Anarchic Federated Learning

Haibo Yang' Xin Zhang? Prashant Khanduri '3 Jia Liu'

Abstract

Present-day federated learning (FL) systems de-
ployed over edge networks consists of a large
number of workers with high degrees of hetero-
geneity in data and/or computing capabilities,
which call for flexible worker participation in
terms of timing, effort, data heterogeneity, etc.
To satisfy the need for flexible worker partici-
pation, we consider a new FL paradigm called
“Anarchic Federated Learning” (AFL) in this pa-
per. In stark contrast to conventional FL. models,
each worker in AFL has the freedom to choose
1) when to participate in FL, and ii) the number
of local steps to perform in each round based on
its current situation (e.g., battery level, commu-
nication channels, privacy concerns). However,
such chaotic worker behaviors in AFL impose
many new open questions in algorithm design. In
particular, it remains unclear whether one could
develop convergent AFL training algorithms, and
if yes, under what conditions and how fast the
achievable convergence speed is. Toward this
end, we propose two Anarchic Federated Aver-
aging (AFA) algorithms with two-sided learning
rates for both cross-device and cross-silo settings,
which are named AFA-CD and AFA-CS, respec-
tively. Somewhat surprisingly, we show that, un-
der mild anarchic assumptions, both AFL algo-
rithms achieve the best known convergence rate
as the state-of-the-art algorithms for conventional
FL. Moreover, they retain the highly desirable lin-
ear speedup effect with respect of both the num-
ber of workers and local steps in the new AFL
paradigm. We validate the proposed algorithms
with extensive experiments on real-world datasets.

'Department of Electrical and Computer Engineering, The
Ohio State University, Columbus, OH 43210, USA; *Department
of Statistics, lowa State University, Ames, IA 50011, USA;
3Department of Electrical and Computer Engineering, University
of Minnesota, Minneapolis, MN 55455, USA. Correspondence to:
Haibo Yang <yang.5952@osu.edu>, Jia Liu <liu@ece.osu.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction

Federated Learning (FL) has recently emerged as an impor-
tant distributed learning framework that leverages numerous
workers to collaboratively learn a joint model (Li et al.,
2019a; Yang et al., 2019; Kairouz et al., 2019). Since the
inception, FL systems have become increasingly power-
ful and are able to handle various heterogeneity in data,
network environments, worker computing capabilities, etc.
Furthermore, most of the prevailing FL algorithms (e.g.,
FedAvg (McMabhan et al., 2016) and its variants (Li et al.,
2018; Zhang et al., 2020a; Karimireddy et al., 2020b;a; Acar
et al., 2021)) enjoy a desirable “linear speedup effect,” i.e.,
the convergence time to a first-order stationary point de-
creases linearly as the number of workers and local steps
increases (Stich, 2018; Yu et al., 2019; Wang & Joshi, 2018;
Khaled et al., 2019; Karimireddy et al., 2020b; Yang et al.,
2021; Qu et al., 2020).

However, to achieve these salient features, most of the exist-
ing FL algorithms have adopted a server-centric approach,
i.e., the worker behaviors are tightly “dictated” by the server.
Such dictation is typically manifested in three aspects: i)
determine either all or a subset of workers to participate
in each round of FL update; ii) fully control the timing for
synchronization and whether to accept/reject information
sent from the workers; iii) precisely specify the algorith-
mic operations (e.g., the number of local steps performed
at each worker before communicating with the server). De-
spite achieving strong performance guarantees, these server-
centric FL algorithms often implicitly rely on the following
strong assumptions: (1) each worker is available for train-
ing upon the server’s request and throughout a complete
round; (2) all participating workers are willing to execute
the same number of local updates and communicate with
the server in a synchronous manner following a common
clock. Unfortunately, in edge networks where many FL
systems are deployed, these assumptions are restrictive or
even problematic. First, many requested edge devices on
the worker side may not be available in each round because
of, e.g., communication errors or battery outages. Second,
the use of synchronous communication and an identical
number of local updates across all workers ignores the fact
that worker devices in edge-based FL systems are heteroge-
neous in computation and communication capabilities. As
a result, stragglers (i.e., slow workers) could significantly

Anarchic Federated Learning

slow down the training process. To mitigate the straggler
effect, various robust FL algorithms have been developed.
For example, the server in FedAvg (McMahan et al., 2016)
can simply ignore and drop the information from the strag-
glers to speedup learning. However, this may lead to other
problems such as wasted computation/energy (Wang et al.,
2019), slower convergence (Li et al., 2018), or biased/unfair
uses of worker data (Kairouz et al., 2019). Moreover, the
synchronous nature of the server-centric approaches im-
plies many networking problems (e.g., interference between
workers, periodic traffic spikes, high complexity in main-
taining a network-wide common clock).

The above limitations of the current server-centric FL ap-
proaches motivate us to propose a new paradigm in FL,
which we call Anarchic Federated Learning (AFL). In
stark contrast to server-centric FL, workers in AFL are com-
pletely free of the “dictation” from the server. Specifically,
each worker has complete freedom to choose when and
how long to participate in FL without following any con-
trol signals from the server. As a result, the information
fed back from workers is inherently asynchronous. Also,
each worker can independently determine the number of
local update steps to perform in each round based on its
current local situation (e.g., battery level, communication
channels, privacy concerns). In other words, the amount of
local computation at each worker is time-varying, device-
dependent, and fully controlled by the worker itself. Clearly,
AFL has a much lower server-worker coordination complex-
ity and avoids the aforementioned pitfalls in server-centric
FL approaches. However, AFL also introduces significant
challenges in algorithmic design on the server-side because
the server needs to work much harder to handle the chaotic
worker behaviors in AFL (e.g., asynchrony, spatial and tem-
poral heterogeneity in computing). Toward this end, several
foundational questions naturally arise: /) Is it possible to
design algorithms that converge under AFL? 2) Under what
condition and how fast could the algorithms converge? 3) If
the answer to 1) is "yes” and 2) can also be resolved, could
such algorithms still achieve the desired “linear speedup
effect” as in conventional FL?

In this paper, our goal is to obtain a fundamental understand-
ing to the above questions. Our main contributions and key
results are summarized as follows:

We consider a new FL paradigm called Anarchic Federated
Learning (AFL), where the workers are allowed to engage
in training at will and choose the number of local update
steps based on their own time-varying situations (computing
resources, energy levels, etc.). This loose worker-server
coupling significantly simplifies the implementations and
renders AFL particularly suitable for FL deployments in
edge computing environments. For any AFL algorithms
under general worker information arrival processes and non-
i.i.d. data across workers, we first establish a fundamental

convergence error lower bound to characterize the effect of
worker participation in the AFL system.

For AFL in the cross-device (CD) setting, we study the
convergence of an anarchic federated averaging algorithm
(AFA-CD), which is a natural counterpart of the popular Fe-
dAvg algorithm (McMahan et al., 2016) for server-centric
FL. Our analysis reveals that, under bounded maximum de-
lay, AFA-CD converges to an error ball whose size matches
the fundamental lower bound, with an O(1/vmKT') con-
vergence rate. Here, m is the number of collected workers
in each round of update, K is the local steps and 7' is the
total number of rounds. We note that this convergence
rate retains the highly desirable “linear speedup effect” in
both worker’s number m and local steps K under AFL.!
Moreover, under the stronger condition of uniform workers’
participation in AFL, AFA-CD converges to a singleton
stationary point at the same convergence rate order that
matches the state-of-the-art of server-centric FL.

For AFL in the cross-silo (CS) setting, we study the con-
vergence of a CS version of AFA (AFA-CS), where the
special features of CS allow one to leverage historical feed-
back information and variance reduction techniques. We
show that AFA-CS achieves an improved convergence rate
of O(1/v/MKT), where M is the total number of work-
ers. This suggests that, not only can “linear speedup” be
achieved under AFA-CS, the speedup factor also depends
on the total number of workers M instead of the number of
collected workers m in each round (M > m).

We validate both AFA algorithms with extensive experi-
ments on CV and NLP tasks and explore the effect of the
asynchrony and local step number in AFL. We also nu-
merically show that AFA can be integrated with various
advanced FL techniques (e.g., FedProx (Li et al., 2018)
and SCAFFOLD (Karimireddy et al., 2020b)) to further
enhance the AFL performance.

The rest of the paper is organized as follows. In Section 2,
we review related work. In Section 3, we introduce AFL
and the AFA algorithms, which are followed by their con-
vergence analysis in Section 4. We present the numerical
results in Section 5 and conclude the work in Section 6.
Due to space limitation, we relegate all proofs and some
experiments to the supplementary material.

2. Related Work

1) Server-Centric FL. Algorithms: To date, one of the
prevailing FL algorithms is Federated Averaging (FedAvg),

'To attain e-accuracy, it takes O (1/€?) steps for an algorithm
with an O(1/+/T) convergence rate, while needing O(1/me?)
steps for another algorithm with an O(1/v/mT) convergence
rate (the hidden constant in Big-O is the same). In this sense,
O(1/v/mT) implies a linear speedup in terms of m.

Anarchic Federated Learning

which was first proposed in (McMabhan et al., 2016) as a
heuristic to improve communication efficiency and data pri-
vacy for FL. Since then, there have been substantial follow-
ups of FedAvg that focus on non-i.i.d. (heterogeneous)
data (see, e.g., FedProx (Li et al., 2018), FedPD (Zhang
et al., 2020a), SCAFFOLD (Karimireddy et al., 2020b),
FedNova (Wang et al., 2020), FedDyn (Acar et al., 2021),
and MIME (Karimireddy et al., 2020a)), which are closely
related to our work. The main idea for these algorithms is to
control the “model drift” (due to heterogeneous datasets and
the use of multiple local update steps on the worker side).
While achieving various degrees of success in handling data
heterogeneity, these algorithms are all server-centric and
synchronous, which are more restrictive in edge-based set-
tings (see discussions in Section 1).

2) FL with Flexible Worker Participation: To achieve
high concurrency and avoid stragglers, researchers have
proposed various FL methods with flexible worker partici-
pation, which can be roughly categorized into three classes:
The first class utilizes different local steps to accommodate
worker heterogeneity, while maintaining a synchronous com-
munication between the server and workers (Wang et al.,
2020; Ruan et al., 2021; Avdiukhin & Kasiviswanathan,
2021). The second class is based on asynchronous dis-
tributed optimization (Zhang et al., 2015; Lian et al., 2018;
Niu et al., 2011; Agarwal & Duchi, 2012; Paine et al.,
2013; Xie et al., 2019; Zhang et al., 2020b) (with iden-
tical local steps) (Nguyen et al., 2021; Avdiukhin & Ka-
siviswanathan, 2021). Specifically, Xie et al. (2019) pro-
posed an asynchronous FL (FedAsync) method to tackle
stragglers and heterogeneous latency, where the server con-
tinuously triggers one worker for local training. However,
this work did not consider the convergence performance
of non-convex problems that are more relevant to learn-
ing. Nguyen et al. (2021) utilized buffered asynchronous
aggregation and achieved an O(\/%7) convergence rate
for non-convex problems, but it was unclear whether a lin-
ear speedup in terms of m is achievable. Avdiukhin &
Kasiviswanathan (2021) proposed AsyncCommSGD by al-
lowing asynchronous communication, while assuming an
identical computation rate across all workers. This work

achieved an O(\/ﬁ) convergence rate for non-convex

problems under a bounded gradient assumption, matching
the convergence rate of synchronous FedAvg. The third
class considers arbitrary device unavailability, though the
server and workers still communicate in a synchronous fash-
ion (i.e., following a system-wide common clock). In this
class, the algorithms in (Gu et al., 2021) and (Yan et al.,
2020) achieve O(\/ﬁ) and O(\/ﬁ), respectively.
However, Gu et al. (2021) required a Lipschitz Hessian
assumption, where Yan et al. (2020) needed a bounded
stochastic gradient assumption.

3) Key Differences of AFL from Related Works: Compar-

ing to the aforementioned related works, the AFL paradigm
in this paper allows both heterogeneity: i) different local
steps across workers and ii) asynchronous communications
between the server and workers. In other words, the AFL
paradigm subsumes all the above settings as special cases.
Moreover, AFL fundamentally differs from aforementioned
FL algorithms in that the worker’s participation in AFL and
its local optimization process are completely determined
by the workers, and not by the sampling requests from the
server. This is more practical since it allows workers to
participate in FL under drastically different situations in the
network states, charging/idle cycles, etc. Due to the com-
plex couplings between multiple sources of randomness and
layers of heterogeneity in spatial and temporal domains in
AFL, the training algorithm design for AFL and its theoret-
ical analysis is far from a straightforward combination of
existing FL techniques. Interestingly, we show that the AFA
algorithms (counterparts of FedAvg under AFL) achieve
the same convergence rate without strong assumptions (e.g.,
Lipschitz Hessian condition in (Gu et al., 2021)).

3. Anarchic Federated Learning

In this section, we first formally define the notion of AFL.
Then, we will present the AFA algorithmic framework,
which contains two variants called AFA-CD and AFA-CS
for cross-device and cross-silo AFL, respectively.

1) Overview of Anarchic Federated Learning: The
goal of FL is to solve an optimization problem in the
form of min,cga f(2) :== 75 Z?il fi(x), where f;(z) £
E¢,~p,[fi(x,&)] is the local (non-convex) loss function as-
sociated with a local data distribution D; and M is the total
number of workers. For the setting with heterogeneous (non-
ii.d.) datasets at the workers, we have D; # D;,if i # j.
In terms of the assumption on the size of workers, FL can
be classified as cross-device FL and cross-silo FL (Kairouz
etal., 2019; Wang et al., 2021). Cross-device FL is designed
for large-scale FL with a massive number of mobile or [oT
devices (M is large). As a result, the server can only af-
ford to collect information from a subset of workers in each
round of update and is unable to store workers’ informa-
tion across rounds. In comparison, the number of workers
in cross-silo FL is relatively small. Although the server in
cross-silo FL may still have to collect information only from
a subset of workers in each round, it has enough capacity to
store each worker’s most recent information.

The general framework of AFL is illustrated in Algorithm 1.
Here, the server is responsible for: 1) collecting the local
updates returned from workers, and 2) aggregating the ob-
tained updates once certain conditions are satisfied (e.g.,
upon collecting m € (0, M] local updates from workers)
to update the global model. Note that these two threads
are concurrent, so it completely avoids system locking on

Anarchic Federated Learning

Algorithm 1 The General AFL Framework.
At the Server (Concurrently with Workers):

1. (Concurrent Thread) Collect local updates returned
from the workers.

2. (Concurrent Thread) Aggregate local update returned
from collected workers and update global model fol-
lowing some server-side optimization process.

At Each Worker (Concurrently with Server):

1. Once decided to participate in the training, pull the
global model with current timestamp.

2. Perform (multiple) local update steps following some
worker-side optimization process.

3. Return the result and the associated pulling timestamp
to the server, with extra processing if so desired.

server’s side. Also, idling is allowed at each worker between
each two successive participations in training. Whenever a
worker intends to participate in the training, it first pulls the
current model parameters from the server. Then, upon finish-
ing multiple local update steps (more on this later) by some
worker-side optimization process (e.g., using stochastic gra-
dients or additional information such as variance-reduced
and/or momentum adjustments), the worker reports the re-
sults to the server (potentially with extra processing if so
desired, e.g., compression for communication efficiency).

We remark that AFL is a general computing architecture
that subsumes the conventional FL and asynchronous dis-
tributed optimization as special cases. From an optimization
perspective, the server and the workers may adopt indepen-
dent optimization processes, thus enabling a much richer set
of learning “control knobs” (e.g., separated learning rates,
separated batch sizes). Specifically, each worker is able
to completely take control of its own optimization process,
even using a time-varying number of local update steps
and optimizers, which depend on its local dataset and/or
its device status (e.g., battery level, privacy preference).
More importantly, from the system level, the concurrent pro-
cesses at worker and server side enable loose worker-server
coupling and thus avoiding server-worker interlocking and
reducing synchronization overhead.

2) A Convergence Error Lower Bound for AFL: To thor-
oughly understand AFL, we will first obtain some fundamen-
tal insights on the performance limit of any AFL training
algorithms. Toward this end, we first state several assump-
tions that are needed for our theoretical analysis throughout
the rest of this paper.

Assumption 1. (L-Lipschitz Continuous Gradient) There
exists a constant L > 0, such that ||V f;(x) — V fi(y)]] <
L||x —yl, ¥x,y € RY, and i € [M].

Assumption 2. (Unbiased Local Stochastic Gradient) Let
& be a random local data sample at worker i. The lo-
cal stochastic gradient is unbiased, i.e., B[V f;(x,£%)] =
V fi(x), Yi € [m], where the expectation is taken over the
local data distribution D;.

Assumption 3. (Bounded Local and Global Variances)
There exist two constants o, > 0 and og > 0, such that
the variance of each local stochastic gradient estimator is
bounded by E[||V fi(x,£') — Vfi(x)|]”] < o7,Vi € [M],
and the global variability of local gradient of the cost func-
tion is bounded by ||V f;(x) — V f(x)||> < 02,Vi € [M].

The first two assumptions are standard in the convergence
analysis of non-convex optimization (see, e.g., (Ghadimi
& Lan, 2013; Bottou et al., 2018)). For Assumption 3, the
bounded local variance is also a standard assumption. We
utilize a universal bound o to quantify the data heterogene-
ity among different workers. This assumption is also fre-
quently used in the literature of FL with non-i.i.d. datasets
(Reddi et al., 2020; Wang et al., 2019; Yang et al., 2021) as
well as in decentralized optimization (Kairouz et al., 2019).

To establish a fundamental convergence error lower bound,
we consider the most general case where no assumption on
the arrival processes of the worker information is made, ex-
cept that each worker’s participation in FL is independent of
each other. In such general worker information arrival pro-
cesses, we prove the following lower bound of convergence
error by constructing a worst-case scenario:

Theorem 1 (Convergence Error Lower Bound for AFL with
General Worker Information Arrival Processes). For any
level of heterogeneity characterized by o, there exists loss
functions satisfying Assumptions 1- 3 and a specific worker
participation process for which the output X of any conver-
gent (and potentially random) FL algorithm satisfies:

E[|Vf()]*] = Q(cd).

Remark 1. (Proof in Appendix B.1) The lower bound in
Theorem 1 indicates that no algorithms for AFL could con-
verge to a stationary point under general worker information
arrival processes, due to the significant system heterogeneity
and randomness caused by such general worker information
arrivals. The rationale is that there always exist objective
value drifts owing to general worker information arrival
processes in the worst-case scenario, which further lead to
an inevitable error in convergence. We note that this lower
bound is different from previous optimization lower bounds
in FL (Karimireddy et al., 2020b; Woodworth et al., 2020;
Gu et al., 2021). Our lower bound captures objective devia-
tions due to worker participation while previous bounds fo-
cus on the optimization error with ideal worker participation
(i.e., full worker or uniformly random worker participation).
Considering a worst-case scenario in FL by removing such
assumption of ideal worker participation, our lower bound

Anarchic Federated Learning

also holds for non-i.i.d. FL including synchronous FedAvg
and its variants, thus also providing insights for conven-
tional FL. To ensure convergence to a stationary point, extra
assumptions for the worker information arrivals need to be
made, e.g., uniformly distributed arrivals (see Theorem 3)
and bounded delays (see Theorem 4).

4. The Anarchic Federated Averaging (AFA)
Algorithms for AFL

Upon obtaining a basic understanding of the training al-
gorithm performance limit from the convergence error in
Theorem 1, in this section, we study convergence conditions
and performance of two anarchic federated averaging (AFA)
algorithms for cross-device (CD) and cross-silo (CS) set-
tings in Section 4.1 and 4.2, respectively, both of which can
be viewed as an extension of FedAvg under AFL.

4.1. The AFA-CD Algorithm for Cross-Device AFL

1) The AFA-CD Algorithm: First, we consider the AFA-
CD algorithm for the cross-device AFL setting. As men-
tioned earlier, cross-device AFL is suitable for cases with a
massive number of edge devices. In each round of global
model update, only a small subset of workers are used in the
training. The server is assumed to have no historical infor-
mation of the workers. As shown in Algorithm 2, AFA-CD
closely follows the AFL architecture shown in Algorithm 1.
Here, we use the standard stochastic gradient descent (SGD)
method as the server- and worker-side optimizer. In each
update t = 0,...,T — 1, the server waits until collecting
m local updates {G;(x;—, ,)} from workers to form a set
M, with | M| = m, where 7; ; represents the random de-
lay of the local update of worker ¢ € M, (Server Code,
Line 1). Once M, is formed, the server aggregates all lo-
cal updates G;(x;—~, ,),7 € M, and updates global model
(Server Code, Line 2). We count each global model up-
date as one communication round for direct comparison
with previous FL results. Meanwhile, for each worker, it
pulls the current global model parameters with time stamp
1 once it decides to participate in training (Worker Code,
Line 1). Each worker can then choose a desired number of
local update steps K ; (could be time-varying and device-
dependent) to perform SGD updates for K, ; times, and
then return the rescaled sum of all stochastic gradients with
timestamp p to the server (Worker Code, Lines 2-3).

2) Convergence Analysis of the AFA-CD Algorithm: We
first analyze the convergence of AFA-CD under general
worker information arrival processes. We use fo = f(xo)
and f, to denote the initial and the optimal objective values,
respectively. We have the following convergence result for
the AFA-CD algorithm (see proof details in Appendix B.2):

Theorem 2 (AFA-CD with General Worker Information Ar-

Algorithm 2 AFA-CD Algorithm for Cross-Device AFL.
At the Server (Concurrently with Workers):

1. In the t—th update round, collect m local updates
{Gi(x¢=r, ;),% € M,} returned from the workers to
form the set M;, where 7 ; represents the random
delay of the worker i’s local update, i € Mj.

2. Aggregate and update: Gy =
% Zie/\/lt Gi(Xt—r,:)s —nGy.
At Each Worker (Concurrently with Server):

Xi+1 = Xt

1. Once decided to participate in the training, retrieve
the parameter x;, from the server and its timestamp,
set the local model: x;, ; = x,.

2. Choose a number of local steps K ;, which can be
tlme varying and device-dependent. Let XM kil =

k — LG, s Where g, = Vfi(x], 1, &,) k =
o,. K — 1.

3. Sum and rescale the stochastic gradients: G;(x,,) =

1 Kii—1
Rey 2aj=0

giuj' Return G;(x,,).

rival Processes). Suppose that the resultant maximum delay
under AFL is bounded, i.e., T := maxte[T]’ieMt{Tt,i} <
0. Suppose that the server-side and worker-side learn-
ing rates 1 and my, are chosen as such that the follow-
ing conditions are satisfied: 607 (2K7?; — 3K, ; +1)L* <
1,180n; K7, L*T < 1,Vt,iand 2Lnng, + 672 L?n*n7 < 1.
Under Assumptions 1-3, the output sequence {x;} gener-
ated by AFA-CD with general worker information arrival
processes satisfies:

p— — T 4(04,;0% + agaé),

where the constants o, and o are defined as:

Lung 1 3T2L277277L
aL="—"""7 Z Kt Z K,

t=0

1517LL2 Z ,
ag 7+45L277LTZK2
Here,
L1 % 2 .
Kt _miez./\/l:t Ktz K Zg\:/(th“K ZGZMth.

The learning rates conditions imply that nn;, = O(-7) and
77% K2 , which is a natural extension of that in SGD With

Anarchic Federated Learning

Theorem 2, if we assume a constant local step number and
proper learning rates, we immediately have the following
convergence rate for AFA-CD, which implies the “linear
speedup effect” in both m and K.

Corollary 1 (Linear Speedup to an Error Ball). Suppose a

constant local step K for each worker, by setting n;, = ﬁ,

and n = VmK, the convergence rate of AFA-CD with
general worker information arrival processes is:

1 T2 K? 9
O<m1/2K1/2T1/2> +O<T> +O(T> +O(0G)

Remark 2. Clearly, due to the chaotic worker behaviors
in AFL, one cannot expect that an algorithm for AFL can
converge under any arbitrary condition. Theorem 2 and
Corollary 1 suggest that, as long as the consequence of
the chaotic workers behaviors remains “manageable” in
the sense that i) the maximum delay due to asynchrony is
bounded and ii) the learning rates used by the workers and
server are sufficiently small, then the iterates produced by
AFA-CD can converge to a neighborhood around a station-
ary point. Moreover, if the workers are less “anarchic” in
the sense that they know the 7'-value from the server and are

willing to set ny, = ﬁ accordingly, then the non-vanishing

error term O (0% in Corollary 1 matches the lower bound
in Theorem 1. This implies that the convergence error of
AFL-CD is order-optimal in this setting.

Remark 3. Recall that the non-vanishing convergence error
O(0%) in Corollary 1 is a consequence of objective func-
tion drift under the general worker information arrivals (no
assumption on the arrivals of the worker participation in
each round of update) and is independent of the choices of
learning rates, the number of local update steps, and the
number of global update rounds (more discussion in the
supplementary material). Also, for a sufficiently large 7',
the dominant term O(m) implies that AFA-CD
achieves the linear speedup in terms of m and K before
reaching a constant error neighborhood with size O(c%).

Given the weak convergence result under general workers’
information arrivals, it is important to understand what extra
conditions on the worker information arrivals are needed
under AFL in order to achieve stronger convergence perfor-
mance. Toward this end, we consider a special setting where
the arrivals of worker returned information in each round for
global update is uniformly distributed among the workers.
In this setting, M, can be viewed as a subset with size m
independently and uniformly sampled from [M] without
replacement. It has been empirically found in (McMahan
et al., 2016; Li et al., 2019a) that, for FL systems with a
massive number of workers, the assumption of uniformly
distributed arrivals is a good approximation for worker par-
ticipation in cross-device FL. In what follows, we show that
the convergence performance of AFA-CD in this special

setting can be improved as follows (see proof details in
Appendix B.3):

Theorem 3. Under the same delay condition in Theorem 2
and suppose that the server-side and worker-side learning
rates m and ny, are chosen as such that the following re-
lationships hold: 6n7 (2K7; — 3K,; + 1)L? < 1,Vt,,
Lo, + LPn*nir? < 2}v1’ and 120L2f(t2n%7 < 1,Vt.
Then, under Assumptions 1— 3, the output sequence {x;}
generated by AFA-CD with uniformly distributed worker
information arrivals satisfies:

4(0@0% + agaé),

1= o _ 4lfo— 1)
T;mvm)ug p—r

where af, and o are defined as following:

I 1 w= 1 27202202 1 = 1

m T &~ K, m T = K

oy =

+ 51?2 L21 ZKt,

1T—l
_ 2.2 2
ag = 30L nLT;Kt,

and other parameters are defined the same as in Theorem 2.

The requirement for learning rates could be easily satisfied
as that in Theorem 2. Furthermore, with appropriate server-
and worker-side learning rates, we immediately have the
following linear speedup convergence result for AFA-CD:

Corollary 2 (Linear Speedup to a Stationary Point). Sup-
pose a constant local step K, let ny, = T andn = vVmK,
the convergence rate of AFA-CD with uniformly distributed
worker information arrivals is:

1 2 K?
O(m1/2K1/2T1/2) +O(T> +O< T >

Remark 4. For a sufficiently large 7', the linear speedup
convergence to a stationary point (rather than a constant
error neighborhood) can be achieved under bounded maxi-
mum delay 7, i.e., O(m) Note that this rate
does not depend on the delay 7 after sufficiently many
rounds T (i.e., 7 < min{ m1/41/(41/47 ml?;]/@/z 1), the neg-
ative effect of using outdated information in such an asyn-
chronous setting vanishes asymptotically. Further, for
oc = 0 (i.i.d. data) and K = 1 (single local update step),
AFA-CD can be viewed as an extension of the AsySG-
con algorithm (Lian et al., 2015) in asynchronous paral-
lel distributed optimization. It can be readily verified that
AFA-CD achieves the same rate as that of the AsySG-con
algorithm. Furthermore, AsyncCommSGD (Avdiukhin &
Kasiviswanathan, 2021) achieves O(\/j) for FL by al-

lowing asynchronous communication assuming an identical

Anarchic Federated Learning

Algorithm 3 The AFA-CS Algorithm for Cross-Silo AFL.
At the Server (Concurrently with Workers):

1. In the t—th update round, collect m local updates.

2. Update worker ¢’s information in the memory using
the returned local update G;.

3. Aggregate and update: G; = % ZiE[M] Gy,
Xi1 = X¢ — NGy,

At Each Worker (Concurrently with Server): Same as

AFA-CD Worker Code.

computation rate across workers and bounded gradients. In-
terestingly, AFA-CD achieves the same convergence rate
while allowing flexible worker participation and without
such assumptions. Surprisingly, this rate even matches
the best known rate for the general non-convex setting in
FL (Karimireddy et al., 2020b; Reddi et al., 2020). It is
worth noting that Nguyen et al. (2021) proposed the Fed-
Buff algorithm for FL, which is akin to AFA-CD and boosts
FL concurrency. However, FedBuff achieves an O(\/%7)
convergence rate, which does not achieve the linear speedup
in terms of m.

4.2. The AFA-CS Algorithm for Cross-Silo AFL

1) The AFA-CS Algorithm: As mentioned earlier, cross-
silo FL is suitable for collaborative learning among a rela-
tively small number of (organizational) workers. Thanks to
the relatively small number of workers, each worker’s feed-
back can be stored at the server. As a result, the server could
reuse the historical information of each specific worker in
each round of global update.

As shown in Algorithm 3, the AFA-CS algorithm also
closely follows the AFL architecture as shown in Algo-
rithm 1. In each round of global model update, a subset
of workers could participate in the training (Server Code,
Line 1). Compared to AFA-CD, the key difference in AFA-
CS is in Line 2 of the Server Code, where the server stores
the collected local updates {G;} for each worker i € M,
into the memory space at the server (Server Code, Line 2).
As a result, whenever a worker ¢ returns a local update to
the server upon finishing its local update steps, the server
will update the memory space corresponding to worker i to
replace the old information with this newly received update
from worker i. Similar to AFA-CD, every m new updates
in the AFA-CS algorithm trigger the server to aggregate all
the G;, ¢ € [M] and update the global model. The Worker
Code in AFA-CS is exactly the same as AFA-CD and its
description is omitted for brevity.

2) Convergence Analysis of the AFA-CS Algorithm: We
divide stochastic gradient returns {G;} into two groups.
One is for those without delay (G;(z¢),7 € My, | M| =

m/) and the other is for those with delay (G;(x;—~, ,),% €

¢ |M§| = M — m'). For cross-silo AFL, the AFA-CS
algorithm achieves the following convergence performance
(see proof details in Appendix C):

Theorem 4. Suppose that the resultant maximum delay in
the system is bounded, i.e., T = maXee (1] icms{Tri} <
0. Suppose that the server-side and worker-side
learning rates n and mp are chosen as such that
the following relationships hold: 677%(2[(31- — 3K;; +

o \272 2
1)L2 < 1,Vt,i, <”"L(MN}”>“+§> me < L, and

2,2
30LMnLT (ZiG[M] Kfl) < i. Then, under Assumptions I-
3, the output sequence {x;} generated by the AFA-CS algo-
rithm under general worker information arrival processes
satisfies:

T—1
1 2 _ 4f(xo) — f(x7) 2 2
— < .~ 7 N -7
T tE:O [V f(x)I™ < —r +oapor +agog,

where the constants oy, and ag are defined as follows:
T—1
4 1 _
= — [5L%7 — § K
M [T

2n?n? (M — ml)QLQT2 1241
I3 - -
+ < M2 + nnL T tz:; K)

t

120L272 1 Tzl .
= ——— B
oG 7‘ r T et t

and other parameters are defined the same as in Theorem 2.

With appropriate learning rates, we immediately have
stronger linear speedup convergence:

Corollary 3 (Linear Speedup). Suppose a constant local
step K, and let n;, = %, and n = VMK, the conver-
gence rate of the AFA-CS algorithm under general worker
information arrival processes is:

1 K? 2(M —m')?
O<M1/2K1/2T1/2>+(9(m>+(9(TM2)
Remark 5. Compared to Corollary 1, we can see that, by
reusing historical data, AFA-CS can eliminate the non-
vanishing O(c,) error term even under general worker
information arrival processes and bounded delay. The
bounded delay implicitly requires each workers at least par-
ticipate in the training process, eliminating the worst-case
scenario in Theorem 1. On the other hand, although the
server only collects m workers’ feedback in each round of
global model update, the server leverages all M workers’

feedback by reusing historical information. Intuitively, this
translates the potential objection function drift originated

Anarchic Federated Learning

from general worker information arrival process into the
negative effect of delayed returns G(x;_r, ;) from workers.
It can be shown that such a negative effect vanishes asymp-
totically as the number of communication rounds 7" gets
large and in turn diminishes the convergence error. This also
explains the stronger linear speedup O(1/v MT). Specif-
ically, even with partial (m) workers participation in each
round, AFA-CS achieves a speedup with respect to total
number of workers M (M > m). From the lower bound in
FL (Proposition 6.1 in Gu et al. (2021)), Corollary 3 is tight.

Remark 6. AFA-CS generalizes the lazy aggregation strat-
egy in distributed learning (e.g., LAG (Chen et al., 2018))
by setting K = 1 (single local update), 7 = 0 (synchronous
setting) and o7, = 0 (using full gradient descents instead
of stochastic gradients) and further improve the rate of
LSAG (Chen et al., 2020) from O(1/v/T) to O(1/v/MT).
We note that Gu et al. (2021) and Yan et al. (2020) achieved
O(\/ﬁ) and O(ﬁ) for FL, respectively, by using
historical information, which is similar to AFA-CS. How-
ever, they both requires additional assumptions. Specifically,
Gu et al. (2021) required a Lipschitz Hessian assumption
and Yan et al. (2020) needed bounded stochastic gradient as-
sumption. By contrast, AFA-CS achieves the same optimal
rate without such assumptions.

5. Numerical results

In this section, we conduct experiments to verify our theoret-
ical results. We use i) logistic regression (LR) on manually
partitioned non-i.i.d. MNIST dataset (LeCun et al., 1998),
ii) convolutional neural network (CNN) for manually par-
titioned CIFAR-10 (Krizhevsky, 2009), and iii) recurrent
neural network (RNN) on natural non-i.i.d. dataset Shake-
speare (McMabhan et al., 2016). In order to impose data
heterogeneity in MNIST and CIFAR-10 data, we distribute
the data evenly into each worker in label-based partition
following the same process in the literature (e.g., McMahan
et al. (2016); Yang et al. (2021); Li et al. (2019c)). There-
fore, we can use a parameter p to represent the classes of
labels in each worker’s dataset, which signifies data hetero-
geneity: the smaller the p-value, the more heterogeneous
the data across workers (cf. Yang et al. (2021); Li et al.
(2019¢) for details). Due to space limitation, we relegate
the details of models, datasets and hyper-parameters, and
further results of CNN and RNN to the appendix.

In Figure 1, we illustrate the test accuracy for LR on MNIST
with different p-values. We use the classical FedAvg algo-
rithm (McMahan et al., 2016) for conventional FL with
uniform worker sampling as a baseline, since it corresponds
to the most ideal scenario where workers are fully coopera-
tive with the server. We examine the learning performance
degradation of AFA algorithms (due to anarchic worker be-
haviors) compared to this ideal baseline. For our AFA-CD

10 1.0
0.9 0.9
ST, AT
Tos Tos| A :7"‘,(,1(~NA
o o AN
307 307 N
1} [} 1
<06 <oe6{ |1/
@ | @ v
o 0.5 4' \“ —— FedAvg K, 0.5 — FedAvg
oal i1V -—- AFA-CD 04 ——- AFA-CD
A —=- AFA-CS - —=- AFACS

0.3 ML
0 20 40 60 80 100 120 140

Communication Round

0 20 40 60 80 100 120 140
Communication Round

@p=1 b)p=2.
1.0 1.0
0.9 0.9
o038 Jos
o e
go go7
<06 <06
Bos Bos
= ——-aracD | T —-- AFA-CD
0.4 ——- AFACS 04 ——- AFACS
0.3 0.3

0 20 40 60 80 100 120 140
Communication Round

T 0 20 40 60 80 100 120 140
Communication Round

(©)p=>5. (d) p = 10.
Figure 1. Test accuracy for logistic regression on non-i.i.d. MNIST
with different p-values.

and AFA-CS with general worker information arrival pro-
cesses, the test accuracy is comparable to or nearly the same
as that of FedAvg. This confirms our theoretical results and
validates the effectiveness of our AFA algorithms. We fur-
ther evaluate the impacts of various factors in AFL, includ-
ing asynchrony, heterogeneous computing, worker’s arrival
process, and non-i.i.d. datasets, on convergence rate of our
proposed AFA algorithms. Note that AFL subsumes FedAvg
and many variants when the above hyper-parameters are set
as constant. Also, AFL coupled with other FL algorithms
such as FedProx (Li et al., 2018) and SCAFFOLD (Karim-
ireddy et al., 2020b) is tested. Our results show that the
AFA algorithms are robust against all asynchrony and het-
erogeneity factors in AFL. Due to space limitation, we refer
readers to the appendix for all these experimental results.

6. Conclusions

In this paper, we propose a new paradigm in FL called
“Anarchic Federated Learning” (AFL). In stark contrast to
conventional FL models where the server and the worker
are tightly coupled, AFL has a much lower server-worker
coordination complexity, allowing a flexible worker partic-
ipation. We proposed two Anarchic Federated Averaging
algorithms with two-sided learning rates for both cross-
device and cross-silo settings, which are named AFA-CD
and AFA-CS, respectively. We showed that both algorithms
retain the highly desirable linear speedup effect in the new
AFL paradigm. Moreover, we showed that our AFL frame-
work works well numerically by employing advance FL
algorithms FedProx and SCAFFOLD as the optimizer in
worker’s side.

Anarchic Federated Learning

Acknowledgements

This work has been supported in part by NSF grants CA-
REER CNS-2110259, CNS-2112471, CNS-2102233, CCF-
2110252, and a Google Faculty Research Award.

References

Acar, D. A. E., Zhao, Y., Navarro, R. M., Mattina, M., What-
mough, P. N, and Saligrama, V. Federated learning based
on dynamic regularization. In International Conference
on Learning Representations, 2021.

Agarwal, A. and Duchi, J. C. Distributed delayed stochas-
tic optimization. In 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC), pp. 5451-5452. IEEE,
2012.

Avdiukhin, D. and Kasiviswanathan, S. Federated learning
under arbitrary communication patterns. In International
Conference on Machine Learning, pp. 425-435. PMLR,
2021.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. Siam Review,
60(2):223-311, 2018.

Charles, Z., Garrett, Z., Huo, Z., Shmulyian, S., and Smith,
V. On large-cohort training for federated learning. Ad-
vances in Neural Information Processing Systems, 34,
2021.

Chen, T., Giannakis, G. B., Sun, T., and Yin, W. Lag:
Lazily aggregated gradient for communication-efficient
distributed learning. In NeurIPS, 2018.

Chen, T., Sun, Y., and Yin, W. Lasg: Lazily aggre-
gated stochastic gradients for communication-efficient
distributed learning. arXiv preprint arXiv:2002.11360,
2020.

Defazio, A. and Bottou, L. On the ineffectiveness of
variance reduced optimization for deep learning. arXiv
preprint arXiv:1812.04529, 2018.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4):2341-2368, 2013.

Gu, X., Huang, K., Zhang, J., and Huang, L. Fast federated
le