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ABSTRACT

We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data
from the third observing run of LIGO and Virgo (O3) combined with data from the second observing
run (O2). Searches were for emission from the [ = m = 2 mass quadrupole mode with a frequency
at only twice the pulsar rotation frequency (single harmonic) and the [ = 2,m = 1,2 modes with a
frequency of both once and twice the rotation frequency (dual harmonic). No evidence of GWs was
found so we present 95% credible upper limits on the strain amplitudes hy for the single harmonic
search along with limits on the pulsars’ mass quadrupole moments (2o and ellipticities . Of the
pulsars studied, 23 have strain amplitudes that are lower than the limits calculated from their elec-
tromagnetically measured spin-down rates. These pulsars include the millisecond pulsars J0437—4715
and JO711—6830 which have spin-down ratios of 0.87 and 0.57 respectively. For nine pulsars, their
spin-down limits have been surpassed for the first time. For the Crab and Vela pulsars our limits are
factors of ~ 100 and ~ 20 more constraining than their spin-down limits, respectively. For the dual
harmonic searches, new limits are placed on the strain amplitudes Co; and Cyy. For 23 pulsars we
also present limits on the emission amplitude assuming dipole radiation as predicted by Brans-Dicke

theory.

1. INTRODUCTION

To date, the LIGO and Virgo observatories have made
detections of numerous sources of gravitational radia-
tion. These detections have been of transient grav-
itational waves (GWs) from the inspiral and subse-
quent mergers of compact binary objects including bi-
nary black holes and binary neutron stars (Abbott
et al. 2021a). Recently, the list of observed events ex-
panded to include neutron star-black hole binaries (Ab-
bott et al. 2021b). There remain other types of GW
sources that are yet to be observed such as continuous
GW (CW) sources. Unlike transients, CW signals are
almost monochromatic, with their amplitude and fre-
quency changing very slowly over year-long timescales.
The mass quadrupoles of these sources, such as deformed
neutron stars, are expected to be far smaller than those
involved in compact binaries and therefore only local
galactic sources are likely to produce detectable signals.

Likely candidates for producing such signals are neu-
tron stars spinning with some non-axisymmetric defor-
mation (Zimmermann & Szedenits 1979). This may be
a solid deformation such as mountains on the crust pro-
duced during cooling (Ushomirsky et al. 2000), from bi-

nary accretion (Gittins & Andersson 2021) or due to
strong magnetic fields (Bonazzola & Gourgoulhon 1996;
Cutler 2002). GW radiation can also be caused by
fluid modes of oscillation beneath the crust such as r-
modes (Andersson 1998; Friedman & Morsink 1998). By
detecting CWs, light can be shed on the structure of
the star. Additionally, detections of such GWs can be
used to test general relativity via the constraint of non-
standard GW polarization (Isi et al. 2017; Abbott et al.
2019a). A more thorough discussion of various methods
of GW emission from neutron stars can be found in Riles
(2017); Glampedakis & Gualtieri (2018).

The structure of this paper is as follows. Section 1.1
outlines the types of CW searches. Section 1.2 describes
the types of signal models used in this analysis. Sec-
tion 2 describes the search methods used. Section 3
covers both the GW and EM data used. We present our
results in Section 4 with conclusions in Section 5.

1.1. Continuous-wave searches

There are broadly three types of CW searches. Tar-
geted searches look for signals from known pulsars for
which their rotational phases can be accurately deter-
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mined from electromagnetic (EM) observations (e.g.,
Abbott et al. 2017a, 2019b; Nieder et al. 2019, 2020;
Abbott et al. 2020, 2021c; Ashok et al. 2021). This sim-
plifies the search as the EM observations can be used
to derive a timing solution and it is assumed that the
GW phase evolution is locked to the EM evolution. This
means the search is over a small parameter space, gen-
erally limited to the unknown signal amplitude and ori-
entation of the source, which allows a more sensitive
search than other methods. In some targeted searches,
the assumption that the GW evolution follows the EM
evolution is relaxed and the search is performed in a
narrow band around the expected frequency and spin-
down rate (Abbott et al. 2017b, 2019¢). In this case,
the search is more computationally expensive due to the
larger parameter range being searched and slightly less
sensitive because of a higher trials factor. To overcome
this, narrow-band searches often look at fewer targets.
Directed searches look for signals from small sky regions
that are believed to have a high probability of containing
a neutron star, such as supernova remnants. As the tim-
ing solution cannot be derived from EM observations, a
wide range of rotational parameters must be searched.
All-sky searches look for signals in all sky directions and
over a wide range of rotational parameters. A review
of directed and all-sky methods and previous searches
can be found in Tenorio et al. (2021). Both these meth-
ods suffer increasing computational costs and decreasing
sensitivity of the searches as parameter space increases.
Searches of all three types have been performed and so
far no convincing evidence for CWs has been observed.
However, searches have probed new regimes, such as pro-
viding upper limits on emission that are more stringent
(i.e., smaller) than those based on energetics arguments.
For example, for several pulsars including the Crab pul-
sar, Vela pulsar (Abbott et al. 2019b), J0537—6910 (Ab-
bott et al. 2021¢,d) and two millisecond pulsars (Abbott
et al. 2020) the direct upper limits set on the GW am-
plitude are more constraining than limits based on the
assumption that all the pulsars’ spin-down luminosity is
radiated through GWs, known as the spin-down limit.
In this paper we report the new results of a tar-
geted search for CW signals from 236 pulsars using
the most recent LIGO and Virgo datasets including
the second and third observing runs (O2 and O3 re-
spectively). LIGO (Aasi et al. 2015) consists of two
gravitational-wave detectors situated in Hanford, Wash-
ington (H1) and Livingston, Louisiana (L1) while Virgo
(Acernese et al. 2015) is located in Cascina, Pisa (V1).
The ephemerides for the pulsars have been derived from
observations using the CHIME, Hobart, Jodrell Bank,
MeerKAT, Nancay, NICER and UTMOST observato-

ries. More details on these observations can be found in
Section 3.2.

1.2. Signal models

We assume that the gravitational-wave (GW) emis-
sion is locked to the rotational phase of the pulsar. For
the ideal case of a triaxial star rotating steadily about a
principal moment of inertia axis, the GW emission is at
twice the star’s spin frequency, fio;. However, there are
mechanisms that can produce variations to this 2f;ot
frequency. For example, a superfluid component with
a misaligned spin axis within the star could produce
a dual-harmonic emission at both once and twice the
rotation frequency without leaving an imprint on the
EM emission (Jones 2010). Therefore we perform two
searches: one at just twice the pulsar rotation frequency
and one at both one and two times the frequency, which
is referred to as a dual harmonic search.

The waveform used in the dual harmonic search is
detailed in Jones (2010) and used in Pitkin et al. (2015);
Abbott et al. (2017a, 2019b, 2020). The signals hg; and
hoo at once and twice the pulsar rotation frequency can
be defined as
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where Cy; and Cyy are the dimensionless constants that
give the component amplitudes, the angles («, ¢) are the
right ascension and declination of the source, while the
angles (¢, 1) describe the orientation of the source’s spin
axis with respect to the observer in terms of inclination
and polarization, ®F, and ®F, are phase angles at a
defined epoch and ®(t) is the rotational phase of the
source. The antenna functions F¥ and F£ describe
how the two polarization components (plus and cross)
are projected onto the detector.

For the ideal case of a steadily spinning triaxial star
emitting GWs only at twice the rotation frequency, the
equatorial ellipticity can be defined as

e = |Iﬂi€1/’ — I’é/?l'7 (3)
IZZ
where (Iy4, Iy, I..) are the source’s principal moments
of inertia, with the star rotating about the z-axis. The
mass quadrupole of the source Q22 is often quoted and
is related to the ellipticity as

Q22 = Izzg\( ;77? (4>



For single harmonic emission, Cs; from equation (1) can
be set as 0, leaving only Css in equation (2). The am-
plitude can then be parameterised as the dimensionless
ho: the amplitude of the circularly polarised signal that
would be observed if the source lay directly above or
below the plane of the detector and had its spin axis
pointed directly towards or away from the detector. The
following equations are defined in Aasi et al. (2014).
2 2
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where d is the distance of the source. The spin-down
limit hﬁd of a source is given by:

1 (5GI... | frotl 1
had:d< 2z rot) 7 (6)

ho = 2Ca =
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where frot is the first derivative of the rotational fre-
quency, i.e., the spin-down rate, and provides an am-
plitude limit assuming that all of the rotational energy
lost by the pulsar is converted to gravitational-wave en-
ergy (Owen 2005). When the directly observed hg is
smaller than h$%, the spin-down limit can be said to
have been surpassed. This information is most often
represented by quoting the “spin-down ratio”, i.e., the
ratio between hy and hil. If assuming that there is no
mechanism (e.g., accretion) providing some additional
spin-up torque, the direct amplitude constraints probe
a new physical regime only when the spin-down limit is
surpassed. There are two types of spin-down rate: in-
trinsic and observed. The observed spin-down rate can
be affected by the transverse velocity of the source, e.g.,
the Shlovskii effect (Shklovskii 1970), so where possi-
ble the intrinsic spin-down rate is used to calculate the
spin-down limit.

1.2.1. Non-GR polarization signal

In this paper we also perform a search for GWs with
polarizations as predicted in a modification of the stan-
dard general relativity (GR) proposed by Brans and
Dicke. The Brans-Dicke theory (Brans & Dicke 1961)
predicts three independent polarization states: two ten-
sor polarizations, as in GR, and an additional scalar
polarization. The dominant scalar radiation in Brans-
Dicke theory originates from the time-dependent dipole
moment (see Verma 2021, for details). The signal hi;
due to dipole radiation is given by (see Eqgs. (63) - (67)
and (70) - (71) of Verma 2021)

hiy = —hd c(a, §;t) sinesin(®(t) 4+ ), (7)

where c(a,0;t) is the amplitude modulation function
and P is the phase angle at time ¢t = 0. The explicit for-
mula for ¢(a, d;¢) is given by Eq. (64) of Verma (2021).
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We see that the dipole radiation comes at the rotational
frequency of the pulsar. We assume that the only non-
vanishing component D of the dipole moment in the
pulsar’s frame is in the z-direction. Then the amplitude
hd of the signal is given by

G Dfrot
hi = ——
0 3 d ) (8)

where ( is the parameter of the Brans-Dicke theory (see
Section 3 of Verma 2021, for details).

2. ANALYSIS

As in Abbott et al. (2017a, 2019b), three largely in-
dependent analysis methods were used for the searches
in this paper: the Time-domain Bayesian method (Sec-
tion 2.1), the F/G/D-statistic method (Section 2.2),
and the 5n-vector method (Section 2.3). The F/G/D-
statistic and the bn-vector methods are only used in
searches for pulsars deemed to be high-value: those
which surpass their spin-down limits in the Bayesian
analysis. The Bayesian and F/G/D-statistic methods
search for two signal models: a single harmonic signal
emitted by the [ = m = 2 mass quadrupole mode at
twice the pulsar rotation frequency and a dual harmonic
signal emitted by the l =m = 2 and = 2,m = 1 modes
at twice and once the frequency. The bn-vector method
restricts the latter search to the [ = 2,m = 1 mode
only. Only one method, the D-statistic, is used for the
Brans-Dicke polarization search. The GW emission is
assumed to precisely follow the phase evolution deter-
mined through EM observations, although uncertainties
in values from the EM observations are not accounted
for here.

2.1. Time-domain Bayesian method

The raw GW strain data are heterodyned using their
expected phase evolution, which includes corrections for
the relative motion of the source with respect to the
detector and relativistic effects (Dupuis & Woan 2005).
They are then low-pass filtered using a cut-off frequency
of 0.25Hz and then down-sampled to one sample per
minute (1/60 Hz bandwidth) centred about the expected
signal frequency now at 0Hz. For the dual harmonic
search this is repeated so that a time series is obtained
centred at both fiot and 2f,.t. Bayesian inference is
used to estimate the remaining unknown signal parame-
ters and the evidence for the signal model (Pitkin et al.
2017). For the parameter inference, the prior distribu-
tions used were those given in Appendix 2 of Abbott
et al. (2017a). They were uninformative uniform pri-
ors for the orientation angles, unless restricted ranges
were appropriate as discussed in Section 2.1.2. For the
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amplitude parameters, Fermi-Dirac distribution priors
were used (see Section 2.3.5 of Pitkin et al. 2017). The
Fermi-Dirac distributions for each pulsar were set such
that they were close to flat over the bulk of the likelihood
while penalizing very large values. This choice of prior
means that the amplitude posteriors will be dominated
by the likelihood even when no signal is observed. Any
upper limits derived from the posteriors will be more
conservative than those that would be found from us-
ing an uninformative Jeffreys prior that was uniform in
the logarithm of the amplitude, i.e., p(hg) < 1/hg. To
avoid basing the priors on current detector data the pri-
ors were constructed by choosing Fermi-Dirac parame-
ters that gave distributions for which the 95% probabil-
ity upper bound was equivalent to the estimated upper
limit sensitivity of the combined LIGO S6 and Virgo
VSRA4 science runs at the particular pulsar GW signal
frequency.t

This method also considers the effect of glitches on the
pulsars (Section 2.1.1) and can perform searches with
restrictions on the pulsar orientation (Section 2.1.2).

2.1.1. Glitches

Although their frequency is usually very stable, pul-
sars occasionally experience a transient increase in ro-
tation frequency and frequency derivative. Such events
are called glitches and are most common in young, non-
recycled pulsars, although they do rarely occur in mil-
lisecond pulsars (Cognard & Backer 2004; McKee et al.
2016). Some of our sample of pulsars glitched during
the course of O2 and O3. We assume that glitches af-
fect the GW phase identically to the EM phase, but with
the addition of an unknown phase offset at the time of
the glitch. This phase offset is included in the parame-
ter inference. For glitches that occur before or after the
range of the data, no phase offset is needed. The pulsars
which experienced glitching during the course of this
analysis are J05344-2200, also known as the Crab pulsar
(Shaw et al. 2021), J0908—4913 (Lower et al. 2019) and
J1105—6107. They are shown in Table 1 along with the
time (MJD) of the glitch.

2.1.2. Restricted orientations

Occasionally, the orientation of a pulsar can be deter-
mined from modeling of X-ray observations of its pul-
sar wind nebula (Ng & Romani 2004, 2008). In such
cases, these values can be included as narrow priors on

1 For the dual harmonic search for pulsars with signal components
below 20 Hz, the C; priors were constructed without using the
estimated VSR4 Virgo sensitivity. This was to prevent prior from
dominating over the likelihood in this frequency region.

inclination and polarization angle rather than using an
uninformative uniform prior. Results still assuming uni-
form priors are also included. Such pulsars are shown
in Table 2 below along with their restricted prior ranges
(Abbott et al. 2017a), which are assumed to be Gaussian
about the given mean and standard deviation.

In the case of the Crab pulsar, which both experienced
a glitch and has sufficient observations for restricted
priors, four individual analyses are performed. FEach
analysis accounts for the glitch, with combinations of
dual/single harmonic search and restricted /unrestricted
priors.

2.2. F/G/D-statistic method

The time-domain F /G /D-statistic method uses the F-
statistic derived in Jaranowski et al. (1998) and the G
statistic derived in Jaranowski & Krolak (2010). The in-
put data for the analysis using this method are the het-
erodyned data used in the time-domain Bayesian anal-
ysis. The F-statistic is used when the amplitude, phase
and polarization of the signal are unknown, whereas the
G-statistic is applied when only amplitude and phase are
unknown, and the polarization of the signal is known
(as described in Section 2.1.2). The methods have been
used in several analyses of LIGO and Virgo data (Abadie
et al. 2011; Aasi et al. 2014; Abbott et al. 2017a, 2020).
The method also uses the D-statistic developed in Verma
(2021) to search for dipole radiation in Brans-Dicke the-
ory. The D-statistic search is the first search of LIGO
and Virgo data for dipole radiation as predicted by
Brans-Dicke theory.

In this method a signal is detected in the data if
the value of the F-, G- or D-statistic exceeds a certain
threshold corresponding to an acceptable false alarm
probability. We consider the false alarm probability of
1% for the signal to be significant. The F-, G-, and
D-statistics are computed for each detector and each
inter-glitch period separately. The results from different
detectors or different inter-glitch periods are then com-
bined incoherently by adding the respective statistics.
When the values of the statistics are not statistically
significant, we set upper limits on the amplitude of the
gravitational-wave signal.

2.3. The 5n-vector method

The 5n-vector method, derived in Astone et al. (2012),
is a multi-detector matched filter in the frequency do-
main, based on the sidereal modulation of the expected
signal amplitude and phase. The method has been used
in several analysis of LIGO and Virgo detector data
(Abadie et al. 2011; Aasi et al. 2014; Abbott et al. 2017a,
2020), and recently Abbott et al. (2021a) combined with



PSR

Epoch (MJD)

J053442200 (Crab)
J0908—4913
J1105—6107

58687.6448 £ 0.0033

58767.34 + 4.5
58582.24

Table 1. Pulsars with glitches occurring during the course of the runs used in this analysis.

Table 2. Pulsars with observations sufficient to restrict their orientation priors in terms of inclination and polarization and the
values used as the constraints.

PSR

¥ (rad)

11 (rad)

t2 (rad)

J0534+2200 (Crab)
J0835-4510 (Vela)
J1952+43252
222946114

2.1844 + 0.0016
2.2799 £ 0.0015
0.2007 £ 0.1501
1.7977 £ 0.0454

1.0850 £ 0.0149
1.1048 £ 0.0105

0.8029 + 0.1100

2.0566 £ 0.0149
2.0368 £ 0.0105

2.3387 £ 0.1100

the Band-Sample Data (BSD) framework (Piccinni et al.

2020 March 27 (MJD: 58935.708).

Virgo was opera-

2018). This is based on the construction of BSD files,
i.e., complex time series that cover 10 Hz and 1 month
of the original dataset. Using the BSD files, the compu-
tational cost of the analysis is reduced to a few CPU-
minutes per source per detector.

The 5n-vector method uses a frequentist approach:
the significance of a certain candidate, characterised by
a value of the detection statistic, is established through
the p-value, that is the probability to obtain a larger
value for the statistics in the hypothesis of noise only.
The statistic distribution can be inferred considering a
range of off-source frequencies, as in Astone et al. (2014).
In case of no detection, upper limits on the amplitude
for the single harmonic search are set following Abbott
et al. (2019b). For the dual harmonic search, for simplic-
ity, we only consider the emission at once the rotation
frequency, so we set upper limit on the C; parameter
alone.

For the pulsars which experienced glitching, each
inter-glitch period is analysed independently and then
the resulting statistics are combined incoherently. For
pulsars for which an estimation of the polarization pa-
rameters can be derived from EM observations, see Ta-
ble 2, two searches are carried on: one assuming un-
informative uniform priors on ¥ and ¢ and one using
restricted Gaussian priors. Only O3 data from LIGO
and Virgo detectors have been used in this search.

3. DATA SETS USED
3.1. Gravitational-wave data

The data set used O2 and O3 runs. The O2 run
took place between 2016 October 30 (MJD: 57722.667)
and 2017 August 25 (MJD: 57990.917). Virgo joined
02 on 2017 August 1. The duty factors for L1, HI,
and V1, were 57%, 59%, and 80%, respectively. O3
took place between 2019 April 1 (MJD: 58574.625) and

tional for the whole of the O3 run. The duty factors for
this run were 76%, 71%, and 76% for L1, H1, and V1,
respectively. The uncertainties on the amplitude and
phase calibration of the detectors for O2 can be found
in Cahillane et al. (2017); Acernese et al. (2018) and
those for O3 can be found in Sun et al. (2020, 2021);
Acernese et al. (2022). For 02, the maximum lo am-
plitude uncertainties over the range 10-2000 Hz were be-
tween about [—2.5,+7.5]% and [—8,+4|% for H1 and
L1, respectively, and for Virgo the the maximum uncer-
tainty was 5.1%. For O3, the maximum lo amplitude
uncertainties over the range 10-2000 Hz were between
about [—5,+7]% and [-5.5,45.5]% for H1 and L1, re-
spectively, and for Virgo the maximum uncertainty was
5%. These ranges are the maximum upper and lower
bound over the full frequency range and over different
measurement epochs over the run, so at specific frequen-
cies/times the uncertainty can be far smaller.

The data used underwent cleaning processes (Davis
et al. 2019; Viets & Wade 2021; Acernese et al. 2022),
specifically the removal of narrowband spectral artifacts
at the calibration line frequencies and power line fre-
quencies. A discussion on the consequences of perform-
ing a search using LIGO data with the narrowband
cleaning of Viets & Wade (2021) applied compared to
that without it applied can be found in Appendix A.

3.2. FElectromagnetic data

EM observations of pulsars produce the timing so-
lutions used as input to the GW searches. These ob-
servations have been made in radio and X-ray wave-
lengths. The observatories which have contributed to
the data set are: the Canadian Hydrogen Intensity Map-
ping Experiment (CHIME) (as part of the CHIME Pul-
sar Project; Amiri et al. 2021), the Mount Pleasant Ob-
servatory 26 m telescope, the 42 ft telescope and Lovell
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telescope at Jodrell Bank, the MeerKAT project (as
part of the MeerTime project; Bailes et al. 2020), the
Nangay Decimetric Radio Telescope, the Neutron Star
Interior Composition Explorer (NICER) and the Molon-
glo Observatory Synthesis Telescope (as part of the UT-
MOST pulsar timing programme; Jankowski et al. 2019;
Lower et al. 2020). Pulsar timing solutions were deter-
mined from this data using TEMPO (Nice et al. 2015)
or TEMPO2 (Edwards et al. 2006; Hobbs et al. 2006a,
2009) to fit the model parameters.

We select pulsars whose rotation frequency is greater
than 10 Hz so they are within the sensitivity band of
the GW detectors. This leads to primarily targeting
millisecond pulsars and fast spinning young pulsars. Of
the 236 pulsars in this analysis, 74 are different from the
221 used in the O2 analysis (Abbott et al. 2019b). There
are 168 pulsars in binary systems and 161 are millisec-
ond pulsars with frequencies above about 100 Hz. The
pulsar J0537—6910 is not included due to the recently
published searches for it in Abbott et al. (2021d,c).

For some pulsars, ephemerides were only available for
the course of O3. In such cases, only GW data from
03 was used. This was the case for 102 out of the 236
pulsars in this analysis.

4. ANALYSIS RESULTS

No evidence for gravitational-wave signals from any
of the included pulsars was found. The results for all
except the high-value targets are shown in Table 3. The
high-value pulsars are shown in Table 4 and discussed in
Section 4.1. As no CWs were observed, we present the
95% credible upper limits on the gravitational-wave am-
plitudes Ca2 and Cb for the dual harmonic run (search-
ing for the mass quadrupole modes [ = 2, m = 1,2) and
the gravitational-wave amplitude hg for the single har-
monic (I = 2, m = 2) search. These were all calculated
using coherently combined data from all three detectors
over the O2 and O3 observing runs or just the O3 run,
as appropriate. Due to the calibration amplitude sys-
tematic uncertainties for the detectors, the amplitude
estimates can have uncertainties of up to ~ 8%.

Figure 1 shows the 95% credible upper limits on the
gravitational-wave amplitudes Coo and Co; for all pul-
sars using the time-domain Bayesian method. In addi-
tion, it shows joint detector sensitivity estimates for the
two amplitudes based on the representative power spec-
tral densities for the detectors over the course of O3. For
an explanation of how these estimates were calculated,
see Appendix C in Abbott et al. (2019b).

The 95% credible upper limits for the GW amplitude
ho from the single harmonic analysis for all pulsars,
again using the results from the time-domain Bayesian

method, are shown as stars in Figure 2. The spin-down
limit for each pulsar is represented as a grey triangle. If
the observed upper limit for a pulsar is below the spin-
down limit, this is shown via a dotted green line from the
spin-down limit to the hg limit which is plotted within
a shaded circle. The solid line gives the joint detector
sensitivity estimate over the course of 03.2

Figure 3 shows a histogram of the spin-down ratio
h85% /Rt from the Bayesian analysis for every pulsar for
which calculating a spin-down rate was possible.?> These
values rely on the pulsar distance, frequency derivative
and principal moment of inertia, which all have associ-
ated uncertainties. These are not taken into account in
this study, for which we use the best-fit values listed in
Table 3 and 4 and a fiducial moment of inertia I1d of
10%® kg m?, but their presence should be kept in mind.
Distance errors are primarily based on uncertainties in
the galactic free electron distribution (Yao et al. 2017),
which can lead to distance errors on the order of a fac-
tor of two. Nearby pulsars, for which parallax measure-
ments are possible, will generally have smaller distance
uncertainties. Table 3 provides a reference for the dis-
tance to each pulsar, which can be used to find an es-
timate of the associated error as required. The relative
uncertainties in frequency derivative are generally much
smaller than the distance uncertainties. The principal
moment of inertia is equation of state dependent and
could range between ~ (1 — 3)x 103 kgm? (see, e.g.,
Abbott et al. 2007). The mass quadrupole Q22 and the
ellipticity € limits also rely on these values; for example,
our given ellipticity upper limits are inversely propor-
tional to I,,/103® kgm?.

The single harmonic search was used to place lim-
its on the mass quadrupole Qgg% which can be used
to find the pulsar’s ellipticity £”*% using equations (5)
and (4). However, for pulsars that did not surpass their
spin-down limits these Q22 and & values would lead to
spin-down rates Pmt that are greater than (and thus are
in violation of) their measured values. The results for
the Bayesian analysis are shown in terms of the mass
quadrupole Q2o and ellipticity e in Figure 4. Also in-
cluded are histograms of the upper limits and spin-down
limits as well as contour lines of equal characteristic age
7 calculated under the assumption that all spin-down is
due to energy loss through GW emission, i.e., the brak-
ing index is n = 5.

2 The sensitivity estimate for O3 alone is used as it dominates

compared to the estimate for the O2 run.

3 Spin-down rates cannot be calculated for pulsars with insuffi-
cient distance, frequency or frequency derivative data (see equa-

tion (6)).
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Figure 1. The 95% credible upper limits on the gravitational-wave amplitudes for all 236 pulsars using the time-domain
Bayesian method. The pink stars and green crosses show the 95% credible upper limits for the GW amplitudes (Ca2 and Ca1)
for the dual harmonic search. The solid lines show the estimated sensitivity of all three detectors combined over the course of

03.

From the Bayesian search twenty-three pulsars have
direct upper limits that are below their spin-down limit,
with 89 pulsars within a factor of 10 of their spin-
down limit. There were 90 millisecond pulsars with a
spin-down ratio less than 10. For the dual harmonic
search, the most constraining upper limit for Co; was
J2302+4442 with 7.05x 10727, The smallest Cay upper
limit was 2.05x 10727 for J1537-5312. As physically
meaningful constraints for the single harmonic search
are only achieved once the spin-down limit has been
surpassed, the following best limits are taken from the
23 pulsars that had h3°%/hs? < 1. The smallest spin-
down limit was 0.009 for J0534+2200 (the Crab pul-
sar). The pulsar with the smallest upper limit on hg was
J1745—0952 with 4.72x10727. The best Q22 upper limit
was achieved by J0711—6830 with 4.07x10%° kg m? which
led to the best limit on ellipticity of 5.26x10~°. This pul-
sar has a dispersion measure distance of 0.11 kpc, which
makes it relatively close by. However, its high ecliptic

latitude makes it very insensitive to parallax measure-
ment (Reardon et al. 2021).

For each pulsar, we performed a model comparison be-
tween the assumption of the data being consistent with
a coherent signal compared to the assumption of an in-
coherent signal or noise. This was calculated for both
the dual harmonic (I = 2, m = 1,2) and single harmonic
(I = 2, m = 2) searches. Specifically, the base-10 loga-
rithm of the Bayesian odds between models is calculated,
which will be referred to as @. Of all the pulsars in this
search, none had O > 0, meaning in all cases incoherent
noise was more likely than a coherent signal. The pul-
sar with the highest odds overall was J2010—1323 with
—0.77.

4.1. High-value targets

Table 4 shows the results for the analyses on the high-
value targets for the Bayesian, the F /G-statistic and
the dn-vectors analyses. In this case, the two columns
named “Statistic” have different values depending on
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The Vela pulsar is highlighted and the pulsar J0537—6910 upper and spin-down limits calculated in Abbott et al. (2021c) are

also included for completeness.

which analysis method was used. For the Bayesian anal-
ysis they give the base-10 logarithm of the Bayesian
odds, O, for the dual- and single-harmonic searches, re-
spectively. This is the same as for the results in Ta-
ble 3. For the F/G-statistic and Sn-vector analysis
methods they represent the false-alarm probabilities at
the | =2,m =1 and | = m = 2 modes respectively.

By definition, all high-value pulsars surpassed their
spin-down limits in the Bayesian analysis. Several pul-
sars glitched during the course of the runs: J053442200
(Crab pulsar), J0908—4913 and J1105—6107. The times
of the glitches are shown in Table 1 and the process
for dealing with them is outlined in Section 2.1.1. Ad-
ditionally, some have sufficient information from EM
observations on their orientation to restrict their pri-
ors: J0534+42200 (Crab pulsar), J0835—4510 (Vela),

J1952+-3252 and J2229+6114. This is discussed in 2.1.2
and the pulsars’ restricted ranges are quoted in Table 2.
For each pulsar with either a glitch or restricted pri-
ors, individual analyses were performed assuming GW
emission at both 2f,o; and fioy and just 2fio;. In the
case of the Crab pulsar, which both experienced a glitch
and has sufficient observations for restricted priors, four
individual analyses were performed. Each analysis ac-
counted for the glitch, with combinations of dual/single
harmonic search and restricted /unrestricted priors. The
values shown in Table 4 are from the searches with
glitches accounted for via an unknown phase offset.
When a pulsar had a restricted prior search, the results
are shown in parentheses next to the unrestricted re-
sults.
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The Crab pulsar is of interest due to its high spin-
down luminosity. For the single harmonic Bayesian
analysis and with the glitch accounted for by a phase
offset, its upper limit as a fraction of the spin-down
limit is only 0.0094(0.0085) meaning that GWs con-
tribute to less than 0.009% of the available spin-down
luminosity. This is consistent with previous studies
that also surpassed the spin-down limit (Abbott et al.
2019b, 2017b). TIts h85% upper limit was found to be
1.3(1.2) x 10726, With a distance of 2kpc and period
derivative of 4.2 x 107 '3ss™!, the upper limits on the
mass quadrupole and ellipticity were calculated to be
Q957 = 5.6(5.0)x1032 kg m? and £%% = 7.2(6.5)x1076.
The base-10 logarithm of the Bayesian odds for this
analysis favouring a coherent signal over incoherent
noise is -2.6(-2.7).

The Vela pulsar also has a very high spin-down lu-
minosity and is considered another source of interest.
Unlike the Crab pulsar, the Vela pulsar did not expe-
rience any glitches over the course of this analysis. In
the single harmonic Bayesian analysis, the spin-down
limit was surpassed with a ratio of 0.052(0.051), with
hY®% = 1.8(1.7) x 1072°. This ratio corresponds to a
maximum of 0.27% of the spin-down luminosity being
emitted by GWs. The previous known pulsar search
by Abbott et al. (2019b) found the spin-down ratio to
be 0.042 with h3°” = 1.4x 10725 which is lower than
in this analysis. This is due to significant noise in the
LIGO Hanford detector at twice Vela’s rotational fre-
quency, with an angular sensing control dither line be-
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ing the most likely culprit.* However, this analysis is
an improvement on the more recent measurement of the
spin-down ratio of 0.067 and h85% = 2.2x1072° pro-
duced in Abbott et al. (2020). The upper limits on the
mass quadrupole Qgg% and ellipticity € were calculated
to be 7.2(7.1) x 1033 kg m? and 9.3(9.2) x 1075, respec-
tively. These values were calculated assuming a distance
of 0.28kpc and a period derivative of 1.2x 10" 13ss™ 1.
The base-10 logarithm of the Bayesian odds for this pul-
sar in the single harmonic analysis was -1.1(-1.0).

The pulsar J0537—6910 has the highest spin-down lu-
minosity but has not been included in this search due
to recently published searches for it in Abbott et al.
(2021c,d). The limits, which can be found in Table 3 of
Abbott et al. (2021c), are shown for comparison. They
found hY°% = 1.1(1.0) x 10~2¢ with a spin-down ratio of
hY*% /hg? = 0.37(0.33). %% = 3.4(3.1) x 105 while for
the dual harmonic search C3% = 2.2(1.8) x 10726 and
C95% = 5.6(5.0)x 10727,

Table 5 shows the results for the analyses on the high-
value targets using the D-statistic analyses to search for
dipole radiation predicted by Brans-Dicke theory. No
significant signal was detected and consequently upper
limits are obtained. The 95% confidence upper limits
are given in the second last column of Table 5 and the
last column gives the false alarm probability, i.e., the
probability that the obtained values of the D-statistic
result only from the noise in the data. The most con-
straining upper limit for dipole radiation is obtained for
the millisecond pulsar J0437—4715.

5. CONCLUSIONS

In this paper, we have searched for evidence of GWs
from 236 pulsars over the course of the LIGO and Virgo
02 and O3 runs and across all three detectors (LIGO
Hanford, LIGO Livingston and Virgo). This is an im-
provement on the 221 pulsars from the O1 and O2 anal-
ysis in Abbott et al. (2019b). Searches were carried out
for two different emission models. One assumed GW
emission from the | = m = 2 mass quadrupole mode
and the other assumed emission from the l =2, m = 1,2
modes. For the single harmonic search, new upper lim-
its on hg were produced and a total of 23 pulsars sur-
passed their spin-down limits (24 if one includes J0537-
6910 from Abbott et al. (2021c)). This is an improve-
ment from the 20 pulsars in Abbott et al. (2019b) and
includes 9 pulsars for which their spin-down limit had
not previously been surpassed. For the dual harmonic

4 This contamination was removed for the final third of O3, al-
though its presence at earlier times still has a detrimental effect
on the result.
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search, new limits on Cs; and Cyy are found. For pul-
sars which were deemed high-value, two more analysis
methods were included for robustness: the F/G-statistic
method and the Sn-vector method.

The millisecond pulsars that surpassed their spin-
down limits, J0437—4715 and J0711—6830, have ellip-
ticity upper limits of 8.5x 1072 and 5.3 x 10~?, respec-
tively. Comparing these values to the left-hand panel of
Figure 3 in Gittins & Andersson (2021) finds that our
results are lower than the maximum values predicted for
a variety of neutron star equations of state. Our results
are therefore providing new constraints in physically re-
alistic parts of the ellipticity parameter space.

No search found strong evidence of GW emission from
any of the pulsars. However, with so many pulsars now
surpassing their spin-down limit, including the millisec-
ond pulsars J0437—4715 and J0711—6830 (Abbott et al.
2020), the next observing run O4 could add more pul-
sars to this count and bring us closer to observing CWs
from pulsars for the first time. In addition to the search
for CW signals consisting of the tensorial polarizations
predicted by GR, this paper provides the first search ex-

plicitly targeting emission of scalar polarization modes
predicted by Brans-Dicke theory.
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APPENDIX

A. CLEANED VERSUS UNCLEANED DATA COMPARISON

The data used in this analysis was subject to a cleaning process described in Viets & Wade (2021) which focused
on the removal of various narrow-band spectral artifacts at calibration line frequencies. For any pulsars very close to
these lines, this cleaning would be expected to provide an improvement in sensitivity. In this appendix we present the
comparison of results using this cleaned data against results using data without this cleaning process (which we will
refer to as “uncleaned”) for a sample of pulsars.

Uncleaned O3 LIGO data is used for a dual harmonic Bayesian analysis of 95 pulsars which had ephemeris data
only overlapping with O3. This is compared to the O3-only analysis performed in this paper using the cleaned data.
The Virgo data used was the same in both cases. For comparison, the ratio of hy upper limits for each pulsar using
uncleaned hg uncleaned versus cleaned hg cicaned data are shown in Figure 5.

The mean ratio of upper limit for uncleaned data versus cleaned data was 0.9966 (with a standard deviation of
0.0486) which suggests no major effect of the line cleaning on the majority results. It should be noted that for this
analysis there is a statistical uncertainty on the upper limits of around 1% due to the use of a finite number of posterior
samples when calculating them (Abbott et al. 2020). If performing parameter estimation on hy using multiple data
sets consisting of independent noise realizations drawn from the same distribution, empirically it is found that the
resultant upper limits will vary by on order of 30%. Due to the cleaning, the cleaned and uncleaned datasets will
contain different, albeit highly correlated, noise. So, a spread of upper limit ratios that are larger than expected from
the pure statistical uncertainty on each limit, but smaller that one would get from independent data is to be expected.

As the upper limit ratio spread can be explained as being consistent with expectations from statistical fluctuations,
it suggests that very few pulsars are close enough to the cleaned lines for the cleaning to have a significant effect
overall. However, it makes sense to apply consistency in using the same dataset for all pulsars being analyzed. In this
analysis we chose to use the narrow-band cleaned data.
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