
�=0,even �

(2� + 1)sin2η�
g +

∞∑
�=1,odd �

(2�+1)sin2η�
u

]

(5)
and

σ2 = 16π

k2

[ ∞∑
�=1,odd �

(2� + 1)sin2η�
g +

∞∑
�=0,even �

(2�+1)sin2η�
u

]
.

(6)
The above expressions are obtained by using

∫ π

0 P�(cos θ )

P�′ (cos θ )sinθdθ = 2δ��′
(2�+1) , where δ��′ is the Kronecker delta.

Substituting Eqs. (5) and (6) in Eq. (2), we obtain the total
cross section as

σtot = x
4π

k2

[ ∞∑
�=0,even �

(2� + 1)sin2η�
g

+
∞∑

�=1,odd �

(2� + 1)sin2η�
u

]

+ (1 − x)
4π

k2

[ ∞∑
�=1,odd �

(2� + 1)sin2η�
g

+
∞∑

�=0,even �

(2� + 1)sin2η�
u

]
. (7)

The above expression for the ion-atom cross section is
valid from the lowest energies to well above thermal energies.

B. Consequences of high-energy approximations

In scattering events at relatively high collisional energies,
significant angular asymmetry develops in the differential
scattering cross section. As a consequence, f (θ ) in Eq. (1) is
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a decreasing function of θ and cross terms like f (θ ) f (π − θ )
are small and can be neglected. On expansion and elimi-
nation of terms, there is a cancellation of the nuclear spin
dependence. This yields the high-energy expression for the
differential scattering cross section as

Ĩtot(θ ) ≈ 1
4 | fg(θ ) + fu(θ )|2 + 1

4 | fg(π − θ ) − fu(π − θ )|2.
(8)

At high energies, small angle scattering [Figs. 2(a) and
2(c)] is significantly more probable as opposed to large angle
scattering [Figs. 2(b) and 2(d)]. Hence, if a charge detector
D1 detects an ion in the θ direction [i.e., Fig. 2(a)] it’s most
probably an ion which got scattered elastically in the for-
ward direction. However, if the charge detector D2 detects
an ion in the π − θ direction [i.e., Fig. 2(c)], then it’s most
probably an atom which underwent forward elastic scattering
accompanied by RCE. Therefore, in this situation, the term
( fg(θ ) + fu(θ ))/2 can be identified as the direct elastic scat-
tering amplitude and the term ( fg(π − θ ) − fu(π − θ ))/2 is
attributed to the scattering amplitude for RCE. The total cross
section in the high-energy limit then becomes

σ̃tot =
∫∫

Ĩtot(θ )d� = 1

2
(Sg(E ) + Su(E ))

= 2π

k2

∞∑
�=0

(2� + 1)
(
sin2η�

g + sin2η�
u

)
, (9)

where

Sp(E ) =
∫∫

| fp(θ )|2d� = 4π

k2

∞∑
�=0

(2� + 1)sin2η�
p, (10)

p ≡ g, u correspond to X 2�+
g , A2�+

u , respectively, and the
RCE cross section, Sce [28], which is denoted by σ̃ce here for
notational consistency is

σ̃ce = π

k2

∞∑
�=0

(2� + 1)sin2(η�
u − η�

g

)
. (11)

In this situation, the direct elastic cross section is defined
to be

σ̃el = σ̃tot − σ̃ce. (12)

Sg(E ), Su(E ) and σ̃ce(E) have been shown in Fig. 3 for
6Li+ – 6Li. A comparison between σtot and σ̃tot is made in
Fig. 4 for the 6Li+ – 6Li and 7Li+ – 7Li systems.

In earlier work [24,34], the expression for σ̃tot, σ̃ce, σ̃el

in Eqs. (9), (11), and (12) has been identified as the total
cross section, charge exchange cross section, and elastic cross
section, respectively.

Clearly, such an identification can only be made in the
high-energy limit. These approximations break down in the
limit of low collision energies near the s-wave limit where
the θ deflection angles are substantial and the scattering
is increasingly isotropic. The presence of direct elastic and
RCE cross sections is completely entrenched in literature
[4,11,20,22–25,34] and the coming age of new experiments
requires that these inconsistencies be recognized and cor-
rected where required.

FIG. 4. σtot and σ̃tot as a function of collision energies for
6Li+−6Li system. In the inset, differences between σtot and σ̃tot in
the s-wave energy regime are shown for 6Li+−6Li and 7Li+−7Li.

The reason for prevalent discussion of approximate expres-
sions in literature is rooted in early cross-beam experiments.
In these, detection of the atom and/or ion in the forward di-
rection of their respective incident beams after interaction was
attributed to direct elastic collision and should the atom(ion),
postcollision, be detected in the forward direction of the
ion(atom) beam, respectively, the scattering was attributed to
RCE [35]. This is the identification made after Eq. (8).

C. Diffusion cross section

The diffusion of an ion in a dilute gas of atoms is a measure
of the deviation of the ion’s position with time from its ballis-
tic trajectory. It is also called the momentum transfer cross
section as it quantifies the forward momentum lost by the ion.
Here we are in the temperature and density limit where the
diffusion is due to sequential binary collisions of the ion with
the atoms in the gas. The expression for the diffusion cross
section is given as [36]

σD =
∫∫

(1 − cosθ )Itot(θ )d�. (13)

At low energies, large scattering angles are prevalent and,
in the s-wave limit, the scattering becomes isotropic and Itot(θ )
becomes a constant, i.e., independent of θ .

Therefore, the diffusion cross section becomes equal to the
total cross section:

σD|E<Ep = σtot|E<Ep . (14)

Here Ep represents the height of the p-wave barrier of the
ion-atom system. The general expression for the diffusion
cross section is obtained by substituting Eq. (1) in Eq. (13)
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FIG. 5. Diffusion cross sections, σD, plotted for 7Li+ – 7Li in
(a) and 6Li+ – 6Li in (b) and is compared with their respective
2 × σ̃ce.

and evaluating, which yields

σD = x
4π

k2

[ ∞∑
�=0,even �

(� + 1)sin2
(
η�
g − η�+1

u

)

+
∞∑

�=1,odd �

(� + 1)sin2
(
η�
u − η�+1

g

)]

+ (1 − x)
4π

k2

[ ∞∑
�=1,odd �

(� + 1)sin2
(
η�
g − η�+1

u

)

+
∞∑

�=0,even �

(� + 1)sin2
(
η�
u − η�+1

g

)]
. (15)

σD, Eq. (15), becomes equal to σtot, Eq. (7), and deviates
from σ̃tot in Eq. (9) in the ultralow-energy limits where the
cross section is dominated by the contribution from the � = 0
term. In the high-energy limit, σD ≈ 2 × σ̃ce.

We show a comparison between σD and 2 × σ̃ce in Fig. 5
for the 6Li+ – 6Li and 7Li+ – 7Li systems and discuss the con-
dition for their general equivalence in Sec. IV.

IV. DISCUSSION AND CONCLUSIONS

σ̃ce(E) does not show Langevin-like behavior even for
higher collision energies, which is the classical expectation
for capture processes. Such deviation of the charge exchange
cross section from the Langevin cross section can be expected
when the scattering lengths ag and au are comparable and of
the same sign [37]. As a consequence, the phases of the states
cancel out in the charge exchange cross-section expression,
Eq. (11).

The total cross section, σtot, obtained by evaluating Eq. (7),
is illustrated in Fig. 4 along with σ̃tot for 6Li+ – 6Li, with i
= 1, x = 2/3. It can be observed that for collision energies
above 10−10 a.u., σtot and σ̃tot are identical. In the inset, we
have shown σtot and σ̃tot for 6Li+ – 6Li and 7Li+ – 7Li systems
in the ultracold energy limits. At 10−15a.u., for 6Li+ – 6Li, σtot

is 12.33% less than σ̃tot whereas, for 7Li+ – 7Li, σtot is 24.42%
less than σ̃tot. In the ultracold energy limit, the difference
between σtot and σ̃tot is dictated by the nuclear spin and relative

FIG. 6. The average collision rate coefficient plotted over a range
of temperatures for both 6Li+ – 6Li and 7Li+ – 7Li systems.

magnitude of ag and au The difference will be enhanced when
the nuclear spin is small and the magnitudes of ag and au are
very different. In general, the use of σtot as the total cross
section has a significant impact on the cross-section accuracy.

The diffusion cross section, σD, obtained by evaluating
Eq. (14), for 6Li+ – 6Li and 7Li+ – 7Li collisions is shown and
compared with its respective 2 × σ̃ce in Fig. 5. In both cases,
the correspondence among the peaks arising in the few partial
wave regime can be observed. For 7Li+ – 7Li, it is interesting
that the equivalence relation between 2 × σ̃ce and σD holds
well even at low energies near the s-wave limit. In the case
of 6Li+ – 6Li, 2 × σ̃ce compares well with the σD at high ener-
gies, above 10−5 a.u., but not at low energies. This illustrates
that at low energies the equivalence relation does not hold for
all homonuclear ion-atom systems. Therefore, in the context
of calculating the diffusion [24,38] of an ion immersed in an
ultracold cloud of its parent atom due to binary collisions, a
scaling cannot be assumed between σD and σ̃ce in general.

For an ion and atom in thermal equilibrium at temperature
T , the average collision rate coefficient corresponding to σtot

and σ̃tot is given by K2 = 〈σtotv〉T and K̃2 = 〈σ̃totv〉T , respec-
tively, where v is the relative ion-atom speed. This is plotted
in Fig. 6 for both the 6Li+ – 6Li and 7Li+ – 7Li systems.

We have used the BO-PECs so far for illustrating the scat-
tering discussion. The non-BO matrix elements [39,40] are
nonzero in the coordinate system that we have used to cal-
culate the PECs. The effects arising due to their inclusion are
discussed in the Appendix. However, the relations between the
various cross sections and the qualitative conclusions reached
are unaffected by their inclusion.

It is clear that the deviation between σtot and σ̃tot is max-
imum in the s-wave limit and decreases quite rapidly as
nonzero partial waves start contributing with increasing col-
lision energies. The cross section with accurate expression
for the previous work can be evaluated if the phase shifts
for the collision parameter space (�,E) is available along with
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the correct spin dependence of the ion core and/or nuclei.
For experiments at high energies [20], the approximations are
robust and the experimental results which depend on σ̃el and
σ̃ce remain unchanged in their interpretation. In the future, as
experiments with homonuclear ion-atom systems move to low
collisional energies, adopting the correct formalism is essen-
tial for both the qualitative and quantitative understanding of
the physics of these systems.
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APPENDIX: EFFECT OF NON-BO TERMS
ON THE SCATTERING LENGTHS

In the main body of the article, the X 2�+
g and A2�+

u

PECs of Li+2 , and the corresponding scattering properties,
are computed without the non-BO terms in the Schrödinger
equation. In this Appendix, we calculate these terms, namely,
the diagonal BO correction, (DBOC), which in its first order
is given by

DBOC(R) = 〈12�+
p |

∑
A

−h̄2

2MA
∇2

A|12�+
p 〉, (A1)

and the nonadiabatic coupling matrix elements (NACMEs) for
the potentials with their first excited states,

NACME(R) = 〈12�+
p |∂/∂R|22�+

p 〉, (A2)

where p ≡ g, u.
The DBOC for X 2�+

g states for 7Li+2 and 6Li+2 are com-
puted with the CFOUR program at the coupled cluster-single,
double excitation (CCSD) level with Widmark-Malmqvist-
Roos basis sets [41]. Calculations are performed for the
internuclear distances from 2a0 to 50a0. When R 	 50a0, the
absolute value of the DBOC term is almost constant [equal
to 258.9917 cm−1 and 302.0982 cm−1, for 7Li+2 (X 2�+

g ) and
6Li+2 (X 2�+

g ), respectively], varying by ∼ + 0.0001 cm−1 be-
tween 49a0 and 50a0. The change of DBOC(R) with respect to
DBOC(R = 50a0) is shown in Fig. 7. The vertical line at Rin =
3.713a0 represents the position of the repulsive wall of the
X 2�+

g PEC at zero (ultracold) kinetic energy. At equilibrium
distance, Re = 5.85a0, the variations of DBOC with respect
to its value at 50a0 are −0.1344 cm−1 and −0.1568 cm−1, for
7Li+2 (X 2�+

g ) and 6Li+2 (X 2�+
g ), respectively. For R > Re, the

largest variation of the DBOC is observed at R ∼ 9a0, equal
to −0.9792 cm−1 and −1.1422 cm−1 for 7Li+2 (X 2�+

g ) and
6Li+2 (X 2�+

g ), respectively. As a verification these DBOC cor-
rections are ≈ (me/M)×BO-PECs, where me is the electron
mass and M is the nuclear mass.

The NACMEs are calculated at the MRCI level with
aug-cc-pCV5Z basis sets using MOLPRO package [43]. The
corresponding energy corrections, calculated using the virial
theorem, are shown in Fig. 8(a). Figures 8(b) and 8(c) show

FIG. 7. DBOC, computed at the CCSD level, for 6Li+2 ,X 2�+
g

and 7Li+2 ,X 2�+
g relative to their value at R = 50a0.

the β(R) parameter (Eq. (3) in Ref. [42]) and the NACME
terms 〈12�+

g , |∂/∂R|22�+
g 〉 and 〈12�+

u |∂/∂R|22�+
u 〉, respec-

tively, used for computing the energy corrections. The
correction for the relevant R range for X 2�+

g , i.e., R >

Rin(=3.713a0) is less than +0.3 cm−1. For A2�+
u , for R >

Rin(=15.540a0), the correction is less than +0.003 cm−1.
As reported in Ref. [28] on the scattering length calcula-

tions of 7Li+2 , the R-dependent relativistic corrections are less
than −1.00 cm−1 for R > Re and less than −5.00 cm−1 for
R < Re, where Re is the well depth position. The basis set su-
perposition error, BSSE, calculated with ECP+CPP method,
as reported in Ref. [28], contributes less than ∼ + 0.20 cm−1.

FIG. 8. (a) Energy corrections in the total energies,
−β(R)×PEC(R) (b) β(R) parameters for 7Li+2 and 6Li+2 , computed
using Eq. (3) in Ref. [42] (c) NACME(R) for 〈12�+

g/u|∂/∂R|22�+
g/u〉

for Li+2 .
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TABLE III. 6Li+-6Li and 7Li+-7Li scattering lengths a, com-
puted for the X 2�+

g and A2�+
u PECs without non-BO terms, are

compared to the values obtained when the PECs are scaled with the
κ factor (see text). Likewise, σtot at s-wave is also compared.

System, state a aκ Change
(in a0) (in a0)

6Li+2 ,X 2�+
g −874 −896 2.51%

6Li+2 ,A2�+
u −1355 −1363 0.59%

7Li+2 ,X 2�+
g 20465 16170 20.98%

7Li+2 ,A2�+
u 1325 1317 0.60%

System σtot σ κ
tot Change

(in a2
0

)
(in a2

0

)
6Li+2 1.41064 × 107 1.452 × 107 2.9%
7Li+2 1.98396 × 109 1.2447 × 109 37.27%

With the aug-cc-pCV5Z basis sets and MRCI levels of elec-
tronic wave functions, it amounts to a similar order of change
(∼ + 0.80 cm−1).

Taking all these estimates into account, we see that the
corrections to the BO-PECs are of the order of 1 cm−1. To
incorporate these corrections, we multiply the BO-PECs by

κ = +1.0001 such that well depth, De = 10458.58 cm−1, of
the BO-PEC for 7Li+2 (X 2�+

g ) increases by 1.045858 cm−1. It
is worth noting that the variation of the PECs in the large-R
range O(10−4), obtained by choosing this value of κ , covers
well the variation observed from the uncertainty in C4 [for
7Li+2 , αd = 164.1(6), O(10−5)] which determines the inaccu-
racy in the large-R range of the potentials.

We then solve the Schrödinger equation with the scaled
PECs and calculate the scattering properties for both 7Li+2 and
6Li+2 systems. The scattering lengths are provided in Table III.
The scattering lengths in all cases do not change their signs,
when they are computed with the scaled PECs. The larger
change in the scattering length for 7Li+2 ,X 2�+

g is due to
the vicinity of a scattering pole [28], which makes the total
s-wave cross section for the 7Li+-7Li system sensitive to small
changes in the potential (see Table III). It is important to note
that these relative changes, apart from 7Li+2 ,X 2�+

g , are much
smaller than the ones we accounted for to incorporate possible
inaccuracy in the short-range potential (see in Ref. [28]). For
example, in Ref. [28], the scattering length for (7Li+2 ,A2�+

u )
was altered by ∼ ± 7.5%, which is ten times larger than the
variation observed with the inclusion of the non-BO correc-
tions.
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