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Abstract

In this paper, we show the energy efficiency of Java applications can be improved by applying

Dynamic Voltage and Frequency Scaling (DVFS) inside the Java Virtual Machine (JVM). We

augment the JVM to record the energy consumption of hot methods as the underlying CPU is run

at different clock frequencies; after all the frequency possibilities for a method have been explored,

the execution of the method in an optimized run is set to the CPU frequency that leads to the most

energy-efficient execution for that method. We introduce a new sampling methodology to overcome

the dual challenges in our design: both the underlying measurement mechanism for energy proĄling

and the DVFS for energy optimization are overhead-prone. We extend JikesRVM with our approach

and benchmark it over the DaCapo suite on a server-class Linux machine. Experiments show we

are able to use 14.9% less energy than built-in power management in Linux, and improve energy

efficiency by 21.1% w.r.t. the metric of Energy-Delay Product (EDP).
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1 Introduction

The carbon footprint of data centers has recently received significant scrutiny [42]. After

mobile workloads, server-class workloads once again place energy-efficient computing in the

spotlight. This design goal is addressed at many layers of the computing stack. Among them,

a less explored approach is to study the energy impact of managed runtimes, a middle layer

between high-level applications and low-level systems. Relative to lower-layer techniques on

hardware design (e.g., [17]) and OS design (e.g., [60]), a runtime approach has the benefit

of guiding energy optimization with runtime-specific information. Relative to higher-layer

techniques e.g., energy-aware programming languages [55, 10, 49, 26, 19, 11, 34, 25, 41, 61, 15],

1 These authors are currently affiliated with Intel Corporation.
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a runtime approach can work with programs written in existing languages, arguably easier

for adoption. In a nutshell, the runtime – strategically positioned between the lower layers

and the higher layers – can often combine the benefits of both sides of its neighbors on the

computing stack.

At their essence, all runtime-based approaches are motivated by the same question: what

information uniquely available in the runtime can be harvested to guide energy optimization?

As examples, existing efforts have relied on thread and synchronization states (e.g., [2]),

just-in-time (JIT) compilation strategies (e.g., [56]), and garbage collector (GC) designs

(e.g., [29]) to inform energy optimization.

1.1 Our Approach: JVM-Level Method-Grained DVFS

We introduce a novel energy optimization at the level of the JVM. It relies on two basic

facts of the JVM: (i) the JVM is aware of the boundary of programming abstractions such

as methods; (ii) the JVM is aware of how often a method is used. Both pieces of information

are readily available among existing JVMs, good news for the adoption of our approach.

Our key idea is method-grained energy optimization: it demarcates the boundary of

DVFS [27, 13] adjustment with the boundary of methods. Our premise is that each method

as a logical unit of the program behavior can serve as an ideal granularity for energy

optimization. For example, the method Matrix4.transformP in a ray-tracing benchmark

sunflow [12] may carve out the boundary of a CPU-intensive computation, and the method

PSStream.write in a file processing benchmark fop [12] may demarcate an I/O-intensive

computation. It is well known that energy optimization based on DVFS can be effectively

performed based on program phased behaviors [52, 53, 32], i.e., an application may go through

phases of different levels of CPU intensity. For example, running an I/O-intensive program

fragment at a lower CPU frequency can often save energy without hampering performance

(see § 2.2 for details).

Operationally, our approach relies on profiling to assign desirable CPU frequencies to hot

methods, the methods identified by the JIT for their frequent execution. This design decision

is rooted in the fact that hot methods are frequently executed, and any improvement to

their energy behavior may have an amplified effect. A fundamental challenge in design is

that the gain resulted from DVFS is often eclipsed by the time/energy overhead introduced

by DVFS itself. We address this challenge with two solutions. First, we come up with an

automated energy profiling process to identify the most energy-consuming hot methods, so

that the optimizer can focus more on how “energy hotspot” code regions respond to DVFS.

Second, we introduce a form of counter-based sampling to DVFS instrumentation, so that

the overhead introduced by DVFS is negligible given a reasonable range of sampling rates.

In contrast, the state-of-the-art approach for DVFS-based energy management relies

on dynamically monitoring system states, e.g., the rate of cache or TLB misses. A classic

example of this approach is the ONDEMAND governor, the default power governor in many

Linux versions. This governor continuously predicts the level of CPU activities, and adjusts

the CPU frequency to meet the demand. This approach is oblivious to the logical structure

of the running application, and is fundamentally reactive: it uses the level of CPU intensity

at the current time interval to set the CPU frequency for the next time interval. Whereas

the reactive approach is effective when the application is stable within a phase, it loses its

effectiveness when there is a phase change. In philosophy, our approach is more aligned with

a small body of work that relies on compilers or runtimes to guide DVFS [50, 28, 59, 24, 58].

The relationship between these approaches and ours will be discussed in § 6.
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1.2 Contributions

We introduce Vincent 2, the incarnation of JVM-level method-grained DVFS as an extension

to JikesRVM [4, 3]. This paper makes the following contributions:

the design of a profile-directed energy optimizer, an end-to-end solution that can

automatically identify the most energy-consuming hot methods, determine the judicious

frequency settings for executing hot methods, and apply DVFS for optimization;

the specification of method-grained energy optimization at the level of JVM, including

the low-overhead sampling algorithm for energy profiling and optimization;

the implementation and evaluation of method-grained DVFS, which demonstrates its

effectiveness relative to existing power governors.

Vincent is an open-source project. Its source code and all raw experimental data can

be found online 3.

2 Background

Vincent lies at the intersection of two active yet largely independent research directions,

energy-efficient computing and managed language runtimes, which we briefly review now.

2.1 Energy Optimization and Metrics

In physics, energy (in the unit of joules) is the multiplication of power (in the unit of watts)

and time (in the unit of seconds). Not to lose generality, energy optimization techniques fall

into 3 categories: (1) reducing power only; (2) reducing time only; (3) balancing the trade-off

between power and time. The first route is an established area of research in hardware design,

such as low-power VLSI design [17]. The second route is also mundane: any compiler or

runtime optimization that can reduce the execution time of a program can be broadly viewed

as an energy optimization. As these first two routes should be more properly named power

optimization and performance optimization respectively, most existing energy optimization

techniques de facto refer to the third route above, which Vincent also belongs to.

The obvious metric for evaluating energy efficiency is the energy consumption itself. In

practice however, as most energy optimization techniques are a balancing act between power

and time, the effect of these techniques on power and time should not be ignored. This is

particularly true for time, as maintaining performance is an implicit and universal goal. As a

result, a prevalent metric for evaluating energy efficiency is the Energy-Delay Product (EDP),

the multiplication of energy and time. A lower EDP is aligned with our intuition that the

energy consumption is reduced while the application remains performant.

2.2 DVFS

DVFS [27, 13] is a classic CPU hardware feature that enables the trade-off exploration

between power and time. Except for specialized embedded CPUs, DVFS is supported in

nearly all commodity CPUs available today. With DVFS, the operational frequency of a

CPU can be dynamically adjusted, such as from 2Ghz to 1Ghz. Strictly speaking, DVFS is a

2 ŞI have tried to express the terrible passions of humanity by means of red and green.Ť Ű Letter from
Vincent van Gogh to Theo van Gogh, Arles, 8 September 1888

3 https://bitbucket.org/vincent-paper/vinccent

ECOOP 2022

https://bitbucket.org/vincent-paper/vinccent


32:4 Vincent: Green Hot Methods in the JVM

power optimization design: the power consumption of a CPU has a near cubic relationship

with its operational frequency; as a result, when the operational frequency is reduced (or

scaled down), the power reduction can be dramatic. What makes DVFS a challenging energy

optimization solution is that, when the CPU frequency is lowered, the execution time of a

program typically becomes longer. Recall our earlier discussion that energy consumption is

the multiplication of power and time, so the energy consumption effect of DVFS is complex.

With EDP as a metric placing more emphasis on time (i.e., not energy consumption alone),

the EDP effect of DVFS is even less obvious.

Empirically, downscaling is most effective when the program execution is less dependent

on the CPU clock speed. The well known example is the I/O-intensive workload: the program

may be waiting for an I/O to complete, and a wait will cause CPU pipeline stalls no matter

what frequency is used.

Informally, DVFS is also known as throttling. This widely used informal term has an

undertone to emphasize the effect of downscaling. Note that DVFS as an approach subsumes

both downscaling and upscaling. The latter refers to the scenario when the operational

frequency of the CPU is increased. Upscaling increases power, but may serve as a performance

optimization (i.e., reducing execution time).

DVFS, when implemented, takes the form of a system call, where a special system file

is written. Each DVFS call generally takes tens of microseconds to complete in modern

CPUs [31].

2.3 OS Governors

DVFS provides the hardware capability on adjusting CPU frequencies, but in itself, no

algorithm is defined on when scaling should happen, and what frequency the CPU should

be scaled to. The latter is provided through OS-level algorithms called governors. The

implementation of governors is platform-dependent: the algorithm used by the OS depends

on what hardware features are available for power management (beyond DVFS itself).

For generality reasons, Linux provides a set of generic governors that do not require

additional hardware support [6]. The ONDEMAND governor adjusts the underlying CPU

frequency based on monitoring the status reported by the performance counters, and a

higher CPU frequency is applied when a higher workload is encountered, and vice versa.

Relative to the middle-of-the-road ONDEMAND governor, the PERFORMANCE governor on one side

of the spectrum is a time-biased DVFS regulation algorithm; it lays emphasis on preserving

execution time by setting the CPU frequency to be as high as possible. On the other side

of the spectrum, the POWERSAVE governor is a power-biased DVFS regulator, laying more

emphasis on reducing power consumption by setting the CPU frequency to be as low as

possible. To facilitate customized energy optimization, Linux also comes with a USERSPACE

governor, deferring all decisions of when and what decisions of DVFS to the layers of the

software stack above the OS.

With additional hardware support for power management, the OS governor can delegate

some regulation tasks to the hardware. One example is the Intel P-State [31, 30] support,

where the CPU can be set to different power state levels. Instead of operating at a per-core

level, the P-State power management operates at the level of a CPU package shared by all

cores. When a particular P-State is set, the hardware is able to balance off the individual

CPU frequencies of different cores to achieve a particular power budget. More recently,

the question of when power state transitioning should happen can also be managed by the

hardware itself, a feature called hardware-managed P-states (HWP).
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On Intel architectures with P-State support, Linux power management can operate in

either the passive mode or the active mode for power management [5]. For architectures

without HWP, Linux defaults its behavior to the passive mode, where the Linux generic

governors – ONDEMAND, PERFORMANCE, POWERSAVE, and USERSPACE – remain in use, except

that setting the highest/lowest CPU frequencies in the generic governors are now supported

as setting the highest/lowest power states. On Intel architectures with HWP support, Linux

defaults its behavior to an active mode of P-state use, essentially deferring all its “govenoring”

ability to the HWP hardware itself. In the active mode, there is no longer a USERSPACE

governor; in other words, application-specific or user-specific DVFS is not allowed.

2.4 Energy Measurement and RAPL

A relatively independent design and evaluation question is how the energy consumption can

be measured. For example, a traditional approach is to rely on the external power/current

meters. With the progress of energy-aware computing, newer architectures come with

hardware interfaces that can directly query the energy consumption of a computer system

“live.”, i.e., during the execution of its hosted application.

The most widely known hardware feature is Intel’s Running Average Power Limit

(RAPL) [20], available on all Sandybridge or newer Intel CPUs since 2011 and AMD’s

RAPL-compatible CPUs. RAPL can dynamically report the hardware energy consumption

and incrementally store it in Machine-Specific Registers (MSRs). The reported energy

consumption includes (i) CPU core energy consumption; (ii) CPU uncore energy consumption,

i.e., those of on-chip caches, bus controllers, etc; (iii) DRAM energy consumption. RAPL

has other features, such as capping the power consumption of a CPU, beyond the scope of

this paper.

When implemented, each RAPL reading can be obtained through a number of reads

to MSR registers, taking tens of microseconds in modern CPUs. To determine the energy

consumption of an execution, a user may take one RAPL reading at the beginning of the

execution and the other at the end, and compute the difference of the two.

2.5 JVM Design and JIT

We briefly summarize key aspects of JVM design relevant to this paper. Vincent is built on

top of JikesRVM, a representative research-oriented JVM. Research on JikesRVM contributed

significantly in JVM design such as on JIT compilation and garbage collection.

JIT compilation allows selected bytecode to be dynamically compiled. One key component

of JIT design is to determine which code fragments are most worthy for dynamic compilation.

From JikesRVM to HotSpot, a common approach to this task is hot method selection: the

JVM runtime observes the most frequently encountered methods and select them as the

candidate for JIT. Conceptually, the JVM can achieve this task by keeping record of how

frequent the beginning (commonly called the prologue) and the end (the epilogue) of each

method are encountered. Realistic JVMs are more sophisticated implementations of this

view, for reasons of both improving precision and reducing overhead.

2.6 Counter-Based Sampling

Precisely accounting for the number of times each method is called is expensive. Practical

implementations are mostly sampling-based: the JVM only counts the prologue/epilogue

encounters at time intervals.

ECOOP 2022
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Frequency Selection: For each top energy-consuming method, Vincent observes the

energy consumption and execution time of the application when the execution of this

method is scaled to each CPU frequency, which we call a configuration. For each top

energy-consuming method, Vincent ranks the efficiency of its different configurations

according to energy metrics, and selects the most efficient one.

Energy Optimization: Vincent runs the application when the execution of each top

energy-consuming method is scaled to the CPU frequency determined in the Frequency

Selection phase.

The core design elements are the algorithms for energy profiling (the second pass) and

method-based scaling (the third/fourth passes), which we will detail in § 3.2. Conceptually,

one may view each pass as a separate run of the application, in the same spirit as a profile-

guided optimizer. Therefore, the “energy profiling” pass and the “frequency selection” pass are

two separate runs, which we informally call the profiling run and the scaling run, respectively.

The key observation over this workflow is that Vincent places the spotlight on methods:

in each of the workflow tasks, the unit of processing – be it selection, profiling, or optimization

– is at the granularity of methods.

A High-Level Implementation Overview

From the implementation perspective, Vincent builds on top of JikesRVM, and we resort to

existing support in JikesRVM for the first pass, Hot Method Selection. JikesRVM’s built-in

process–from how to sample methods to what heuristics are introduced to determine hotness–

is not altered. Conceptually, hot method selection can be a separate run of the application

itself, outputing a list of methods that JikesRVM deems “hot.” In our implementation, the hot

method selection and profiling is combined in one run: i.e., whenever a hot method is identified

during the execution of an application, the energy profiling component of Vincent will

start profiling its energy consumption. In this regard, the Vincent development interfaces

with existing JikesRVM logic through a common data structure where hot methods are kept:

whenever such a data structure is updated by JikesRVM, Vincent under the profiling run

will start profiling for the newly added entry. We also follow a similar implementation for

the scaling run.

In addition, Vincent does not alter the dynamic compilation process of JikesRVM,

except that the additional logic for profiling (or scaling) is inserted through instrumentation

at the beginning of the dynamic compilation process. Take the profiling run for instance.

Whenever a hot method is identified, we dynamically instrument that method with the

Vincent profiling logic in the profiling run, which will be subsequently compiled by JIT

dynamic compilation.

3.2 Vincent Specification

We now specify the algorithm implemented by Vincent. We first describe the top-level

thread bookkeeping (§ 3.2.1), and then the profiling algorithm (§ 3.2.2) and the scaling

algorithm (§ 3.2.3).

3.2.1 Thread Bookkeeping

Algorithm 1 overviews the bookkeeping in a multi-threading environment. Here, all threads

visible to the JVM (other than the timer thread itself) are maintained in a global structure ts,

a collection of threads of type T. Each thread contains thread-local bookkeeping information;

ECOOP 2022



32:8 Vincent: Green Hot Methods in the JVM

Algorithm 1 Thread Bookkeeping and Timer Thread Loop.

1: typedef T {
2: vtimer : int // timer
3: skipCount: int // # calls to skip
4: sampleCount: int // # samples to collect

5: edata: EDATA // energy proĄling data

6: gov: Governor // saved governor

7: freq: Freq // saved CPU frequency

8: }
9: const EPOCH // time unit

10: const SKIPNUM // skipped samples between
11: const SAMPLENUM // samples per interval

1: ts: T[THREADNUM] // running threads
2: procedure Timer
3: while TRUE do
4: Sleep(EPOCH)
5: for each t ∈ ts do
6: t.vtimer++
7: end for
8: end while
9: end procedure

in particular, note that vtimer manages the elapse of time, incremented by the unit EPOCH.

As profiling and scaling belong to different passes of Vincent and do not share the same

runtime, vtimer is used for both runs. The thread-local fields used only for profiling and

those only for scaling are illustrated with GREEN box and LIME box respectively. The

specific meanings of the constants and the fields in T other than vtimer will be detailed in

the rest of this section.

The timer thread is defined as an infinite loop. When the JVM timer interrupt happens

at the rate of EPOCH, the vtimer associated with each thread is incremented.

In the rest of this section, we specify our algorithm design for energy profiling and

DVFS-based energy optimization. Both passes are unified by one fundamental hurdle: if

naive instrumentation is used, the overhead for obtaining raw energy samples (in energy

profiling) and the overhead for performing DVFS (in energy optimization) are too high. We

now detail our solution in § 3.2.2, i.e., how we overcome the overhead challenge of obtaining

raw energy samples in energy profiling through a sampling-based approach. Note that in

§ 3.2.3, the same sampling-based solution is also used for DVFS-based energy optimization

to overcome the challenge posed by the overhead for performing DVFS.

3.2.2 Profiling Instrumentation

Recall that the goal of profiling is to identify the top energy-consuming methods. The raw

energy consumption maintained by the underlying hardware (see § 4) is accumulative, i.e.,

reported as monotonically increasing values. To determine the energy consumption of a

method, we conceptually need to “diff” the raw energy reading obtained at the beginning of

the method execution, and one obtained at the end of the method execution.

3.2.2.1 Challenges and Strawman Solutions

Obtaining a raw energy reading from the underlying hardware incurs a non-trivial overhead,

often taking tens of microseconds to complete. As a result, standard solutions known to be

effective for execution time profiling may not be ideal for energy profiling, which we now

briefly review.

A strawman solution naively adapted from execution time profiling is to instrument

the begin (i.e., prologue) and the end (i.e., epilogue) of every hot method, where a raw

energy reading is taken each time the prologue and epilogue is encountered. The energy

consumption of a method can thus be the difference between the two readings. Unfortunately,
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Algorithm 2 ProĄling Algorithm.

1: typedef LOG {
2: mn: MNAME // method name
3: edata: EDATA // data
4: }
5: typedef CVAL enum { TAKE, SKIP, LAST }
6: typedef EDATA float
7: const PN // proĄling timer factor
8: l: LOG[LOGNUM]

9: procedure prologueProfile()
10: t← currentThread()
11: if Counter(t, PN) == TAKE then
12: t.edata ← readEnergy()
13: end if
14: if Counter(t, PN) == LAST then
15: t.edata ← ⊥
16: end if
17: end procedure

18: procedure epilogueProfile()
19: t← currentThread()
20: if Counter(t, PN) == TAKE or LAST then
21: e ← readEnergy()
22: if t.edata ̸= ⊥ then

23: l
+
← LOG(THISM, diff(e, t.edata))

24: else
25: t.edata← e
26: end if
27: end if
28: if Counter(t, PN) == LAST then
29: t.edata← ⊥
30: end if
31: end procedure

32: function Counter(t: T, factor : int): CVAL
33: if t.vtimer >= factor then
34: t.skipCount← t.skipCount− 1
35: if t.skipCount == 0 then
36: t.skipCount ← SKIPNUM
37: t.sampleCount← t.sampleCount− 1
38: if t.sampleCount == 0 then
39: t.vtimer ← 0
40: t.sampleCount ← SAMPLENUM
41: return LAST
42: end if
43: return TAKE
44: end if
45: end if
46: return SKIP
47: end function

thanks to the non-trivial overhead with RAPL energy readings, this approach may incur

prohibitively high overhead (10x-200x in our preliminary experiments), severely altering the

program behavior. In other words, the instrumented run may produce the result no longer

representative of the original benchmark’s energy behavior. Observe that even instrumenting

each hot method “one at a time” does not solve the problem. The hot methods are “hot” for

a reason: they are frequently called, and the per-call overhead may rapidly accumulate.

A second strawman solution is to perform sampling at fixed time intervals. For example,

assume the JVM has just taken an energy sample of 90J at the beginning of its 100th time

interval. After one time interval elapses, it takes another energy sample of 90.25J , and the

epilogue of a method is encountered. The approach can thus attribute 0.25J to that method.

This approach however may lead to over-attribution: 0.25J is attributed to one method

encountered at the end of the time interval, but many other methods may have contributed

to the energy consumption during the interval. This sampling approach is widely used for

execution time sampling, because precision can be improved by shortening the time interval.

For energy profiling however, the room for shortening the time interval is limited due to the

overhead of raw energy readings.

3.2.2.2 Delimited and Counter-Based Sampling with Vincent

To address these challenges, the solution adopted by Vincent consists of two ideas:

delimited sampling and counter-based sampling. Overall, the former is an overhead-reducing

approximation that combines the strawman solutions above, and the latter is a precision-

increasing optimization over the general sampling-based approach.

ECOOP 2022
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Delimited Sampling. The energy profiler of Vincent is a hybrid of the two strawman

solutions above, which we call delimited sampling. Similar to the first strawman approach,

Vincent takes energy readings when the method prologue and the method epilogue are

encountered, and computes the difference of the two. Vincent however does not take energy

readings at every encounter of the prologue or the epilogue. Instead, the number of energy

readings at the method prologue/epilogue are bounded for each interval, similar to the second

strawman approach.

As seen in Algorithm 2, each hot method is instrumented with a pair of methods, with

prologueProfile inserted before the entry point of the method body, and

epilogueProfile inserted after each exit point of the method body. Auxiliary function

ReadEnergy obtains a raw energy sample from the underlying hardware (a value of EDATA

type). Binary function Diff computes the difference of two raw energy samples, and function

CurrentThread returns the current thread of the execution, of type T. Constant THISM is

the name of the instrumented method, an implementation detail we clarify in § 4. Sampling

happens within the function of Counter, which we will describe shortly.

The key observation here is that we are not attempting to replicate the first strawman

approach, but to avoid the overattribution problem in the second strawman approach. The

philosophy here is refutation: if a prologue or epilogue (of any method) is encountered before

the epilogue of the method m of our interest, we know the energy consumption incurred

before the prologue encounter must not be due to m, thanks to how call stacks are structured.

This can be concretely observed in the specification of EpilogueProfile in Algorithm 2.

At Line 23, the energy difference between a prior energy sample and the current energy

sample is computed. Now that the method has reached its epilogue, the “current energy

sample” intuitively keeps the accumulated energy value until the method reaches its end.

The intriguing question however is when the “prior energy sample” is collected. Delimited

sampling introduces an approximation: it is collected during the last time in the sampling

trace when a method is called (i.e., a prologue is executed) or a method is returned (i.e., an

epilogue is executed). They can be seen at Line 12 and Line 21 respectively in Algorithm 2.

In other words, the refutation-based algorithm says that any prior encountered prologue or

epilogue “delimits” where the method could start: any energy consumption before the last

method is called or returned must not belong to the current method we encounter in the

epilogue.

On a more technical level, treating the prior encounter of an epilogue as a “limit” of the

method start (as well as the prior encounter of a prologue) is also friendly for accounting

for the energy consumption of a recursive/nested method. For some applications, the hot

method happens to be a recursive call. When a sample is ready to be taken, it is possible

that the activation record of the recursive call is popping. Without Line 21, the sampling

algorithm would only take the next energy sample when a prologue is executed (i.e., a push),

and hence would miss a round of sampling in this pop-only phase of recursive execution.

With Line 21, the energy consumption between 2 pops can be recorded and attributed to

the recursive method.

Finally, note that the energy accounting specified here is conceptually “flat”: in the

presence of a call chain where both the caller method and the callee method are hot, the

callee’s energy consumption is not accounted as a part of the caller’s energy consumption.

This is implied in the delimited approach itself: when the epilogue of the caller method is

encountered, the epilogue of the callee method is already encountered. As a result, only the

energy consumption after the callee method is completed is attributed to the caller method.

Indeed, due to sampling, our implementation is an approximation of this conceptually flat

view.
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Algorithm 3 Scaling Algorithm.

1: enum Governor ¶USERSPACE, ONDEMAND, ...♢
2: const SN // scaling timer factor

3: procedure prologueScale(f : Freq)
4: t← currentThread()
5: if Counter(t, SN) == TAKE then
6: t.gov ← GetGovernor()
7: if t.gov == USERSPACE then
8: t.freq ← GetFreq()
9: else

10: setGovernor(USERSPACE)
11: end if
12: SetFreq(f)
13: end if
14: if Counter(t, SN) == LAST then
15: SetGovernor(ONDEMAND)
16: end if

17: end procedure

18: procedure epilogueScale()
19: t← currentThread()
20: if Counter(t, SN) == TAKE then
21: if t.gov ̸= ⊥ then
22: SetGovernor(t.gov)
23: if t.gov == USERSPACE then
24: SetFreq(t.freq)
25: end if
26: end if
27: end if
28: if Counter(t, SN) == LAST then
29: SetGovernor(ONDEMAND)
30: end if
31: end procedure

Counter-based Sampling. Our description so far can be conceptually viewed as taking

two energy readings – one at the prologue and the other at the epilogue – for each time

interval. Vincent extends from this conceptual view by adopting counter-based sampling

(see § 2), allowing multiple (but still bounded) pairs of energy readings to be collected within

a time interval. In general, counter-based sampling is a precision-improving strategy known

to strike a balance for accounting both long methods and short methods. Specific to energy

optimization, this means that Vincent cares about both longer but slightly less frequently

invoked (but still hot) methods and shorter but more frequently invoked methods, as long as

they incur high energy consumption.

In Algorithm 2, counter-based sampling is captured by function Counter, at Lines 32-47.

Here, the profiling time interval is set as PN × EPOCH; recall that vtimer is incremented at

each VM EPOCH, so PN is the “slowdown” factor of profiling relative to the top-level timer

loop. Constants SAMPLENUM and SKIPNUM represent the number of samples to take and skip,

respectively, within each profiling time interval.

The Counter function may return one of the 3 values: TAKE (indicating a sample should

be taken), SKIP (indicating a sample should not be taken), and LAST (indicating one last

sample should be taken for each time interval). The LAST value plays a role of re-initializing

the environment for the next time interval. For profiling, this means to reset the edata field.

Finally, observe that the Counter function only accesses data that records the state of

the current thread. This can be observed that every access in this function is prefixed with

variable t. In other words, it is not possible for two application threads to access the same

fields in a race condition.

3.2.3 Scaling Instrumentation

Algorithm 3 defines the instrumentation-based algorithm for CPU scaling. Convenience

function GetGovernor retrieves the current governor (power manager) from the underlying

system, which can either be USERSPACE (i.e., with frequencies manually set by the user)

or ONDEMAND. Function SetGovernor sets the governor to its argument value. Function

GetFreq retrieves the current CPU frequency, whereas SetFreq sets the CPU frequency

to its argument value.
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Intel E5-2630 v4 is an instance of the Intel Broadwell architecture. It supports P-states

but does not have HWP support. The P-states operate in the passive mode (see § 2), and

the Linux governors of ONDEMAND, PERFORMANCE, POWERSAVE, USERSPACE remain available.

The governors are switched through setting the scaling_governor file under the same

directory as above. Recall that the active mode does not support USERSPACE govenor, so it

cannot be used for Vincent. To avoid feature intervention, Turbo boost is turned off. None

of the experiments described in this paper (including both for Vincent and for baselines)

alters other system settings related to power management.

We rely a Java-based tool jRAPL [38] to obtain raw RAPL energy readings. The energy

consumption reported by RAPL is accumulative. Each energy sample – as shown of the

EDATA type in the algorithm specification – is the sum of energy readings from all sockets;

and each socket-wise reading consists of energy consumption for the CPU cores, the uncore

(cache, TLB, etc), and the DRAM. Specific to our environment, this means we collect and

sum up 2 × 3 = 6 raw readings for each energy sample.

We implemented Vincent on JikesRVM version 3.1.4. The hot method selection is built

on top of the Adaptive Optimization System (AOS) [8] of JikesRVM.

4.2 Hot Method Selection

We rely on the JIT component of JikesRVM for hot method selection. We do not alter

JikesRVM’s hot method selection logic. The interaction between the JikesRVM logic and

Vincent is primarily through the data structure where hot methods are placed: whereas

JikesRVM places hot methods into the structure, the profiling/scaling logic of Vincent

reads from it. The hot method selection process in JikesRVM is adaptive, so is the process

of profiling based on them. Whenever a new method is identified as hot, Vincent’s profiler

will instrument it dynamically and perform its profiling upon identification.

One design consideration was whether we should exclude very short methods such as

getters and setters from the hot methods. Intuitively, if such methods were subjected to

scaling, the scaling overhead might well offset the benefit of setting the method to the desired

frequency. Fortunately, the top energy-consuming methods identified by Vincent’s energy

profiler (as seen in § 5) appear to rarely include them. In other words, these very short

methods, even though hot from the perspective of invocation counts, rarely accumulate

enough energy consumption to become top energy-consuming methods. As a result, we choose

to keep our design simple, and do not alter the hot method selection logic in JikesRVM.

4.3 Algorithm Implementation

The prologue and epilogue program fragments for profiling and optimization we specified in

the previous section are inserted as IR instrumentation through hir2lir. Recall that we

need to obtain the “this method” information (THISM in Algorithm 2). This is implemented

through instrumentation: as the method signature is carried with the IR, Vincent stores

the method information when instrumentation is added. Other than this instrumentation,

we preserve the original JikesRVM logic for dynamic compilation.

In the top-level timer loop, the interval EPOCH is identical to the default time interval of

AOS, 4ms. Unless otherwise noted, we set the time interval for both profiling and scaling at

8ms, i.e., PN = 2 and SN = 2. Within each time interval, counter-based sampling is at work

for both profiling and scaling. Unless otherwise noted, parameter SAMPLENUM is set at 16.

In both scenarios, SKIPNUM = 7. The fact the skipped number of samples should be an odd

number is well known in counter-based sampling [7].
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All energy readings are stored as a C array and printed after the experiments end for

posterior analysis.

4.4 Benchmarking and Experimental Setup

We evaluate Vincent with benchmarks in the Dacapo suite [12], arguably the most widely

used benchmark suite for multithreaded Java applications. Our benchmarks by default come

from the last version of Dacapo known to work with JikesRVM, Dacapo MR2. Dacapo has a

more recent release, Dacapo 9.12-bach, and we successfully ported some benchmarks in this

version – sunflow, luindex, and avrora specifically – to work with JikesRVM. The rest of

porting was unsuccessful because JikesRVM cannot support some advanced Java features

that appeared in the later versions of benchmarks.

4.5 Baselines

To evaluate the effectiveness of Vincent, we choose 3 baselines. They are the three

application execution scenarios where DVFS is guided by the ONDEMAND, POWERSAVE, and

PERFORMANCE OS governors respectively (see § 2). They are representative scenarios of

running Java applications on commodity software/hardware stack today. As variants of

DVFS approaches guided by dynamic monitoring, they set a contrast with the core idea of

Vincent’s approach, method-based DVFS.

The baseline execution time and energy consumption of each benchmark while running

with the 3 Linux governors can be found in Fig. 3. In addition to serving as experimental

baselines, this figure may also help gain intuition on the characteristics of DVFS guided by

the 3 governors. For example, the PERFORMANCE governor often leads to the shortest execution

time, as shown in the left sub-figure; it however generally increases the energy consumption,

as shown in As shown in the right sub-figure. Overall, the ONDEMAND governor strikes a good

balance between maximizing energy savings while delivering competitive performance. As

a result, we will conduct a more detailed comparative analysis between Vincent and the

ONDEMAND baseline in the following section.

Unless otherwise noted, all experiment results throughout the paper (including both

baseline runs and Vincent runs) are collected by running each benchmark 20 times in a hot

run, and reporting the average of the last 15 runs.

5 Vincent Evaluation

In this section, we evaluate the effectiveness of Vincent. We aim at answering the following

questions: (Q1) Do method-frequency configurations exist that can lead to energy savings

and favorable EDPs, compared with existing Linux power governors? (Q2) How does the

choice of sampling settings impact the effectiveness of Vincent? (Q3) How is Vincent

compared against different existing power management strategies? We answer each of these

questions in each subsection below.

5.1 Method-Grained Energy Optimization

5.1.1 Energy Profiling

The Vincent lifecycle starts with energy profiling. Fig. 4 shows the top-5 energy-consuming

methods for selected benchmarks. Thanks to sampling, the reported percentage of energy

consumption for each listed method is likely to be lower than its actual normalized energy
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sunĆow

Rank Method Name Percentage(%)

1 org.sunflow.core.light.TriangleMeshLight.getRadiance 9.36

2 org.sunflow.core.primitive.TriangleMesh.init 4.60

3 org.sunflow.math.Matrix4.transformP 2.19

4 org.sunflow.core.shader.MirrorShader.getRadiance 0.45

5 org.sunflow.core.accel.KDTree.BuildTask.<init> 0.005

pmd

Rank Method Name Percentage(%)

1 org.jaxen.expr.DefaultAllNodeStep.matches 15.52

2 org.jaxen.expr.iter.IterableChildAxis.supportsNamedAccess 8.21

3 org.jaxen.QualifiedName.hashCode 7.01

4 net.sourceforge.pmd.jaxen.DocumentNavigator.getAttributeName 4.78

5 org.jaxen.util.SingleObjectIterator.hasNext 4.18

antlr

Rank Method Name Percentage(%)

1 antlr.CodeGenerator._println 5.56

2 antlr.SimpleTokenManager.getTokenSymbol 5.23

3 antlr.LLkAnalyzer.look 3.92

4 antlr.CSharpCharFormatter.escapeChar 2.61

5 antlr.Grammar.getSymbol 2.61

Figure 4 Top Energy-Consuming Methods According to Vincent Energy ProĄling (The Ąrst

column is the rank; the second column is the name of the method; the third column is its

normalized energy consumption relative to the overall energy consumption of the benchmark).

consumption, but what matters here is the relative standing of the methods: we are able

to identify the most-energy consuming methods so that the methods that DVFS should be

applied upon are identified.

Very short methods rarely appear in the top energy-consuming methods. One example is

pmd’s top-consuming method, DefaultAllNodeStep.matches, which only contains a simple

boolean return as its method body. As we shall see soon, these methods are indeed unfriendly

for DVFS (see § 4). That being said, the vast majority of methods identified by Vincent’s

profiling phase are methods of reasonable length (in terms of execution time) where the

DVFS time overhead is relatively small to the execution time of the method itself.

For Vincent, the energy profiling results are intermediate. The effectiveness of identifying

top energy-consuming methods will impact the effectiveness of energy optimization, which

we describe next.

5.1.2 The Impact on Energy Consumption

We now describe the effectiveness of Vincent energy optimization against the ONDEMAND

baseline, i.e., when the application is running with the ONDEMAND governor in place throughout

its execution. We show the energy consumption results of Vincent in Fig. 5 when a single hot

method is scaled to a particular CPU frequency. In each figure, a heat map is used for each
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5.1.3 The Impact on EDP

Fig. 6 shows Vincent’s impact on energy consumption. One interesting observation is that

DVFS may play different roles for different benchmarks in balancing the trade-off between

energy consumption and execution time: sometimes the reduction of EDP is due to reduced

energy consumption, whereas at other times, EDP may reduce due to reduced execution

time.

Take sunflow for instance. Recall earlier that its energy heatmap revealed that reducing

the energy consumption of sunflow is challenging (all cells in the energy consumption

heatmap are red), but observe that Vincent may in fact improve the energy efficiency of

sunflow in terms of EDP: by scaling the CPU frequency to the highest while executing its

method TriangleMesh.init, the normalized EDP may reach 0.90, i.e., a 10% reduction than

that of ONDEMAND. Here, Vincent primarily plays the role of improving the performance: as

sunflow is a CPU-intensive benchmark, DVFS plays the role of speeding up its execution;

the shortened execution time contributes to the reduced EDP.

Overall, we find Vincent an effective solution to reducing EDP as well as energy

consumption. Occasionally, it is even more effective for the former than the latter: when we

correlate Fig. 5 and Fig. 6, the best configuration for a benchmark often exhibits a lower

normalized value in Fig. 6 than in Fig. 5. As energy optimization is a known trade-off between

maximizing energy savings and minimizing performance loss, an EDP-friendly solution is of

practical importance.

5.1.4 The Impact on Execution Time

In Fig. 7, we show the impact of Vincent on execution time. Observe that every benchmark

consists of at least one configuration that may speed up the benchmark relative to its

ONDEMAND run. At the first glance, the fact that Vincent may serve as a performance

optimizer may come as a surprise, but this is indeed natural for two reasons.

First, even though DVFS is better known for its effect on energy savings with downscaling,

the opposite is also true: it can speed up the program execution with upscaling. What this

figure shows is that Vincent may select a performance-sensitive method and execute it on a

higher CPU frequency than an ONDEMAND governor baseline would, potentially speeding up

the program.

Second, note that ONDEMAND governor is a “middle-of-the-road” governor (see § 2) in terms

of how aggressive/conservative it scales up CPU frequencies in the presence of workload

increase. As we shall see in § 5.2, the PERFORMANCE governor is a more challenging baseline

to overcome in terms of viewing Vincent as a performance optimization.

5.2 Alternative Baselines

We have so far compared our results with the ONDEMAND governor, arguably the most widely

used DVFS-enabled energy optimization based on dynamic monitoring. In this section, we

now look at other important governors as baselines.

In Fig. 8, we show the relative effectiveness of Vincent against alternative governors.

For example, the height of sunflow EDP bar against the ONDEMAND governor is 0.86, meaning

that among all CPU frequencies, all selected methods, and all sampling rate settings, the

Vincent configuration with the least EDP is 14% less than that of the ONDEMAND run for

sunflow. For the same benchmark, its EDP bar against the POWERSAVE governor is 0.52,

meaning that the Vincent configuration with the least EDP is 48% less than that of the

POWERSAVE run. In other words, POWERSAVE is a relatively less effective power governor for

sunflow than ONDEMAND in terms of EDP, and neither is as effective as Vincent.

ECOOP 2022







32:22 Vincent: Green Hot Methods in the JVM

continuously process images (instead of a fixed number necessitated by the benchmark), and

an xalan application will continuously process XML documents (instead of a fixed number

of documents).

For completeness, we now describe the result of the first 5 runs in a 20-run execution, with

the per-benchmark results shown in Fig. 9. Overall, Vincent remains an effective optimizer

relative to the 3 baselines. Nearly all benchmarks retain the similar trend as post-warmup

runs in Fig. 8. Relative to the latter however, the results exhibit a larger deviation. As

the majority of hot methods are identified in the earlier runs, the combined 5-run results

shown here demonstrate that Vincent has already started to play an effective role in the

optimization. Note however, the hot method selection process in JVMs is incremental: some

hot methods may be identified during the first run, whereas others may be deferred to the

later runs. As a result, the effectiveness of Vincent relative to the 3 baselines is only

incrementally more pronounced, leading to larger deviation across the 5 runs.

5.4 Multi-Method Optimization

As a part of the design space optimization, we further constructed experiments where multiple

methods are subject to DVFS at the same time. Concretely, for benchmarks that have at

least two methods that show favorable EDP configurations (normalized EDP < 1), we pick

two methods whose least EDPs among all configurations are the smallest. We perform DVFS

of both methods at the same time, adjusting the frequencies according to their respective

“least EDP” configurations.

Unfortunately, the results do not show improvement. In fact, the 3 most promising

benchmarks (i.e., with multiple EDP<1 configurations spanning different methods as shown

in Fig. 6), pmd, avrora, and fop produced normalized EDP as 2.01, 1.77, and 1.60, respectively.

The root cause is that when multiple methods are subjected to DVFS at the same time, the

chance of concurrent DVFS requests increases significantly. As CPU hardware must serialize

DVFS requests – DVFS is implemented as blocking I/O writes – an extensive increase in

execution time ensues, bad news for energy efficiency. The multi-method result is a reminder

that an overdesign may hamper effectiveness. Vincent, as it turns out, is most effective

when we keep it simple: method-grained energy optimization with a focus on the most

impactful method in an application.

5.5 An Experimental Summary

Fig. 10 summarizes the average of Vincent normalized energy/EDP/time against different

baselines, across all benchmarks. On average, Vincent can reduce energy consumption

by 14.9%, EDP by 21.1%, and execution time by 12.5% against the ONDEMAND baseline. Its

relative effectiveness against the POWERSAVE baseline is even more dramatic, with an EDP

reduction of 63.0%. The drastic frequency downscaling in POWERSAVE may save power, but it

is ineffective in energy optimization. On average, Vincent’s performance is on par with the

PERFORMANCE baseline, with a negligible execution time reduction of 2.5%. Its effectiveness

in energy and EDP reduction is similar to the result against the ONDEMAND baseline.

5.6 The Technical Report

As we described earlier, all experimental results are based on the setting where each

optimization sampling interval is set at 8ms, and within each interval, 16 samples are

taken. In the technical report [37], we present results with alternative sampling settings.
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time: through analyzing the memory-related instructions in the code region, their algorithm

projects smaller performance loss for memory-intensive code regions when the CPU frequency

is scaled down.

As both Haldar et al. and Wu et al. are runtime-level efforts, a more in-depth comparison

is warranted. First, Vincent does not rely on an analytical model to estimate or extrapolate

the execution time or energy effect of DVFS, and does not need to instantiate the often

unknown parameters in the analytical model through heuristics. Second, Vincent identifies

the most energy-consuming methods in an automated process. In contrast, the code region

for DVFS in Wu et al. is manually identified, Third, both existing efforts centrally relied on

instrumenting method boundaries for DVFS calls. Acceptable performance may be achievable

at the era of these developments – e.g., Haldar et al. was evaluated against the Java Grande

benchmark suite [54] and Wu et al. against SPEC 95 and SPEC2K – but modern Java

applications are significantly more complex than e.g., heapsort in Java Grande. In § 3.2.2,

we described the high overhead of that approach for Dacapo benchmarks.

In the context of related work, Vincent can be understood as a revisit to a historically

significant research direction – compiler/runtime-based DVFS – which has unfortunately

been overtaken by black-box approaches e.g., DVFS based on dynamic performance counters.

Vincent defines an end-to-end approach that is simple (no analytical model), automated (no

manual efforts in code region identification), and scalable in overhead (no instrumentation for

DVFS). It is our hope that Vincent is a new beginning to re-study this largely overlooked

direction in the presence of modern applications in managed runtimes.

Energy-Aware Languages

Another direction of energy optimization at the boundary of programming abstractions is

energy-aware programming languages [55, 10, 49, 26, 40, 19, 11, 34, 25, 41, 61, 15]. For

example, Energy Types [19] introduces DVFS at the boundary of methods based on phase

information declared by programmers or inferred by the compiler. Green [10] and LAB [34]

select alternative algorithm-specific parameters based on energy and QoS need. Ent [14]

relies on hybrid type checking to select alternative programming abstractions (methods and

objects) for message dispatch. Vincent works with the existing programming model of Java;

it is an effort on runtime design instead of programming model design.

Runtime-Level Energy Efficiency

Chen et al. [18] relies on garbage collection tuning to save memory system energy consumption

in JVMs. Cao et al. [16] improves the energy efficiency of JVM by assigning JVM services to

small cores on asymmetric hardware. DEP+BURST [2] is a performance predictor and energy

management system where JVM features such as synchronization, inter-thread dependencies,

and store bursts, are taken into account for performance/energy prediction. Hussein et

al. [29] investigates the energy impact of garbage collector design in the Android runtime.

They proposed some extensions to improve the energy efficiency of asynchronous GC in

Android. Overall, a common theme in existing work is to focus on JVM services (such as

GC and thread management), but none considers energy optimization at the granularity of

programming abstractions. Our work complements existing work with a fine-grained method-

based approach for energy optimization. For unmanaged language runtimes, Hermes [47, 39]

and Aequitus [48] are energy-efficient solutions built on top of Cilk. They perform DVFS

based on the dependencies between thief threads and victim threads in work stealing runtimes.



K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu 32:25

Empirical studies often illuminate the energy consumption (and performance) of managed

language runtimes. An early study by Vijaykrishnan et al. [56] focuses on the energy

consumption impact on the memory hierarchy (cache and main memory) by JIT-enabled

Java applications. Esmaeilzadeh et al. [21] studies energy efficiency with a focus on

diverse configurations of workload and hardware. Sartor and Eeckhout [51] illuminates

the performance of Java applications, with a focus on mapping Java application threads and

JVM threads to multi-core hardware. Despite that their focus is on performance, DVFS is

extensively used in their design space exploration, such as running GC threads at different

CPU frequencies. Pinto et al. [45] studies the impact of energy consumption when alternative

thread management designs in Java are used, such as different settings of the thread pool.

Specific to ForkJoin [35], previous studies [44] also explored the impact of work stealing

on the performance and energy trade-off in Java runtimes. The energy impact of different

choices of Java collection classes were also a subject of studies [23, 46]. Kambadur et al. [33]

takes a cross-layer approach to surveying the energy management solutions, studying the

interface and interaction of different hardware/OS/compiler configurations.

Energy Profiling

Energy profiling is more commonly conducted at the system level (e.g., [43, 22]), rather

than at the boundary of programming abstractions such as methods. Chappie [9] supports

method-grained energy profiling. It adopts an approach with fixed time intervals, a necessary

design choice when there is no JVM modification. Vincent is fundamentally a JVM-centric

approach. It takes advantage of the JVM support such as instrumentation to enable delimited

sampling. To Vincent, energy profiling is an intermediate step for energy optimization,

which Chappie does not support.

7 Threats to Validity

While we believe leveraging hot methods in the JVM for DVFS-guided energy optimization

is a generalizable idea, Vincent as an experimental system is implemented and evaluated

within specific software/hardware environments. The validity of our experimental data is

restricted to these environments.

First, Vincent is an extension to the JikesRVM, so the validity of our results can only be

safely confirmed in that JVM. We are hopeful that the ideas behind Vincent can translate

to alternative JVMs, for several reasons. (1) Vincent does not rely on unique JikesRVM

features; hot method selection, dynamic instrumentation and compilation, and counter-based

sampling are available in many JVMs; (2) To the best of our knowledge, alternative JVMs

widely in use today do not perform DVFS-specific optimizations, so the likelihood of feature

intervention is small if the idea behind Vincent is adopted on them. (3) JikesRVM has

incubated other influential JVM ideas (e.g., JIT, garbage collection), whose effectiveness has

been confirmed in alternative JVMs.

Second, Vincent relies on CPU architectures where DVFS is enabled. Fortunately,

DVFS is a standard feature whose support is the rule not the exception in commodity CPUs,

including the vast majority of chips from Intel, AMD, ARM, and others. RAPL is used for

Vincent energy measurement, a hardware feature also widely available in Intel after 2011,

and more recently, AMD CPUs.

Third, the experimental results are limited to the benchmark suite we used, Dacapo.

Dacapo is commonly used for Java evaluating the performance of JVMs and Java applications.

The benchmarks we used are multi-threaded, and they have diverse workload characteristics

(CPU-bound vs. I/O-bound) that matter to energy optimization.
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As for the OS governor support, note that the ONDEMAND, PERFORMANCE and POWERSAVE

governors are used for the purpose of evaluation. The only OS requirement for Vincent

is that the OS can expose the capability of DVFS regulation to the application. This

is the USERSPACE governor in Linux. Such support is also available in other OS such as

Windows [36].

8 Conclusion

Vincent is a method-grained energy optimizer residing inside the JVM. It identifies the top

energy-consuming methods in the Java runtime, and performs profile-directed optimization

guided by DVFS. Our experiments show Vincent can reduce the energy consumption and

improve the energy efficiency of Java applications. Vincent is a novel instance among a

small number of energy optimization approaches that take advantage of the information

available to the managed runtime. It requires no modification to the underlying OS/hardware,

and requires no programmer effort.
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