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Abstract
This article introduces a systematic approach to synthesize linear
parameter-varying (LPV) representations of nonlinear (NL) systems which
are described by input affine state-space (SS) representations. The conversion
approach results in LPV-SS representations in the observable canonical form.
Based on the relative degree concept, first the SS description of a given NL
representation is transformed to a normal form. In the SISO case, all nonlin-
earities of the original system are embedded into one NL function, which is
factorized, based on a proposed algorithm, to construct an LPV representation
of the original NL system. The overall procedure yields an LPV model in which
the scheduling variable depends on the inputs and outputs of the system and
their derivatives, achieving a practically applicable transformation of the model
in case of low order derivatives. In addition, if the states of the NL model can be
measured or estimated, then a modified procedure is proposed to provide LPV
models scheduled by these states. Examples are included to demonstrate both
approaches.
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1 INTRODUCTION

The linear parameter-varying (LPV) framework was introduced to address the control of nonlinear (NL) and time-varying
(TV) systems using the extensions of powerful linear time-invariant (LTI) approaches such as2∕∞ optimal control and
model predictive control, see for example, References 1-5. LPV systems are dynamic models capable of describing NL/TV
behaviors in terms of a linear structure. Signal relations between the inputs and outputs in an LPV representation are
assumed to be linear, but, at the same time, dependent on a so-called scheduling variable p (np-dimensional signal), which
is assumed to be measurable and free (external) in the modeled system and taking values from a so-called scheduling
region P ⊆ R

np , often restricted to be a compact set. In this way, variation of p represents time-variance, changing operating
conditions, and so forth, and aims at the embedding of the original NL/TV behavior into the solution set of an LPV system
representation.6,7 While the former objective is pursued by the so-called global LPV modeling approaches, alternatively,
one can aim at the approximation of the NL/TV behavior by the interpolation of various linearizations of the system
around operating points or signal trajectories, often referred to as local modeling, see, for example, References 8-10.

For the global modeling methodology we intend to investigate in this article, it is important to shed light on the often
vaguely defined concept of LPV embedding. Assume that a continuous-time system , depicted in Figure 1A, is given
which describes the (possibly nonlinear) dynamical relation between the signals w ∶ R → W, where W is a given set. For
example consider the forced Van der Pol equation:11

ẋ1 = x2, (1a)

ẋ2 = −x1 + 𝛼
(
1 − x2

1
)

x2 + u, (1b)

y = x1, (1c)

where,
[
x1 x2

]⊤ ∶ R → R2 is the state variable, while w =
[
u y

]⊤ are the inputs and outputs of the system with W = R2.
Let 𝔅 ⊆ WR (WR stands for all maps from R to W) containing all trajectories of w that are compatible with , that is,
they are solutions of (1). We call 𝔅 the (manifest) behavior of the system . A common practice in LPV modeling is to
introduce an auxiliary variable p, with range P, and reformulate  as shown in Figure 1B, where it holds true that if the
loop is disconnected and p is assumed to be a known signal as in Figure 1C, then the “remaining” relations of w are linear.
This can be achieved in (1) by taking, as a possible choice, p = x1 = y:

[
ẋ
y

]
=
⎡⎢⎢⎢⎣

0 1 0
−1 𝛼(1 − p2) 1

1 0 0

⎤⎥⎥⎥⎦
[

x
u

]
. (2)

Applying this reformulation with a disconnected p and assuming that all trajectories of p are allowed, that is, p is a free
variable with p ∈ PR independent of y, the possible trajectories of this reformulated system ′ form a solution set of (2),
denoted as 𝔅′, which contains 𝔅 as visualized in Figure 1D. This concept of formulating ′, a linear, but p-dependent
description of , enables the use of simple stability analysis and convex controller synthesis, see for example, Refer-
ences 1-3, which can be conservative w.r.t. , but computationally more attractive and robust than other approaches
directly addressing 𝔅. Control synthesis based on the above mentioned modeling procedure results in the implementa-
tion of an LPV controller  visualized in Figure 2. It is obvious that a key assumption is that p must be “observable” from
the real system. The observed value of p is required to complete the hidden relation of p to the other variables in (2) and
enable a linear controller to schedule its behavior according to p to regulate (1). Hence, this can be seen as a multi-path
feedback linearization, similar to the well-known approach in NL system theory, see Reference 12, as the obtained infor-
mation from the system in terms of p is fed back to arrive to a varying linear relation (2) (in contrast with the NL theory
where the resulting behavior is intended to be LTI).

Following the above procedure, the scheduling variable p itself can appear in many different relations w.r.t. the orig-
inal variables w. If p is a free variable w.r.t. , for example, wind speed for a wind turbine,13 then we can speak about a
true parameter-varying system without conservativeness. However, in many practical applications, like in our example, it
happens that p depends on other signals, like inputs, outputs, or states of the modeled system (e.g., operating conditions).
Such situations are often warningly labeled to be quasi-LPV (q-LPV). Based on the toy example (2), what really happens in
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F I G U R E 1 The concept of LPV modeling

F I G U R E 2 The concept of LPV control

those cases is that the assumed freedom of p only introduces conservativeness in the embedding of the nonlinear behavior.
Hence, one important objective of LPV modeling, besides achieving complete embedding, is to minimize such conserva-
tiveness. Furthermore, it is often tempting to choose state variables as p that are hardly measurable or cannot be reliably
estimated from the measurements. For example, in (1), we could have chosen p = x1x2 which is not directly measurable.
Such choices can result in a loss of internal stability of the closed-loop system, as an uncontrollable/unobservable mode
can be introduced between the observer used to track p and the controller that schedules based on it. These problems
often undermine the results that can be obtained in practical applications of the LPV methodology leaving conversion of
NL models to LPV representations to be a cumbersome procedure with many pitfalls for the regular user.6,14

Existing approaches for global LPV modeling of NL dynamical systems can be classified into two main categories: sub-
stitution based transformation (SBT) methods7,15-20 and automated conversion procedures.6,21-23 For a detailed comparison,
see Reference 6. In general*, the existing techniques do not pay serious attention to several issues regarding the resulting
LPV models, namely: how the scheduling variable and its bounds are chosen, what is the relation between these choices
and the behavior of the system including the practical implementation of LPV controllers based on them, and the use-
fulness of the resulting LPV form for control synthesis or as a source of model structure information for identification.
In addition, most techniques are based on ad-hoc mathematical manipulations (non-unique and non-systematic) and
require a serious level of experience to be used.

In this article†, inspired by the strong link between feedback linearization of NL representations12 and global LPV
modeling, our objective is to provide systematic LPV embedding of the behavior of NL representations such that

• the precise relationship between the behavior of the NL representation and the LPV representation is mathematically
formalized;

• the choice of p and its bounds are explicit.

Specifically, a systematic procedure is proposed to convert control affine NL-SS representations into state minimal
LPV-SS representations in an observable canonical form (see Section 2). A particular advantage of this canonical form
is that it can be directly converted into an equivalent LPV-IO form using the recently developed LPV realization theory6

and hence it is highly useful for both LPV control synthesis (due to the SS form) and model structure selection in LPV
identification (due to a direct LPV-IO conversion). The method is based on transforming the states of a given NL repre-
sentation into a normal form such that, in the SISO case, all nonlinearities in the NL model are realized in only one NL

*Except for the decision tree algorithm in References 6 and 23.
†Preliminary ideas leading to the theorems presented in this article appeared in the conference contribution.24
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term. Then, an exact substitution-based technique is presented to provide the LPV model (see Sections 4 and 3 for the
overall procedure). The state transformation leads to the systematic construction of scheduling signals. More precisely,
the scheduling signals depend either on the inputs, outputs, and their derivatives, or on some of the observable states
of the original NL representation. In particular, scheduling construction based on inputs, outputs, and their derivatives
compared to state-dependent scheduling is practically useful for systems (e.g., mechatronic applications) where outputs
and their derivatives are directly measurable or low noise conditions enable their estimation (see Section 3.5 for details).
To demonstrate the performance and limitations of the introduced conversion methods simulation and measurement
examples are provided in Section 5.

2 LPV REPRESENTATIONS

As the first step, we define the class of the considered LPV system representations and their associated solution sets, that
is, behaviors, which will be used to describe/embed the solution set of nonlinear systems, further defined in Section 3.

2.1 Mathematical preliminaries

Let k(R,W) be the space of k-times continuously differentiable real functions w ∶ R → W ⊆ Rnw with left compact sup-
port that satisfy di

dti w(t) ∈ W for all t ∈ R and i ∈ I
k
1 = {1, … , k}. Let P be an open subset of R

np and let k(P) denote the
set of real-analytic functions of the form f ∶ Pk → R in npk variables. For k̂ > k, any f ∈ k(P) is called equivalent with
a f̂ ∈ k̂(P) if f̂ (𝜂1, … , 𝜂k̂) = f (𝜂1, … , 𝜂k) for all 𝜂1, … , 𝜂k ∈ P, as f̂ is not essentially dependent on its arguments. Define
the set operator ⊝, such that k+1(P)⊝k(P) contains all f ∈ k+1(P) not equivalent with any element of k(P). This
prompts to considering the set (P)=

⋃∞
k=0k(P)⊝k−1(P) where 0(P) = R and −1(P) = ∅. We can define addition

and multiplication in (P) analogous to that of:25 if f1, f2 ∈ (P), then fi ∈ ki (P)⊝ki−1(P), for some integer ki ≥ 0,
i = 1, 2, and, by taking k = max{k1, k2}, the equivalence described above implies that there exist equivalent representa-
tions of these functions in k(P). Then f1 + f2, f1 ⋅ f2 can be defined as the usual addition and multiplication of functions
in k(P) and the result, in terms of the equivalence, is considered to be a f ∈ (P). For a p ∈ ∞(R,P), we define the
following notation: if f ∈ (P), then f ⋄ p ∶ R → R is

∀t ∈ R ∶ (f ⋄ p)(t) = f
(

p(t), d
dt

p(t), … ,
dk

dtk
p(t)

)
, (3)

where k is an integer such that f ∈ k(P) ⊝ k−1(P). We denote by k×l(P) the set of all k × l matrices whose entries
are elements of (P) which also extends the operator ⋄ to matrices whose entries are functions from (P).

2.2 State-space representation

For the sake of simplicity for defining the embedding of the dynamics of an NL system into the solution set of an LPV
representation, we will introduce a slightly extended definition of LPV state-space representations compared to the regular
definitions treated in the literature.7,10

Definition 1 (LPV-SS representation). A continuous-time LPV-SS representation with an open scheduling region P of
dimension np is a tuple of matrices of analytic functions:[

A B

C D

]
∈

[
nz×nz(P) nz×nu(P)
ny×nz(P) ny×nu(P)

]
. (4)

A solution of this representation is a tuple (u, z, y, p) ∈ nz(R,U × Z × Y) × ∞(R,P) such that

d
dt

z = (A ⋄ p)z + (B ⋄ p)u, (5a)

y = (C ⋄ p)z + (D ⋄ p)u, (5b)
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where z is the state vector‡, Z = Rnz is the state space, u ∶ R → U = Rnu is the input while y ∶ R → Y = R
ny is the output

of the represented system. We denote by

𝔅SS =
{
(u, z, y, p) ∈ nz(R,U × Z × Y) × ∞(R,P)|(5a)–(5b) hold

}
, (6)

the solution set (latent behavior) of (5a)–(5b).

Note that in the above defined SS representation, the operator ⋄ expresses the dependence of the state-space matrix
functions along a scheduling trajectory p and its derivatives; in other words, it expresses a dynamic mapping between p
and (A,B,C,D). We refer to this dynamic mapping between the scheduling signal and the system matrices as dynamic
dependence, whereas the dependence on the value of p(t) only is referred to as static dependence. The latter is used in
the conventional definitions that can be found in the literature,7,10 however, we need the notion of dynamic dependence
here to show how systematic embedding of NL systems can be achieved by LPV models. Moreover, LPV models with
dynamic dependence arise naturally as a result of system manipulations, such as state transformations, observability,
controllability canonical forms, and so forth.25 For technical reasons, in this article we work with LPV-SS representations
in observable canonical form. As its name suggests, an LPV model in observable canonical form is state observable and
it allows a simple conversion to input-output (IO) representations. The latter is important for system identification, since
IO representations are easier to identify than state-space models. Conditions for existence of a state-space isomorphism
transforming an LPV-SS representation to an observable canonical form are discussed in References 25,26. The matrices,
associated with the observability canonical representation of (5) in the SISO case, under the assumption of minimality of
(5), are given by:6

[
A B

C D

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 … 0 𝛽nz−1

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … 1 𝛽1

𝛼0 𝛼1 … 𝛼nz−1 𝛽0

1 0 … 0 𝛽nz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

where {𝛼i}
nz−1
i=0 and {𝛽j}

nz−1
j=0 are analytic functions in (P). A special case of (7), when 𝛽nz = · · · = 𝛽1 = 0, is given by

[
A B

C D

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 … 0 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … 1 0

𝛼0 𝛼1 … 𝛼nz−1 𝛽0

1 0 … 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

which is of particular importance in this work as demonstrated later. In the sequel, we refer to the forms (7) and (8) as
the full and simplified observability forms, respectively. In this article, we present a method for transforming a nonlinear
system to LPV simplified observability form and another method which yields an LPV representation in full observability
form.

3 CONVERSION TO THE SIMPLIFIED OBSERVABILITY FORM

In this section, we discuss conversion of input-affine nonlinear models to simplified LPV observability canonical forms.

‡We use z to denote the state vector in an LPV-SS representation. This allows later to distinguish z from the state vector x associated with an NL-SS
representation.
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3.1 The problem setting

Consider a SISO NL system  represented in the form of

d
dt

x = f (x) + g(x)u, (9a)

y = h(x), (9b)

where f , g ∶ X → Rnx and h ∶ X → R are real analytic functions, X is an open subset of Rnx and u ∶ R → U ⊆ R is the
input with y ∶ R → Y ⊆ R being the output signal and x ∶ R → X is the state variable. We consider the solutions of (9) in
the following sense

ℭSS =
{
(u, x, y) ∈ nx(R,U × X × Y)|(9a–b) hold for all t ∈ R

}
. (10)

The form (9) represents a rather general class of NL systems, commonly referred to as input-affine systems, which includes
common models of mechanical systems27 and many first-principles models in process control.28 More general represen-
tation of NL systems characterized by ẋ = f (x,u), with f ∶ X × U → Rnx being an analytic vector field, can be rewritten
in the input affine form (9) according to the procedure detailed in Reference 27. Furthermore, in (9b), there is no direct
feedthrough term as, w.l.o.g., such feedthrough terms can be easily eliminated via the projection of y.

To achieve our objective, that is, to embed the dynamical behavior of NL systems represented by (9) into the solution
set of an LPV-SS representation in a simplified observable canonical form given by (8), we intend to use the concept of
the embedding principle discussed in Section 1 to develop multi-path feedback linearization of (9). Before going into the
mathematical details, we present the main idea informally. Consider a solution (x, y,u) of (9), and define

z =
[

y d
dt

y … dnx

dtnx
y
]⊤
, (11a)

v =
[

u d
dt

u … dnx

dtnx
u
]⊤
. (11b)

Let (9) be observable, that is, x = Ψ(z, v) for some map Ψ and let Φ (an implicit function of Ψ) be such that

z = Φ(x, v). (12)

Then, we can obtain a new state-space description of (9):

d
dt

z1 = z2, … d
dt

znx−1 = znx , (13a)

d
dt

znx = 𝜆(z, v), (13b)

y = z1, (13c)

where 𝜆 is an analytical function, such that if (u, x, y) is a solution of (9), then (u, z, y) is a solution of (13) with z and x
related by (12). If 𝜆 can be factorized as

𝜆(z, v) = 𝛽0(z, v)u +
nx−1∑
i=0

𝛼i(z, v)zi+1, (14)

for some analytic functions 𝛽0 and {𝛼i}
nx−1
i=0 , then by setting p = [y u]⊤, and changing the ordering of the arguments of

𝛽0 and {𝛼i}
nx−1
i=0 , (13b) can be written as

d
dt

znx =
nx−1∑
i=0

(𝛼i ⋄ p)zi+1 + (𝛽0 ⋄ p)u, (15)
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which implies that (u, z, y, p), with z being related to x by (12) and p = [y u]⊤, is a solution of an LPV observable canonical
form (8) with nx = nz. As p of the resulting LPV-SS model is composed of the output and input signals of the system, it
is measurable/available in most real-world applications, that is, the transformation yields an LPV-SS form that opens the
possibility to design LPV controllers for which implementation can avoid or mitigate the need for state measurements or
scheduling observers.

3.2 Mathematical details of the construction

Below we present the ideas outlined above in a more rigorous way. First of all, note that we need to choose a point x0 ∈ X

around which the embedding can be developed and its validity can be analyzed. From the point of view of controller
synthesis, it is often desirable to consider x0 = 0 so that any stabilizing controller designed for the resulting LPV-SS form
will aim at keeping the state of the original system in a neighborhood of x0. To this end, we will make the following
assumption.

Assumption 1 (Centering). To simplify the discussion, in the sequel, we will assume w.l.o.g. that f (x0) = 0 and h(x0) = 0.

Note that f (x0) = 0 can easily be achieved by state and input transformation, while h(x0) = 0 requires transformation
of the output signal y.

Definition 2 ((U0,X0,Y0)-admissible solutions). Let X0 be an open neighborhood of x0 in X. Furthermore, choose
open sets 0 ∈ U0 ⊆ R, 0 ∈ Y0 ⊆ R. A solution (u, x, y) ∈ ℭSS of (9) is said to be (U0,X0,Y0)-admissible, if u ∈ nx(R,U0),
x ∈ ∞(R,X0) and y ∈ nx(R,Y0).

Next, we recall from References 29,30 the notion of local uniform observability.

Definition 3 (Local uniform observability). The representation (9) is called locally uniformly observable on the open
sets x0 ∈ X0 ⊆ Rnx , 0 ∈ U0 ⊆ R, 0 ∈ Y0 ⊆ R, if there exists an analytic map

Ψ ∶ (Y0 × U0)nx → X0, (16)

such that for any (U0,X0,Y0)-admissible solution (u, x, y) of (9), it holds that

x = Ψ

([
y
u

]
,

d
dt

[
y
u

]
, … ,

dnx−1

dtnx−1

[
y
u

])
. (17)

We will call the map Ψ the (U0,X0,Y0)-observability map or observability map, if (U0,X0,Y0) is clear from the context and
call (9) locally uniformly observable, if it is locally uniformly observable on (U0,X0,Y0) for some open sets U0,X0,Y0.

If (9) is locally uniformly observable, then it is possible to express the nxth derivative of its output y as a function of{ di

dti y
}nx−1

i=0 and
{ dj

dtj u
}nx−1

j=0 . In order to present the construction formally, we define the following collection of functions.

Definition 4 (Output derivative function). For each k ∈ N, define the functions Φk ∶ X × Uk → Y as follows:

Φ0(x) = h(x), (18a)

Φk(x, v1, … , vk) =
nx∑

i=1

[
(fi(x) + gi(x)v1)

𝜕Φk−1

𝜕xi
(x, v1, … , vk−1) +

k−1∑
j=1

vj+1
𝜕Φk−1

𝜕vj
(x, v1, … , vk−1)

]
, (18b)

where fi and gi denote the ith element of these functions. The map Φk will be called the kth output derivative map.

For any (U0,X0,Y0)-admissible solution (u, x, y) of (9):

dk

dtk
y = Φk

(
x,u, d

dt
u, … ,

dk−1

dtk−1
u
)
, (19)

which leads to the following corollary:
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Corollary 1 (NL-IO realization). If (9) is locally uniformly observable on (U0,X0,Y0) with the observability function Ψ,
then for any (U0,X0,Y0)-admissible solution (u, x, y) of (9):

dnx

dtnx
y = Γnx

([
y
u

]
,

d
dt

[
y
u

]
, … ,

dnx−1

dtnx−1

[
y
u

])
, (20)

where the analytic map Γnx ∶ (Y0 × U0)nx → Y0 is defined by

Γnx

([
𝜂1

𝜐1

]
, … ,

[
𝜂nx

𝜐nx

])
= Φnx

(
Ψ

([
𝜂1

𝜐1

]
, … ,

[
𝜂nx

𝜐nx

])
, 𝜐1, … , 𝜐nx

)
, (21)

for all 𝜂1, … , 𝜂nx ∈ Y0 and 𝜐1, … , 𝜐nx ∈ U0.

Corollary 1 paves the way to represent (U0,X0,Y0)-admissible solutions of (9) as solutions of an LPV observer
canonical form. In order to present the precise result, we have to introduce some concepts related to factorization of
functions.

Note that for a given open set V ⊆ Rn, any analytic function f ∶ V → R can be decomposed as

f (𝜉) = N(𝜉, 𝜙1(𝜉), … , 𝜙𝜏(𝜉))
D(𝜉, 𝜙1(𝜉), … , 𝜙𝜏(𝜉))

, ∀𝜉 ∈ V, (22)

where 𝜉 is the indeterminate of f , N, and D are polynomial maps: Rn+𝜏 → R and {𝜙i ∶ V → R}𝜏i=1 are analytic functions.
If (22) holds, we will say that f is rational w.r.t. {𝜙i}𝜏i=1. Note that if the functions {𝜙i}𝜏i=1 are algebraically independent
and f is rational w.r.t. to {𝜙i}𝜏i=1, then there is a unique pair of co-prime polynomials (N,D) which satisfies (22).

Definition 5 (Factorization). Consider a given open set V ⊆ Rn and an analytic function f ∶ V → R, rational w.r.t. some
analytic {𝜙i}𝜏i=1 in terms of (22). Under {𝜙i}𝜏i=1, factorization of f with respect to the first m variables is a tuple
({ri ∶ V → R}m

i=1, s ∶ V → R) of analytic functions such that ri = Mi∕D and s = S∕D in terms of (22) with {Mi}m
i=1, D and S

being polynomials in n + 𝜏 variables X1, … ,Xn+𝜏 such that

N = M1X1 + · · · + MmXm + S, (23)

and, for all i ∈ I
m
1 , Mi does not depend on {Xl}m

l=i+1 and S does not depend on {Xl}m
l=1.

The polynomials {Mi}m
i=1 are the result of the division of N by {Xl}m

l=1 and S is the remainder of this division, in the
sense of Reference 31(theorem 3, pp. 61-62). As {Xl}m

l=1 are monomials, a simplified form of the algorithm described in
Reference 31 is available to compute the factorization (see Algorithm 1 later). Note that if f is rational with respect to
{𝜙i}𝜏i=1, then a factorization ({ri}m

i=1, s) with respect to the first m variables always exists in the form of f (𝜉) =
∑m

i=1ri(𝜉)𝜉i +
s(𝜉). This factorization depends on {𝜙i}𝜏i=1, that is, different choices of these functions will lead to different factorizations,
the consequences of which will be discussed in Section 3.3.

Introduce the selection matrix§ R ∈ R2nx×2nx , which rearranges the arguments of Γnx(𝜁) ∶ (Y0 × U0)nx → Y0 such
that Γnx(R𝜉) ∶ Y

nx
0 × U

nx
0 → R is equivalent with Γnx . Formally this means that for 𝜂1, … , 𝜂nx ∈ Y0 and 𝜐1, … , 𝜐nx ∈

U0, 𝜁 =
[
𝜂1 𝜐1 … 𝜂nx 𝜐nx

]
= R𝜉 where 𝜉 =

[
𝜂1 … 𝜂nx 𝜐1 … 𝜐nx

]
. We identify the resulting function as Γnx ◦ R.

Furthermore, consider a set of functions {fi ∶ Wl → R}𝜏i=1, where W ⊆ Rn is not necessarily open. The matrix T ∈ Rm×n,
m ≤ n, is called the selection matrix of the essential support of {fi}𝜏i=1 under W, if T has full row rank, and the functions
{fi(𝜁1, … , 𝜁l)}𝜏i=1 with 𝜁j ∈ W depend only¶ on T𝜁j. For example, if f ∶ R4 → R depends only on its first and third argu-

ments, then T =
[

1 0 0 0
0 0 1 0

]
is a selection matrix of the essential support of f under R4, while T =

[
1 0

]
is the selection

matrix under R2. If T is a selection matrix for the essential support for {fi}𝜏i=1, then T−1 = T⊤ is a selection matrix such
that T ⋅ T−1 = I and we can identify the functions {fi}𝜏i=1 with the functions {fi ◦ T−1}𝜏i=1. Note that while the former are
functions of n ⋅ l variables, the latter have m ⋅ l ≤ n ⋅ l variables.

§A selection matrix contains zeros and a single element 1 in each row.
¶∀
{
𝜁
(1)
j , 𝜁

(2)
j ∈ W

}l
j=1 and ∀i ∈ I𝜏1, 𝜁 (1)j − 𝜁

(2)
j ∈ ker T for all j ∈ Il

1 ⇒ fi(𝜁 (1)1 , … , 𝜁
(1)
l ) = fi(𝜁 (2)1 , … , 𝜁

(2)
l ) for all i ∈ I𝜏1
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Theorem 1 (LPV embedding, simp. observability form). Assume that (9) is locally uniformly observable on (U0,X0,Y0)
with observability function Ψ. Furthermore, assume that there exists a set of analytic functions {𝜙i ∶ Y

nx
0 × U

nx
0 → R}𝜏i=1 such

that the map Γnx ◦ R in (20) is rational with respect to {𝜙i}𝜏i=1. Let
(
{ri}

nx+1
i=1 , s

)
be a factorization of Γnx ◦ R with respect

to the first nx + 1 variables. If s = 0, that is, factorization is possible without a remainder and T is the essential support of
{ri ◦ R−1}nx+1

i=1 under Y0 × U0, then the LPV-SS representation (8) with

p = T[y⊤ u⊤]⊤, (24a)

{𝛼i ∶= ri+1 ◦ R−1 ◦ T−1}nx−1
i=0 , 𝛽0 ∶= rnx+1 ◦ R−1 ◦ T−1, (24b)

and scheduling region P = T(Y0 × U0) satisfies

ℭo
SS ⊆ 𝜋p𝔅o

SS, (24c)

where

𝜋p𝔅o
SS =

{
(u, x, y) ∈ nx(R,U0 × X0 × Y0)|∃p ∈ nx(R,P),∃z ∈ nx(R,Y

nx
0 ) such that (5a–b) hold

while x = Ψ
(

z,u, … ,
dnx

dtnx
u
)}

,

and

ℭo
SS =

{
(u, x, y) ∈ nx(R,U0 × X0 × Y0) such that (9a–b) hold

}
.

In terms of Theorem 1, the set of all (U0 × X0 × Y0) admissible solutions of (9) can be embedded into the solution set
of an LPV-SS representation and (24a) gives a direct selection of the scheduling variables under the factorization w.r.t.
{𝜙i}𝜏i=1.

Proof. Consider a (U0 × X0 × Y0) admissible solution (u, x, y) of (9) and invoke the definitions (11). Let 𝜉 = [z⊤ v⊤]⊤ and

𝜁 =
[[

y
u

]
,

d
dt

[
y
u

]
, … ,

dnx−1

dtnx−1

[
y
u

]]
. Notice that 𝜁 = R𝜉 and 𝜉 = R−1𝜁 . Introduce P and P−1 which are nx-times block diago-

nal matrices of T and T−1, respectively. Notice that PP−1PR𝜉 = PR𝜉 and hence P(R𝜉 − P−1PR𝜉) = 0. From the definition
of the selection matrices it follows that

ri ◦ R−1(R𝜉) = ri ◦ R−1(P−1PR𝜉) = ri ◦ R−1 ◦ T−1(PR𝜉).

Define p̃ = [y⊤ u⊤]⊤. Notice that

PR𝜉 = P𝜁 =
[
(Tp̃)⊤ … dnx−1

dtnx−1 (Tp̃)⊤
]⊤

=
[

p⊤ … dnx−1

dtnx−1 p⊤

]⊤
.

Hence,

ri(𝜉) = ri ◦ R−1 ◦ T−1(PR𝜉) =

{
𝛼i−1 ⋄ p, i ∈ I

nx
1 ;

𝛽0 ⋄ p, i = nx + 1.

From the discussion above and using d
dt

zi = zi+1 for i = I
nx−1
1 it follows that

dnx

dtnx
znx = Γnx

([
y
u

]
, … ,

dnx−1

dtnx−1

[
y
u

])
=

nx∑
i=1

ri(𝜉)zi + rnx+1(𝜉)u =
nx−1∑
i=0

(𝛼i ⋄ p)zi+1 + (𝛽0 ⋄ p)u. (25)

Hence, (u, z, y, p) is a solution of the LPV-SS representation (8) defined in the statement of the theorem. Moreover, since
Ψ is a (U0 × X0 × Y0) observability function and (25) holds, x = Ψ

(
z,u, … ,

dnx−1

dtnx−1 u
)

. ▪
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Algorithm 1. Factorization

Require: N(X1,… ,Xn+𝜏),D(X1,… ,Xn+𝜏), {𝜙i}𝜏i=1, m ≤ n
S ← N.
for k ← m ∶ 1 do

represent S as
∑

(i1,…,in+𝜏 )∈I
𝛾i1,…,in+𝜏 Xi1

1 · · ·Xin+𝜏
n+𝜏 for a finite index set I ⊆ Nn+𝜏 .

Mk ←
∑

(i1,…,in+𝜏 )∈I,ik≥1 𝛾i1,…,in+𝜏

Xi1
1 ···Xin+𝜏

n+𝜏

Xk
.

S ← S − MkXk.
end for
ri(𝜉) ←

Mi(𝜉,𝜙1(𝜉),…,𝜙𝜏 (𝜉))
D(𝜉,𝜙1(𝜉),…,𝜙𝜏 (𝜉))

, s(𝜉) ← S(𝜉,𝜙1(𝜉),…,𝜙𝜏 (𝜉))
D(𝜉,𝜙1(𝜉),…,𝜙𝜏 (𝜉))

, 𝜉 ∈ V.

return
(
{ri}m

i=1, s
)
.

In order to make Theorem 1 applicable, we need an algorithm to compute the factorization of the function Γnx ◦ R

on V = Y
nx
0 × U

nx
0 with respect to {𝜙i ∶ V → R}𝜏i=1. Let N and D be such polynomials that Γnx ◦ R can be written as (22).

Then, Algorithm 1, which takes N and D and {𝜙i}𝜏i=1 as parameters, returns a factorization ({ri}m
i=1, s) of Γnx ◦ R with

respect to the first m = nx + 1 variables, that is,
{

zi = di

dti y
}nx

i=1 and u.
Theorem 1 indicates that it is possible to embed NL systems into LPV-SS representations in a systematic way. Further-

more, it characterizes an LPV embedding in terms of a multi-path linearization which resembles feedback linearization
of NL systems. However, in feedback linearization, a virtual input signal is introduced so that the transformed system
becomes LTI. In contrast, in the proposed LPV approach, a set of virtual variables, denoted by p, are constructed which
result in a varying linear relationship. Thus, the obtained LPV-SS representation is useful to develop controllers that can
shape the closed-loop behavior unrestricted or have better robustness than with an LTI target behavior. Furthermore,
p is selected to be state-independent (in contrast with the common NL to LPV conversion techniques) meaning that in
practice, the LPV controller designed for this model can be potentially directly applied in a real-world system without
the need of a scheduling observer (see Section 3.5 for a detailed discussion). Furthermore, the dimension of p is reduced
by considering the essential support of {ri}

nx+1
i=1 . On the other hand, Theorem 1 guarantees the embedding and hence the

validity of the LPV representation only for those state trajectories x of the NL system which remain in X0 and for those
inputs u which remain in U0. Hence, when designing controllers using the LPV-SS form, one must ensure that u(t) ∈ U0
and x remains in X0. For the latter, it is enough to ensure that the state z of the LPV-SS model remains in Y

nx
0 . Otherwise,

the LPV-SS representation of the NL system is no longer valid.

3.3 Choice of the scheduling variable

Although Theorem 1 gives a straightforward formulation of the LPV-SS representation of (9) with a unique choice of p,
one may consider projections of this variable to simplify the resulting dependency structure of (9) as follows:

• Full dynamic dependency: (24) results in a possible dynamic dependence of (4) on p = T
[
y u

]⊤ with P = T(Y0 × U0) ⊆
Rm, m ≤ ny + nu, characterized by rational combinations of the chosen {𝜙i}𝜏i=1. Although such a choice is tempting
from the theoretical and even identification point of view, as it minimizes the conservativeness of the embedding,
it results in models which are difficult for control design. Current techniques are only able to handle rational static
dependence on p.

• Rational dependence: Using the “minimal” scheduling choice characterized by Theorem 1, it is possible to introduce a
so-called scheduling map 𝜇:

p = 𝜇 ⋄ (y,u) =
[
T
[
y u

]⊤
𝜙1

(
T
[
y u

]⊤
, … ,

dnx−1

dtnx−1 T
[
y u

]⊤) … 𝜙𝜏

(
T
[
y u

]⊤
, … ,

dnx−1

dtnx−1 T
[
y u

]⊤)]⊤
. (26)

Hence, by increasing dim(p) to m + 𝜏, where m is the number of rows in T, the dynamic nature of the dependence
can be hidden into 𝜇 and the p-dependence of (4) is reduced to be static rational. This is desirable for control and
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identification as 𝜇 can be applied on the measured values of (u, y) to compute p. Note that increasing the dimensions
of p leads to more conservatism as 𝜋p𝔅o

SS grows with every hidden relation in 𝜇.
• Affine dependence: The previous procedure can also be applied to hide even the polynomial dependence resulting from

the above mentioned procedure by constructing a map p = 𝜇 ⋄ (y,u) which, by substituting it to (24b), results in an
affine dependence of (4) on p. While this is tempting to simplify control synthesis based on such an embedding, it also
maximizes the conservativeness of 𝜋p𝔅o

SS.

Note that computation of the analytic map Γnx requires inversion of functions, and hence in general, it is not guar-
anteed that it has a closed form. While theoretically this does not hinder the application of Theorem 1, it makes the
calculation of the LPV model described in Theorem 1 far from trivial. In principle, what is required for Theorem 1 is not
an analytic expression for Γnx , but an expression for the factorization of Γnx . The latter might be computable even if there
is no analytic expression for Γnx .

In conclusion, Theorem 1 reveals that LPV embedding of an NL system is affected by a trade-off between conservative-
ness and the simplicity of dependence of the resulting representation on p. In this respect, it is interesting to observe that
the choice of basis functions {𝜙i}𝜏i=1 does not influence the validity of the transformation nor the controllability or observ-
ability of the resulting model as long as there is no remainder term, that is, s = 0. However, when {𝜙i}𝜏i=1 are absorbed
into 𝜇, their choice has a significant impact on the conservativeness of the embedding. As in system identification, the
choice of 𝜇 is invisible for the estimation procedure and it can seriously affect the outcome of the estimation (persistency
of excitation, correlation with noise, etc.), while in control, robustness of the control law can be analyzed against vari-
ations of the LPV-SS representation, but not against variations in 𝜇. Additionally, in LPV-MPC, hidden relations in 𝜇,
especially dependence on u, can seriously compromise the meaningfulness of the resulting optimization problem; hence,
in principle, control design and LPV model development, in terms of the choice of 𝜇 should be seen as a joint process, see
References 23,32.

3.4 Handling the remainder term

Theorem 1 deals with the case when s = 0, that is, Γnx can be factorized without a remainder. Suppose that the condi-
tions of Theorem 1 hold, but s ≠ 0. In this case, we can still represent the solutions of (9) by solutions of an LPV system
(similarly to Theorem 1), but the resulting representation will not be linear due to the extra p-dependent affine term
𝛾 ∶= s ◦ R−1 ◦ T−1. This term is undesirable both in LPV control synthesis and identification as the whole LPV frame-
work builds upon the assumed linearity of the system description. As this phenomenon is not uncommon in applied LPV
control, we collected here the possible strategies to deal with affine terms:

• Virtual input: An input-disturbance signal d ≡ 1 is introduced to incorporate the affine term into the B matrix:

B̃ ⋄ p =

⎡⎢⎢⎢⎢⎢⎣

0 0
⋮ ⋮

0 0
(𝛽0 ⋄ p) (𝛾 ⋄ p)

⎤⎥⎥⎥⎥⎥⎦
with new input:

[
u
d

]
.

Then, considering d as a time-varying disturbance with an 2 norm bound of 1, optimal control synthesis or MPC
control can be conveniently applied. Although this strategy changes the IO partition of the system and it increases the
conservativeness of the embedding, it leads to a complete representation of the original NL behavior.

• Ignored in the LPV “representation” of the system behavior and during control synthesis one of the following choices
are applied
– The designed controller is augmented with a feedforward path to compensate for 𝛾 during control implementation,

see References 33,34.
– Input disturbance rejection is considered as a control objective.

• Enforced factorization: 𝛾 is rewritten as 𝛾̃

u
u or 𝛾̃

zj
zj and added to 𝛽0 or 𝛼j, respectively. The associated u or zj should never

approach close to the origin during operation, otherwise loss of stability might occur, see References 6,22 for more
details.
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3.5 Implementation of the scheduling

The introduced multi-path feedback realization has resulted in a systematic LPV conversion method where in terms of
(25), computation of the p-dependence of the resulting LPV-SS representation (4) (irrespective how p is extracted via 𝜇)
can potentially need nx − 1 time derivatives of (y,u). One can argue that computation of such derivatives based on noisy
measurements can be difficult in practice. However, as we intend to show, such construction of p in fact opens up novel
implementation possibilities of LPV control and identification in practice, and in principle it is not worse than scheduling
constructions relaying on the state.

Control design: If an LPV controller  is synthesized for the LPV model resulting from the proposed conversion
scheme, then through its dependence on p, implementation of  will require the computation of p dependent on the
derivatives of (y,u). Derivatives of u correspond to derivatives of the output of , which can be obtained by an extended
state realization of . Regarding derivatives of y, the following options are available:

• Direct measurement: In many applications, low order derivatives of the output are directly measurable. For mechatronic
systems, the underlying kinematic and electric IO relationships are 2nd-order in nature and often measurements of
the involved variables such as velocity and acceleration are available (e.g., via IMUs, various designs of gyroscopic,
piezoelectric, optical, magnetic, radar, and ultrasonic sensors). Rate measurements are also not uncommon in many
thermal, hydraulic, chemical, and biological systems especially for flow variables and, by changing the state basis, an
equivalent representation can be found where the states can qualify as derivatives of the actual measured output of
such systems.

• Numerical differentiation and filtering methods: In case the required derivatives of y are not directly measurable, numer-
ical differentiation can be applied together with filtering methods to mitigate the effect of noise and approximation
error on the computation of the derivatives (see e.g., References 35-40).

• Observer design: The NL model of the plant dynamics can be transformed to an observability form where the state vari-
ables directly correspond to the derivatives of y up to the relative degree of the system and the rest of the state variables
can be used to compute higher derivatives of y when the derivatives of u are known. This means that derivatives of y
can be estimated by an observer or a Kalman filter as any other state variables. Commonly derivatives of y naturally
appear among the state variables of first-principles based plant models, like position, velocity, acceleration in motion
equations of mechanical systems.

Identification: When identification of the resulting LPV model is considered in continuous time, computation of
time-derivatives of (y,u) in either frequency domain or time-domain, in prediction or simulation, are required by most
identification methods (subspace methods, prediction-error minimization, instrumental variables, etc.). Therefore, han-
dling derivatives of (y,u) is a natural step in many cases, only the means of obtaining them differs which ranges from
numerical differentiation and filtering to multiplying the frequency spectrum with i𝜔. Note that for LPV system identi-
fication, non-state-dependent constructions of p are advantageous in general, because due to the absence of the system
model, whose estimation is the objective of the identification approach, computation of p w.r.t. a non-directly measured
state variables is not possible.

Effect of measurement noise: Note that effect of measurement noise of (y,u) influences the computation of p
whether the elements of p are directly measured, obtained via numerical differentiation and filtering or estimated via an
observer. The resulting noise or reconstruction error on p is highly dependent on the actual system and applied sensors
hence the resulting tradeoffs between the listed computation schemes are application specific. For example, in case of
high-resolution encoders, computation of high-order output derivatives via numerical differentiation is feasible, while
for chemical systems, direct measurement of composition has relatively high noise and requires sensor fusion and appro-
priate filtering to be used as a scheduling. Hence for the latter case, observer based estimation of p is often required.
Analyzing that which computational approach to be applied for reconstruction of p and how the resulting error influ-
ences the outcome of applied LPV control and identification based on the proposed conversion approach is beyond the
scope of the current article. Measurement noise or reconstruction error of p influences application of all LPV control
and identification methods in general, irrespective of how p is chosen. Despite of an increasing research effort (see e.g.,
References 41-43), there is no comprehensive performance analysis framework available for general nonlinear systems
regarding these effects.

Comparison to existing methods: Alternative conversion methods to LPV form often choose state-variables of the
NL model in an ad-hoc manner to be part of p. With such a choice, p is often not measurable and the LPV controller 
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has to be used together with an observer for estimating p. However,  is designed with the assumption that p is known.
Hence, by introducing an observer for estimating p, the stability and performance guarantees of the LPV controller are
lost and nonlinear analysis is required to regain them. Compared to the case when p is constructed from (y,u) and their
measurable derivatives, such as with the proposed method, this problem is avoided. In case specific components of p
are computed with numerical differentiation, the introduced numerical noise on p can be well characterized in view of
the measurement noise and can be directly taken into account of robustness analysis of the resulting closed-loop behav-
ior. In case of relatively high noise and high-order derivatives of y, the proposed construction of p loses its advantage
over state-dependent scheduling construction. However, in such cases, one can design an observer for an observabil-
ity form of the plant dynamics by which direct estimation of high-order derivatives of y becomes available. As for any
NL state-representation, the state can be only successfully tracked in X0 if the representation is locally-observable in
(U0,X0,Y0), hence the observability form is isomorph with the original system model in this region and there is no theo-
retical advantage in designing an observer for the original state or the state of the observability form which corresponds
to the derivatives of y. Of course, one can argue that delay and performance loss can also be introduced with numeri-
cal differentiation and filtering methods or with the observer design in case derivatives of y are not directly measurable.
However, such delays and performance losses also occur in case of tracking state-dependent scheduling variables. When
compared to nonlinear control, the same choice occurs in feedback linearization when one can choose between using
derivatives of y or the states x of the original system representation to calculate the linearizing feedback. The proposed
methodology in this article aims at providing systematic options beyond using only x in the scheduling map and provides
more attractive scheduling construction for systems where low order derivatives of y are directly measurable or can be
accurately estimated.

3.6 Computation of 𝚪nx

For the sake of completeness, the construction procedure of Γnx , which is used in Theorem 1 and relies on known NL
system theory concepts, is presented next.

Definition 6 (Relative degree12). The NL-SS system representation (9) is said to have relative degree nr at a point x0 ∈ X

if there exists an open subset x0 ∈ Xr ⊆ X such that

(i) LgLi
f h(x) = 0, ∀x ∈ Xr, i < nr − 1,

(ii) LgLnr−1
f h(x0) ≠ 0,

where Li
f h(⋅) stands for the ith Lie-derivative of h w.r.t. f .

Note that not every NL system represented in the form of (9) has a relative degree nr at all. Neither is it true that
the same nr qualifies for all x0 ∈ X. We refer to Reference 12 for more in depth discussion on this topic. In the sequel,
it is assumed that x0 is chosen such that the relative degree of (9) is well-defined at this point. Next, we consider the
construction of Γnx in a neighborhood of x0 in two cases: when nr of (9) at x0 equals nx and when nr < nx.

3.6.1 Case of nr = nx

Consider a solution (u, x, y) of (9), such that for all t ∈ R, x(t) ∈ Xr (see Definition 6). In this case,

z1 = y = h(x) = Φ0(x), (27a)

⋮

znx =
dnx−1

dtnx−1 y = Lnx−1
f h(x) = Φnx−1(x), (27b)

while

dnx

dtnx
y = Lnx

f h(x) + LgLnx−1
f h(x)u = Φnx(x,u), (27c)
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that is, only the nth
x derivative of y depends on u. This gives

z = Φ(x) =
[

h(x) Lf h(x) … Lnx−1
f h(x)

]⊤
, (28)

hence the local inverse of Φ provides the observability function Ψ in Definition 3 to construct Γnx . Recall12(lemma 4.1.1,p. 140)

that if the relative degree nr of (9) is nx at x0, then the gradients ∇h(x0), … ,∇Lnx−1
f h(x0) are linearly independent. Hence,

in this case, the Jacobian of Φ(x0) is invertible based on the inverse function theorem:44

Lemma 1 (Inversion of Φ). There exist open sets X0 ⊆ Xr and Y0 ⊆ R, such that x0 ∈ X0, Φ(X0) = Y
nx
0 and Φ|X0 ∶ X0 →

Y
nx
0 , the restriction of Φ to X0, is an analytic diffeomorphism, that is, the analytic inverse Φ† of Φ|X0 exists.

By a slight abuse of notation, we will identify Φ in the sequel with its restriction to X0, that is, we will view it as
a diffeomorphism Φ|X0 ∶ X0 → Y

nx
0 . Let U0 be an arbitrary open subset of U. We can define the observability map Ψ ∶

(Y0 × U0)nx → X0, satisfying Definition 3, by

Ψ

([
𝜂1

𝜐1

]
, …

[
𝜂nx

𝜐nx

])
= Φ† (𝜂1, … , 𝜂nx

)
, (29)

for all 𝜂1, … , 𝜂nx ∈ Y0 and 𝜐1, … , 𝜐nx ∈ U0. Note that, in this case, Ψ does not depend on {𝜐i}
nx
i=1. Hence, by the

construction in Theorem 1, Γnx results in

Γnx

([
𝜂1

𝜐1

]
, … ,

[
𝜂nx

𝜐nx

])
= Lnx

f h(Φ†(𝜂1, … , 𝜂nx)) + LgLnx−1
f h(Φ†(𝜂1, … , 𝜂nx))𝜐1. (30)

3.6.2 Case of nr < nx

Computing z1 = y, … , znr =
dnr−1

dtnr−1 y follows as in (27), but

znr+1 = dnr

dtnr
y = Lnr

f h(x) + LgLnr−1
f h(x)u = Φnr(x,u). (31)

Continuing the construction of the map gives that

znr+2 = d
dt

znr+1 = Lnr+1
f h(x) + LgLnr

f h(x)u + Lf LgLnr−1
f h(x)u + L2

gLnr−1
f h(x)u2 + LgLnr−1

f h(x) d
dt

u = Φnr+1

(
x,u, d

dt
u
)
. (32)

Repeating this operation recursively results in

d
dt

znr+l = Φnr+l−1

(
x,u, … ,

dl−1

dtl−1
u
)
, (33)

for 1 ≤ l ≤ ns + 1 with ns = nx − nr − 1. Compared to the previous case, these maps now depend on u, … dns

dtns
u. Hence,

z = Φ
(

x,u, … ,
dns

dtns
u
)

=
[
Φ0(x) … Φnr−1(x) Φnr(x,u) … Φnx−1

(
x,u, … ,

dns

dtns
u
)]⊤

, (34)

and the local inverse of Φ provides Ψ in Definition 3 to construct Γnx . We can now state the following lemma presenting
the conditions for local invertibility of Φ.

Lemma 2 (Φ inversion under nr < nx). Assume full rank of ∇Φ(x0,u0, … u0), where ∇Φ is the Jacobian of Φ w.r.t. x.
There exist open sets x0 ∈ X0 ⊆ Xr, u0 ∈ U0 ⊆ R, Y0 ⊆ R, and an analytic function Φ† ∶ Y

nx
0 × U

ns+1
0 → X0, such that for all

𝜂 ∈ Y
nx
0 , 𝜐 ∈ U

ns+1
0 and x ∈ X0:

𝜂 = Φ(x, 𝜐) ⇔ x = Φ†(𝜂, 𝜐).
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Lemma 2 follows from the implicit function theorem44 applied to 𝜂 − Φ(x, 𝜐). Using Φ†, we can define the function
Ψ ∶ (Y0 × U0)nx → X0 similarly as in (29) which satisfies Definition 3 by construction. Then, we can proceed with the
construction of Γnx as in Definition 1, except that Γnx will not depend on the last nr components of Unx and hence it can
be defined on Y

nx
0 × U

ns+1
0 instead of Y

nx
0 × U

nx
0 .

The price to pay for a system with relative degree less than its order is that the resulting LPV model through p depends
on u and its derivatives up to order ns. On the other hand, all scheduling signals are potentially directly computable form
measured variables without requiring the original states of the system as discussed in Section 3.5.

4 CONVERSION TO THE FULL OBSERVABILITY FORM

One of the shortcomings of the conversion procedure of Section 3 is that in case of relative degree nr < nx, the conversion
results in an LPV model “depending” on

{ dl

dtl u
}ns

l=0. This dynamic dependence on u can be undesirable as it increases the
complexity of the resulting model. One can say that this is the price to be paid for trying to use only 𝛽0 to express the
relations involving u. One way to overcome this is to assume that a part of the state is available for measurement. In that
case, parts of x become components of p and they are used to replace the derivatives of u in the dependency structure.

To gain some intuition, consider (9) with a well-defined relative degree nr < nx at a point x = x0 and the transformation
map Φ from (28). If (u, x, y) is a solution of (9) such that for all t ∈ R, x(t) ∈ Xr, then, even in case of nr < nx, it is possible
to use z(t) = Φ(x(t)) as the state of the LPV model, constructed as

z =
[

y … dnr−1

dtnr−1 y Lnr
f h(x) … Lnx−1

f h(x)
]
. (35)

Notice that

d
dt

znr+l = Lnr+l
f h(x)

⏟⏞⏟⏞⏟
znr+l−1

+ LgLnr+l−1
f h(x)u, (36)

for 1 ≤ l ≤ ns + 1. In terms of Lemma 1, there exist open sets x0 ∈ X0 ⊆ Xr, Y0 ⊆ R, such that Φ|X0 ∶ X0 → Y
nx
0 is an

analytic diffeomorphism with analytic inverse Φ†. Hence, for x(t) ∈ X0, ∀t ∈ R and each l, we can write the u-related
terms in (36) as

LgLnr+l−1
f h(x)u = LgLnr+l−1

f h(Φ†(z))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛽ns+1−l

u. (37)

This implies that the last state equation reads as

d
dt

znx = Lnx
f h(Φ†(z))

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Γnx (z)

+ LgLnx−1
f h(Φ†(z))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛽0(z)

u. (38)

Intuitively, we want to factorize Γnx(z), that is, write it as Γnx(z) =
∑nx−1

i=0 𝛼i(z)zi+1. As a result, we obtain
Equation (5a–5b) where {𝛼i}

nx−1
i=0 and {𝛽i}

ns
i=0 are dependent on z. Using that z satisfies (35), which is dependent on{ dl

dtl y
}nr−1

l=0 and x, we arrive at an LPV model by taking# p as a linear projection of [y⊤ x⊤]⊤.
Now, we present the above procedure more formally. Define the maps Γnx ∶ Y

nx
0 → R and {𝛽i ∶ Y

nx
0 → R}nx−1

i=0 as

Γnx(𝜁) = Lnx
f h(Φ†(𝜁)), (39a)

#In theory, it is possible to consider p = x. However, this choice results in a scheduling region as large as X and the resulting LPV model will be overly
conservative. Hence, it is a better strategy to include y into p since the derivatives of y and x are closely related. We would then hope that in the final
LPV model, most of the state components disappear from p.
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𝛽 i(𝜁) =

{
LgLnx−i−1

f h(Φ†(𝜁)) i ≤ ns;

0 otherwise;
(39b)

for all 𝜁 ∈ Y
nx
0 . Assume that there exists a set of analytic functions {𝜙i}𝜏i=1 on Y

nx
0 such that the map Γnx in (39a) is rational

with respect to {𝜙i}𝜏i=1. Let
(
{ri}

nx
i=1, s

)
be the factorization of Γnx with respect to the first nx variables. Define the functions

{𝛼i ∶ Y
nx
0 → R}nx−1

i=0 as 𝛼̃i = ri+1. Define Ψ ∶ Y
nr
0 × X0 → Y

nx
0 as follows

Ψ(𝜂, x) =
[
𝜂⊤ Lnr

f h(x) · · · Lnx−1
f h(x)

]⊤
, (40)

for all 𝜂 ∈ Y
nr
0 , x ∈ X0. Notice that 𝜁 = Ψ(𝜂, x), if (𝜂, x) ∈ V = Y

nr
0 × X0. Define now 𝛼̂i ∶ V → R and 𝛽 i ∶ V → R by

𝛼̂i(𝜂, x) = 𝛼̃i(Ψ(𝜂, x)), 𝛽 i(𝜂, x) = 𝛽 i(Ψ(𝜂, x)),

for all 𝜂 ∈ Y
nr
0 , x ∈ X0. Let T1 ∈ R such that for any x ∈ X0, T1 is the selection matrix of the essential support of the

functions {𝜂 → 𝛼i(𝜂, x), 𝜂 → 𝛽i(𝜂, x)}nx−1
i=0 under Y0 (essential support w.r.t. the variables {𝜂i}

nr
i=1). Similarly, let T2 ∈ Rm2×nx

with m2 ≤ nx be the selection matrix of the essential support of the functions {𝛼i, 𝛽i}
nx−1
i=0 under X0 w.r.t. x. If T1 is zero,

then let T = [0 T2] and P = [0m2×nr T2]; otherwise, let T = diag(1,T2) and P = diag(Inr×nr ,T2). Using the notation and
assumptions above, we can now state the following theorem.

Theorem 2 (LPV embedding, full observability form). Under the conditions of Theorem 1, if s = 0, that is,
factorization of Γnx is possible without a remainder, then the LPV-SS representation (8) with coefficient functions
{𝛼i ∶= 𝛼̂i ◦ P−1, 𝛽i ∶= 𝛽 i ◦ P−1}nx−1

i=0 , with

p = T[y⊤ x⊤]⊤, (41)

and P = T(Y0 × X0) satisfies (24c) where

𝜋p𝔅o
SS =

{
(u, x, y) ∈ nx(R,U0 × X0 × Y0)|∃p ∈ nr(R,P),∃z ∈ nx(R,Y

nx
0 ) s.t. (5a–b) hold, while x = Φ†(z)

}
. (42)

Proof. The proof of Theorem 2 follows the same line of reasoning as Theorem 1 and hence it is skipped. Note that the
construction of Φ implies that {𝛼i ⋄ p, 𝛽i ⋄ p}nx−1

i=0 will not depend on the derivative of x. ▪

In contrast with the procedure in Section 3, p here does not include u; however, part of it depends on the availability
of the original states of the NL system.

5 EXAMPLES

First, two academic examples are presented to illustrate the properties of the conversion procedures discussed in the
previous sections. In the first one, the relative degree is equal to the order of the system while in the second one, it is
less. These examples are followed by the examples of a magnetic levitation system and an unbalanced disc system. In the
latter two examples, an NL model derived from first principle laws is converted into an LPV-SS representation. In the last
example, we also show empirical validation of the model conversion both in terms of comparing responses of the real
system with its LPV model and also how an LPV controller designed based on the converted model performs.

5.1 Conversion under full relative degree

Consider a SISO NL system model (9) with nx = 3 and

f (x) =
⎡⎢⎢⎢⎣

0
x1 + x2

3

x2 + x2x3

⎤⎥⎥⎥⎦ , g(x) =
⎡⎢⎢⎢⎣
x2

2 + x2
3 + 1

0
0

⎤⎥⎥⎥⎦ , h(x) = x3.
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As commonly done in practice, one could pick x3 and x2 as scheduling variables for LPV conversion to the form of (5);
however, that would require accurate measurements or estimates of these state variables if an LPV controller was to
be designed and implemented based on such a converted model. Another problem would be the validity of this LPV
conversion in terms of the represented solutions of the original NL model: it would not be clear under which condition
the obtained LPV model is a valid representation of the NL model. So, let us see what the proposed method in this article
results in. For this system, we have

Lgh(x) = 0, LgLf h(x) = 0,
LgL2

f h(x) = (x2
2 + x2

3 + 1)(x3 + 1),

which gives that the relative degree is nr = 3 = nx at each x0 not belonging to the hyperplane X
†
0 = {x ∈ R3|(x2

2 + x2
3 +

1)(x3 + 1) = 0}. Select x0 =
[
0 0 0

]⊤ and Xr to be any open subset of R3 ⧵ X
†
0. For the sake of simplicity, take Xr =

(−1, 1)3. Computing (28) gives z = Φ(x) where

Φ(x) =
[
x3 x2 + x2x3 (x3 + 1)(x2

2 + x2
3 + x1)

]⊤
.

The Jacobian of Φ is non-singular on Xr, in fact Φ is an analytic diffeomorphism on Xr and its inverse is given by

Φ†(𝜂) =
[ (𝜂3−(𝜂1+1)3(𝜂2

2+𝜂
2
1 (𝜂1+1)2))

(𝜂1+1)
𝜂2

𝜂1+1
𝜂1

]⊤
.

Let Y0 = (−1, 1), which is an open subset of R and satisfies Y
3
0 ⊆ Φ(Xr) and set X0 = Φ†(Y3

0). Let U0 be an arbitrary open
subset of R containing 0. The resulting Γnx function, see (30), is given by

Γnx(𝜁) =
𝜂2(2𝜂1 + 3𝜂3 + 3𝜂1𝜂3 + 6𝜂2

1 + 6𝜂3
1 − 2𝜂2

2 + 2𝜂4
1) + (𝜂1 + 1)

(
𝜂1(𝜂1 + 1)2 + 𝜂2

2
)
𝜐1

(𝜂1 + 1)2 ,

where 𝜁 =
[
𝜂1 𝜐1 … 𝜂3 𝜐3

]
. Factorization of this rational function is implemented by applying Algorithm 1 resulting in

r1(𝜁) = 0, r2(𝜁) = −−2𝜂1+6𝜂2
1−6𝜂3

1−2𝜂2
2+2𝜂4

1

(𝜂1+1)2
,

r3(𝜁) =
3𝜂2
𝜂1+1

, r4(𝜁) = (𝜂1 + 1)
(
𝜂1 +

𝜂2
2

(𝜂1+1)2

)
,

with s = 0. Hence,

R−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, T =

[
1 0

]
, T−1 =

[
1
0

]
,

Then, {𝛼i = ri+1 ◦ R−1 ◦ T−1}2
i=0, and 𝛽0 = r4 ◦ R−1 ◦ T−1 are defined on Y2

0 and with the resulting p = y = T
[
y u

]⊤:

𝛼0 ⋄ p = 0, 𝛼1 ⋄ p = −−2p+6p2−6p3+2p4−2ṗ2

(p+1)2
,

𝛼2 ⋄ p = 3ṗ
p+1

, 𝛽0 ⋄ p = (p + 1)
(

p + ṗ2

(p+1)2

)
.

The scheduling region is P = T(Y0 × U0) = Y0 = (−1, 1). The selection of the scheduling signal p = y, leads to the con-
verted LPV model (8) which achieves embedding of the NL behavior into the solution set of the LPV-SS representation
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according to Theorem 1. It is worth to mention that for this system with p = y, the converted matrices have only first
order dynamic dependence (dependence on p and ṗ only). As a further simplification, in line with Section 3.3, one can
introduce p = 𝜇 ⋄ y =

[
y ẏ

]⊤ which results in rational static dependency of 𝛼0, 𝛼1, 𝛼2, 𝛽0 by increasing the dimension of p,
while taking p =

[
r2 ⋄ y r3 ⋄ y r4 ⋄ y

]⊤ results in an affine, but conservative embedding with 𝛼1 = p1, 𝛼2 = p2, 𝛽0 = p3.

5.2 Conversion under low relative degree

To demonstrate the properties of the procedures presented in Sections 3 and 4, (9) is considered with nx = 3 and

f (x) =
⎡⎢⎢⎢⎣
x2 − 2x2x3 + x2

3

x3

sin(x1)

⎤⎥⎥⎥⎦ , g(x) =
⎡⎢⎢⎢⎣
4x2x3

−2x3

0

⎤⎥⎥⎥⎦ , h(x) = x3.

The system has a relative degree nr = 2 < nx at each x0 not belonging to the hyper-surface X
†
0 = {x ∈ R3| cos(x1)x2x3 = 0}.

Select x0 =
[
0 0 0

]⊤ and let Xr =
(
0, 𝜋

2

)
× (−1, 1) × (−0.5, 0.5). It is clear that Xr is an open subset of R3 ⧵ X

†
0 containing

0. First consider the approach discussed in Section 4 to convert the NL representation to the full observability canonical
form (8). According to (28)

z = Φ(x) =
[
x3 sin(x1) cos(x1)(x2

3 − 2x2x3 + x2)
]⊤
.

The Jacobian of Φ is non-singular on Xr; in fact, Φ is an analytic diffeomorphism on Xr and the inverse map is

Φ†(𝜁) =

[
sin−1(𝜁2)

−𝜁3+𝜁2
1

√
1−𝜁2

2

(2𝜁1−1)
√

1−𝜁2
2

𝜁1

]⊤

.

Let Y
3
0 ⊆ Φ(Xr) be an open set and X0 = Φ†(Y3

0). The resulting Γnx(𝜁) via (39a) is given by

Γnx(𝜁) =
−2𝜁2𝜁3 − 𝜁2𝜁

2
3 + 2𝜁3

2 𝜁3 + 2𝜁1𝜁2𝜁
2
3 +

(
4𝜁3

1 − 4𝜁2
1 + 𝜁1 + 2𝜁1𝜁2 − 2𝜁2

1 𝜁2
)√

(1 − 𝜁2
2 )3

(2𝜁1 − 1)(𝜁2
2 − 1)

, (43)

while for all 𝜁 ∈ Y
3
0,

𝛽0(𝜁) =
−2𝜁1

(
2𝜁2𝜁

2
3 − 2𝜁2

1 𝜁2𝜁3

√
1 − 𝜁2

2 (4𝜁
2
1 − 4𝜁1 + 1)

√
(1 − 𝜁2

2 )3
)

(2𝜁1 − 1)(𝜁2
2 − 1)

,

𝛽1(𝜁) =
−4𝜁1

(
𝜁3 − 𝜁2

1

√
1 − 𝜁2

2

)
2𝜁1 − 1

, 𝛽2(𝜁) = 0.

Finally, the factorization step is performed for the function Γnx(𝜁) via Algorithm 1 as Γnx is rational in the considered

sense with 𝜙1(𝜁) =
√

1 − 𝜁2
2 , which yields the following functions

r1(𝜁) = 𝛼̃0(𝜁) =
(4𝜁2

1 − 4𝜁1 + 1)
√

1 − 𝜁2
2

(2𝜁1 − 1)(𝜁2
2 − 1)

,

r2(𝜁) = 𝛼̃1(𝜁) =
(−2𝜁1 − 2𝜁2

1 )
√
(1 − 𝜁2)3

(2𝜁1 − 1)(𝜁2
2 − 1)

,

r3(𝜁) = 𝛼̃2(𝜁) =
(−2𝜁2 − 𝜁2 + 2𝜁3

2 + 2𝜁1𝜁2𝜁3)
(2𝜁1 − 1)(𝜁2

2 − 1)
,
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with s = 0. According to (40), computing 𝜁 = Ψ(𝜂, x) gives that 𝜁1 = 𝜂1, 𝜁2 = 𝜂2, 𝜁3 =
√

1 − 𝜂2
2(𝜂

2
1 − 2x2𝜂1 + x2) for all

(𝜂, x) ∈ V = Y2
0 × X0. This results in

T1 = 1, T2 =
[
0 1 0

]
, T =

[
1 0 0 0
0 0 1 0

]
, P =

⎡⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

⎤⎥⎥⎥⎦ .
yielding p =

[
y x2

]⊤ = T
[
y x⊤

]⊤ with P = T(Y0 × X0). The resulting coefficients are

𝛼0 ⋄ p =
2ṗ1

√
1 − ṗ2

1(p
2
1 − 2p2p1 + p2)2 +

(
4p2

1 − 4p1 + 2ṗ1 + 1 − 2p1ṗ1
)√

(1 − (ṗ1)2)3

(2p1 − 1)(ṗ2
1 − 1)

, (44a)

𝛼1 ⋄ p =
(4p2

1 − 4p1 + 1)
√

1 − ṗ2
1

(2p1 − 1)(ṗ2
1 − 1)

, (44b)

𝛼2 ⋄ p =
(−2ṗ1 − ṗ1 + 2ṗ3

1 + 2p1ṗ1

√
1 − ṗ2

1(p
2
1 − 2p2p1 + p2))

(2p1 − 1)(ṗ2
1 − 1)

, (44c)

𝛽0 ⋄ p =
−4(ṗ1(p3

1 − 2p2p1 + p2)p2p1) − 2p1

√
1 − ṗ2

1(1 − 2p2)

(2p1 − 1)(ṗ2
1 − 1)

, (44d)

𝛽1 ⋄ p =
4p2p1

√
1 − ṗ2

1

2p1 − 1
, (44e)

𝛽2 ⋄ p = 0. (44f)

where p ∈ 𝒞∞(R,P).
Consider the conversion procedure introduced in Section 3. The map Φ is determined by

Φ(x,u) =
[

x3 sin(x1) cos(x1)(x2
3 − 2x2x3 + x2 + 4x2x3u)

]⊤
.

Notice that

∇Φ|x=0,u=0 =
⎡⎢⎢⎢⎣
0 0 1
1 0 0
0 1 0

⎤⎥⎥⎥⎦ ,
is full row rank, hence, by Lemma 2, there exist compact open sets 0 ∈ X0 ⊆ Xr = (0, 𝜋

2
) × (−1, 1) × (−0.5, 0.5), Y0 ⊆ R,

0 ∈ U0 ⊆ R, and an analytic mapΦ† ∶ Y
3
0 × U0 → X0, such that 𝜂 = Φ(x, 𝜐) ⇔ x = Φ†(𝜂, 𝜐) for all 𝜐 ∈ U0, 𝜂 ∈ Y

3
0, x ∈ X0.

In this case,

Φ†(𝜂, 𝜐) =

[
sin−1(𝜂2)

−𝜂3+𝜂2
1

√
1−𝜂2

2

(2𝜂1−4𝜂1𝜐−1)
√

1−𝜂2
2

𝜂1

]⊤

.

According to Corollary 1, Γnx with 𝜁 =
[
𝜂1 𝜐1 … 𝜂3 𝜐3

]
is given by:

Γnx(𝜁) =
𝜂2𝜂

2
3−2𝜂1𝜂2𝜂

2
3−2𝜂2𝜂3(𝜂2

2−1)+4𝜐1𝜂1𝜂2𝜂
2
3+4𝜐1𝜂2𝜂3(𝜂2

2−1)+4𝜐2𝜂1𝜂3(𝜂2
2−1)

(𝜂2
2−1)(4𝜐1𝜂1−2𝜂1+1)

+
(4𝜂2

1−4𝜂3
1−𝜂1+16𝜐2

1𝜂
2
1−48𝜐2

1𝜂
3
1+32𝜐3

1𝜂
3
1+2𝜐1𝜂1−2𝜂1𝜂2−16𝜐1𝜂

2
1+24𝜐1𝜂

3
1+4𝜐2𝜂

3
1+2𝜂2

1𝜂2−4𝜐1𝜂
2
1𝜂2)
√

(1−𝜂2
2 )3

(𝜂2
2−1)(4𝜐1𝜂1−2𝜂1+1)

.

(45)
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Then, the factorization step is performed for Γnx with respect to the first 4 variables. Γnx is rational in the considered

sense with 𝜙1(𝜁) =
√

1 − 𝜂2
2, hence the resulting factorization is ({ri}4

i=1, s = 0), where

r1(𝜁) =
(−4𝜂1 − 4𝜂2

1 + 4𝜐2𝜂
2
1)
√

(1 − 𝜂2
2)

3

(𝜂2
2 − 1)(4𝜐1𝜂1 − 2𝜂1 + 1)

, (46a)

r2(𝜁) =
(−2𝜂1 + 2𝜂2

1)
√

(1 − 𝜂2
2)3

(𝜂2
2 − 1)(4𝜐1𝜂1 − 2𝜂1 + 1)

, (46b)

r3(𝜁) =
(4𝜐2𝜂1 − 2𝜂2)(𝜂2

2 − 1) − 2𝜂2𝜂3 − 2𝜂1𝜂2𝜂3

(𝜂2
2 − 1)(4𝜐1𝜂1 − 2𝜂1 + 1)

, (46c)

r4(𝜁) =
4𝜂1𝜂2𝜂

2
3 + 4𝜂1𝜂3(𝜂2

2 − 1) +
√

(1 − 𝜂2
2)3(−4𝜂2

1𝜂2 + 24𝜂3
1 − 16𝜂2

1 + 2𝜂1 + 32𝜐2
1𝜂

3
1 − 48𝜐1𝜂

2
1 − 16𝜐1𝜂

2
1)

(𝜂2
2 − 1)(4𝜐1𝜂1 − 2𝜂1 + 1)

, (46d)

which holds for all 𝜁 ∈ (Y0 × U0)3 and

T = T−1 = I, R−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

due to the full joint essential support of {ri ◦ R−1}nx
i=1. The system is embedded into the LPV-SS form (8), as described in

Theorem 1, with P = Y0 × U0 and {𝛼i}3
i=0, 𝛽0 satisfying

𝛼0 ⋄ p =
(−4p1 − 4p2

1 + 4ṗ2p2
1)
√

(1 − ṗ2
1)3

(ṗ2
1 − 1)(4p2p1 − 2p1 + 1)

, (47a)

𝛼1 ⋄ p =
(−2p1 + 2p2

1)
√

(1 − ṗ2
1)3

(ṗ2
1 − 1)(4p2p1 − 2p1 + 1)

, (47b)

𝛼2 ⋄ p =
(4ṗ2p1 − 2ṗ1)(ṗ2

1 − 1) − 2ṗ1p̈1 − 2p1ṗ1p̈1

(ṗ2
1 − 1)(4p2p1 − 2p1 + 1)

, (47c)

𝛽0 ⋄ p =
4p1ṗ1p̈2

1 + 4p1p̈1(ṗ2
1 − 1) +

√
(1 − ṗ2

1)3(−4p2
1ṗ1 + 24p3

1 − 16p2
1 + 2p1 + 32p2

2p3
1 − 48p2p2

1 − 16p2p2
1)

(ṗ2
1 − 1)(4p2p1 − 2p1 + 1)

, (47d)

for all p ∈ 𝒞∞(R,P). Note that the resulting LPV-SS model has 2nd-order dynamic dependency on p1 = y and only static
dependency on p2 = u. Furthermore, P can be chosen to be any open subset of {(y,u) ∈ R × R|(y2 − 1)(4uy − 2y + 1) ≠ 0}.

5.3 Magnetic levitation system

To show how the proposed methodology performs in practical applications, consider a magnetic levitation system, dis-
cussed in Reference 45, which consists of an iron ball, an electromagnet and a photo diode based position sensor. The
iron ball is levitated by the attractive force of the electromagnet, which is controlled by an applied voltage (input signal).
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T A B L E 1 Physical parameters of the magnetic levitation system

L [H] R [Ohm] M [kg] G [m/s2] 𝜹 [m] Q [Hm]

2.05 27.03 0.357 9.807 0.0078 0.0044

The model of the system can be represented in the form of (9) with

f (x) =

⎡⎢⎢⎢⎢⎢⎣
x2

G − Qx2
3

2M(𝛿+x1)2

x3(2𝛿+x1)(Qx2−R(𝛿+x1)2)
(𝛿+x1)((L+Q)(2𝛿+x1)+Q)

⎤⎥⎥⎥⎥⎥⎦
, g(x) =

⎡⎢⎢⎢⎣
0
0

(𝛿+x1)(2𝛿+x1)
(L+Q)(2𝛿+x1)+Q

⎤⎥⎥⎥⎦ ,

and h(x) = x1 corresponding to nx = 3 together with the parameter values given in Table 1. The control objective for this
system is to keep the distance x1 (the output signal) of the ball from the magnet close to some level 𝛿min ≤ 𝛿 ≤ 𝛿max,
where 𝛿min > 0 corresponds to the minimal distance of the ball from the magnet, while 𝛿max corresponds to the maximum
allowed height of levitation. The system has a relative degree nr = 3 = nx at each x0 not belonging to the hyperplane
X

†
0 = {x ∈ R|𝛿 + x1 = 0}. Note that this is physically always satisfied as x1 must be positive otherwise the ball reaches the

magnet plate. Take Xr = (𝛿min, 𝛿max)3 and select x0 =
[
𝛿 0 2𝛿

√
2GM

Q

]⊤
. Then, (28) is of the form

Φ(x) =
[

x1 x2 G − Qx2
3

2M(𝛿+x1)2

]⊤
.

The Jacobian of Φ is non-singular on Xr:

∇Φ|x=x0 =

⎡⎢⎢⎢⎢⎣
1 0 0
0 1 0
G
𝛿

0 −
√

GQ
2M𝛿2

⎤⎥⎥⎥⎥⎦
.

Hence, there exist open sets x0 ∈ X0 ⊆ Xr, Y0 ⊆ R, such that Φ(X0) = Y
3
0 and the restriction of Φ to X0 is an analytic

diffeomorphism. The inverse map Φ† ∶ Y
3
0 → X0 is

Φ†(𝜂) =
[
𝜂1 𝜂2 (𝛿 + 𝜂1)

√
2M(G−𝜂3)

Q

]⊤
,

for all 𝜂 ∈ Y
3
0. The resulting function Γnx with 𝜁 =

[
𝜂1 𝜐1 … 𝜂3 𝜐3

]
, see (30), is

Γnx(𝜁) =
2(G − 𝜂3)

(
R(𝛿 + 𝜂1)2(2𝛿 + 𝜂1) + 𝜂2 (Q + L(2𝛿 + 𝜂1))

)
(𝛿 + 𝜂1)(L(2𝛿 + 𝜂1) + Q(1 + 2𝛿 + 𝜂1))

−
(2𝛿 + 𝜂1)

√
2Q(G − 𝜂3)√

M(Q + (2𝛿 + 𝜂1)(L + Q))
𝜐1. (48)

Then Γnx is rational in the considered sense with 𝜙1(𝜁) =
√

G − 𝜂3 and Algorithm 1 yields the factorization ({ri}4
i=1, s):

r1(𝜁) =
2GR𝜂2

1 + 8GR𝛿𝜂1 + 10GR𝛿2

(𝛿 + 𝜂1)(L(2𝛿 + 𝜂1) + Q(1 + 2𝛿 + 𝜂1))
,

r2(𝜁) = − 2GQ + 4GL𝛿 + 2GL𝜂1

(𝛿 + 𝜂1)(L(2𝛿 + 𝜂1) + Q(1 + 2𝛿 + 𝜂1))

r3(𝜁) =
−2Q𝜂2 − 2R𝜂3

1 − 4R𝛿3 − 2L𝜂1𝜂2 − 8R𝛿𝜂2
1 − 10R𝛿2𝜂1 − 4L𝛿𝜂2

(𝛿 + 𝜂1)(L(2𝛿 + 𝜂1) + Q(1 + 2𝛿 + 𝜂1))
,

r4(𝜁) = −
(2𝛿 + z1)

√
2Q(G − 𝜂3)√

M(Q + (2𝛿 + 𝜂1)(L + Q))
,
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F I G U R E 3 Unbalanced disc system: DC motor connected to a disc with added weight. The overall system functions as a rotational
pendulum

T A B L E 2 Identified parameters of the unbalanced disc system

g [m/s2] J [kg⋅m2] Km [rad/Vs2] l [m] M [kg] 𝝉 [1/s]

9.8 2.4 ⋅ 10−4 11 0.041 0.076 0.40

with a non-factorizable term given by

s(𝜁) = 4GR𝛿3

(𝛿 + 𝜂1)(L(2𝛿 + 𝜂1) + Q(1 + 2𝛿 + 𝜂1))
.

Therefore, the LPV representation (8) for the system can be obtained, where p = y with 2nd order dynamic dependence(
dependence on

{ di

dti y
}2

i=0

)
and the non-factorizable term can be handled by seeing it as a virtual input, see Section 3.4.

5.4 Unbalanced disc system

As an additional example, we demonstrate empirically the applicability of the proposed method. Consider the unbalanced
disc system depicted in Figure 3. The dynamic behavior of this system can be well described using the following motion
equations where the fast electrical subsystem is neglected

𝜃̇(t) = 𝜔(t), (49a)

𝜔̇(t) =
Mgl

J
sin(𝜃(t)) − 1

𝜏
𝜔(t) + Km

𝜏
u(t), (49b)

where 𝜃 is the angular position of the mass, 𝜔 is the angular velocity of the mass, and u is the applied voltage on the motor.
Note that 𝜃 is measurable via an encoder and it corresponds to the output of the plant. The physical parameters of (49)
have been estimated based on measurement data collected with a sampling time of ts = 0.01 s and are given in Table 2.
By comparing the simulated response of the nonlinear model (using ode8 in MATLAB with fixed step-size ts) and the
real system for a voltage signal profile that was not used in the estimation data set, we can observe from Figure 4 that (49)
with the estimated parameters successfully captures the physical dynamics with a best fit rate (BFR)|| of 98.0%. Further
details of the parameter estimation and the involved measurement signals can be found in Reference 46.

||BFR is an error measure used to compare data samples y(k) (N data points) w.r.t. an approximation ŷ(k), for example, y is the measurement data and
ŷ is the response of the NL/LPV model. The BFR is computed as

BFR(y, ŷ) ∶= max

(
1 −

∑N
k=1(y(k) − ŷ(k))2∑N

k=1(y(k) − mean(y))2
, 0

)
. (50)
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(A) Input signal (B) Output responses measurement, nonlinear model, LPV

model

F I G U R E 4 Empirical validation of the identified nonlinear model and the converted LPV model

By reformulating (49) in terms of a SISO NL state-space model (9) with x =
[
𝜃 𝜔

]⊤ and

f (x) =

[
x2

Mgl
J

sin(x1) − 1
𝜏

x2

]
, g(x) =

[
0

Km
𝜏

]
, h(x) = x1,

we can apply the procedures presented in Section 3 to obtain an LPV model of the system.
In this case, Lgh(x) = 0 and LgLf h(x) = Km

𝜏
which gives that the relative degree is nr = 2 = nx on R2. Select x0 =

[
0 0

]⊤
and, for the sake of simplicity, Xr = (−𝜋, 𝜋)2. Computing (28) gives z = Φ(x) =

[
x1 x2

]⊤, which is an analytic diffeo-
morphism with Φ†(𝜂) =

[
𝜂1 𝜂2

]⊤. Let Y0 = (−𝜋, 𝜋), which satisfies Y2
0 = Φ(Xr) and set X0 = Φ†(Y2

0) = Xr. Let U0 be an
arbitrary open subset of R containing 0. The resulting Γnx function, see (30), is given by

Γnx(𝜁) =
Mgl

J
sin(𝜂1) −

1
𝜏
𝜂2 +

Km

𝜏
𝜐1,

where 𝜁 =
[
𝜂1 𝜐1 𝜂2 𝜐2

]
. This function is polynomial with 𝜙1(𝜁) =

sin 𝜂1
𝜂1

= sinc(𝜂1), and applying Algorithm 1 results
in

r1(𝜁) = Mgl
J

sinc(𝜂1), r2(𝜁) = − 1
𝜏
, r3(𝜁) =

Km
𝜏
,

with s = 0. Hence, choosing p = sinc(y):

𝛼0 ⋄ p = Mgl
J

p, 𝛼1 ⋄ p = − 1
𝜏
, 𝛽0 ⋄ p = Km

𝜏
.

The scheduling region is P = 𝜇(Y0) = Y0 = (−0.22, 1). The selection of the scheduling signal p = sinc(y), leads to the
converted LPV model (8) with affine static dependency that achieves embedding of the NL behavior into the solution
set of the LPV-SS representation according to Theorem 1. To summarize, the NL system (49) is embedded in the LPV
representation [

𝜃̇(t)
𝜔̇(t)

]
⏟⏟⏟

ẋ(t)

=

[
0 1

Mgl
J

p(t) − 1
𝜏

][
𝜃(t)
𝜔(t)

]
⏟⏟⏟

x(t)

+

[
0

Km
𝜏

]
u(t), (51a)

y(t) =
[
1 0

]
x(t), (51b)

where p(t) = sinc(𝜃(t)) with P = (−0.22, 1). By comparing the response** of (51), displayed in Figure 4, with the mea-
surements and the simulated response of the NL model, it is apparent that the LPV model response is identical to the NL
model simulation.

**As the NL model is unstable, the simulated response of (51) is based on p computed from the output of the NL simulation model.
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F I G U R E 5 Two degree of freedom control structure with mixed-sensitivity shaping for controller synthesis with the LPV model of the
unbalanced disc system

A remaining question to be answered is that the resulting LPV model can be used to obtain a high-performance con-
troller of the unbalanced disc system. For this purpose, a two degree of freedom control structure with mixed-sensitivity
shaping is considered, depicted in Figure 5, where di is an input disturbance, do an output disturbance, and r is the ref-
erence trajectory which act as disturbances to the resulting generalized plant. Furthermore, {ei}2

i=1 in terms of tracking
error and control input are the performance channels. The weighting filters are chosen as

Ws(s) = 0.5012s+2.005
s+0.02005

, Wu(s) = s+40
s+4000

,

Wdi = 0.5, Wdo =

[
0.1 0
0 0.1

]
.

(52)

Synthesis of an LPV controller by minimizing the 2 gain of the disturbance to performance transfer in the shaped
generalized plant has been solved using polytopic synthesis based on Reference 47. The resulting controller achieves
an 2 bound of 0.56, that is, it successfully realizes the weighting filters encoded performance objectives. Testing the
tracking capabilities of the LPV controller with the NL model (49) in simulation using a reference signal is displayed in
Figure 6. The controller provides a smooth reference tracking of the NL closed-loop system with a BFR of 81.7%. The
controller was also implemented on the real system and the measured closed-loop response is displayed in Figure 6.
The achieved tracking performance†† in terms of BRF is 82.0%. This proves that the proposed LPV modeling method
can be successfully applied to design an LPV controller for a nonlinear system with desired stability and performance
guarantees.

5.5 Distillation column system

As a final example, we show how higher order derivatives of measured output signals involved in the scheduling map
can be handled in the implementation of LPV controllers designed based on our LPV model conversion method. Con-
sider the NL first principles-based model of a 4-stage binary distillation column as described in details in Reference 48.
Distillation columns are commonly used in the chemical industry for component separation of liquid mixtures based on
the differences in the volatility (i.e., boiling point) of the components. The output of the system considered here is the
mole fraction of the most volatile component of the distillate product and the input is the inflow rate of the liquid to be
separated. The model is represented by (9) with

f (x) = 1
M

⎡⎢⎢⎢⎢⎢⎢⎢⎣

qFF(x2 − x1) − V (𝛿(x1) − x1)

−qFF(x2 − x3) + V (𝛿(x1) − 𝛿(x2))

zFF − qFFx3 − (1 − qF)F𝛿(x3) + V (𝛿(x2) − 𝛿(x3))

(1 − qF)F (𝛿(x3) − x4) + V (𝛿(x4) − x4)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, g(x) = 1

M

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x2 − x1

x3 − x2

x4 − x3

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, h(x) = x4. (53)

††The performance increase w.r.t. to the simulation is due to the inaccuracy of the identified NL model and in other applications such inaccuracies can
result in performance changes as with any other model based approach.
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(A) Input signal (B) Output signal

(C) Scheduling varaible (D) Zoomed-in response of

F I G U R E 6 Closed-loop response with the LPV controller: experiment, simulation, reference

T A B L E 3 Physical parameters of the distillation column system

M [kmol] zF [mole frac.] F [kmol/min] qF V [kmol/min]

30 0.65 215 1.0 1800

corresponding to nx = 4 and 𝛿(xi) defined as

𝛿(xi) =
𝜏xi

(𝜏 − 1)xi + 1
, i = 1, 2, 3, 4,

where each xi stands for the mole fraction of the most volatile component (light component) in the liquid phase on
tray i. The values of the physical/chemical parameters in (53) are given in Table 3 with 𝜏 = 1.2. The system has a relative
degree nr = 2 < nx for all x ∈ X4. Therefore, the LPV conversion can be performed by the method introduced in Section 3.
Note that the method of Section 4 is infeasible in a realistic application of a distillation column, as the states represent
concentration levels of the liquid phase on each tray which are impossible to be accurately measured online. Hence, the
procedure of Section 3 is applied. The map Φ of the form (34), its inverse Φ† and the sets X0,U0,Y0 have been computed
according to Lemma 2, and used to compute Γnx . The latter is used to transform the original NL model to the LPV model in
the form (8) by factorizing the term Γnx using Algorithm 1. The resulting scheduling dependence is a 3rd-order dynamic
dependence on p =

[
y u

]⊤. The exact forms of the resulting Γnx and the factorized coefficients are not given here due to
the lack of space.

Next, we validate the applicability of LPV control based on the obtained equivalent LPV representation when noisy
output measurements are considered. To provide a realistic control scenario that respects the involved constraints of the
system, we apply an LPV model predictive control (MPC)49 method. MPC algorithms compute an optimal control input
at each discrete time instant k by solving an optimization problem based on a prediction model of the process and a
cost function characterizing the performance goal (e.g., reference tracking). For this purpose, an accurate model of the
process is crucial for the success of such a control methodology. The main advantage of the LPV formulation of the MPC
problem is that in general it offers convex optimization based solution by trading off performance due to conservatism of
the prediction model.
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Based on the derived LPV representation of (53), we can use directly the converted state in the MPC problem, which
is composed of the output of the system and its derivatives up to 3rd-order. However, the challenge here is that we need
the derivatives of the output (up to order 3), which can be obtained by numerical differentiation and hence the mea-
surement noise can be significantly amplified, affecting the overall performance of the closed-loop system. We also use
this converted state and the input together with its derivatives up to order 2 to compute the scheduling variable p, which
is used to update the parameter-dependent system matrices of the prediction model at every sampling time. The exact
implementation is explained later.

The optimization problem of the MPC considered here is formulated as follows

min
Δu(0|k),Δu(1|k),… ,Δu(N|k)

N∑
i=0

(r(i|k) − y(i|k))⊤Q(r(i|k) − y(i|k)) + Δu⊤(i|k)RΔu(i|k), (54a)

s.t. Δumin ≤ Δu(i|k) ≤ Δumax, (54b)

umin ≤ u(i|k) ≤ umax, (54c)

ymin ≤ y(i|k) ≤ ymax, (54d)

i = 0, 1, … ,N, where the argument i|k indicates prediction step i at instant k, r is the reference trajectory, Δu repre-
sents the rate of change of u, N is the prediction horizon and Q ≥ 0, R > 0 are tuning matrices. The decision variable
of the optimization problem (54) is Δu, and hence, we can achieve offset-free control. In order to realize such an MPC
scheme, we discretized the obtained continuous-time LPV model using the Euler’s forward method, considered Δu as
the rate of change of the reflux, and as an output y the purity of the top product was used. For constraints, we con-
sidered [Δumin, Δumax] = [−436.25,+436.25], [umin, umax] = [1175, 9900] kmol/min, and [ymin, ymax] = [0.85, 0.99] for
Δu,u, y, respectively. The prediction horizon of the MPC has been taken as N = 15, and we consider the weights of the
output and the input in the MPC cost function, which is quadratic, as Q = 107 and R = 10−5, respectively. The MPC online
optimization problem (54) is cast as a quadratic programming problem.

The performance of the closed-loop system with the LPV MPC has been evaluated with −3% change in the set point
of y, at the sampling instant k = 334 followed by +1.5% change in the set point at k = 668 as shown in Figure 7. At the
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F I G U R E 7 Closed-loop response of the distillation column system with the LPV MPC controller: limits, simulation, reference
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F I G U R E 8 The filtered derivative of scheduling signals used to update the distillation column prediction model for the LPV MPC
implementation

same time, we have applied three changes of the feed flow rate F as input disturbances: a −20% decrease at k = 167,
again a −20% decrease at k = 501 and a +40% increase at k = 835. Such scenario of operation is similar to what was dis-
cussed in Reference 50. For comparison, we carried out the simulation for two cases, with noisy and noise-free output.
In case of the noisy output, a signal-to-noise ratio of 29.5 dB has been considered with additive white Gaussian mea-
surement noise. To reduce the noise effects in the numerically differentiated signals, which include d

dt
y, d2

dt2 y, and d3

dt3 y,
we used moving average filters of order 10, 2, and 2, respectively. The orders were chosen to find a suitable trade-off
between noise filtering, truncation of the frequency content and introduced phase lag. The output derivatives are recur-
sively filtered and used to construct the model represented state variables at every sample. They are used also together
with the input and its derivatives d

dt
u and d2

dt2 u to compute p and hence to update the LPV model matrices during the MPC
implementation.

Based on the above discussed discrete-time implementation‡‡ of the MPC controller, the closed-loop system has been
simulated with the plant dynamics taken as the continuous-time NL model in (53) with synchronized ZOH actuation
and sampling. Figure 7A–D show the closed-loop performance with and without output measurement noise. Generally,
the effect of the noise increases the fluctuation of the applied u and slightly y; however, the tracking capability is still
comparable to the case of noise-free y. In both cases, the desired set points of the output are reached within less than
50 samples with almost no overshoot and no steady-state error. The disturbance effects are successfully rejected in both
cases by the MPC design. The filtered derivatives of the output y, which are used as scheduling signals for updating the
distillation column prediction model during the MPC implementation, are shown in Figure 8A–C.

Finally, to measure numerically the effects of the noise on the control performance, the mean square tracking errors
with and without measurement noise were calculated to be 1.47 × 10−5 and 1.40 × 10−5, respectively. The quadratic cost
of the MPC optimization can be seen as a performance measure, for which the average cost with and without mea-
surement noise was 2.37 × 103 and 1.934 × 103, respectively. The cost is larger for the noisy case by a factor of 1.22,

‡‡Note that objective of this example is to demonstrate applicability of the conversion scheme in case of process systems where construction of p leads
to high order derivatives of y, while significant noise also affects the output measurements. For this purpose, the applied MPC scheme required
discretization of the converted continuous-time LPV model. Hence, one can argue if discretization of the NL model first and conversion of it to an LPV
form could lead to a more simple computation of p. As the applied discretization scheme affects the overall scheduling construction and the
performance of the resulting closed-loop and due to the lack of extension of the proposed methodology for the discrete-time case, answering such a
question is beyond the scope of the current article.
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which indicates that performance degradation is not significant due to the measurement noise. Finally, we repeated
the simulation with lower values of signal-to-noise ratio (SNR) but with the same tuning parameters Q,R,N and fil-
ters as above and with the same seed settings for the noise generator. For an SNR of 23.5 dB, the mean square tracking
error and the average cost were 1.63 × 10−5 and 3.42 × 103, respectively, which still indicate reasonable performance;
however, below that value of SNR, it was necessary to tune Q,R,N, to avoid infeasibility of the MPC optimization
problem.

In summary, this example demonstrates that reasonable closed-loop performance can be achieved with the proposed
method using high-order output derivatives with noisy measurements in the scheduling map without the need of direct
state measurements or nonlinear observers designed for the process.

6 CONCLUSIONS AND FUTURE WORKS

In this article, a systematic and automated approach has been introduced to synthesize LPV state-space representations
of nonlinear systems via the idea of multi-path feedback linearization. The main advantage of the proposed approach
is its ability to synthesize the model with minimal scheduling dependency where the scheduling map is based on only
measurable input-output signals of the original system. This ensures implementability and minimized conservativeness
of the LPV embedding. However, as demonstrated by the procedure, this often results in dynamic dependency over these
signals. To avoid dynamic dependency especially over input variables, a modified version of the approach is presented
that substitutes those dependencies with dependency relation on only part of the state variables of the original nonlinear
representation.
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