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Evolution of electronic and magnetic properties of SryIrOy

under strain

Ekaterina M. Parschke'™, Wei-Chih Chen?, Rajyavardhan Ray>** and Cheng-Chien Chen &/

Motivated by properties-controlling potential of the strain, we investigate strain dependence of structure, electronic, and magnetic
properties of Sr,IrO4 using complementary theoretical tools: ab-initio calculations, analytical approaches (rigid octahedra picture,
Slater-Koster integrals), and extended t — 7 model. We find that strain affects both Ir-Ir distance and Ir-O-Ir angle, and the rigid
octahedra picture is not relevant. Second, we find fundamentally different behavior for compressive and tensile strain. One
remarkable feature is the formation of two subsets of bond- and orbital-dependent carriers, a compass-like model, under
compression. This originates from the strain-induced renormalization of the Ir-O-Ir superexchange and O on-site energy. We also
show that under compressive (tensile) strain, Fermi surface becomes highly dispersive (relatively flat). Already at a tensile strain of
1.5%, we observe spectral weight redistribution, with the low-energy band acquiring almost purely singlet character. These results

can be directly compared with future experiments.
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INTRODUCTION

Exploring the physics of quasi-two-dimensional (2D) spin-orbit
Mott insulators can help to understand high-temperature super-
conductivity as well as the general interplay of spin-orbit coupling,
Hund’s, and Coulomb interactions. In particular, a lot of studies
have been devoted to the quasi-2D iridates Sr,IrO, and Ba,IrO,' 3.
Iridates show eminent similarities to the cuprate family of high-
temperature superconductors, both in structure and low-energy
physics, and were expected to become superconducting upon
doping. However, so far no superconductivity has been reported
in iridates.

In general, SryIrO, behavior often deviates from theoretical
predictions. For example, Mott insulators normally become
metallic at high enough pressure as the unit cell becomes smaller
and the bands broaden. This is also true for spin-orbit coupled
Mott insulators, such as ruthenates®*. In Sr,IrO,, resistance indeed
decreases until the pressure of around 25-30GPa (which
according to ref.?, corresponds approximately to a strain of
—4%)°, or, according to a very recent study®, 32-38 GPa (—5.1%
strain). Then, however, resistance starts to increase, showing a
peculiar U-shaped dependency and persisting insulating behavior
up to at least 185 GPa®. So far, no metallization in Sr,IrO, or other
iridates (Srslr,0,78, BalrO5>®, etc) has been observed at pressures
up to 40-185 GPa®*S. Moreover, there is also surprisingly little
correlation between the insulating behavior and magnetism'® as
the latter disappears at around 20 GPa (roughly —2.9% strain) in
SroIr0,>'" and 144 GPa (roughly —2.1% strain) in Srslr,058,
without the onset of a metal-insulator transition.

Furthermore, iridates emerge as a good functional playground
for manipulation of the magnetic and electronic properties, which
is an exciting goal both fundamentally and practically®'2. Iridium-
based heterostructures and superlattices have therefore emerged
as a whole new field very recently’2!, Strain and pressure in
particular are powerful tools on hand to control the magnetic
properties of the material. It has been shown that misfit strain can

directly control dispersion of magnetic excitations in Sr,Ir042%-24,

as well as transport properties?. A shift of the two-magnon
Raman peak to higher energies was observed under tensile
strain®*, albeit much weaker than the shift observed in the
canonical Mott-Hubbard insulator K;NiF, and cuprates like
Bi1.085r2.06Y0.68CU208 1 5°°.

In ref. 23, the authors used resonant inelastic scattering (RIXS) to
show that magnetic dispersion in Sr,IrQ, is strongly affected by
strain. In particular, the contribution of the second and third
nearest-neighbor (NN) exchange was suppressed (enhanced)
upon tensile (compressive) strain. The tensile strain was shown
to drive the system closer to a shorter-range first-NN only
Heisenberg limit, with only little magnon branch softening left
at (n/2,m/2) already upon the tensile strain of +2%. Upon
compressive strain, the energy of (m,0) magnon was shown to
increase®>?3,

A clear understanding of the electronic and magnetic properties
of iridates and their evolution with strain is, therefore, of interest
not only from a fundamental point of view but also for
applications®'2. Unveiling the details of the interplay of lattice,
magnetic, and other degrees of freedom in Sr,IrQ, is needed to
understand the recently observed electrical control of octahedra
rotation?’?® and the much-debated strong magnetoelastic
coupling®®=32. Currently, a clear understanding of neither how
exactly nor by which mechanism do superexchange and hopping
parameters in Sr,IrO,4 change with strain is available, not even on a
phenomenological level. One of the interesting questions is
whether the change in electronic and magnetic properties upon
the strain is mostly associated with bond length change, as argued
in e.g., ref. 22, or the change of the in-plane rotation angles 6 of the
oxygen octahedra (see Fig. 1)*.

Studying the behavior of iridates under strain and pressure is a
demanding task not only experimentally, but also theoretically. On
one hand, iridates are strongly correlated Mott insulators', so one
needs to resort to theoretical methods where correlations are
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Fig. 1 Dependency of the octahedra rotation angle 6, Ir-Ir distance d, and NN hopping parameters on strain. a The in-plane IrO¢
octahedral rotation angle 6 and Ir-Ir distance d as functions of strain, obtained with full structure relaxation in DFT calculations (see Methods).
b NN hopping parameters for different values of strain, see Fig. 1 for notation.

treated non-perturbatively, employing effective descriptions like
Hubbard or Heisenberg models. On the other hand, microscopic
changes of orbitals, their overlap, and structural changes are
essential to understand the behavior of a crystal under strain34-38,
so ab-initio methods are demanded. Another difficulty is that as
one eventually approaches a possible metal-insulator transition at
high pressure and/or strain, effective models, such as the
Heisenberg superexchange model, fail.

In this paper, we focus on the effect of strain and combine
various complementary theoretical tools to provide a compre-
hensive analysis of how the magnetic properties are affected by
strain. For different (compressive and tensile) strain values, we use
density functional theory (DFT) based ab-initio calculations to
access microscopic changes in the crystal structure, and study the
corresponding changes in the electronic properties through
Wannierization of the scalar-relativistic DFT bandstructure
obtained within the generalized gradient approximation3®.
Subsequently, we solve an extended t — .7 model within the
self-consistent Bohr approximation (SCBA) to obtain the angle-
resolved photoemission spectra (ARPES) and study the strain-
controlled evolution of the Fermi surface. Realistic values of the
input parameters for these calculations were used: the hopping
parameters were obtained from the DFT calculations, while the
extended-range exchange couplings were obtained by direct
comparison to the magnon dispersion measured with RIXS. In this
way, the presented analysis contains no free parameters apart
from an overall constant energy shift (chemical potential) in the
SCBA calculations.

RESULTS AND DISCUSSION
Evolution of hopping parameters under strain
Sr,IrO,4 shows an in-plane staggered octahedra rotation character-
ized by a single parameter: X0 — Ir — Ir angle denoted by 6 in
Fig. 1. Under ambient conditions, the octahedral rotation is found
to be 6=13.6° for the relaxed structure, which is close to the
reported experimentally value of 11.8*. The epitaxial strain on
iridates then affects not only the distance between the Ir atoms
but also the Ir-O-Ir bond angle, as can be seen in Fig. 2a. The in-
plane octahedra rotation angle 6, obtained using DFT (see
Methods for details), monotonically increases (decreases) upon
compressive (tensile) strain in the studied range of —7.5% to 7.5%,
where negative strains correspond to compression.

To ascertain the influence of structural changes on the
electronic properties, we study the evolution of Wannier tight-
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binding model hoppings derived from DFT (see Methods for
details), as a function of strain (Fig. 2b). The notations for the
hoppings are shown in Fig. 1: the intraorbital hoppings between
xy orbitals along a' or b’ axes is denoted as t;, between xz(yz)
along d' (V') axis as t,, and between xz(yz) along b’ (@) as t3. The
interorbital hopping between yz and xz orbitals is denoted as t,, all
other interorbital hoppings are negligible. Further neighbor
interorbital hoppings are denoted as t' and are shown in Fig. 1.

Upon compression, direction-dependent hopping parameter t,
is increasing, but surprisingly, t; is decreasing (Fig. 2b). This
emerging anisotropy in hopping parameters is interesting, as t,
hopping describes the propagation of an electron with xz (yz)
orbital character along only one axis, @ (b’), whereas t; allows an
xy electron to hop in both directions. We thus see that upon
compressive strain, the system favors the separation of the entire
Fermi sea into two Fermi seas with bond-dependent propagation
(xz carriers which can only propagate along d’, and yz carriers
which can only propagate along b’) and suppression of the bond-
independent and thus truly two-dimensional xy carriers. This
compass-model-like*' propagation is quite unusual and could
cause the formation of charge density wave.

Upon tensile strain, t; is nearly independent of the strain value
and is the dominant hopping, while t, decreases steadily (Fig. 2b).
Different behavior of t; upon compressive and tensile strain
reflects the change of Fermi surface topology between compres-
sive and tensile strain.

It is also interesting to note that the smallest hopping
parameter t3, describing the hopping between almost parallel d-
orbitals with very small overlap goes to zero around —3%, which
corresponds to compression of ~20GPa, not too far from the
value of resistivity minimum under pressure>®,

To disentangle the contribution of inter-atomic distance d and
the octahedral rotation 6 to the hopping parameter trends with
strain, we employ the analytical approaches of Glazer and Slater-
Koster. The Glazer picture*? is often used in rigid octahedra
approximation whereby the main effect of the modest strain is
assumed to be the change of the in-plane rotation angle 6.
However, as detailed in Supplementary Fig. 2, the trends obtained
within the Glazer picture disagree with the DFT results in Fig. 2b,
and even contradict them in rigid octahedra approximation.
Therefore, the Glazer picture has limited applicability for iridates,
and rigid octahedra approximation is improper.

We then proceed with a more specific orbital-resolved Slater-
Koster-integrals-based approach®*#*, Slater-Koster integrals are
hybridization matrix elements E between atomic d-states on
neighboring atoms obtained via integrating over relevant
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Fig. 2 Dependency of Slater-Koster Ir-Ir integrals on strain. Slater-Koster integrals for rotated NN orbitals E as a function of a octahedra in-
plane rotation angle 6, b Ir-Ir distance d, c both 6 and d (calculated using values of 8 and d extracted from DFT shown in Fig. 2a).
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Fig.3 Dependency of Slater-Koster Ir-O-Ir integrals on the strain. Slater-Koster integrals for indirect hopping between rotated Ir NN orbitals
E via oxygen p orbitals as a function of a Octahedra in-plane rotation angle 6, b Ir-Ir distance d, ¢ both 6 and d (calculated using values of 6 and

d extracted from DFT shown in Fig. 2a).

spherical harmonics. The resulting interatomic matrix elements £
are proportional to the d-wave functions overlap and can be
expressed via cubic harmonic matrix elements Vyqes, Vaam Vaqs for
a known bond direction /,m,n as tabulated in Slater-Koster
tables****. In Sr,IrO,, we also need to account for the rotation of
the d orbitals within the t,4 sector due to the in-plane octahedral
rotation*®. Therefore, we decompose the rotated d orbital on the
basis of non-rotated d orbitals before evaluating the Slater-Koster
matrix elements. For example, the hybridization matrix element E
between the two rotated NN xy orbitals can be obtained as a
superposition of hybridization matrix elements E of non-rotated xy
and x—y? orbitals obtained as:

Exy,xy = COSZ(ZQ)Enyxy — Sir]2(Ze)Exz,yzsz,yz7 (1

Published in partnership with Nanjing University

where 0 is the in-plane rotation of the IrOg octahedra (see Fig. 1).
Similarly, for the overlap between the rotated xz(yz) orbitals along
the @' direction, we get

Exz,xz(yz,yz) = COS2 (e)Exz,xz(yz,yz) - Sinz (G)Eyz,yz(xz,xz)a )

and for interatomic interorbital overlap along x:

Eyrxz = Eyzye +5in0 oS O(Exzxz + Eyzyz)- (3)

Figure 3 shows the resulting hybridization matrix elements F as
a function of the in-plane octahedral rotation 6, the Ir-Ir distance d,
as well as both the parameters (see Fig. 2a). We find that at least in
the Slater-Koster approximation, accounting for the change of the
distance d alone (Fig. 3b) can provide a better approximation to a
full dependency of matrix elements E on strain (Fig. 3¢) then

npj Quantum Materials (2022) 90
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Fig. 4 Dependency of J.¢ = 1/2 overlap on the strain. a NN, 2NN and 3NN hopping parameters (1, T and 1, correspondingly) between
Jefs = 1/2 states calculated as a superposition of obtained from DFT calculations xy, yz, and xz hopping parameters. b Relative change of NN,
2NN, and 3NN Js¢ = 1/2 overlap normalized by their values in pristine condition (1o, T and 1, correspondingly. 2NN and 3NN hoppings for t,4

orbitals used to calculate t's are shown in SL.).

accounting for the change of bond angle 6. This is also consistent
with the quantum chemistry study?2.

However, not all trends obtained from the DFT calculations are
well reproduced: the hopping parameter Eg; s+ is increasing under
compressive strain (Fig. 3c), unlike the t; hopping extracted from
DFT (Fig. 2b). To address this, we also consider the O-mediated
indirect Ir—O—Ir hoppings.

The indirect oxygen-mediated overlap between the two rotated
NN xy orbitals can be calculated as a sum of the hopping integrals
between two Ir atoms via a=p,, p, orbitals of the oxygen,
Exyoxy = Za:px,pyExy,a,xy- The hopping integral is calculated as

Exy,a.xy = (COS(Z@)Eil’m‘n + Sin(ze)E—l,m,n )

a,xy ax2—y?

x (cos(20)EGT — sin(20)E%" ) /Dpa,

ax—

4

where | = cos 8, m = sin 6, n =0 are the directional cosines of the
vector from the oxygen O to the Ir atom*® along the @'-axis in the
units of Ir-O distance d,_o = O.Sdg"r/ cos @ (dg”’ is the distance
between the NN Ir ions under ambient conditions), and Eqy, Eqxy
are the p-d Slater-Koster integrals*®. We note that /,m, n indexes
were omitted for Eqgs. (1-3), because for the d—d overlap, Slater-
Koster integrals are quadratic in directional cosines*®, and simply
{l,m,n}={1,0, 0} for a pair of Ir atoms along the a’ bond. For the
indirect oxygen-mediated overlap, however, one has to account
for the sign of the directional cosines. Moreover, for the indirect
hopping, the Ir-O-Ir hopping has to be renormalized by the charge
transfer energy Apq = £ " — ES""¢, the energy difference
between corresponding Ir-d and O-p orbitals (see Supplementary
Fig. 3a). Surprisingly, the charge transfer energy A,q has a strongly
non-linear dependency on the strain (see Supplementary Fig. 3a).

We plot the resulting indirect superexchange matrix elements £
as a function of the in-plane octahedral rotation 6, Ir-Ir distance d
in Fig. 4. Indeed, the indirect Ir-Ir overlap decreases drastically
under compressive strain, unlike the direct d—d overlap. Interest-
ingly, this behavior is directly linked to both the change in the
distance between the atoms as well as the angle 6 describing
octahedra rotation (see Fig. 4a,b). We also note that taking into
account the strain dependence of the iridium and oxygen on-site
energies is crucial to obtain correct trends. In fact, nonlinear
behavior of charge transfer energy A,y seems to be directly
responsible for the non-linear strain dependency of the indirect

oxygen-mediated hopping E. This suggests that the role of
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oxygens in the low-energy physics of strained iridates and other
transitional-metal oxides might be underestimated and requires
further investigation.

Accordingly, the contribution of the indirect orbital overlap
should be small for xz and yz orbitals. Indeed, the indirect yz-yz
orbitals overlap along a’-axis is zero. The xz orbitals hybridize with
O-p, orbital, however, this hybridization decreases with strain
much slower than for xy orbitals, explaining the different behavior
of xy and xz orbitals under compressive strain.

The fact that relative Ir-O hybridization is directly responsible for
the resulting suppression of t; (xy-xy hopping) under compressive
strain suggests an electronic state crossover as the role of xy
orbitals in the composite Je=1/2 is decreasing. Notably, a
pressure-induced phase transition was also suggested in a recent
X-ray powder diffraction study*® at pressures around 20 GPa,
which should correspond to ~—3% strain and is in good
agreement with our findings.

Overlap of the spin-orbit coupled J. states

We now estimate the overlap between the Jo = 1/2 states for NN,
2NN, and 3NN (denoted 7, T and 1, correspondingly), which can
be calculated from t,4 orbitals overlap using the Clebsh-Gordon
coefficients?>#. In Fig. 5, we show the change of the overlap of NN
Joff = 1/2 states calculated from the DFT values obtained here. As
experimental values of Jes=1/2 states overlap 7 are hard to
measure, one can try to compare hopping parameters T with
available experimental estimates of magnetic exchange interac-
tions 7 (see Table 1 in ref.?3), which in ambient conditions are
assumed to scale with 2. However, in a recent RIXS study on
strained Sr,Ir0,4%3, the authors suggest that the simple J o« 12/U
relationship fails for strained Sr,IrO, due to the polaronic
renormalization of the charge excitations. In particular, the first-
neighbor exchange interaction 71 was shown to decrease slightly
upon the tensile strain, while 7, and 73 decreased much faster,
based on a fit of the Heisenberg model to the measured magnon
dispersion?3. An earlier RIXS study also suggested that magnetic
exchange interaction 7 increases upon the compressive strain?2.

Consistent with both RIXS studies®>?3, calculated here values of
NN, 2NN, and 3NN hopping parameters are all decreasing upon
tensile strain (Fig. 5). As discussed in ref.?3, this trend for Ts is
significantly slower than that observed for superexchange
interaction 7, indicating that 7 o< T2/U relationship indeed fails

Published in partnership with Nanjing University
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Fig. 5 Dependency of the spectral function of Sr,IrO, on the strain. Spectral function calculated for various strain values: a LSAT, —0.52%
(compressive strain), b GSO, +1.53% (tensile strain) corresponding to ARPES (negative energies) and inversed photoemission spectra (positive
energy). The horizontal axis is the 2D crystal momentum. The vertical axis is the energy (eV), where zero energy represents the Fermi level.

for strained Sr,IrQ,4. Our DFT strain trends are also consistent with
the modest increase of magnetic exchange interaction [7; under
compressive strain reported in the two-magnon Raman study?*.

It is interesting to compare the trends observed in Sr,IrO, to
those in 3d transition metal oxides—cuprates. In ref.*® authors
used XAS at Cu Ls-edge of La,CuQ, together with analytical and
DFT theoretical approaches to show that both bandwidth and
electron—electron correlations were increasing upon the compres-
sive strain. As a result, magnetic exchange J was shown to
increase (decrease) almost linearly upon the compressive (tensile)
strain. In comparison, while the orbital-dependent hoppings in
Sr,IrO, behave very differently from this (Fig. 2b), showing the
surprising decrease in t; with compressive strain, effective Jogr= 1/
2 orbitals in Sr,IrO4 have strain dependence (Fig. 5) somewhat
similar to those of cuprates, echoing the famous parallel between
SrylrO4 and La,CuO,.

The evolution of the Fermi surface under strain

Structural response to strain may also be accompanied by
changes in the Fermi surface. Thus, strong changes in Fermi
surface upon uniaxial pressure have recently been reported in Ru-
based compound Sr,Ru04%°°°, along with the more than double
increase of the superconducting transition temperature®'. A
recent work on Sr,IrO; employing a tight-binding model has
pointed out that out-of-plane tilting of the oxygen octahedra can
induce shrinking of the Fermi surface and suppress nesting and
the d-wave superconductivity>2. There is no out-of-plane tilting in
Sr,IrO4 under pristine conditions or modest strain—it was very
recently shown to appear only under the pressure of as much as
40 GPa®. However, in-plane octahedra rotation is strongly affected
by the modest strain already, and it is important to understand if
and how the Fermi surface is affected, particularly on the beyond-
mean-field level.

To study the evolution of the Fermi surface under strain we
calculate photoemission spectral functions of strained Sr,IrQ,,
using extended t — 7 model formalism developed in ref.>3. The
extended t — J model used in the calculation (see Methods)
depends on two sets of parameters: the magnetic exchange
parameters J;, J2, J3, Ising anisotropy coefficient A%, and the
hopping parameters t; describing overlap of the t,4 orbitals. We
obtain the set of t/s for each strain value from DFT calculations as
discussed in detail above. Using this Wannier Hamiltonian as a
starting point describing single-particle hopping processes, we
consider all possible many-body hopping processes to derive the
hopping part of the extended t — J model®3.

Published in partnership with Nanjing University

To properly account for the changes in the electronic structure,
we need to account for the evolution of the magnetic exchange
parameters with the strain. It has been obtained from the
published?® fits to the RIXS spectra on strained samples. As
experimental data is available for small strain values range only,
we restrict calculations of photoemission spectra to that range
and show the photoemission (and inverse photoemission) spectra
in Fig. 6 for two substrates: (LaAlO3)o.3(Sr,AlTa0g)o.; (100) (LSAT)
and GdScOs; (110) (GSO), providing a strain of —0.52% and
+1.53%, correspondingly.

Calculated photoemission spectra show one conductance band
at positive energies, and two valence bands at negative energies:
a sharp singlet band around —0.25eV and a more incoherent
triplet band at —0.5 eV. (see Fig. 7 for a detailed discussion on the
band character). We see that the strain-induced changes of the
photoemission spectra are quite prominent for samples with a
strain difference of 2%. First, for tensile strain, as compared to
compressive strain, the Mott gap increases (Fig. 6b), suggesting
stronger polaron binding of the photoinduced hole to the
magnetic background?3. Second, upon compressive strain, the
photoemission spectra of Sr,IrO, show a highly dispersive singlet
band (Fig. 6a), while upon tensile strain, both singlet and triplet
bands are much less dispersive, and the Fermi surface of
Sr,lrO4becomes relatively flat (Fig. 6b). It is important to note
that the relative flattening of the Fermi sheet upon tensile strain is
a many-body effect distinct from the anisotropic compass-like
hoppings under compressive strain. One should be able to
observe such significant renormalization of the spectral weight in
the ARPES data even for small, realistic values of strain.

The conduction band is only weakly affected by strain. Figure 6
shows a marginal flattening of the conduction band upon the
tensile strain. We, therefore, expect a minimal effect of epitaxial
strain on possible superconductivity.

To explore the effect of strain on the ARPES spectra in more
detail, we plot in Fig. 7 separate contributions of the singlet (/= 0)
and triplet (J = 1) charge excitations to the full spectra. As one can
see, under tensile strain, J=0 contributes the most at (m,0),
whereas under compressive strain, its contribution is slightly more
widespread. On the contrary, the J= 1 spectral weight is shifted to
(n/2,m/2) at the tensile strain and to (m, 0) at the compressive
strain. In particular, J=1 contribution to the “lower energy” band
of the photoemission spectra is strongly reduced upon the tensile
strain. We thus observe strain-controlled spectral weight redis-
tribution between the charge carriers of singlet and triplet
characters. Already moderate tensile strain is sufficient to make
the lower energy band of almost purely singlet character.

npj Quantum Materials (2022) 90
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Fig. 6 Contribution of singlet /=0 and triplet J=1 states to the spectral function of Sr,IrO, for various strain values. Singlet /=0
contribution to the ARPES spectral function: a LSAT, —0.52% (compressive strain), b GSO, +1.53% (tensile strain); Triplet J= 1 contribution to
the ARPES spectral function: ¢ LSAT, —0.52% (compressive strain), d GSO, +1.53% (tensile strain). The horizontal axis is the 2D crystal
momentum. The vertical axis is the energy (eV), where zero energy represents the Fermi level.

Fig. 7 In-plane structure of Sr,IrO, and the notation for orbital overlap parameters. For nearest neighbors (NN), interorbital overlap
parameters are denoted t;, t,, t3, and intraorbital t,, and for second nearest neighbors (2NN) we consider interorbital overlap only: t, t/, t'.
Orbital overlap between third neighbors is defined in the same way, not shown. Due to the symmetry considerations, the overlap of out-of-
plane ty4 orbitals is anisotropic: t, describes hopping between xz(yz) along a' (') axis. The O-Ir-Ir angle 6 characterizes the in-plane octahedra

rotation as shown.

In summary, we predict a dramatic strain dependence of the
electronic properties of Sr,IrO, for compressive v/s tensile strain.
The most remarkable feature is the appearance of the compass-
model-like contribution of electron propagation due to the
separation of the Fermi sea in Sr,IrQO,4 into two subsets of bond-
and orbital-dependent carriers under compressive strain. This
enables the formation of charge density wave due to nesting and
could be connected to the puzzling metalization avoidance in
Sr,IrO4 upon pressure. The Fermi sea separation originates from
strain dependency of relative Ir-O hybridization, as well as on-site
O energy, suggesting an important role of oxygens in a low-
energy physics of strained iridates and other transitional-metal
oxides.

Despite the suppression of the bond-independent xy hopping t;
under compressive strain, the hopping amplitude of the
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composite Jogr = 1/2 state still increases under compressive strain
owing to the contribution from hoppings between xz/yz orbitals
(t;)—the largest of two in-plane nearest-neighbor direction-
dependent hoppings. The obtained trends for J.¢ = 1/2 hopping,
7, are in good agreement with available experimental data.

We also calculated the photoemission spectra of Sr,IrO, upon
compressive and tensile strain (for samples grown on LSAT and
GSO substrates, respectively). We find that under compressive
(tensile) strain, the singlet band becomes significantly more (less)
dispersive, and both the singlet and triplet bands shift up (down)
in energy. We also show that the electronic properties of the low-
energy model can be controlled by strain, since the already
moderate tensile strain is sufficient to make the lower energy
band of almost purely singlet character, and shift the triplet
spectral weight to (n1/2,/2) point. These features can be readily
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