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Abstract:. Catalyst optimization for enantioselective transformations has traditionally relied
on empirical evaluation of catalyst properties. Although this approach has been successful
in the past is it intrinsically limtied and inefficient. To address this problem, our laboratory
has developed a fully informatics guided workflow to leverage the power of artificial
intelligence (AI) and machine learning (ML) to accelerate the discovery and optimization
any class of catalyst for any transformation. This approach is mechanistically agnostic, but
also serves as a discovery platform to identify high performing catalysts that can be
subsequently investigated by with physical organic methods to identify the origins of

selectivity.
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1. Introduction
Efficient catalytic enantioselective transformations
have a transformative impact on chemical synthesis,
and these are important components of a synthetic
chemist’s toolbox. Until recently, state-of-the-art
enantioselective catalyst development has relied on
empiricism and the chemical intuition of a proficient
chemist. This presents undesirable limitations, and
many strategies have been developed to accelerate
this process, including increasing throughput with
advanced screening protocols,! making high-
throughput computation of transition state energies
feasible,? and using mechanism-guided correlations
between Linear Free Energy Relationships (LFERSs)
and enantioselectivity.®

Over the past decade our laboratory has focused
on the development of tools which merge the power
of modern computing, data science, and machine
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Fig. 1. Chemoinformatic workflow developed in these laboratories. Reproduced with permission from ref 4. Copyright 2021
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learning with chemoinformatics in an effort to create
models which make reliable predictions of catalyst
enantioselectivity.* Such models address the rate
limiting step in state-of-the-art enantioselective
method developmen; finding the optimum catalyst.
Because catalyst synthesis is often time consuming,
exhaustively exploring new catalysts for a
transformation is often infeasible. As a result,
catalyst are often screened from commercially
available libraries, relying on the assumption that
adequate catalyst diversity is found in commercially
available compounds.

Another criticial feature of our approach is to
remedy the not uncommon situation in which
optimization campaigns are abandoned because no
efficient and selective ligand was available for rapid
evaulation. Thus, we were interested in finding a
way to identify the “right” catalysts to evaluate in a
reaction before moving on to a different scaffold.
We also believe that enantioselective catalyst
optimization is a perfect domain to apply machine
learning because “bad data” in an empirical
screening campaign—which in the context of
enantioselectivity can be hard from which to extract
useful information — can train machine learning
models from patterns too complex for a human to
see. Thus, we set out to develop a strategy which
could perform the organic chemist’s dream: use sub-
optimal data to train a model to identify an
optimized enantioselective catalyst.

2. Our Chemoinformatic Workflow

The fully chemoinformatic workflow® was
implemented in a simulated optimization of the
addition of thiols to N-acyl imines reported by
Antilla and coworkers (Scheme 1). using the chiral
3,3’-substituted BINOL-phosphoric acid (CPA)-
catalysts. The workflow is depicted in Figure 1. In
the first stage, catalyst structures are translated into
an in silico library and a representative subset is
identified. The second stage involved the synthesis
of this representative subset. In the third stage, that
subset was used to collect data for 1,075 new
reactions which were used to create models relating
catalyst structure to selectivity. Finally, the optimum
catalyst in the in silico library was identified by
predicting the selectivity for every in silico catalyst.
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2.1 The role of descriptors

Chemoinformatics is a field which focuses on the
numerical representation of chemical structures and
properties. In the context of this work, calculable
numerical representations of chemical properties
and structures — called descriptors — are used to
represent chemical entities for machine learning.

Early forays in the realm of phase transfer
catalysis’ drew inspiration from the pioneering work
of Kozlowski,® Lipkowitz,” and Hirst!® which used
molecular field descriptors for Quantitative
Structure Selectivity Relationships (QSSRs). An in-
depth discussion of this established field is
summarized in a recent review from our
laboratory.!!

The accuracy of machine learning models for
predicting the outcome of chemical reactions relies
on the information encoded within the descriptors
used to represent the chemical entities. The
limitations of current descriptors has been noted by
others.!? On the basis of that observation and our
own experience with descriptor-limited modeling,
we have developed descriptors for representing
chiral catalyst structures, including: (1) continuous
chirality measure!® for making QSSRs!* and (2) the
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Fig. 3. A: ASO descriptor calculation, B: Heatmap of ASO descriptors of a BINOL-phosphoryltriflamide, C: Plot of first
three principal components of in silico library of BINOL-phosphoryltriflamides. Adapted with permission from ref 5a.
Copyright 2019 American Association for the Advancement of Science.

conformer-dependent quantiative quadrant
descriptor,!® both of which represent entire
molecular structures. We also developed the
ElectroStatic Potential Max (ESPMax, Figure 2)* as
a calculable electronic descriptor for representing
through-bond electronic  effects of catalyst
substituents. It is noteworthy that this fragment-
based descriptor shows a significant correlation
(Figure 2, R? = 0.987) with experimentally-validated
Hammett parameters, though ESPMax is easily
calculated and does not rely on experimental data or
interpolation from the correlation in Figure 2. This
descriptor has been used by Hergenrother and
coworkers in a Quantitative Structure Activity
Relationship setting to understand permeability of
cationic nitrogen compounds.'®

The most important descriptor developed in our
laboratory thus far is the Average Steric Occupancy
(ASO) descriptor, which we see as instrumental to
the success of the workflow.* ASO descriptors were
first used to represent CPA derivatives, and the
process is summarized in Figure 3. ASOs are grid-
based descriptors based on a steric indicator field
(SIF) — meaning that they encode information at
pre-determined points in a grid around a molecule,
but in this case each grid point is assigned a binary
“indicator” value of 1 or 0 if it is within the van der
Waals radius of an atom.

These SIF descriptors, when all candidate
structures are aligned to a common orientation,
encode steric occupancy at the same relative
positions in space. We generate Average SIF, or
ASO descriptors, by averaging the values at each
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Fig. 2. ESPMax descriptor developed in our laboratory.
Adapted with permission from ref 5b. Copyright 2020.

gridpoint across a conformer ensemble of each
catalyst. The result is a representation which looks



like a “heatmap” of steric occupancy (Figure 3B).
ASO is a high-dimensional representation of
stereostructure. As a result, it can be difficult to
“see” how this describes chemical entities. Using
dimensionality reduction techniques like Principal
Component Analysis (PCA), we can visualize how
CPAs in a diverse library are positioned in the ASO
chemical space. Qualitatively, it is encouraging that
in this representation different catalysts in the same
class are generally grouped together (colors in 3D
plot in Figure 3C). For a more in-depth discussion of
our benchmarking against other features, see the
recent review.*

2.2 The role of subset selection

We have learned that data used to train models must
be curated to represent catalyst chemical space in a
manner which is not directed by commercial
availability and chemical intuition, but instead led
by the directive to maximize the diversity of catalyst
structures represented. By ensuring that maximum
catalyst structure diversity is represented in a
dataset, we hi
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selection, which is an unsuperivsed process
(meaning only catalyst features, not reaction data are
used) in which a maximally-diverse subset of
catalysts are identified from a much larger pre-
defined in silico catalyst library, to choose an
optimal training set of catalysts from which to
acquire data. The process of subset selection is
pictorally represented in Figure 4. After encoding an
in silico library of catalysts using molecular
descriptors, each catalyst represents a position in
chemical space. Using algorithmic selection ensures
that a subset covers the breadth of that chemical
space. This optimal training set of catalysts is called
a “Universal Training Set” (UTS) because it
represents a particular catalyst scaffold in a manner
which is agnostic to any specific transformation or
reaction mechanism.

This strategy derives from the hypothesis that
algorithmic subset selection from a large library
should provide a better set of catalysts to optimize a
reaction with than using commercially available
catalysts or chemical intuition. To test this
hypothesis, we devised a study that involved
comparing the performance of our training set
algorithmincally selected in silico library (designed
to include vast chemical diversity of synthetically
accessible CPAs) to the performance of a training set
consisting of commercially available CPAs.*® The
experimental design is as follows: (1) commercially
available catalysts within the in silico library were
identified (12 in total) and used for a “commercially
available training set”, (2) the top 12 CPAs from the
Kennard Stone selection process were identified forf
coparison, and (3) the data from the 25 substrate
pairs were used to train models (12 catalysts X 25
substrate pairs = 300 data points) using each catalyst
ensemble, the remaining 775 data points were used
a test data (vide infra). The results are depicted in
Figure 5. The Kennard-Stone selected catalysts
showed good test set performance (Figure 5, MAE
=0.21, RMSE = 0.26 kcal/mol, R’ = 0.79) because
it included catalysts spanning the entire catalyst
chemical space in the training data. In contrast, using
only commercially available catalysts to compose a
training set showed diminished performance in the
test set (MAE = 0.28, RMSE = 0.36 kcal/mol, R’ =
0.53).

This result suggests that the algorithmic subset
selection of training catalysts is a better way to select
catalysts when designing a dataset. Our hypothesis
is that the problem with the commercially available
catalyst training set stemmed from its insufficient
representation of the catalyst chemical space. To test
this hypothesis we carried out the following
experiment:*® (1) a clustering alogrithm was used to
identify groups of catalysts in the in silico library of
CPAs, (2) using an elbow plot for k-mean clustering
(k = 6) the clusters were inspected for the presence
any commercially available catalyts, (3) a
representative was chosen from the one cluster

which contained no commercially available
catalysts and finally, (4) an augmented training set
(now 13) was created which included data from the
commercially wunavailable catalyst intended to
“teach” the model about the unrepresented catalyst
chemical space in the commerically available
training set (Figure 5). For new models trained on
the augmented training data, the test set performance
recovered significantly (MAE = 0.21, RMSE = 0.27
kcal/mol, R? = 0.74). This result gives us confidence
that any dataset gathered from an algorithmically
selected subset of catalysts will include adequate
catalyst diversity to develop chemically meaningful
QSSR models. Another valuable interpretation of
this study is the apparently minimal cost in model
performance using an augmented commercially
available training set of catalysts. If a practitioner
wished to avoid synthesizing an entire UTS, then
commercially available catalysts could be chosen
and any unrepresented clusters can be used to
synthesize far fewer new catalysts.

2.3 Validation of the workflow

After synthesizing the UTS of CPAs, (24 catalysts)
the experimental validation campaign began by
collecting enantioselectivity data for 16 substrate
combinations (4 N-acyl imintes, 4 thiols) for training
data points. In addition 19 test catalysts were chosen
randomly from the in silico library from which the
test data was generated (9 different substrate
combinations). After collecting 1,075 unique
reaction enantioselectivities in duplicate (a total of
2,150 reactions), we began developing models
relating catalyst and substrate features to
enantioselectivity. We found empirically that
support vector machines gave the best performance
on the basis of mean absolute error (MAE) of
predicted and observed selectivity values.>

By design, this study involved pre-determining
out-of-sample substrates and catalysts which of
which our models would remain naive. We have
demonstrated the importance of this design feature
when working with combinatorial datasets.!” As a
consequence, we were able to independently assess
the impact on test set predictions for subsets of the
data which included out-of-sample substrates,
catalysts, or both. The predicted vs observed plots of
selectivities (44G?, kcal/mol) for the training data
(384 reactions) and all three test sets (691 reactions)
are depicted in Figure 6.

These results serve to validate both the
descriptors developed in that study as well as the
workflow up to the pentultimate step. Ultimately,
our goal in developing this workflow was to identify
optimal catalysts with lower selectivity data. We
devised a simulation of such an optimization —
necessary since this reaction was already an
optimized reaction — in which data with less than
80% enantiomeric excess (Figure 6, right chart,
purple data) was used to train feed-forward neural
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network models which were subsequently used to
predict the selectivity of catalyst/substrate
combinations with known higher selectivity (red
data). Our goal was to simulate a real life situation
in which an experimentalist has gathered data for a
range of catalysts, but cannot break the threshold of
80% ee using chemical intuition.>

The results show a predictably lower accuracy
(both by R? and MAE) in the training and test data
than with models trained on data spanning the entire
range of enantioselectivity, yet the MAE for the test
set (higher selectivity data) was still 0.28 kcal/mol,
which is lower than errors expected for DFT
calculated energies. In addition, the selectivity of
various catalysts, though under-predicted, were
predicted in the correct order, meaning that such a
model could be used to select candidate catalysts
with a higher selectivity in our simulated
optimization scenario.

3. Summary and outlook

This work is the culmination of years of trial and
error and constitutes the beginning of a major
research direction for our laboratory using a data-
driven approach to optimize enantioselective
catalysts. We have realized a workflow through the
development of chemical descriptors for
chiralmolecules, the application of algorithmic
subset selection methods to choosing catalysts for
dataset acquisition, and machine learning. Readers
can find a more detailed discussion of this
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chemointormatic worktlow m a recent review
article.* We are currently applying our workflow to
an array of catalyzt optimization problems from
organo-catalyzed to transition metal-catalyzed
transformations.

Our future research directions include leveraging
statistical modeling and 3D molecular descriptors to
create and use models as an “idea generator” for
guiding mechanistic inquiry and to synthesize and
use UTSs generated by this workflow for a range of
privileged!® catalyst scaffolds.
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