Vincent: Green Hot Methods in the JVM

Kenan Liu ' =
SUNY Binghamton, NY, USA

Khaled Mahmoud ' =
SUNY Binghamton, NY, USA

Joonhwan Yoo &
SUNY Binghamton, NY, USA

Yu David Liu &
SUNY Binghamton, NY, USA

—— Abstract

In this paper, we show the energy efficiency of Java applications can be improved by applying
Dynamic Voltage and Frequency Scaling (DVFS) inside the Java Virtual Machine (JVM). We
augment the JVM to record the energy consumption of hot methods as the underlying CPU is run

at different clock frequencies; after all the frequency possibilities for a method have been explored,
the execution of the method in an optimized run is set to the CPU frequency that leads to the most
energy-efficient execution for that method. We introduce a new sampling methodology to overcome
the dual challenges in our design: both the underlying measurement mechanism for energy profiling
and the DVFS for energy optimization are overhead-prone. We extend JikesRVM with our approach
and benchmark it over the DaCapo suite on a server-class Linux machine. Experiments show we
are able to use 14.9% less energy than built-in power management in Linux, and improve energy
efficiency by 21.1% w.r.t. the metric of Energy-Delay Product (EDP).

2012 ACM Subject Classification Software and its engineering — Software performance
Keywords and phrases energy efficiency, JVM, just-in-time compilation

Digital Object Identifier 10.4230/LIPIcs. ECOOP.2022.32

Category Extended Abstract

Related Version Full Version: http://www.cs.binghamton.edu/~davidl/papers/EC00P22Long.pdf

Supplementary Material Software (Source Code and Data): https://bitbucket.org/vincent-
paper/vinccent/
archived at swh:1:dir:1cb44124eadeclce51dcad0c323bd388dab7ealc

Funding This project is supported by the US NSF award CNS-1910532.

1 Introduction

The carbon footprint of data centers has recently received significant scrutiny [42]. After
mobile workloads, server-class workloads once again place energy-efficient computing in the
spotlight. This design goal is addressed at many layers of the computing stack. Among them,
a less explored approach is to study the energy impact of managed runtimes, a middle layer
between high-level applications and low-level systems. Relative to lower-layer techniques on
hardware design (e.g., [17]) and OS design (e.g., [60]), a runtime approach has the benefit
of guiding energy optimization with runtime-specific information. Relative to higher-layer
techniques e.g., energy-aware programming languages [55, 10, 49, 26, 19, 11, 34, 25, 41, 61, 15],

! These authors are currently affiliated with Intel Corporation.

© Kenan Liu, Khaled Mahmoud, Joonhwan Yoo, and Yu David Liu;
37 licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).

Editors: Karim Ali and Jan Vitek; Article No. 32; pp. 32:1-32:30

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:kliu20@binghamton.edu
mailto:kmahmou1@binghamton.edu
mailto:jyoo45@binghamton.edu
mailto:davidl@binghamton.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2022.32
http://www.cs.binghamton.edu/~davidl/papers/ECOOP22Long.pdf
https://bitbucket.org/vincent-paper/vinccent/
https://bitbucket.org/vincent-paper/vinccent/
https://archive.softwareheritage.org/swh:1:dir:1cb44124eadec1ce51dca40c323bd388da57ea0c;origin=https://bitbucket.org/vincent-paper/vinccent/;visit=swh:1:snp:f3f37590dc94c20821f314de52d6aac2b07a17ec;anchor=swh:1:rev:7eedfa3410c8cabdb491d05e0892dead6c95fa0d
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2

Vincent: Green Hot Methods in the JVM

a runtime approach can work with programs written in existing languages, arguably easier
for adoption. In a nutshell, the runtime — strategically positioned between the lower layers
and the higher layers — can often combine the benefits of both sides of its neighbors on the
computing stack.

At their essence, all runtime-based approaches are motivated by the same question: what
information uniquely available in the runtime can be harvested to guide energy optimization?
As examples, existing efforts have relied on thread and synchronization states (e.g., [2]),
just-in-time (JIT) compilation strategies (e.g., [56]), and garbage collector (GC) designs
(e.g., [29]) to inform energy optimization.

1.1 Our Approach: JVM-Level Method-Grained DVFS

We introduce a novel energy optimization at the level of the JVM. It relies on two basic
facts of the JVM: (i) the JVM is aware of the boundary of programming abstractions such
as methods; (ii) the JVM is aware of how often a method is used. Both pieces of information
are readily available among existing JVMs, good news for the adoption of our approach.

Our key idea is method-grained energy optimization: it demarcates the boundary of
DVFS [27, 13] adjustment with the boundary of methods. Our premise is that each method
as a logical unit of the program behavior can serve as an ideal granularity for energy
optimization. For example, the method Matrix4.transformP in a ray-tracing benchmark
sunflow [12] may carve out the boundary of a CPU-intensive computation, and the method
PSStream.write in a file processing benchmark fop [12] may demarcate an I/O-intensive
computation. It is well known that energy optimization based on DVFS can be effectively
performed based on program phased behaviors [52, 53, 32], i.e., an application may go through
phases of different levels of CPU intensity. For example, running an 1/O-intensive program
fragment at a lower CPU frequency can often save energy without hampering performance
(see § 2.2 for details).

Operationally, our approach relies on profiling to assign desirable CPU frequencies to hot
methods, the methods identified by the JIT for their frequent execution. This design decision
is rooted in the fact that hot methods are frequently executed, and any improvement to
their energy behavior may have an amplified effect. A fundamental challenge in design is
that the gain resulted from DVFS is often eclipsed by the time/energy overhead introduced
by DVFS itself. We address this challenge with two solutions. First, we come up with an
automated energy profiling process to identify the most energy-consuming hot methods, so
that the optimizer can focus more on how “energy hotspot” code regions respond to DVFS.
Second, we introduce a form of counter-based sampling to DVFS instrumentation, so that
the overhead introduced by DVFS is negligible given a reasonable range of sampling rates.

In contrast, the state-of-the-art approach for DVFS-based energy management relies
on dynamically monitoring system states, e.g., the rate of cache or TLB misses. A classic
example of this approach is the ONDEMAND governor, the default power governor in many
Linux versions. This governor continuously predicts the level of CPU activities, and adjusts
the CPU frequency to meet the demand. This approach is oblivious to the logical structure
of the running application, and is fundamentally reactive: it uses the level of CPU intensity
at the current time interval to set the CPU frequency for the next time interval. Whereas
the reactive approach is effective when the application is stable within a phase, it loses its
effectiveness when there is a phase change. In philosophy, our approach is more aligned with
a small body of work that relies on compilers or runtimes to guide DVFS [50, 28, 59, 24, 58].
The relationship between these approaches and ours will be discussed in § 6.

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu

1.2 Contributions

We introduce VINCENT 2, the incarnation of JVM-level method-grained DVFS as an extension
to JikesRVM [4, 3]. This paper makes the following contributions:

the design of a profile-directed energy optimizer, an end-to-end solution that can
automatically identify the most energy-consuming hot methods, determine the judicious
frequency settings for executing hot methods, and apply DVFS for optimization;

the specification of method-grained energy optimization at the level of JVM, including
the low-overhead sampling algorithm for energy profiling and optimization;

the implementation and evaluation of method-grained DVFS, which demonstrates its
effectiveness relative to existing power governors.

VINCENT is an open-source project. Its source code and all raw experimental data can
be found online 3.

2 Background

VINCENT lies at the intersection of two active yet largely independent research directions,
energy-efficient computing and managed language runtimes, which we briefly review now.

2.1 Energy Optimization and Metrics

In physics, energy (in the unit of joules) is the multiplication of power (in the unit of watts)
and time (in the unit of seconds). Not to lose generality, energy optimization techniques fall
into 3 categories: (1) reducing power only; (2) reducing time only; (3) balancing the trade-off
between power and time. The first route is an established area of research in hardware design,
such as low-power VLSI design [17]. The second route is also mundane: any compiler or
runtime optimization that can reduce the execution time of a program can be broadly viewed
as an energy optimization. As these first two routes should be more properly named power
optimization and performance optimization respectively, most existing energy optimization
techniques de facto refer to the third route above, which VINCENT also belongs to.

The obvious metric for evaluating energy efficiency is the energy consumption itself. In
practice however, as most energy optimization techniques are a balancing act between power
and time, the effect of these techniques on power and time should not be ignored. This is
particularly true for time, as maintaining performance is an implicit and universal goal. As a
result, a prevalent metric for evaluating energy efficiency is the Energy-Delay Product (EDP),
the multiplication of energy and time. A lower EDP is aligned with our intuition that the
energy consumption is reduced while the application remains performant.

2.2 DVFS

DVFS [27, 13] is a classic CPU hardware feature that enables the trade-off exploration
between power and time. Except for specialized embedded CPUs, DVFS is supported in
nearly all commodity CPUs available today. With DVFS, the operational frequency of a
CPU can be dynamically adjusted, such as from 2Ghz to 1Ghz. Strictly speaking, DVFS is a

2 I have tried to express the terrible passions of humanity by means of red and green.” — Letter from
Vincent van Gogh to Theo van Gogh, Arles, 8 September 1888
3 https://bitbucket.org/vincent-paper/vinccent

32:3

ECOOP 2022

https://bitbucket.org/vincent-paper/vinccent

32:4

Vincent: Green Hot Methods in the JVM

power optimization design: the power consumption of a CPU has a near cubic relationship
with its operational frequency; as a result, when the operational frequency is reduced (or
scaled down), the power reduction can be dramatic. What makes DVFS a challenging energy
optimization solution is that, when the CPU frequency is lowered, the execution time of a
program typically becomes longer. Recall our earlier discussion that energy consumption is
the multiplication of power and time, so the energy consumption effect of DVFS is complex.
With EDP as a metric placing more emphasis on time (i.e., not energy consumption alone),
the EDP effect of DVFS is even less obvious.

Empirically, downscaling is most effective when the program execution is less dependent
on the CPU clock speed. The well known example is the I/O-intensive workload: the program
may be waiting for an I/O to complete, and a wait will cause CPU pipeline stalls no matter
what frequency is used.

Informally, DVFS is also known as throttling. This widely used informal term has an
undertone to emphasize the effect of downscaling. Note that DVFS as an approach subsumes
both downscaling and upscaling. The latter refers to the scenario when the operational
frequency of the CPU is increased. Upscaling increases power, but may serve as a performance
optimization (i.e., reducing execution time).

DVFS, when implemented, takes the form of a system call, where a special system file
is written. Each DVFS call generally takes tens of microseconds to complete in modern
CPUs [31].

2.3 0OS Governors

DVEFES provides the hardware capability on adjusting CPU frequencies, but in itself, no
algorithm is defined on when scaling should happen, and what frequency the CPU should
be scaled to. The latter is provided through OS-level algorithms called governors. The
implementation of governors is platform-dependent: the algorithm used by the OS depends
on what hardware features are available for power management (beyond DVFS itself).

For generality reasons, Linux provides a set of generic governors that do not require
additional hardware support [6]. The ONDEMAND governor adjusts the underlying CPU
frequency based on monitoring the status reported by the performance counters, and a
higher CPU frequency is applied when a higher workload is encountered, and vice versa.
Relative to the middle-of-the-road ONDEMAND governor, the PERFORMANCE governor on one side
of the spectrum is a time-biased DVFS regulation algorithm; it lays emphasis on preserving
execution time by setting the CPU frequency to be as high as possible. On the other side
of the spectrum, the POWERSAVE governor is a power-biased DVFS regulator, laying more
emphasis on reducing power consumption by setting the CPU frequency to be as low as
possible. To facilitate customized energy optimization, Linux also comes with a USERSPACE
governor, deferring all decisions of when and what decisions of DVFS to the layers of the
software stack above the OS.

With additional hardware support for power management, the OS governor can delegate
some regulation tasks to the hardware. One example is the Intel P-State [31, 30] support,
where the CPU can be set to different power state levels. Instead of operating at a per-core
level, the P-State power management operates at the level of a CPU package shared by all
cores. When a particular P-State is set, the hardware is able to balance off the individual
CPU frequencies of different cores to achieve a particular power budget. More recently,
the question of when power state transitioning should happen can also be managed by the
hardware itself, a feature called hardware-managed P-states (HWP).

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu

On Intel architectures with P-State support, Linux power management can operate in
either the passive mode or the active mode for power management [5]. For architectures
without HWP, Linux defaults its behavior to the passive mode, where the Linux generic
governors — ONDEMAND, PERFORMANCE, POWERSAVE, and USERSPACE — remain in use, except
that setting the highest/lowest CPU frequencies in the generic governors are now supported
as setting the highest/lowest power states. On Intel architectures with HWP support, Linux
defaults its behavior to an active mode of P-state use, essentially deferring all its “govenoring”
ability to the HWP hardware itself. In the active mode, there is no longer a USERSPACE
governor; in other words, application-specific or user-specific DVFS is not allowed.

2.4 Energy Measurement and RAPL

A relatively independent design and evaluation question is how the energy consumption can
be measured. For example, a traditional approach is to rely on the external power/current
meters. With the progress of energy-aware computing, newer architectures come with
hardware interfaces that can directly query the energy consumption of a computer system
“live.”, i.e., during the execution of its hosted application.

The most widely known hardware feature is Intel’s Running Average Power Limit
(RAPL) [20], available on all Sandybridge or newer Intel CPUs since 2011 and AMD’s
RAPL-compatible CPUs. RAPL can dynamically report the hardware energy consumption
and incrementally store it in Machine-Specific Registers (MSRs). The reported energy
consumption includes (i) CPU core energy consumption; (ii) CPU uncore energy consumption,
i.e., those of on-chip caches, bus controllers, etc; (iii) DRAM energy consumption. RAPL
has other features, such as capping the power consumption of a CPU, beyond the scope of
this paper.

When implemented, each RAPL reading can be obtained through a number of reads
to MSR registers, taking tens of microseconds in modern CPUs. To determine the energy
consumption of an execution, a user may take one RAPL reading at the beginning of the
execution and the other at the end, and compute the difference of the two.

2.5 JVM Design and JIT

We briefly summarize key aspects of JVM design relevant to this paper. VINCENT is built on
top of JikesRVM, a representative research-oriented JVM. Research on JikesRVM contributed
significantly in JVM design such as on JIT compilation and garbage collection.

JIT compilation allows selected bytecode to be dynamically compiled. One key component
of JIT design is to determine which code fragments are most worthy for dynamic compilation.
From JikesRVM to HotSpot, a common approach to this task is hot method selection: the
JVM runtime observes the most frequently encountered methods and select them as the
candidate for JIT. Conceptually, the JVM can achieve this task by keeping record of how
frequent the beginning (commonly called the prologue) and the end (the epilogue) of each
method are encountered. Realistic JVMs are more sophisticated implementations of this
view, for reasons of both improving precision and reducing overhead.

2.6 Counter-Based Sampling

Precisely accounting for the number of times each method is called is expensive. Practical
implementations are mostly sampling-based: the JVM only counts the prologue/epilogue
encounters at time intervals.

32:5

ECOOP 2022

32:6

Vincent: Green Hot Methods in the JVM

Skipped

= |

Timer enabled Timer enabled

Figure 1 Counter-based Sampling.

Hot method
selection

Frequency
selection

Energy

Energy profiling optimization

Top energy-
Hot
el consuming
Methods e

Application
instrumented wi
profiling logic

Application
instrumented w/
scaling logic for all
frequencies

Application
instrumented w/
scaling logic with
best frequency,

Instrumentation ‘

Application

Figure 2 VINCENT Design and Workflow (The top 4 boxes refer to the 4 passes of VINCENT
workflow, subsequently from left to right. Each circle represents the application under optimization,
in different forms of instrumentation. Each arrow refers to a data dependency/flow).

In JikesRVM for example, a timer thread runs so that a sample is taken at fixed time
intervals. JikesRVM further enhances this model by introducing counter-based sampling [7],
allowing multiple samples to be collected within a time interval. The benefit of counter-based
sampling in improving the accuracy of sampling is well documented, especially for complex
call graphs where methods are of variant lengths. As shown in Fig. 1, the counter-based
approach alternates between taking samples and skipping samples within each time interval.
This is achieved through maintaining two counters: the number of samples to take and
the number of samples to skip between two samples. VINCENT will adopt JikesRVM’s
counter-based sampling for energy profiling and optimization.

3 Vincent Design

In this section, we describe the design of VINCENT, with a high-level description in § 3.1,
followed by an algorithm specification in § 3.2.

3.1 System Overview
A Conceptual Overview

The system components and the workflow of VINCENT are shown in Fig. 2. On the high
level, VINCENT is a profile-directed optimizer that conceptually consists of 4 passes:

= Hot Method Selection: VINCENT first obtains a list of hot methods.
Energy Profiling: VINCENT profiles the energy consumption of hot methods under the
default ONDEMAND governor. It ranks their energy consumption, and reports a list of top
energy-consuming methods as the output of this pass.

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu

Frequency Selection: For each top energy-consuming method, VINCENT observes the
energy consumption and execution time of the application when the execution of this
method is scaled to each CPU frequency, which we call a configuration. For each top
energy-consuming method, VINCENT ranks the efficiency of its different configurations
according to energy metrics, and selects the most efficient one.

Energy Optimization: VINCENT runs the application when the execution of each top
energy-consuming method is scaled to the CPU frequency determined in the Frequency
Selection phase.

The core design elements are the algorithms for energy profiling (the second pass) and
method-based scaling (the third/fourth passes), which we will detail in § 3.2. Conceptually,
one may view each pass as a separate run of the application, in the same spirit as a profile-
guided optimizer. Therefore, the “energy profiling” pass and the “frequency selection” pass are
two separate runs, which we informally call the profiling run and the scaling run, respectively.

The key observation over this workflow is that VINCENT places the spotlight on methods:
in each of the workflow tasks, the unit of processing — be it selection, profiling, or optimization
— is at the granularity of methods.

A High-Level Implementation Overview

From the implementation perspective, VINCENT builds on top of JikesRVM, and we resort to
existing support in JikesRVM for the first pass, Hot Method Selection. JikesRVM’s built-in
process—from how to sample methods to what heuristics are introduced to determine hotness—
is not altered. Conceptually, hot method selection can be a separate run of the application
itself, outputing a list of methods that JikesRVM deems “hot.” In our implementation, the hot
method selection and profiling is combined in one run: i.e., whenever a hot method is identified
during the execution of an application, the energy profiling component of VINCENT will
start profiling its energy consumption. In this regard, the VINCENT development interfaces
with existing JikesRVM logic through a common data structure where hot methods are kept:
whenever such a data structure is updated by JikesRVM, VINCENT under the profiling run
will start profiling for the newly added entry. We also follow a similar implementation for
the scaling run.

In addition, VINCENT does not alter the dynamic compilation process of JikesRVM,
except that the additional logic for profiling (or scaling) is inserted through instrumentation
at the beginning of the dynamic compilation process. Take the profiling run for instance.
Whenever a hot method is identified, we dynamically instrument that method with the
VINCENT profiling logic in the profiling run, which will be subsequently compiled by JIT
dynamic compilation.

3.2 Vincent Specification

We now specify the algorithm implemented by VINCENT. We first describe the top-level
thread bookkeeping (§ 3.2.1), and then the profiling algorithm (§ 3.2.2) and the scaling
algorithm (§ 3.2.3).

3.2.1 Thread Bookkeeping

Algorithm 1 overviews the bookkeeping in a multi-threading environment. Here, all threads
visible to the JVM (other than the timer thread itself) are maintained in a global structure s,
a collection of threads of type T. Each thread contains thread-local bookkeeping information;

32:7

ECOOP 2022

32:8 Vincent: Green Hot Methods in the JVM

Algorithm 1 Thread Bookkeeping and Timer Thread Loop.

1: typedef T { 1: ts: T[THREADNUYM] // running threads

2: vtimer: int // timer 2: procedure TIMER

3: skipCount: int // # calls to skip 3: while TRUE do

4: sampleCount: int // # samples to collect 4 SLEEP(EPOCH)

5: edata: EDATA // energy profiling data 5 for each t € ts do
6: t.utimer+-+

6: gov: GOVERNOR // saved governor 7 end for
8 end while

7 freq: FREQ // saved CPU frequency 9: end procedure

8:

9: const EPOCH // time unit

10: const SKIPNUM // skipped samples between

11: const SAMPLENUM // samples per interval

in particular, note that vtimer manages the elapse of time, incremented by the unit EPOCH.
As profiling and scaling belong to different passes of VINCENT and do not share the same
runtime, vtimer is used for both runs. The thread-local fields used only for profiling and
those only for scaling are illustrated with [GREEN| box and LIME box respectively. The
specific meanings of the constants and the fields in T other than viimer will be detailed in
the rest of this section.

The timer thread is defined as an infinite loop. When the JVM timer interrupt happens
at the rate of EPOCH, the vtimer associated with each thread is incremented.

In the rest of this section, we specify our algorithm design for energy profiling and
DVFS-based energy optimization. Both passes are unified by one fundamental hurdle: if
naive instrumentation is used, the overhead for obtaining raw energy samples (in energy
profiling) and the overhead for performing DVFS (in energy optimization) are too high. We
now detail our solution in § 3.2.2, i.e., how we overcome the overhead challenge of obtaining
raw energy samples in energy profiling through a sampling-based approach. Note that in
§ 3.2.3, the same sampling-based solution is also used for DVFS-based energy optimization
to overcome the challenge posed by the overhead for performing DVFS.

3.2.2 Profiling Instrumentation

Recall that the goal of profiling is to identify the top energy-consuming methods. The raw
energy consumption maintained by the underlying hardware (see § 4) is accumulative, i.e.,
reported as monotonically increasing values. To determine the energy consumption of a
method, we conceptually need to “diff” the raw energy reading obtained at the beginning of
the method execution, and one obtained at the end of the method execution.

3.2.2.1 Challenges and Strawman Solutions

Obtaining a raw energy reading from the underlying hardware incurs a non-trivial overhead,
often taking tens of microseconds to complete. As a result, standard solutions known to be
effective for execution time profiling may not be ideal for energy profiling, which we now
briefly review.

A strawman solution naively adapted from execution time profiling is to instrument
the begin (i.e., prologue) and the end (i.e., epilogue) of every hot method, where a raw
energy reading is taken each time the prologue and epilogue is encountered. The energy
consumption of a method can thus be the difference between the two readings. Unfortunately,

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu

Algorithm 2 Profiling Algorithm.

1: typedef LOG { 24: else

2: mn: MNAME // method name 25: t.edata < e

3: edata: EDATA // data 26: end if

4: } 27: end if

5: typedef CVAL enum { TAKE, SKIP, LAST } 28: if COUNTER(¢, PN) == LAST then

6: typedef EDATA float 29: t.edata <+ L

7: const PN // profiling timer factor 30: end if

8: I: LOG[LOGNUY] 31: end procedure

9: procedure PROLOGUEPROFILE() 32: function COUNTER(¢: T, factor: int): CVAL
10: t <~ CURRENTTHREAD() 33: if t.vtimer >= factor then

11: if COUNTER(¢t, PN) == TAKE then 34: t.skipCount < t.skipCount — 1

12: t.edata < READENERGY/() 35: if t.skipCount == 0 then
13: end if 36: t.skipCount < SKIPNUM
14: if COUNTER(¢, PN) == LAST then 37: t.sampleCount < t.sampleCount — 1
15: t.edata < L 38: if t.sampleCount == 0 then
16: end if 39: t.utimer < 0
17: end procedure 40: t.sample Count <— SAMPLENUM

41: return LAST
18: procedure EPILOGUEPROFILE() g end if
: return TAKE

19: t < CURRENTTHREAD() 44 end if
20: if COUNTER(¢, PN) == TAKE or LAST then 45j end if
21: € + READENERGY() 46: return SKIP
22: if ¢. eiata # 1 then 47: end function
23: 1+ LOG(THISM, DIFF (e, t.edata))

thanks to the non-trivial overhead with RAPL energy readings, this approach may incur
prohibitively high overhead (10x-200x in our preliminary experiments), severely altering the
program behavior. In other words, the instrumented run may produce the result no longer
representative of the original benchmark’s energy behavior. Observe that even instrumenting
each hot method “one at a time” does not solve the problem. The hot methods are “hot” for
a reason: they are frequently called, and the per-call overhead may rapidly accumulate.

A second strawman solution is to perform sampling at fixed time intervals. For example,
assume the JVM has just taken an energy sample of 90J at the beginning of its 100th time
interval. After one time interval elapses, it takes another energy sample of 90.25.J, and the
epilogue of a method is encountered. The approach can thus attribute 0.25J to that method.
This approach however may lead to over-attribution: 0.25J is attributed to one method
encountered at the end of the time interval, but many other methods may have contributed
to the energy consumption during the interval. This sampling approach is widely used for
execution time sampling, because precision can be improved by shortening the time interval.
For energy profiling however, the room for shortening the time interval is limited due to the
overhead of raw energy readings.

3.2.2.2 Delimited and Counter-Based Sampling with Vincent

To address these challenges, the solution adopted by VINCENT consists of two ideas:
delimited sampling and counter-based sampling. Overall, the former is an overhead-reducing
approximation that combines the strawman solutions above, and the latter is a precision-
increasing optimization over the general sampling-based approach.

329

ECOOP 2022

32:10

Vincent: Green Hot Methods in the JVM

Delimited Sampling. The energy profiler of VINCENT is a hybrid of the two strawman
solutions above, which we call delimited sampling. Similar to the first strawman approach,
VINCENT takes energy readings when the method prologue and the method epilogue are
encountered, and computes the difference of the two. VINCENT however does not take energy
readings at every encounter of the prologue or the epilogue. Instead, the number of energy
readings at the method prologue/epilogue are bounded for each interval, similar to the second
strawman approach.

As seen in Algorithm 2, each hot method is instrumented with a pair of methods, with
PROLOGUEPROFILE inserted before the entry point of the method body, and
EPILOGUEPROFILE inserted after each exit point of the method body. Auxiliary function
READENERQGY obtains a raw energy sample from the underlying hardware (a value of EDATA
type). Binary function DIFF computes the difference of two raw energy samples, and function
CURRENTTHREAD returns the current thread of the execution, of type T. Constant THISM is
the name of the instrumented method, an implementation detail we clarify in § 4. Sampling
happens within the function of COUNTER, which we will describe shortly.

The key observation here is that we are not attempting to replicate the first strawman
approach, but to avoid the overattribution problem in the second strawman approach. The
philosophy here is refutation: if a prologue or epilogue (of any method) is encountered before
the epilogue of the method m of our interest, we know the energy consumption incurred
before the prologue encounter must not be due to m, thanks to how call stacks are structured.
This can be concretely observed in the specification of EPILOGUEPROFILE in Algorithm 2.
At Line 23, the energy difference between a prior energy sample and the current energy
sample is computed. Now that the method has reached its epilogue, the “current energy
sample” intuitively keeps the accumulated energy value until the method reaches its end.
The intriguing question however is when the “prior energy sample” is collected. Delimited
sampling introduces an approximation: it is collected during the last time in the sampling
trace when a method is called (i.e., a prologue is executed) or a method is returned (i.e., an
epilogue is executed). They can be seen at Line 12 and Line 21 respectively in Algorithm 2.
In other words, the refutation-based algorithm says that any prior encountered prologue or
epilogue “delimits” where the method could start: any energy consumption before the last
method is called or returned must not belong to the current method we encounter in the
epilogue.

On a more technical level, treating the prior encounter of an epilogue as a “limit” of the
method start (as well as the prior encounter of a prologue) is also friendly for accounting
for the energy consumption of a recursive/nested method. For some applications, the hot
method happens to be a recursive call. When a sample is ready to be taken, it is possible
that the activation record of the recursive call is popping. Without Line 21, the sampling
algorithm would only take the next energy sample when a prologue is executed (i.e., a push),
and hence would miss a round of sampling in this pop-only phase of recursive execution.
With Line 21, the energy consumption between 2 pops can be recorded and attributed to
the recursive method.

Finally, note that the energy accounting specified here is conceptually “flat”: in the
presence of a call chain where both the caller method and the callee method are hot, the
callee’s energy consumption is not accounted as a part of the caller’s energy consumption.
This is implied in the delimited approach itself: when the epilogue of the caller method is
encountered, the epilogue of the callee method is already encountered. As a result, only the
energy consumption after the callee method is completed is attributed to the caller method.
Indeed, due to sampling, our implementation is an approximation of this conceptually flat
view.

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu

Algorithm 3 Scaling Algorithm.

—

: enum GOVERNOR {USERSPACE, ONDEMAND, ...} 17: end procedure

2: const SN // scaling timer factor
18: procedure EPILOGUESCALE()
3: procedure PROLOGUESCALE(f : FREQ) 19: t <~ CURRENTTHREAD()
4: { < CURRENTTHREAD() 20: if COUNTER({, SN) == TAKE then
5: if COUNTER(t, SN) == TAKE then 21: if t.gov# L then
6: t.gov < GETGOVERNOR() 22: SETGOVERNOR(t.gov)
7 if t.gov == USERSPACE then 23: if t.gov == USERSPACE then
8: t.freq < GETFREQ() 24: SETFREQ(t.freq)
9: else 25: end if
10: SETGOVERNOR (USERSPACE) 26: end if
11: end if 27: end if
12: SETFREQ(f) 28: if COUNTER(?, SN) == LAST then
13: end if 29: SETGOVERNOR(ONDEMAND)
14: if COUNTER(¢, SN) == LAST then 30: end if
15: SETGOVERNOR (ONDEMAND) 31: end procedure
16: end if

Counter-based Sampling. Our description so far can be conceptually viewed as taking
two energy readings — one at the prologue and the other at the epilogue — for each time
interval. VINCENT extends from this conceptual view by adopting counter-based sampling
(see § 2), allowing multiple (but still bounded) pairs of energy readings to be collected within
a time interval. In general, counter-based sampling is a precision-improving strategy known
to strike a balance for accounting both long methods and short methods. Specific to energy
optimization, this means that VINCENT cares about both longer but slightly less frequently
invoked (but still hot) methods and shorter but more frequently invoked methods, as long as
they incur high energy consumption.

In Algorithm 2, counter-based sampling is captured by function COUNTER, at Lines 32-47.
Here, the profiling time interval is set as PN x EPOCH; recall that vtimer is incremented at
each VM EPOCH, so PN is the “slowdown” factor of profiling relative to the top-level timer
loop. Constants SAMPLENUM and SKIPNUM represent the number of samples to take and skip,
respectively, within each profiling time interval.

The COUNTER function may return one of the 3 values: TAKE (indicating a sample should
be taken), SKIP (indicating a sample should not be taken), and LAST (indicating one last
sample should be taken for each time interval). The LAST value plays a role of re-initializing

the environment for the next time interval. For profiling, this means to reset the edata field.

Finally, observe that the COUNTER function only accesses data that records the state of
the current thread. This can be observed that every access in this function is prefixed with
variable ¢. In other words, it is not possible for two application threads to access the same
fields in a race condition.

3.2.3 Scaling Instrumentation

Algorithm 3 defines the instrumentation-based algorithm for CPU scaling. Convenience
function GETGOVERNOR retrieves the current governor (power manager) from the underlying
system, which can either be USERSPACE (i.e., with frequencies manually set by the user)
or ONDEMAND. Function SETGOVERNOR sets the governor to its argument value. Function
GETFREQ retrieves the current CPU frequency, whereas SETFREQ sets the CPU frequency
to its argument value.

32:11

ECOOP 2022

32:12

Vincent: Green Hot Methods in the JVM

m= ONDEMAND == ONDEMAND
s POWERSAVE 100 e POWERSAVE
8000 ™= PERFORMANCE m= PERFORMANCE

7000

6000

5000

iseconds

joules

4000

mi

3000

2000

1000

sunflow pmd avrora jython fop antir bloat luindex
Baseline Execution Time Baseline Energy Consumption

sunflow pmd avrora jython fop antir bloat luindex

Figure 3 Benchmark Statistics under Different Governors as Evaluation Baselines.

Recall that the scaling instrumentation is used for VINCENT’s passes of frequency selection
or energy optimization. The instrumentation is only applied to the hot top-energy consuming
methods. When the application is bootstrapped, VINCENT sets the governor to ONDEMAND.
When a top energy-consuming method is encountered at its PROLOGUESCALE, the governor
and the CPU frequency are set according to the need of frequency selection or energy
optimization. At this point, the governor to be used is USERSPACE, a [a the convention of
Linux. VINCENT in addition preserves the governor/frequency context, i.e., the settings
of governor/frequency before the PROLOGUESCALE is encountered. The EPILOGUESCALE
recovers the preserved context.

Just as profiling, counter-based sampling is also at work during scaling. Note that profiling
and scaling do not have to follow the same rate. Constant SN adjusts the rate for scaling. In
addition, note that when we reach the LAST sample in each time interval, the governor is
reset to ONDEMAND.

4 Implementation and Experimental Settings

4.1 Hardware/OS/VM Setup

We evaluated VINCENT on a dual socket Intel E5-2630 v4 2.20 GHz CPU server, with
10 cores in each socket and 64 DDR4 RAM. Hyperthreading is enabled. In total, we
have 20 physical cores and 40 virtual cores. The machine runs Debian 9.11 (stretch),
Linux kernel 4.9. For profiling based on individual CPU frequencies and the DVFS-based
optimization, we explored all CPU frequencies that can be stably supported by our hardware,
ranging from 2.2GHz to 1.2GHz, with the decrement of 0.1Ghz. For the rest of the paper,
we use F1 to refer to 2.2Ghz, F2 for 2.1Ghz, F3 for 2.0Ghz, ..., F11 for 1.2Ghz. The
CPU frequencies are switched through the scaling_setspeed file, under the directory of
/sys/devices/system/cpu/cpu*/cpufreq for CPU cores.

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu

Intel E5-2630 v4 is an instance of the Intel Broadwell architecture. It supports P-states
but does not have HWP support. The P-states operate in the passive mode (see § 2), and

the Linux governors of ONDEMAND, PERFORMANCE, POWERSAVE, USERSPACE remain available.

The governors are switched through setting the scaling_governor file under the same
directory as above. Recall that the active mode does not support USERSPACE govenor, so it
cannot be used for VINCENT. To avoid feature intervention, Turbo boost is turned off. None
of the experiments described in this paper (including both for VINCENT and for baselines)
alters other system settings related to power management.

We rely a Java-based tool jRAPL [38] to obtain raw RAPL energy readings. The energy
consumption reported by RAPL is accumulative. Each energy sample — as shown of the
EDATA type in the algorithm specification — is the sum of energy readings from all sockets;
and each socket-wise reading consists of energy consumption for the CPU cores, the uncore
(cache, TLB, etc), and the DRAM. Specific to our environment, this means we collect and
sum up 2 x 3 = 6 raw readings for each energy sample.

We implemented VINCENT on JikesRVM version 3.1.4. The hot method selection is built
on top of the Adaptive Optimization System (AOS) [8] of JikesRVM.

4.2 Hot Method Selection

We rely on the JIT component of JikesRVM for hot method selection. We do not alter
JikesRVM'’s hot method selection logic. The interaction between the JikesRVM logic and
VINCENT is primarily through the data structure where hot methods are placed: whereas
JikesRVM places hot methods into the structure, the profiling/scaling logic of VINCENT
reads from it. The hot method selection process in JikesRVM is adaptive, so is the process
of profiling based on them. Whenever a new method is identified as hot, VINCENT’s profiler
will instrument it dynamically and perform its profiling upon identification.

One design consideration was whether we should exclude very short methods such as
getters and setters from the hot methods. Intuitively, if such methods were subjected to
scaling, the scaling overhead might well offset the benefit of setting the method to the desired
frequency. Fortunately, the top energy-consuming methods identified by VINCENT’s energy
profiler (as seen in § 5) appear to rarely include them. In other words, these very short
methods, even though hot from the perspective of invocation counts, rarely accumulate
enough energy consumption to become top energy-consuming methods. As a result, we choose
to keep our design simple, and do not alter the hot method selection logic in JikesRVM.

4.3 Algorithm Implementation

The prologue and epilogue program fragments for profiling and optimization we specified in
the previous section are inserted as IR instrumentation through hir2lir. Recall that we
need to obtain the “this method” information (THISM in Algorithm 2). This is implemented
through instrumentation: as the method signature is carried with the IR, VINCENT stores
the method information when instrumentation is added. Other than this instrumentation,
we preserve the original JikesRVM logic for dynamic compilation.

In the top-level timer loop, the interval EPOCH is identical to the default time interval of
AOS, 4ms. Unless otherwise noted, we set the time interval for both profiling and scaling at
8ms, i.e., PN = 2 and SN = 2. Within each time interval, counter-based sampling is at work

for both profiling and scaling. Unless otherwise noted, parameter SAMPLENUM is set at 16.

In both scenarios, SKIPNUM = 7. The fact the skipped number of samples should be an odd
number is well known in counter-based sampling [7].

32:13

ECOOP 2022

32:14

Vincent: Green Hot Methods in the JVM

All energy readings are stored as a C array and printed after the experiments end for
posterior analysis.

4.4 Benchmarking and Experimental Setup

We evaluate VINCENT with benchmarks in the Dacapo suite [12], arguably the most widely
used benchmark suite for multithreaded Java applications. Our benchmarks by default come
from the last version of Dacapo known to work with JikesRVM, Dacapo MR2. Dacapo has a
more recent release, Dacapo 9.12-bach, and we successfully ported some benchmarks in this
version — sunflow, luindex, and avrora specifically — to work with JikesRVM. The rest of
porting was unsuccessful because JikesRVM cannot support some advanced Java features
that appeared in the later versions of benchmarks.

4.5 Baselines

To evaluate the effectiveness of VINCENT, we choose 3 baselines. They are the three
application execution scenarios where DVFS is guided by the ONDEMAND, POWERSAVE, and
PERFORMANCE OS governors respectively (see § 2). They are representative scenarios of
running Java applications on commodity software/hardware stack today. As variants of
DVFS approaches guided by dynamic monitoring, they set a contrast with the core idea of
VINCENT’s approach, method-based DVFS.

The baseline execution time and energy consumption of each benchmark while running
with the 3 Linux governors can be found in Fig. 3. In addition to serving as experimental
baselines, this figure may also help gain intuition on the characteristics of DVFS guided by
the 3 governors. For example, the PERFORMANCE governor often leads to the shortest execution
time, as shown in the left sub-figure; it however generally increases the energy consumption,
as shown in As shown in the right sub-figure. Overall, the ONDEMAND governor strikes a good
balance between maximizing energy savings while delivering competitive performance. As
a result, we will conduct a more detailed comparative analysis between VINCENT and the
ONDEMAND baseline in the following section.

Unless otherwise noted, all experiment results throughout the paper (including both
baseline runs and VINCENT runs) are collected by running each benchmark 20 times in a hot
run, and reporting the average of the last 15 runs.

5 Vincent Evaluation

In this section, we evaluate the effectiveness of VINCENT. We aim at answering the following
questions: (Q1) Do method-frequency configurations exist that can lead to energy savings
and favorable EDPs, compared with existing Linux power governors? (Q2) How does the
choice of sampling settings impact the effectiveness of VINCENT? (Q3) How is VINCENT
compared against different existing power management strategies? We answer each of these
questions in each subsection below.

5.1 Method-Grained Energy Optimization

5.1.1 Energy Profiling

The VINCENT lifecycle starts with energy profiling. Fig. 4 shows the top-5 energy-consuming
methods for selected benchmarks. Thanks to sampling, the reported percentage of energy
consumption for each listed method is likely to be lower than its actual normalized energy

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu

sunflow

Rank Method Name Percentage(%)
1 org.sunflow.core.light.TriangleMeshLight.getRadiance 9.36

2 org.sunflow.core.primitive.TriangleMesh.init 4.60

3 org.sunflow.math.Matrix4.transformP 2.19

4 org.sunflow.core.shader.MirrorShader.getRadiance 0.45

5 org.sunflow.core.accel.KDTree.BuildTask.<init> 0.005

pmd

Rank Method Name Percentage(%)
1 org.jaxen.expr.DefaultAllNodeStep.matches 15.52

2 org.jaxen.expr.iter.IterableChildAxis.supportsNamedAccess 8.21

3 org.jaxen.QualifiedName.hashCode 7.01

4 net.sourceforge.pmd. jaxen.DocumentNavigator.getAttributeName 4.78

5 org.jaxen.util.SingleObjectIterator.hasNext 4.18

antlr

Rank Method Name Percentage(%)
1 antlr.CodeGenerator._println 5.56

2 antlr.SimpleTokenManager.getTokenSymbol 5.23

3 antlr.LLkAnalyzer.look 3.92

4 antlr.CSharpCharFormatter.escapeChar 2.61

5 antlr.Grammar.getSymbol 2.61

Figure 4 Top Energy-Consuming Methods According to VINCENT Energy Profiling (The first
column is the rank; the second column is the name of the method; the third column is its
normalized energy consumption relative to the overall energy consumption of the benchmark).

consumption, but what matters here is the relative standing of the methods: we are able
to identify the most-energy consuming methods so that the methods that DVFS should be
applied upon are identified.

Very short methods rarely appear in the top energy-consuming methods. One example is
prd’s top-consuming method, DefaultAl1lNodeStep.matches, which only contains a simple
boolean return as its method body. As we shall see soon, these methods are indeed unfriendly
for DVFS (see § 4). That being said, the vast majority of methods identified by VINCENT’s
profiling phase are methods of reasonable length (in terms of execution time) where the
DVFS time overhead is relatively small to the execution time of the method itself.

For VINCENT, the energy profiling results are intermediate. The effectiveness of identifying
top energy-consuming methods will impact the effectiveness of energy optimization, which
we describe next.

5.1.2 The Impact on Energy Consumption

We now describe the effectiveness of VINCENT energy optimization against the ONDEMAND
baseline, i.e., when the application is running with the ONDEMAND governor in place throughout
its execution. We show the energy consumption results of VINCENT in Fig. 5 when a single hot
method is scaled to a particular CPU frequency. In each figure, a heat map is used for each

32:15

ECOOP 2022

32:16

Vincent: Green Hot Methods in the JVM

sunflow -1.19
110 104 108 1.03 1. K -1.16

- 113
1.04 m 105 1.09 1. . K
1.09

1.08 1.02 109 1.00
1.06

110 101 103 1.04 A g i 1.03

1.00

avrora

- 408

-352
296
241
185

262 | 1.16 1.29

‘m 1.80

199 1.82
073

-283

-248 -
213
178 ~
142
107 s

~3.89
~-3.39

288
238
1.88
1.37
0.87
luindex
~-264

169 1.09 129 1. 4 t -235 ’ 174 1.28 [PREN 163 1. . 4 ~1.96
207
100 098 096 1. I I :;z I 103 093 139 157 1.18 1. I I 1.83
122

072)
1 2 3 4 5 6 7 8 9 10 "
F

119 157 113 136 1.31 083 1.04

72) ooc [oo 8 oo

102 109 106 100 100 1.04

0.93 0.89

Figure 5 VINCENT Energy Consumption Normalized Against the ONDEMAND Baseline (For a cell of
method m and frequency f with a value of v, it says that the VINCENT run with method m running
at frequency f has energy consumption v, normalized against that of the ONDEMAND run. If v < 1,
the VINCENT incurs less energy than the ONDEMAND run).

benchmark to show the result of running it with VINCENT where one of the top-consuming
methods (Y axis) is subjected to DVFS at a particular frequency level (X axis). The value
carried in each cell in the heatmap is normalized against the ONDEMAND run. Each green
cell indicates an energy-friendly configuration, i.e., the energy consumption for VINCENT is
smaller than that of the ONDEMAND run. All benchmarks are shown with 5 top-consuming
methods except sunflow, which we only show 4 because the 5th energy-consuming method
consumes little energy, as shown in Fig. 4.

Method-grained energy optimization is effective in reducing energy consumption for
all benchmarks (but one): there exists at least one configuration within the benchmark
whose normalized energy consumption is less than 1. For example, when VINCENT runs
antlr at the third highest CPU frequency (2.0Ghz) for its second most energy-consuming
method, SimpleTokenManager.getTokenSymbol, the normalized EDP is 0.87, indicating

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu

pmd

10357 1.25 11845 110.20 LK ALLEEY

~168.58
— 140.62

112.65
84.69
56.72
28.76
079

~434
~-3.77

321
264
208
151
0.95

-23.32
~ 19.57

15.82
12.07
831
456
081

- 854
~-727
6.00

1.28 [6MON 1.97 1. 472
345

218

sunflow

111 '1.181 1.06 1.09 1.05 1.10

099 1.08 113 . 113

107.74 0.93 9023 29.93

106 7.14 [0.86 479 333 452 130 262 6.10

1.03 | 0.86 087 096 1.03 36.51 0.84

1.14“1.03 111 099 1.10

1.08 112 101 1.05 103 1.02

1.15 1.55 14.77 13.75

avrora

096 147 352

-12.17

~10.25
834
6.42
451
260

1.16 1.10

1.12 4.58

0.97 m 391 131

713 479 383 7.53

pr——
:

-13.26
— 1147 g 42 149 096 114 1M1
9.08
6.99 X b 112 092
489
2.80

350 1.95

138 1.15

1.83 NOBIN 0.

141 133

1.16 1.56

13.49 17.02

|, A

071

luindex
~1029
—872 ! 431
716
559 4 106 107 344 356 1.72
4.02
248

20 3.20 1.26 253 EXTE 557 3.81 124

094 096 093

8.83 AN 330 198 % 171 278 278 126 1.04

275 5.36 ‘7.27

703 BEXRROPER 139 1.69

207 | 538

0ss . 113 162

099 0.96 1. 113 144 1.04 105 105 1.04

092 1.14 160 098 1.07

0.89 091

Figure 6 VINCENT EDP Normalized Against the ONDEMAND Baseline (For a cell of method m
and frequency f with a value of v, it says that the VINCENT run with method m running at
frequency f has EDP v, normalized against that of the ONDEMAND run. If v < 1, the VINCENT is
more energy-efficient than the ONDEMAND run w.r.t. EDP).

that VINCENT can save energy by 13% than running antlr with the ONDEMAND governor.
As each green cell in the heatmap indicates a configuration with energy savings relative to
ONDEMAND, energy optimization opportunities widely exist across benchmarks.

Indeed, not every benchmark can benefit from method-grained energy optimization.
Benchmark sunflow has all normalized energy consumption values greater than 1 for all
VINCENT configurations, indicating the ONDEMAND execution indeed consumes less energy
than VINCENT. The same applies to nearly all jython configurations. Both benchmarks
are consistently CPU-intensive, meaning that the ONDEMAND governor is likely to operate the
CPUs at the highest frequencies at most times. In this case, DVFS has limited choices: if it
scales the CPU down, the CPU-intensive application may run significantly slower, negatively
impacting energy consumption because the latter is the accumulated power consumption over
time; if it scales the CPU up, the power consumption may increase, ultimately impacting the
energy consumption as well.

32:17

ECOOP 2022

32:18

Vincent: Green Hot Methods in the JVM

SUnﬂOW -125 -19.61
1279 7.52 0. ! ~16.50
13.39
10.27
7.16
4.05

101 107 1.02 K 1.02 1.00 1.01

0.97 1.04 096 B 1.03 E 1.01

097 290

0.97

1.02 1143 1.01 K 0.99 1.01 &

1.00 1.02 1.00 K 1.00 1.00

q
£

avrora
-236
099 122 202 & i X & - 347 K s . X 165 147 . R - x . -212
291 1.89
095 099 103 111 116 104 1. 236 10 133 140 128 146
181 1.42
1.19
193 100 175 1. A5 224 1. 128 49 175 159 1.65 169
178 1.00 H 247 116 220 1. 04 098 148 105 1.

1.65
285 272 240 210

| —

0.95

-6.75
—5.78
481
3.84
287
1.90

—474
- 4.10

346
283
219
155
091

—4.02
110 1. ~3.50 —-3.50
299 3.00

1.04 [EXEH o. 247 ! 07 103 115 226 226 146 1.29 171 1 249
1.96 1.98

144 1.48
1.75 | 2.84 167 ‘274 151 204 211 088 121 1.02

| —

0.93

luindex

—4.01

1.58 342 3.06 O.QQE ﬂ 103 163

102 108 099 104 136 103 105 101 1.01

0.93 0.97

Figure 7 VINCENT Execution Time Normalized Against the ONDEMAND Baseline (For a cell of
method m and frequency f with a value of v, it says that the VINCENT run with method m running
at frequency f has execution time v, normalized against that of the ONDEMAND run. If v < 1, the
VINCENT runs faster than the ONDEMAND run).

In contrast, memory-intensive or I/O-intensive benchmarks respond well with VINCENT.
This is consistent with our general understanding of DVFS: these benchmarks often have
latency due to memory round-trips or I/O requests, and scaling down the CPU frequency may
have limited impact on execution time while reducing the power consumption significantly.
For example, there are benefits for reducing energy consumption for many configurations
of pmd (AST-based program analysis), avrora (simulation), fop (file transformation), and
luindex (data indexing). All are centric to data processing, and most benchmarks have
I/Os.

Finally, relatively short methods (such as the top-consuming method of pmd and bloat)
indeed respond to DVFS poorly: the overhead of DVFS significantly outweighs its benefit.
As we can see, energy consumption may deteriorate significantly for them, sometimes near
10x.

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu

5.1.3 The Impact on EDP

Fig. 6 shows VINCENT’s impact on energy consumption. One interesting observation is that
DVFS may play different roles for different benchmarks in balancing the trade-off between
energy consumption and execution time: sometimes the reduction of EDP is due to reduced
energy consumption, whereas at other times, EDP may reduce due to reduced execution
time.

Take sunflow for instance. Recall earlier that its energy heatmap revealed that reducing
the energy consumption of sunflow is challenging (all cells in the energy consumption
heatmap are red), but observe that VINCENT may in fact improve the energy efficiency of
sunflow in terms of EDP: by scaling the CPU frequency to the highest while executing its
method TriangleMesh.init, the normalized EDP may reach 0.90, i.e., a 10% reduction than
that of ONDEMAND. Here, VINCENT primarily plays the role of improving the performance: as
sunflow is a CPU-intensive benchmark, DVFS plays the role of speeding up its execution;
the shortened execution time contributes to the reduced EDP.

Overall, we find VINCENT an effective solution to reducing EDP as well as energy
consumption. Occasionally, it is even more effective for the former than the latter: when we
correlate Fig. 5 and Fig. 6, the best configuration for a benchmark often exhibits a lower
normalized value in Fig. 6 than in Fig. 5. As energy optimization is a known trade-off between
maximizing energy savings and minimizing performance loss, an EDP-friendly solution is of
practical importance.

5.1.4 The Impact on Execution Time

In Fig. 7, we show the impact of VINCENT on execution time. Observe that every benchmark
consists of at least one configuration that may speed up the benchmark relative to its
ONDEMAND run. At the first glance, the fact that VINCENT may serve as a performance
optimizer may come as a surprise, but this is indeed natural for two reasons.

First, even though DVFS is better known for its effect on energy savings with downscaling,
the opposite is also true: it can speed up the program execution with upscaling. What this
figure shows is that VINCENT may select a performance-sensitive method and execute it on a
higher CPU frequency than an ONDEMAND governor baseline would, potentially speeding up
the program.

Second, note that ONDEMAND governor is a “middle-of-the-road” governor (see § 2) in terms
of how aggressive/conservative it scales up CPU frequencies in the presence of workload
increase. As we shall see in § 5.2, the PERFORMANCE governor is a more challenging baseline
to overcome in terms of viewing VINCENT as a performance optimization.

5.2 Alternative Baselines

We have so far compared our results with the ONDEMAND governor, arguably the most widely
used DVFS-enabled energy optimization based on dynamic monitoring. In this section, we
now look at other important governors as baselines.

In Fig. 8, we show the relative effectiveness of VINCENT against alternative governors.

For example, the height of sunflow EDP bar against the ONDEMAND governor is 0.86, meaning
that among all CPU frequencies, all selected methods, and all sampling rate settings, the
VINCENT configuration with the least EDP is 14% less than that of the ONDEMAND run for
sunflow. For the same benchmark, its EDP bar against the POWERSAVE governor is 0.52,
meaning that the VINCENT configuration with the least EDP is 48% less than that of the
POWERSAVE run. In other words, POWERSAVE is a relatively less effective power governor for
sunflow than ONDEMAND in terms of EDP, and neither is as effective as VINCENT.

32:19

ECOOP 2022

32:20

Vincent: Green Hot Methods in the JVM

ENERGY VS DEMAND EDP VS DEMAND TIME VS DEMAND

1.00 A
1.00 |} TL ¥
I | 0.75
0.75 . 0.751
0.50 0.50 - 0.50
0.25 0.25 A 0.251
0.00 0.00 L s e s 0.00 L e s e s
TE Qi & CC Qi & CE Q&
82558258 EE558283 88558288
EAES °aE EASE °aE EosE °BE
3 ©= 5 3 ©= 5 7 ®= E
benchmark benchmark benchmark

ENERGY VS POWERSAVE EDP VS POWERSAVE TIME VS POWERSAVE

08 ¥ T I
| 0.4
06 0.4 |
|
0.4 021 021
0.2
0.0 0.0 5% 0.0 1
ZomE Qi x ZomE ol x T o OCE Ol x
SES2LESY SES2LESY SES22E3Y
£S5 ©5c €258 ©S5c €958 ©5c
z ©°= e 7 B= E] 7 = 3
benchmark benchmark benchmark
ENERGY VS PERF EDP VS PERF TIME VS PERF
1.00 A
0.8 | | 1004 T
06 | 0.75 4 | 0.75 1
1
0.4 0.50 4 0.50 1
0.2 0.25 1 0.25
0.0 0.00 7T T 0.00 ¥ 1T
TomES QLY x oS oL x zomE QL x
SEs2LEZY SES2LESY SEs28288
ERSE ©Sac E25E ©ac ESSY ®ac
] - 2 E] - 2 7 - =]
benchmark benchmark benchmark

Figure 8 VINCENT Best Results against Different Governor Baselines (The first row shows results
normalized against the ONDEMAND governor. The second row shows results normalized against the
POWERSAVE governor. The third row shows results normalized against the PERFORMANCE governor.
For all bars, shorter is better).

Across the benchmarks, a trend is that the POWERSAVE baseline fares poorly relative to
ONDEMAND, and much worse than VINCENT. Relatively, POWERSAVE is slightly worse than the
ONDEMAND governor in terms of energy consumption, but it may significantly increase the
execution time of benchmarks, ultimately leading to poor EDPs.

VINCENT is also more energy-efficient than the PERFORMANCE governor. Note that in
the last row of Fig. 8, all normalized energy results are significantly less than 1. All but
one (sunflow) benchmarks also have EDP results less than 1. The most revealing fact
about the PERFORMANCE governor is that it may reduce the execution time of CPU-intensive
benchmarks. Recall that when VINCENT is compared against the ONDEMAND governor in
terms of the execution time (the last figure in the first row), the VINCENT runs of sunflow
and jython can lead to shorter execution time than the runs with the ONDEMAND governor.
This however is not true when VINCENT is compared against the PERFORMANCE governor: the
VINCENT runs of sunflow and jython are slightly slower than the runs with the PERFORMANCE
governor (the last figure in the last row). The PERFORMANCE governor however is not as
effective for memory-intensive or I/O-intensive benchmarks.

The surprising fact is that the VINCENT runs for some benchmarks can in fact lead to a
small but noticeable reduction in the execution time than their counterpart PERFORMANCE
runs. When the PERFORMANCE governor is used to regulate DVFS on Intel architectures where

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu

ENERGY VS DEMAND

EDP VS DEMAND

TIME VS DEMAND

1.00
2.0
0.75 ‘ | 1.0 15
0.50 | 1.0 |
0.59
0.25 0.5
0.00 0.0 LI e e 0.0
cSat oS Qs cS ot
SE558EE8 325888 3E558EES
ERSE ®oc EB5E ©5¢ E95E8 ®ogc
3 ®= 5 7 ®= 5 z ®= 3
benchmark benchmark benchmark

ENERGY VS POWERSAVE EDP VS POWERSAVE

TIME VS POWERSAVE

1.00 0.8 1.00
0.75 ‘ | 064 0.75
0.50 041 ‘ 050 Wi
0.25 0.2 | 0.25
0.00 0.0 4+ 0.00
3R 2g558Ess gpsseess
E858 ®5E £85% S5g €858 S5g
g == 3 g ®= 73 g *= 3
benchmark benchmark benchmark
ENERGY VS PERF EDP VS PERF TIME VS PERF
1.00
1.00 4
0.75 L5
| 0.75 4
0.50 | | 10 Ip!
0.50 4
0.25 0.25 4 0.5
0.00 0.00 AT 17T 0.0
TomEQL< x ZomE k& x ZTOE Qb+ x
SE52°EEE SE5SPEES SEE2EES
c =35 2c c =5 2c c =5 [2c
E] - 2 @ - =] 3 = =]
benchmark benchmark benchmark

Figure 9 VINCENT Best Results against Different Governor Baselines for the First 5-Runs (All
legends are otherwise identical to Fig. 8).

P-States are available, the highest power state is used. Note however the highest power
state is not tantamount to the highest CPU frequency [31, 1]. Recall that (§ 2) P-States
are managed at the level of the CPU package, not at the level of individual cores. How the
supply voltage and the CPU frequencies of individual cores are assigned given a power state

subjects to a variety of design constraints, such as area power and thermal considerations.

The DVFS of VINCENT however is targeted at the core level: when a method is determined to
run with the highest CPU frequency, the CPU core hosting the thread in which the method
runs is set at the highest CPU frequency. This interesting phenomenon may indicate a
potential for performance optimization, but there are caveats. First, the average performance
improvement is small: only a subset of benchmarks can benefit, while there is degradation in
others (Fig. 8). Second, as P-State maintenance is a platform-dependent black-box hardware
feature, the phenomenon may be restricted to specific architectures (Broadwell in our case),
and may no longer presents itself in other architectures.

5.3 The Impact during the Warm-Up Phase

The data we have shown so far result from the last 15 runs in a 20-run execution for
each benchmark (see § 4), i.e., the post-warmup runs. This evaluation choice is in sync
with the general focus of energy optimization on long-running applications, where energy
consumption matters the most. In those server-class settings, a sunflow application will

32:21

ECOOP 2022

32:22

Vincent: Green Hot Methods in the JVM

continuously process images (instead of a fixed number necessitated by the benchmark), and
an xalan application will continuously process XML documents (instead of a fixed number
of documents).

For completeness, we now describe the result of the first 5 runs in a 20-run execution, with
the per-benchmark results shown in Fig. 9. Overall, VINCENT remains an effective optimizer
relative to the 3 baselines. Nearly all benchmarks retain the similar trend as post-warmup
runs in Fig. 8. Relative to the latter however, the results exhibit a larger deviation. As
the majority of hot methods are identified in the earlier runs, the combined 5-run results
shown here demonstrate that VINCENT has already started to play an effective role in the
optimization. Note however, the hot method selection process in JVMs is incremental: some
hot methods may be identified during the first run, whereas others may be deferred to the
later runs. As a result, the effectiveness of VINCENT relative to the 3 baselines is only
incrementally more pronounced, leading to larger deviation across the 5 runs.

5.4 Multi-Method Optimization

As a part of the design space optimization, we further constructed experiments where multiple
methods are subject to DVFS at the same time. Concretely, for benchmarks that have at
least two methods that show favorable EDP configurations (normalized EDP < 1), we pick
two methods whose least EDPs among all configurations are the smallest. We perform DVFS
of both methods at the same time, adjusting the frequencies according to their respective
“least EDP” configurations.

Unfortunately, the results do not show improvement. In fact, the 3 most promising
benchmarks (i.e., with multiple EDP<1 configurations spanning different methods as shown
in Fig. 6), pmd, avrora, and fop produced normalized EDP as 2.01, 1.77, and 1.60, respectively.
The root cause is that when multiple methods are subjected to DVFS at the same time, the
chance of concurrent DVFS requests increases significantly. As CPU hardware must serialize
DVFS requests — DVFS is implemented as blocking I/O writes — an extensive increase in
execution time ensues, bad news for energy efficiency. The multi-method result is a reminder
that an overdesign may hamper effectiveness. VINCENT, as it turns out, is most effective
when we keep it simple: method-grained energy optimization with a focus on the most
impactful method in an application.

5.5 An Experimental Summary

Fig. 10 summarizes the average of VINCENT normalized energy /EDP /time against different
baselines, across all benchmarks. On average, VINCENT can reduce energy consumption
by 14.9%, EDP by 21.1%, and execution time by 12.5% against the ONDEMAND baseline. Its
relative effectiveness against the POWERSAVE baseline is even more dramatic, with an EDP
reduction of 63.0%. The drastic frequency downscaling in POWERSAVE may save power, but it
is ineffective in energy optimization. On average, VINCENT’s performance is on par with the
PERFORMANCE baseline, with a negligible execution time reduction of 2.5%. Its effectiveness
in energy and EDP reduction is similar to the result against the ONDEMAND baseline.

5.6 The Technical Report

As we described earlier, all experimental results are based on the setting where each
optimization sampling interval is set at 8ms, and within each interval, 16 samples are
taken. In the technical report [37], we present results with alternative sampling settings.

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu

= tme
m—energy
-—edp

0
Vincent VS Demand Vincent VS Powersave Vincent VS Performance
Governor

Figure 10 A Summary of Results with Different Governor Baselines (In each group, the
energy/EDP /time data are normalized with their corresponding data under a built-in governor
based on dynamic monitoring. For all bars, being shorter means VINCENT is more effective than the
built-in governor).

The results are generally stable when the same benchmark is optimized under different
sampling settings. The report also contains a discussion on the lessons we learned through
the development process.

6 Related Work

Compiler-Directed or Runtime-Directed DVFS

The underlying philosophy of our work — programs matter for DVFS-based energy optimization
— is shared among a number of compiler-directed energy optimization approaches. Saputra
et al. [50] describes a DVFS-based approach at the level of compiler optimization. Their
algorithm first observes the potential speed-up of loop transformation (e.g., tiling and loop
fusion) over the unoptimized program, and then scales the CPU voltage and frequency down
over the optimized program to a desirable level that matches the original execution time
of the unoptimized program, through integer linear programming. Hsu and Kremer [28§]
defines a compiler-directed DVF'S algorithm where a desirable CPU frequency is selected
for running a code region; the selection is based on solving a minimization problem where
the need for limited performance loss is encoded as constraints. Xie et al. [59] defines an
analytical model — built in the compilation process — where energy minimization is reduced to
a mixed-integer linear programming problem. Overall, the previous work focused on building
analytical models in the presence of DVFS. This general direction, building analytical models
to identify slacks in programs, can be traced back to a classic analysis for energy-efficient OS
scheduling [57].

A small body of work further extends analytical models to virtual machines and dynamic
compilation. In Haldar et al. [24], methods are instrumented with DVFS calls, and the
frequency of choice when a method executes is based on the comparison among the projected
energy consumption of the method at different frequencies. To make this decision, it was
necessary for their analytical algorithm to introduce heuristics (that may no longer hold
for state-of-the-art application workloads), such as the projected future execution time
is the same as the execution time so far, and the execution time increases linearly with
the CPU frequency slowdown. Wu et al. [58] proposed a dynamic compilation framework
for C programs, where important code regions such as loops are manually identified and

instrumented, and the CPU frequency for DVFS is selected based on an analytical model.

Relative to Haldar et al., their model addressed the non-linear effect of DVFS on execution

32:23

ECOOP 2022

32:24

Vincent: Green Hot Methods in the JVM

time: through analyzing the memory-related instructions in the code region, their algorithm
projects smaller performance loss for memory-intensive code regions when the CPU frequency
is scaled down.

As both Haldar et al. and Wu et al. are runtime-level efforts, a more in-depth comparison
is warranted. First, VINCENT does not rely on an analytical model to estimate or extrapolate
the execution time or energy effect of DVFS, and does not need to instantiate the often
unknown parameters in the analytical model through heuristics. Second, VINCENT identifies
the most energy-consuming methods in an automated process. In contrast, the code region
for DVFS in Wu et al. is manually identified, Third, both existing efforts centrally relied on
instrumenting method boundaries for DVFS calls. Acceptable performance may be achievable
at the era of these developments — e.g., Haldar et al. was evaluated against the Java Grande
benchmark suite [54] and Wu et al. against SPEC 95 and SPEC2K — but modern Java
applications are significantly more complex than e.g., heapsort in Java Grande. In § 3.2.2,
we described the high overhead of that approach for Dacapo benchmarks.

In the context of related work, VINCENT can be understood as a revisit to a historically
significant research direction — compiler /runtime-based DVFS — which has unfortunately
been overtaken by black-box approaches e.g., DVFS based on dynamic performance counters.
VINCENT defines an end-to-end approach that is simple (no analytical model), automated (no
manual efforts in code region identification), and scalable in overhead (no instrumentation for
DVFS). It is our hope that VINCENT is a new beginning to re-study this largely overlooked
direction in the presence of modern applications in managed runtimes.

Energy-Aware Languages

Another direction of energy optimization at the boundary of programming abstractions is
energy-aware programming languages [55, 10, 49, 26, 40, 19, 11, 34, 25, 41, 61, 15]. For
example, Energy Types [19] introduces DVFS at the boundary of methods based on phase
information declared by programmers or inferred by the compiler. Green [10] and LAB [34]
select alternative algorithm-specific parameters based on energy and QoS need. Ent [14]
relies on hybrid type checking to select alternative programming abstractions (methods and
objects) for message dispatch. VINCENT works with the existing programming model of Java;
it is an effort on runtime design instead of programming model design.

Runtime-Level Energy Efficiency

Chen et al. [18] relies on garbage collection tuning to save memory system energy consumption
in JVMs. Cao et al. [16] improves the energy efficiency of JVM by assigning JVM services to
small cores on asymmetric hardware. DEP+BURST [2] is a performance predictor and energy
management system where JVM features such as synchronization, inter-thread dependencies,
and store bursts, are taken into account for performance/energy prediction. Hussein et
al. [29] investigates the energy impact of garbage collector design in the Android runtime.
They proposed some extensions to improve the energy efficiency of asynchronous GC in
Android. Overall, a common theme in existing work is to focus on JVM services (such as
GC and thread management), but none considers energy optimization at the granularity of
programming abstractions. Our work complements existing work with a fine-grained method-
based approach for energy optimization. For unmanaged language runtimes, Hermes [47, 39]
and Aequitus [48] are energy-efficient solutions built on top of Cilk. They perform DVFEFS
based on the dependencies between thief threads and victim threads in work stealing runtimes.

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu

Empirical studies often illuminate the energy consumption (and performance) of managed
language runtimes. An early study by Vijaykrishnan et al. [56] focuses on the energy
consumption impact on the memory hierarchy (cache and main memory) by JIT-enabled
Java applications. Esmaeilzadeh et al. [21] studies energy efficiency with a focus on
diverse configurations of workload and hardware. Sartor and Eeckhout [51] illuminates
the performance of Java applications, with a focus on mapping Java application threads and
JVM threads to multi-core hardware. Despite that their focus is on performance, DVFS is
extensively used in their design space exploration, such as running GC threads at different
CPU frequencies. Pinto et al. [45] studies the impact of energy consumption when alternative
thread management designs in Java are used, such as different settings of the thread pool.
Specific to ForkJoin [35], previous studies [44] also explored the impact of work stealing
on the performance and energy trade-off in Java runtimes. The energy impact of different
choices of Java collection classes were also a subject of studies [23, 46]. Kambadur et al. [33]
takes a cross-layer approach to surveying the energy management solutions, studying the
interface and interaction of different hardware/OS/compiler configurations.

Energy Profiling

Energy profiling is more commonly conducted at the system level (e.g., [43, 22]), rather
than at the boundary of programming abstractions such as methods. Chappie [9] supports
method-grained energy profiling. It adopts an approach with fixed time intervals, a necessary
design choice when there is no JVM modification. VINCENT is fundamentally a JVM-centric
approach. It takes advantage of the JVM support such as instrumentation to enable delimited
sampling. To VINCENT, energy profiling is an intermediate step for energy optimization,
which Chappie does not support.

7 Threats to Validity

While we believe leveraging hot methods in the JVM for DVFS-guided energy optimization
is a generalizable idea, VINCENT as an experimental system is implemented and evaluated
within specific software/hardware environments. The validity of our experimental data is
restricted to these environments.

First, VINCENT is an extension to the JikesRVM, so the validity of our results can only be
safely confirmed in that JVM. We are hopeful that the ideas behind VINCENT can translate
to alternative JVMs, for several reasons. (1) VINCENT does not rely on unique JikesRVM
features; hot method selection, dynamic instrumentation and compilation, and counter-based
sampling are available in many JVMs; (2) To the best of our knowledge, alternative JVMs
widely in use today do not perform DVFS-specific optimizations, so the likelihood of feature
intervention is small if the idea behind VINCENT is adopted on them. (3) JikesRVM has
incubated other influential JVM ideas (e.g., JIT, garbage collection), whose effectiveness has
been confirmed in alternative JVMs.

Second, VINCENT relies on CPU architectures where DVFS is enabled. Fortunately,
DVFS is a standard feature whose support is the rule not the exception in commodity CPUs,
including the vast majority of chips from Intel, AMD, ARM, and others. RAPL is used for
VINCENT energy measurement, a hardware feature also widely available in Intel after 2011,
and more recently, AMD CPUs.

Third, the experimental results are limited to the benchmark suite we used, Dacapo.
Dacapo is commonly used for Java evaluating the performance of JVMs and Java applications.

The benchmarks we used are multi-threaded, and they have diverse workload characteristics
(CPU-bound vs. I/O-bound) that matter to energy optimization.

32:25

ECOOP 2022

32:26

Vincent: Green Hot Methods in the JVM

As for the OS governor support, note that the ONDEMAND, PERFORMANCE and POWERSAVE
governors are used for the purpose of evaluation. The only OS requirement for VINCENT
is that the OS can expose the capability of DVFS regulation to the application. This
is the USERSPACE governor in Linux. Such support is also available in other OS such as
Windows [36].

8 Conclusion

VINCENT is a method-grained energy optimizer residing inside the JVM. It identifies the top
energy-consuming methods in the Java runtime, and performs profile-directed optimization
guided by DVFS. Our experiments show VINCENT can reduce the energy consumption and
improve the energy efficiency of Java applications. VINCENT is a novel instance among a
small number of energy optimization approaches that take advantage of the information
available to the managed runtime. It requires no modification to the underlying OS /hardware,
and requires no programmer effort.

—— References

1 Kiristen Accardi. Balancing power and performance in the linux kernel, https://events.
static.linuxfound.org/sites/events/files/slides/LinuxConEurope_2015.pdf. In The
2015 Linuz Conference, 2015.

2 S. Akram, J. B. Sartor, and L. Eeckhout. Dep+burst: Online dvfs performance prediction for
energy-efficient managed language execution. IEEE Transactions on Computers, 66(4):601-615,
2017. doi:10.1109/TC.2016.2609903.

3 Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek Lieber, Stephen Smith, Ton Ngo,
John J. Barton, Susan Flynn Hummel, Janice C. Sheperd, and Mark Mergen. Implementing
jalapeno in java. SIGPLAN Not., 34(10):314-324, October 1999. doi:10.1145/320385.320418.

4 Bowen Alpern, C. Richard Attanasio, John J. Barton, Michael G. Burke, Perry Cheng, Jong-
Deok Choi, Anthony Cocchi, Stephen J. Fink, David Grove, Michael Hind, Susan Flynn
Hummel, Derek Lieber, Vassily Litvinov, Mark F. Mergen, Ton Ngo, James R. Russell,
Vivek Sarkar, Mauricio J. Serrano, Janice C. Shepherd, Stephen E. Smith, Vugranam C.
Sreedhar, Harini Srinivasan, and John Whaley. The jalapenio virtual machine. IBM Syst. J.,
39(1):211-238, 2000. doi:10.1147/sj.391.0211.

5 The Linux Kernel Archives. Intel p-state driver, https://www.kernel.org/doc/
Documentation/cpu-freq/intel-pstate.txt.

6 The Linux Kernel Archives. Linux cpufreq governors, https://www.kernel.org/doc/
Documentation/cpu-freq/governors.txt.

7 M. Arnold and D. Grove. Collecting and exploiting high-accuracy call graph profiles in virtual
machines. In International Symposium on Code Generation and Optimization, pages 51-62,
2005.

8 Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney. Adaptive
optimization in the jalapefio jvm. In Proceedings of the 15th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA ’00, pages
47-65, New York, NY, USA, 2000. Association for Computing Machinery. doi:10.1145/
353171.353175.

9 Timur Babakol, Anthony Canino, Khaled Mahmoud, Rachit Saxena, and Yu David Liu. Calm
energy accounting for multithreaded java applications. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2020, pages 976-988, 2020.

10 Woongki Baek and Trishul M. Chilimbi. Green: a framework for supporting energy-conscious
programming using controlled approximation. In PLDI’10, pages 198-209, 2010.

https://events.static.linuxfound.org/sites/events/files/slides/LinuxConEurope_2015.pdf
https://events.static.linuxfound.org/sites/events/files/slides/LinuxConEurope_2015.pdf
https://doi.org/10.1109/TC.2016.2609903
https://doi.org/10.1145/320385.320418
https://doi.org/10.1147/sj.391.0211
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://doi.org/10.1145/353171.353175
https://doi.org/10.1145/353171.353175

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Thomas Bartenstein and Yu David Liu. Green streams for data-intensive software. In
Proceedings of the 35th International Conference on Software Engineering (ICSE 2013), May
2013.

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley,
Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin
Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanovi¢, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The dacapo
benchmarks: Java benchmarking development and analysis. In Proceedings of the 21st
Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications, OOPSLA ’06, pages 169-190, New York, NY, USA, 2006. Association for
Computing Machinery. doi:10.1145/1167473.1167488.

T.D. Burd and R.W. Brodersen. Energy efficient cmos microprocessor design. In HICSS’95,
pages 288-297 vol.1, 1995.

Anthony Canino and Yu David Liu. Proactive and adaptive energy-aware programming with
mixed typechecking. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages
217-232, 2017.

Anthony Canino, Yu David Liu, and Hidehiko Masuhara. Stochastic energy optimization
for mobile GPS applications. In Proceedings of the 2018 ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, pages
703-713, 2018.

Ting Cao, Stephen M Blackburn, Tiejun Gao, and Kathryn S McKinley. The yin and yang of
power and performance for asymmetric hardware and managed software. In Proceedings of the
89th Annual International Symposium on Computer Architecture, ISCA ’12, pages 225-236,
USA, 2012. IEEE Computer Society.

Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen. Low power cmos digital
design. IEEE JOURNAL OF SOLID STATE CIRCUITS, 27:473-484, 1995.

G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and M. Wolczko. Tuning
garbage collection for reducing memory system energy in an embedded java environment.
ACM Trans. Embed. Comput. Syst., pages 27-55, November 2002.

Michael Cohen, Haitao Steve Zhu, Senem Ezgi Emgin, and Yu David Liu. Energy types. In
OOPSLA 12, 2012.

Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian Le. Rapl:
Memory power estimation and capping. In Proceedings of the 16th ACM/IEEE International
Symposium on Low Power Electronics and Design, ISLPED ’10, pages 189-194, New York,
NY, USA, 2010. ACM. doi:10.1145/1840845.1840883.

Hadi Esmaeilzadeh, Ting Cao, Yang Xi, Stephen M. Blackburn, and Kathryn S. McKinley.
Looking back on the language and hardware revolutions: Measured power, performance, and
scaling. In Proceedings of the Sizteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVI, pages 319-332, New York,
NY, USA, 2011. Association for Computing Machinery. doi:10.1145/1950365.1950402.

X. Gao, D. Liu, D. Liu, H. Wang, and A. Stavrou. E-android: A new energy profiling tool for
smartphones. In 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), pages 492-502, June 2017.

Irene Lizeth Manotas Gutiérrez, Lori L. Pollock, and James Clause. SEEDS: a software
engineer’s energy-optimization decision support framework. In 36th International Conference
on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 201}, pages 503-514,
2014.

Vivek Haldar, Christian W. Probst, Vasanth Venkatachalam, and Michael Franz. Virtual-
machine driven dynamic voltage scaling. Technical report, In Technical Report No.03-21,
SICS, 2003.

32:27

ECOOP 2022

https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/1950365.1950402

32:28

Vincent: Green Hot Methods in the JVM

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Henry Hoffmann. Jouleguard: Energy guarantees for approximate applications. In Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP ’15, pages 198-214, 2015.
Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and
Martin Rinard. Dynamic knobs for responsive power-aware computing. In ASPLOS ’11, 2011.
M. Horowitz, T. Indermaur, and R. Gonzalez. Low-power digital design. In Low Power
Electronics, 1994. Digest of Technical Papers., IEEE Symposium, pages 811, 1994.
Chung-Hsing Hsu and Ulrich Kremer. The design, implementation, and evaluation of a
compiler algorithm for cpu energy reduction. In PLDI’03, pages 3848, 2003.

Ahmed Hussein, Mathias Payer, Antony L. Hosking, and Christopher A. Vick. Impact of GC
design on power and performance for android. In Dalit Naor, Gernot Heiser, and Idit Keidar,
editors, Proceedings of the 8th ACM International Systems and Storage Conference, SYSTOR
2015, Haifa, Israel, May 26-28, 2015, pages 13:1-13:12. ACM, 2015.

Intel. Energy analysis user guide, available at https://www.intel.com/content/www/us/en/
develop/documentation/energy-analysis-user-guide/.

Intel. Intel 64 and ia-32 architectures software developer’s manual: Volume 3,
available at https://www.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-software-developer-system-programming-manual-325384.
html.

Canturk Isci and Margaret Martonosi. Identifying program power phase behavior using power
vectors. In In Workshop on Workload Characterization, 2003.

Melanie Kambadur and Martha A. Kim. An experimental survey of energy management
across the stack. In Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’14, pages 329-344, New York,
NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2660193.2660196.
Aman Kansal, Scott Saponas, A.J. Bernheim Brush, Kathryn S. McKinley, Todd Mytkowicz,
and Ryder Ziola. The latency, accuracy, and battery (lab) abstraction: Programmer
productivity and energy efficiency for continuous mobile context sensing. In OOPSLA 13,
pages 661-676, 2013.

Doug Lea. A java fork/join framework. In Proceedings of the ACM 2000 Conference on
Java Grande, JAVA ’00, pages 36-43, New York, NY, USA, 2000. Association for Computing
Machinery. doi:10.1145/337449.337465.

Bin Lin, Arindam Mallik, Peter Dinda, Gokhan Memik, and Robert Dick. User- and process-
driven dynamic voltage and frequency scaling. In 2009 IEEE International Symposium on
Performance Analysis of Systems and Software, pages 11-22, 2009. doi:10.1109/ISPASS.
2009.4919634.

Kenan Liu, Khaled Mahmoud, Joonhwan Yoo, and Yu David Liu. Vincent: Green hot methods
in the JVM (technical report), available at http://www.cs.binghamton. edu/~davidl/papers/
ECO0P22Long.pdf.

Kenan Liu, Gustavo Pinto, and Yu David Liu. Data-oriented characterization of application-
level energy optimization. In FASE 2015, April 2015.

Yu David Liu. Green thieves in work stealing. In Proceedings of ASPLOS’12 (Provactive Ideas
session), 2012.

Yu David Liu. Variant-frequency semantics for green futures. In Proceedings of the Workshop
on Programming Language Approaches to Concurrency and Communication-cEntric Software
(PLACES’12), 2012.

Brandon Lucia and Benjamin Ransford. A simpler, safer programming and execution model for
intermittent systems. In Proceedings of the 86th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 15, pages 575—-585, 2015.

Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan Koomey. Recalibrating
global data center energy-use estimates. Science, 367(6481):984-986, 2020. doi:10.1126/
science.aba3758.

https://www.intel.com/content/www/us/en/develop/documentation/energy-analysis-user-guide/
https://www.intel.com/content/www/us/en/develop/documentation/energy-analysis-user-guide/
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://doi.org/10.1145/2660193.2660196
https://doi.org/10.1145/337449.337465
https://doi.org/10.1109/ISPASS.2009.4919634
https://doi.org/10.1109/ISPASS.2009.4919634
http://www.cs.binghamton.edu/~davidl/papers/ECOOP22Long.pdf
http://www.cs.binghamton.edu/~davidl/papers/ECOOP22Long.pdf
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1126/science.aba3758

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the energy spent inside my app?:
Fine grained energy accounting on smartphones with eprof. In Proceedings of the 7th ACM
FEuropean Conference on Computer Systems, EuroSys '12, pages 29-42, 2012.

Gustavo Pinto, Anthony Canino, Fernando Castor, Guoging (Harry) Xu, and Yu David Liu.
Understanding and overcoming parallelism bottlenecks in forkjoin applications. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering, ASE
2017, Urbana, IL, USA, October 30 - November 03, 2017, pages 765775, 2017.

Gustavo Pinto, Fernando Castor, and Yu David Liu. Understanding energy behaviors of thread
management constructs. In OOPSLA 14, 2014.

Gustavo Pinto, Kenan Liu, Fernando Castor, and Yu David Liu. A comprehensive study on
the energy efficiency of java thread-safe collections. In International Conference on Software
Maintenance and Evolution (ICSME 2016), 2016.

Haris Ribic and Yu David Liu. Energy-efficient work-stealing language runtimes. In
Architectural Support for Programming Languages and Operating Systems, ASPLOS ’14,
Salt Lake City, UT, USA, March 1-5, 2014, pages 513-528, 2014.

Haris Ribic and Yu David Liu. AEQUITAS: coordinated energy management across parallel
applications. In Proceedings of the 2016 International Conference on Supercomputing, 1CS
2016, Istanbul, Turkey, June 1-3, 2016, pages 4:1-4:12, 2016.

A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman. EnerJ:
Approximate data types for safe and general low-power computation. In PLDI’11, 2011.

H. Saputra, M. Kandemir, N. vijaykrishan, M Irwin, J. Hu, and U. Kremer. Energy-conscious
compilation based on voltage scaling. In In Proc. ACM SIGPLAN Joint Conference on
Languages, Compilers, and Tools for Embedded Systems and Software and Compilers for
Embedded Systems, pages 2-11. ACM Press, 2002.

Jennfer B. Sartor and Lieven Eeckhout. Exploring multi-threaded java application performance
on multicore hardware. In OOPSLA’12, OOPSLA ’12, pages 281-296, 2012.

Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribution analysis to
find periodic behavior and simulation points in applications. In PACT ’01: Proceedings of the
2001 International Conference on Parallel Architectures and Compilation Techniques, pages
3-14, Washington, DC, USA, 2001. IEEE Computer Society.

Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically
characterizing large scale program behavior. In ASPLOS-X: Proceedings of the 10th
international conference on Architectural support for programming languages and operating
systems, pages 45-57, 2002.

L.A. Smith, J.M. Bull, and J. Obdrizalek. A parallel java grande benchmark suite. In SC

’01: Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, pages 6-6, 2001.

doi:10.1145/582034.582042.

Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Brennan, Mark D. Corner,
and Emery D. Berger. Eon: a language and runtime system for perpetual systems. In SenSys
’07, pages 161-174, 2007.

N. Vijaykrishnan, M. Kandemir, S. Kim, S. Tomar, A. Sivasubramaniam, and M. J. Irwin.

Energy behavior of java applications from the memory perspective. In Proceedings of the
1st Java Virtual Machine Research and Technology Symposium, JVM 2001, Proceedings of
the 1st Java Virtual Machine Research and Technology Symposium, JVM 2001. USENIX
Association, 2001. Funding Information: This research is supported in part by grants from
NSF CCR-0073419, Pittsburgh Digital Greenhouse and Sun Microsystems.; 1st Java Virtual
Machine Research and Technology Symposium, JVM 2001 ; Conference date: 23-04-2001
Through 24-04-2001.

Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for reduced cpu
energy. In OSDI ’94: Proceedings of the 1st USENIX conference on Operating Systems Design
and Implementation, page 2, Berkeley, CA, USA, 1994. USENIX Association.

32:29

ECOOP 2022

https://doi.org/10.1145/582034.582042

32:30

Vincent: Green Hot Methods in the JVM

58

59

60

61

Qiang Wu, V.J. Reddi, Youfeng Wu, Jin Lee, D. Connors, D. Brooks, M. Martonosi, and
D.W. Clark. A dynamic compilation framework for controlling microprocessor energy and
performance. In 38th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’05), pages 12 pp.—282, 2005. doi:10.1109/MICRO.2005.7.

Fen Xie, Margaret Martonosi, and Sharad Malik. Compile-time dynamic voltage scaling
settings: opportunities and limits. In PLDI’03, pages 49-62, 2003.

Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. Currentcy: A unifying
abstraction for expressing energy management policies. In In Proceedings of the USENIX
Annual Technical Conference, pages 43-56, 2003.

Haitao Steve Zhu, Chaoren Lin, and Yu David Liu. A programming model for sustainable
software. In ICSE’15, pages 767777, 2015.

https://doi.org/10.1109/MICRO.2005.7

	1 Introduction
	1.1 Our Approach: JVM-Level Method-Grained DVFS
	1.2 Contributions

	2 Background
	2.1 Energy Optimization and Metrics
	2.2 DVFS
	2.3 OS Governors
	2.4 Energy Measurement and RAPL
	2.5 JVM Design and JIT
	2.6 Counter-Based Sampling

	3 Vincent Design
	3.1 System Overview
	3.2 Vincent Specification
	3.2.1 Thread Bookkeeping
	3.2.2 Profiling Instrumentation
	3.2.3 Scaling Instrumentation

	4 Implementation and Experimental Settings
	4.1 Hardware/OS/VM Setup
	4.2 Hot Method Selection
	4.3 Algorithm Implementation
	4.4 Benchmarking and Experimental Setup
	4.5 Baselines

	5 Vincent Evaluation
	5.1 Method-Grained Energy Optimization
	5.1.1 Energy Profiling
	5.1.2 The Impact on Energy Consumption
	5.1.3 The Impact on EDP
	5.1.4 The Impact on Execution Time

	5.2 Alternative Baselines
	5.3 The Impact during the Warm-Up Phase
	5.4 Multi-Method Optimization
	5.5 An Experimental Summary
	5.6 The Technical Report

	6 Related Work
	7 Threats to Validity
	8 Conclusion

