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Abstract—Commercial virtual-desktop computing is well established using computers optimized to serve as thin clients connected to
centralized computing systems. Some common residential applications impose more stringent requirements on both communication
bandwidth and latency than those of typical commercial applications. This paper describes an objective study of residential
applications accessed through thin-client virtual-desktops for the purpose of investigating the feasibility of applying virtual-desktop
computing to residential users. New metrics are introduced to quantify user-received application performance. The results suggest that
certain commercial solutions with a commodity datacenter server show a strong potential for being adapted to residential
virtual-desktop computing.
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1 INTRODUCTION

C LOUD computing can support a wide range of appli-
cations as it provides flexible infrastructure for on-

demand scaling. Virtual desktop infrastructure (VDI) is one
such application supported by cloud computing. Unlike
most cloud computing, VDI is designed to perform com-
putational tasks in the cloud and transport the resulting
display and I/O updates over the network with little or
no computation taking place in the client, allowing profes-
sional information technology (IT) staff to administer user
desktops on virtual infrastructure hosted in the datacenter
while users access their desktops using a remote desktop
protocol [1]. Commercial entities have developed special-
ized tools to support this paradigm for enterprise users.
Examples include Amazon WorkSpace (AWS), Microsoft Re-
mote Desktop Services (RDS), Citrix’ offering of Desktop-as-
a-Service (DaaS) and Software-as-a-Service (SaaS), Google
Cloud Platform, and VMware VDI solutions. These virtual
desktops run over thin or fat client machines in terms of the
varied computing capabilities. Zero clients are also available
in which a specialized communication processor, developed
by Teradici, enables VDI clients to run without a central
processing unit (CPU) [2].

Enterprise organizations license commercial cloud-based
virtual-desktop services because these services enable com-
puting resource consolidation. Such consolidation can dra-
matically reduce expenses as the hardware and manage-
ment costs for client-side equipment are minimized. More
importantly, this consolidation allows resource-sharing
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among enterprise employees. For example, Teradici claims
support for creative teams of Sony Pictures Imageworks by
delivering high resolution, full frame-rate 3D graphics and
high definition multimedia to remote workstation users. The
users have worked remotely across Southern California and
Vancouver with access to the same data and information in
real time [3].

Despite this progress in commercial use, few residen-
tial customers use virtual-desktop resources in the cloud.
Network availability and bandwidth are critical factors as
VDI clients support little or no computing without a reliable
network connection. From this perspective, fifth generation
(5G) wireless communication [4] and edge cloud computing
offer expanded opportunities for virtual-desktop techniques
applied to personal or home computing. The 5G service cat-
egory of ultra-reliable low latency communication (URLLC)
together with the increased bandwidth and machine to
machine communication has the potential to enable general
consumer use of virtual desktops. Since edge computing
decentralizes the processing power to the edges, using
an edge cloud to provide performance levels at the top
range of the VDI enterprise categories, residential customers
would no longer suffer from limited network bandwidth
and may enjoy a full-PC experience using lower cost thin-
client interfaces. Further, high-performance residential vir-
tual desktops would provide residential customers with
the resource sharing and cloud management enjoyed by
commercial users.

Practical residential virtual desktops would also enhance
cybersecurity for all. A poorly-maintained and patched
consumer device can easily be turned into a weapon that
potentially harms others. The failure to patch operating
systems and applications and residential user susceptibility
to phishing and other similar attacks contribute to the suc-
cess of cyberattacks that may be used to spread malware.
Infected residential devices can be aggregated into large-
scale botnets, which can be used to launch attacks such as
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Distributed Denial of Service (DDoS) on third parties. In
September 2016, the Mirai botnet took the Internet by storm
with massive DDoS attacks [5], revealing vulnerabilities
in the software installed on IoT devices, and showing the
importance of limiting access to processors to reduce the
cyberattack surface. Broader deployment of virtual-desktop
technology centralizes computing resources so that they
can be administrated by professionals with responsibility
to reduce exposure to malware and other cyberattacks.

This work seeks to determine the conditions under
which typical applications used by residential users can
achieve acceptable performance when provided through ex-
isting commercial virtual desktop tools via edge cloud using
a thin-client model. We address the following questions:

1) Can technologies developed to provide virtual desk-
tops to enterprise users be applied to residential use? If
so, what network conditions for edge cloud are needed
for good performance for residential user applications?

2) What is the performance of the edge cloud virtual-
desktop solution using a notebook thin-client device
with a high-resolution monitor?

3) How can you maximize the number of users that can
share edge cloud resources while each user experiences
good performance using edge cloud virtual desktops?

4) How does a commodity datacenter server differ from
a server with a graphics processing unit (GPU) in
personal computing performance? We ask this question
because commodity data-center servers do not include
GPU capabilities and commercial virtual-desktop offer-
ings with GPUs are more expensive.

We selected the video streaming application as our res-
idential use-case both because it is a common residential
application and it requires frequent display updates with
many changes in pixel values over a range of performance
levels. Thus, this typical application demands relatively
high computation and communication bandwidth that can
be varied systematically.

We answer our problem statement questions using avail-
able virtual-desktop technologies. In this work, we deploy
the edge cloud VMware Horizon 7 Architecture using a
commodity data center server. We experimentally evalu-
ate the performance of video playback using a thin-client
model by leveraging different remote display protocols with
various computing resources and network conditions. To
answer the first question, we measure user-received mul-
timedia quality under an ideal network condition and with
altered network conditions using a high-end desktop as the
client device to remove any impact on performance intro-
duced by the end-user interface. For the second question, we
compare video quality using affordable thin-client devices
to that of the high-end user device to illustrate practical
virtual-desktop performance in a residential-use scenario.
We study sharing through VMware’s resource allocation
shares and monitor video playback quality as a function of
computational resource availability to maximize the number
of users that can be sustained with the video streaming
application using virtual desktops. We measure the im-
pact of edge cloud server capabilities on residential virtual
desktops to address our last concern regarding cost and
performance. Though other situations may arise, a complete

study considering all possible factors would be beyond the
scope of this paper.

The main contributions of this paper are as follows:
1) New metrics, user-received PSNR and SSIM (recv-

PSNR, recv-SSIM), were defined to quantify the quality
of user-received frames during video playback.

2) We conducted an objective study applying commercial-
offering virtual-desktop solutions to residential use.

3) We proposed an engineering solution to maximize the
number of satisfied users sharing edge cloud comput-
ing resources based on empirical results.

4) We measured virtual-desktop capabilities with GPU
virtualization enabled at the server side.

The remainder of this paper is organized in the following
way: Section 2 provides background on VDI and challenges
raised by the residential environment, and reviews related
work. Section 3 illustrates our VMware Horizon 7 deploy-
ment. Section 4 describes the objective evaluation approach
including input media, virtual-desktop specification, remote
display protocol, media player, and metrics. Experimental
results for user-received media quality evaluation, edge
cloud resource sharing, and virtual-desktop capabilities
with GPU-virtualization are presented in Section 5, 6, and
7, respectively. The paper is concluded in Section 8.

2 BACKGROUND AND RELATED WORK

2.1 VDI and Commercial Offerings

Figure 1 illustrates the edge cloud VDI computing approach
in which virtual desktops are hosted on the edge-cloud.
The client drives user devices via remote-desktop proto-
cols with encryption and video decoding to access virtual-
desktop services. Remote-desktop protocols send user in-
puts, including keyboard strokes and mouse clicks, and
display updates over the network. All application code is
executed on a remote-desktop server. Well-known remote-
display protocols include Microsoft Remote Desktop Proto-
col (RDP), Teradici PC-over-IP protocol (PCoIP), VMware
Blast Extreme display protocol (Blast Extreme), and the
open-source Remote Frame Buffer protocol (RFB).

Fig. 1: Edge cloud VDI computing approach

Allied Market Research [6], reports that the global cloud-
based VDI market was valued at $3.645 billion in 2016, and
is expected to grow with a compound annual growth rate
(CAGR) of 16.5% from 2017 to 2023 to reach at $10.154
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billion. With the rapid spread of VDI enterprise usage,
several commercial companies that offer cloud-based VDI
service stand out. Amazon WorkSpaces, owned by Amazon,
provides a managed secure Desktop as a Service (DaaS),
which utilizes Amazon WorkSpaces Streaming Protocol
(WSP) to deliver users Windows or Linux desktops. Mi-
crosoft Azure, as a cloud-computing platform designed for
building, testing, deploying, and managing applications and
services through data centers, provides Software as a Service
(SaaS), Platform-as-a–Service (PaaS), and Infrastructure-as-
a-Service (IaaS) offerings. Citrix Workspace, developed by
Citrix Systems, allows multiple users to remotely access
and operate Microsoft Windows desktops hosted on cloud.
Teradici, as mentioned above, offers a proprietary remote
display protocol, PCoIP, that supports zero clients and thin
clients for VDI, specializing in lossless, high performance
video coding. Whereas VMware provides the guest operat-
ing system with completely virtualized hardware. Commer-
cial offerings considered above are limited to those specif-
ically intended to provide remote virtual desktops. Other
offerings intended for remote control or other applications
that differ form the remote desktop application may not be
included.

2.2 Residential Environment

While virtual desktops have proven their value in commer-
cial environments, deployment in the targeted residential
environment imposes at least four significant additional
challenges:

• First, the abilities of users are much broader in the
targeted residential environment than in the typical
commercial environment. User technical abilities will
vary from highly sophisticated to very basic. For ex-
ample, users will include bright students who want
to experiment with application development with a
grandparent who struggles with web browsing and
email.

• Second, the target environment is highly cost sensitive
so that the end terminal devices must be relatively
inexpensive. The number of users will likely be very
large with a smaller percentage of simultaneous users
than might be expected in a commercial environment.
Therefore, spending for resources should be weighted
toward the servers while the cost of terminal devices is
minimized.

• Third, the mix of applications is expected to be broader
than those of any single commercial deployment. Typi-
cal residential applications are expected to include basic
office applications such as web browsing, email, and
word processing. In addition, residential uses will want
media streaming and gaming. As personal applications
advance, users will expect more demanding applica-
tions such as immersive virtual reality.

• Fourth, because the envisioned residential environment
will require sharing of resources, policies and proce-
dures for acquisition and use of those resources must
be established. While a user who owns a PC controls
the software installed on that PC and the data stored
on that PC, the residential users of the virtual desktop
system will need a way to decide what software will be

installed on the shared servers, how the resources will
be shared, and who will control the data.

We provide users with a concise user interface (UI) by
deploying commercial VDI solutions. Users with minimum
abilities can access their assigned virtual desktops by simply
double clicking the icon, whereas technical users are able to
change virtual-desktop parameters such as remote display
protocols. Further addressing the first challenge is beyond
the scope of this work as it requires subjective studies
among residential users. We address the second challenge
by evaluating residential application performance with real-
world thin client machines and discussing the impact of
server-assigned computing resources and server capabilities
on the client-received application performance. We select
video streaming applications to address the third challenge.
While video streaming can be found in commercial appli-
cations, this application is expected to be central to the
residential expectations. Given that residential users vary,
different types of videos are used in evaluation, including
sporting events, movies, and cartoons. Further, we address
the fourth challenge by proposing an engineering solution
to maximize the number of residential users sharing edge
cloud computing resources.

2.3 Related Work
Several prior efforts have quantified virtual-desktop perfor-
mance. Nieh et al. [7] first developed slow-motion bench-
marking to evaluate the performance of thin-client systems
by monitoring network traffic traces between a thin client
and its server. Results were obtained by comparing traffic
traces collected from an ideal environment with traces col-
lected under different network connections. This technique
has then been applied in many studies [8], [9], [10], [11] [12],
[13], [14]. For example, VDBench, proposed by Berryman
et al. [10], is a thin-client toolkit that uses the slow-motion
technique to evaluate remote user experience in terms of
video quality. However, all of the prior work relied heavily
on traffic trace monitoring, which does not directly repre-
sent user-received virtual-desktop quality. User experience
has been studied through subjective tests; however, to the
best of our knowledge, our work is the first reported study
that applies objective evaluation on end-user client perfor-
mance for residential use of the virtual-desktop computing
approach.

Previous work has considered streaming video quality
generally and developed various measurement methodolo-
gies. Chan et al. [15] proposed a novel method, MPSNR,
to address the inaccuracy of the peak signal-to-noise ratio
(PSNR) calculation caused by consecutive packet losses.
Since PSNR compares every pixel in each frame of a pro-
cessed video with the corresponding pixel in each frame of
the reference video, the consecutive losses of packets lead
to the loss of an entire frame, resulting in the comparison
of two non-corresponding frames. Laine and Hakala [16]
evaluated streaming Quality-of-Service (QoS) performance
by collecting pixel information and the display time of
video pictures using FFplay. Our work provides a more
comprehensive performance assessment by extending met-
rics for streaming video quality evaluation beyond PSNR
and playback duration to include user-received FPS and
structural similarity (SSIM).
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Virtual Speech Quality Objective Listener, or ViSQOL,
proposed by Hines et al. [17], is a signal-based full refer-
ence metric designed as an alternative to the commercial
Perceptual Evaluation of Speech Quality (PESQ) metric [18]
for Voice-over-IP (VoIP). ViSQOLAudio, an adaption of
ViSQOL, was proposed by Hines et.al in 2015 [19] for stream-
ing audio evaluation. Later in 2018, Narbutt et.al presented
AMBIOUAL [20], a full reference objective quality metric
for ambisonic spatial audio. In this study, we measure the
user-received audio quality delivered by display protocols
using ViSQOLAudio.

Recent research on audio-visual quality perception takes
advantage of machine learning techniques. Kumar et.al [21]
proposed a time-evolution model using features extracted
from the speaker’s facial area and the discrete cosine im-
age transform to detect audio-visual synchronization in
video segments containing a speaker in frontal head pose.
Marcheret et al. [22] investigated the use of deep neural
networks (DNNs) and proposed synchrony DNNs that di-
rectly operate on audio and visual features to detect audio-
visual synchronization for human speech. However, none
of these metrics are applicable to our thin-client case due to
the limited computing power available on the thin clients.
Instead, we develop our audio-visual synchronization met-
ric by extracting time shifts between the sound and vision
using a specialized multimedia file.

3 VMWARE HORIZON 7 DEPLOYMENT

Our study used a Dell PowerEdge R740 Server configured
to operate as the edge-cloud server with VMware ESXi 6.5.0,
24 CPUs × Intel(R) Xeon(R) Silver 4116 CPU @ 2.10 GHz, 96
GB RAM, and four Network Interface Cards (NIC) of 2x1
GE and 2x10 GE.

3.1 VMware Horizon 7

VMware Horizon 7 is a Virtual Desktop Infrastructure (VDI)
solution provided by VMware intended to offer flexibility,
reliability, and security to end users. It is a VDI plat-
form that delivers secured desktops to remote end users
from a data center. End users can access on-demand or
up front provisioned desktops using laptops, zero-clients,
thin-clients, tablets, and even smartphones. Desktops are
managed, updated, and destroyed centrally from a VMware
vSphere server.

VMware vSphere is a suite of virtualization products
that provides a scalable platform for running virtual desk-
tops and applications. vSphere contains three main compo-
nents: ESXi, vCenter, and vSphere Client. ESXi is a type-1
hypervisor functioning as the virtualization server on which
all virtual machines are installed. VMware vCenter Server
is a centralized management application through which
multiple connected hosts in a network are managed and
host resources are pooled. vCenter Server is installed as a
virtual machine on top of ESXi. vSphere Client, an HTML5-
based management portal, is required to install, manage,
and access virtual desktops. It resides above ESXi. It can
also access vCenter Server for management purposes.

3.2 Anvil Deployment

Our deployment of VMware Horizon 7 is shown in Figure
2. The physical ESXi server, named Anvil, is connected to a
network switch through a 1 GE NIC for management, and a
10 GE NIC for the VM network and Internet access. The
VM network contains five components: Active Directory
Domain Controller, MSSQL Server, VMware vCenter Server,
VMware Horizon Connection Server, and pfSense Software
Firewall. Users access virtual desktops by establishing con-
nections to the Anvil Connection Server via the Horizon
Client installed on user devices.

4 EVALUATION APPROACH

In this study, we quantify the performance of edge cloud
virtual-desktop computing for video-streaming applica-
tions.

4.1 Input Media

We selected three videos from the Waterloo Quality-of-
Experience Database [23], a well-designed RAW HD video
database, as the references for our video-quality evaluation.
We compressed the reference videos using an H.264 codec
in the constant-quality mode with CRF (constant rate factor)
18. The slow preset was applied for video compression to
achieve a balance of encoding speed and relatively good
quality. Duration and resolution were kept the same as
those of the reference. We used PSNR and SSIM to measure
the quality of compressed videos. PSNR (peak signal-to-
noise ratio) is the ratio between the maximum possible
power of an image and the power of corrupting noise that
affects the quality of its representation, and SSIM (structural
similarity index) is a method of predicting the perceived
quality digital images. PSNR and SSIM are full-reference
metrics that positively correlate with Mean Opinion Score
(MOS), which is a measure used in the domain of Quality of
Experience that represents the overall quality of a stimulus
or system [24], as shown in Table 1. Compressed videos are
usually considered excellent in quality with a PSNR greater
than 37, or SSIM equals to or greater than 0.99 [25]. Table
2 shows the information and quality of our input videos,
ranging from high-motion to static, illustrating heavy to
light workload.

TABLE 1: PSNR and SSIM to MOS mapping

PSNR (dB) SSIM MOS Quality
≥ 37 ≥ 0.99 5 Excellent

≥ 31 & < 37 ≥ 0.95 & < 0.99 4 Good
≥ 25 & < 31 ≥ 0.88 & < 0.95 3 Fair
≥ 20 & < 25 ≥ 0.5 & < 0.88 2 Poor

< 20 < 0.5 1 Bad

To evaluate application performance with audio in-
cluded, we selected multimedia files from the UnB-AVQ-
2013 database [26]- [27], a publicly-available digital video
library designed for audio-visual assessment. Details of our
selected multimedia files are shown in Table 3.

A special multimedia file designed specifically for syn-
chronization testing was selected for audio-video synchro-
nization evaluation. [28] This file was further trimmed
and cropped for use in our measuring environment. The
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Fig. 2: VMware Horizon 7 Anvil deployment

TABLE 2: Input video parameters

Basketball Squirrel Transformer
Codec H.264 H.264 H.264
Mode CQ (crf 18) CQ (crf 18) CQ (crf 18)
Resolution 1920 × 1080 1920 × 1080 1920 × 1080
Duration(s) 10 10 10
Scene Sports Animation Movie
Characteristic High-motion Intermediate Static
File size (MB) 30.3 11.7 7.7
Avg. FPS 25/1 25/1 24/1
Avg. bit rate (Mbps) 24.22 9.33 6.16
PSNR (dB) 39.22 42.07 45.35
SSIM 0.9983 0.9980 0.9982
Video quality Excellent Excellent Excellent

TABLE 3: Input multimedia parameters

Crowd Run Basketball
Resolution 1280 × 720 1280 × 720
Duration(s) 8 8
Scene Running Playing basketball
Video Characteristic High-motion High-motion
Audio Characteristic Music with ambient noise Ambient noise
Avg. FPS 30/1 30/1

Music Reporter
Resolution 1280 × 720 1280 × 720
Duration(s) 8 8
Scene Playing the guitar Human talking
Video Characteristic Static Static
Audio Characteristic Music Speech
Avg. FPS 30/1 30/1

modified multimedia file is a 10-second long, 60-FPS video
containing 10 evenly distributed synchronization points.
Each video synchronization point occurs at the time when
an audio beep occurs. Further, the video contains a tick mark

strip and a white bar that moves along the tick mark strip
during video playback, as shown in Figure 3. For each audio
synchronization point, the moving white bar is expected to
appear at a fixed position along the tick mark bar, and that
position is used as the audio synchronization reference in
the evaluation process.

(a) Frame prior to synchronization point

(b) Frame of synchronization point

(c) Frame after synchronization point

Fig. 3: Frames of multimedia for synchronization evaluation

4.2 Virtual-desktop Specifications
Table 4 shows specifications for the virtual desktops de-
ployed for performance evaluation in this study. We chose
1 vCPU (2100 MHz) with 2 GB vRAM as the minimum
specification because our guest operating system, 64-bit
Windows 10, required a minimum of a single 1 GHz pro-
cessor and 2 GB of RAM. We increased the processor of our
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minimum specification to 2 GHz (i.e., 1 vCPU) because our
Anvil server had no GPU and in qualitative observations
performance was unacceptable and difficult to measure for
less than 2 GHz. Here we purposefully do not consider GPU
support in order to evaluate the potential for using lower
cost commodity servers for these applications. However, in
Section 7, we examine the case of servers with GPU support.

TABLE 4: Virtual-desktop specifications

Abbreviation Description
1C2R 1 vCPU (2100 MHz) 2 GB vRAM
2C2R 2 vCPU (4200 MHz) 2 GB vRAM
3C2R 3 vCPU (6300 MHz) 2 GB vRAM
3C3R 3 vCPU (6300 MHz) 3 GB vRAM
3C4R 3 vCPU (6300 MHz) 4 GB vRAM

We limited the maximum specification to 3 vCPU (6300
MHz) with 4 GB vRAM as we expected relatively low
resource consumption for the video-playback task.

4.3 Remote Display Protocols

Teradici PC-over-IP protocol (PCoIP) and Blast Extreme
display protocol (Blast Extreme) are two high-performance
display protocols developed to deliver virtual desktops to
end-user devices. PCoIP uses a lossless codec to deliver
end users high-quality desktops via zero clients, whereas
Blast Extreme takes advantage of the thin-client computing
approach by enabling audio-video buffering at the client
side. In this study, we measured and compared the perfor-
mance of the lossless zero-client protocol with the thin-client
protocol using two codecs on residential use, as shown in
Table 5.

TABLE 5: Remote display protocols

Abbreviation Description
PCoIP Teradici PC-over-IP protocol
Blast JPEG/PNG codec VMware Blast Extreme Display Protocol
Blast H.264 codec VMware Blast Extreme Display Protocol

4.4 Media Player

We used Media Player Classic (MPC) (packaged in K-Lite
Codec Pack), which is a lightweight open-source media
player designed for Microsoft Windows. MPC provided
most options and features expected for modern videos while
consuming less processor resources than other open-source
media players. Among all video renderers, we selected
the basic Overlay Mixing Renderer to avoid unnecessary
virtual-desktop computational overhead, and used Direct-
Sound as the audio renderer.

4.5 Metrics

Different Metrics were applied to measure the media quality
delivered to the client and the overall system performance.
The metrics can be divided into the following categories:
(i) video quality, (ii) multimedia quality, and (iii) resource
consumption.

4.5.1 Video quality

4.5.1.1 User-received frames per second (%)
Frames per second (FPS) is the frequency at which consecu-
tive images (or frames) appear on a display. We defined the
user-received FPS in percentage (recv-FPS(%)) as the ratio
of the average rate of user-received frame updates during
a complete run of video playback to the average FPS of the
original encoded video:

recv-FPS(%) =
Average UserReceived FPS

Original V ideo FPS
(1)

4.5.1.2 Received PSNR and received SSIM
PSNR and SSIM are two commonly used full-reference
metrics for compression codecs. However, it is usually hard
to use any full-reference metrics for videos that are trans-
mitted over a network in a virtual-desktop environment,
due to lost frames. To incorporate PSNR and SSIM into
our measurements for the video quality, we defined two
new metrics, received PSNR (recv-PSNR) and received SSIM
(recv-SSIM), which depend on only user-received frames.
We summarize our process for calculating recv-PSNR and
recv-SSIM as follows:

a) We annotate each frame with its frame number, and
extract all labeled frames as reference.

b) We take fast screenshots at the client when playing
annotated videos via virtual desktops.

c) We find the corresponding original frame from refer-
ence based on each frame number in our captured
screenshots, and calculate recv-PSNR and recv-SSIM
for each captured screenshot. Note that this process
was automated. Full details are described in Baseline
Application Performance.

No noticeable measuring overhead was observed during
experiments. We further note that this methodology could
be applied in a local environment. The accuracy of this
methodology is illustrated in Section 5.1.2 by performing
evaluation on video streaming locally.

4.5.1.3 Playback duration
Video playback was observed to occur in slow motion
when the virtual desktop had limited computing resources.
Therefore, we used the actual playback duration of a com-
plete video as one metric for video quality because any
extension in duration indicates that the allocated resource is
not sufficient for the virtual desktop to process and deliver
videos in time.

4.5.2 Multimedia quality

4.5.2.1 ViSQOLAudio
The quality of the user-received audio signal is measured
by the objective ViSQOLAudio [29] metric where the mag-
nitudes of the reference and the test spectrograms are cal-
culated using a 32-band Gammatone filter bank. The output
similarity is then mapped into a MOS value within the range
of 1 to 5.



IEEE TRANSACTIONS ON CLOUD COMPUTING 7

4.5.2.2 Audio-visual sync
The synchronization of audio and video when playing a
multimedia file is evaluated in terms of audio-visual time
shift. The measurement process can be summarized as fol-
lows:

a) We record both the video and audio of each complete
multimedia file viewed on the client.

b) We extract the timestamp of each audible marker (beep)
from the recorded audio.

c) We find the nearest extracted frame and the correspond-
ing moving bar position based on the timestamp of each
audible marker.

d) We calculate the audio-visual shift as the difference
between the extracted bar position in step c) and that of
the ground truth from the original multimedia file.

e) We convert the audio-visual shift into a time-based
scale based on the calibrated scale on which the bar
position was measured.

The application of this methodology in a local envi-
ronment would be restricted by the recording FPS of the
recorder.

4.5.3 System resource monitoring

System resource consumption is included as metrics of
virtual-desktop capabilities that yield user-received applica-
tion performance. The metrics are listed as follows: (i) CPU
usage, (ii) Memory usage, (iii) Network usage, (iv) GPU
usage.

5 USER-RECEIVED MEDIA QUALITY EVALUATION

An objective evaluation of the virtual-desktop computing
model was performed by measuring the quality of media
delivered to the client. Experimental data was collected from
the client device, from within the server, and from packet
traces between the server and the client.

5.1 Baseline Application Performance
An experiment was first conducted to identify differences
in user-received application quality with distinctive display
protocols, varied virtual-desktop specifications, and various
types of videos.

5.1.1 Setup and Automation

A high-end client device, HP EliteDesk 800 G3 Desktop Mini
Business PC, Intel(R) Core(TM) i7-8700T CPU @ 2.40 GHz
and 16 GB RAM with the Windows 10 Operating System,
was used as the client device to access virtual desktops
hosted on the server Anvil to avoid any performance limi-
tation caused by the client machine. The HP EliteDesk was
directly connected to the Anvil Connection Server through
a university network environment with a round-trip time of
less than 1 ms. The device was connected to a monitor that
supports 1920× 1080 display resolution.

In the baseline experiment, we used the three input
videos, five virtual-desktop specifications, and three display
protocols as shown in Table 2, Table 4, and Table 5. To obtain
the quality of the delivered videos, we used the four video-
quality metrics:

• recv-FPS
• recv-PSNR/recv-SSIM
• Playback duration
Measuring user-received FPS requires taking measure-

ments on the client machine display. We accomplished this
using TCBench [30], a sub-program of the VirtualGL open-
source program, to capture the rate of pixel change in a
specified region in the client window. We selected an area
at the center of the window for capture. For each complete
run of video playback, we took the average recv-FPS. The
experiment was repeated 50 times for each video playback.

To automate the process of measuring recv-PSNR/recv-
SSIM, an AutoIt [31] script was used to send screen-capture
commands and save screenshots in the BMP file format at
the client device. The starting time and time interval of
screen-capturing commands varied for each complete run
of video playback. We captured 20 screenshots for each run,
and each experiment was repeated 20 times. This process
yielded 400 received frames for each video playback.

We used a Convolutional Neural Network (CNN) to
automate the frame-matching process based on the frame
number marked at the upper right corner of each frame.
The CNN was built using the ResNet architecture, and was
trained using a dataset consisting of 10,000 30×30 grayscale
blurred digit images ranging from 0 to 9. We obtained those
digit images by cropping annotated video frames. Among
those 10,000 images, 2,000 were left-shifted, 2,000 were
slightly right-shifted, 2,000 were slightly left-rotated, 2,000
were slightly right-rotated, and 2,000 remained unchanged.
All digits in those images were of the same font and size
as that of the video annotations. All digit images were
blurred prior to training as degradation was expected in
user-received frames. We intended to obtain an over-fitting
model since the model would only be used to identify digits
that are exactly the same font and size as those of digits in
the training dataset. The CNN model proved to be so as it
achieved perfect 1.0 accuracy, 1.0 precision, and 1.0 recall. In
the frame-matching process, for each captured screenshot,
each digit was cropped out, blurred, and then identified by
the CNN. Recognized digits of each frame were then put
back in order to form the original frame number.

The packet trace for a complete run of video playback
was obtained using an AutoIt script to emulate a user’s be-
havior when playing videos via the virtual desktop. Traffic
capture was enabled at the client device prior to executing
the script in the virtual desktop. A marker packet was sent
prior to the start of each video playback. The overall process
can be summarized as follows:

a) Start traffic capture at the client device.
b) Execute the script in the virtual desktop
c) The script opens Media Player Classic, goes to ”Quick

Open File...” menu, types the video name in the ”File
name” field, clicks on ”Open”, and immediately sends
a marker packet to the client

d) Stop traffic capture when video playback ends.
The captured packet trace was analyzed using a Python

script, following these steps:
a) Filter out background traffic irrelevant to screen up-

dates based on the packet size.
b) Find the timestamp of the marker packet t0 .
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c) Find the timestamp t1 , that corresponds to the first
packet of the continuous screen updates after t0 , and
the timestamp of the last packet t2

d) Calculate the actual playback duration as t2 − t1 .
For example, Figure 4 shows t1 and t2 extracted from

a packet trace of playing the Basketball video using PCoIP
with different virtual-desktop specifications. In the experi-
ment, each video playback was repeated 20 times, generat-
ing 20 playback duration measurements.

(a) Basketball playback using PCoIP with 1C2R

(b) Basketball playback using PCoIP with 2C2R

Fig. 4: Timestamp extracted from packet traces

5.1.2 Performance Benchmark

Performance benchmarks of recv-FPS, recv-PSNR, and recv-
SSIM were obtained to show the accuracy of the measure-
ment tools. Using the high-end client device, we played
three videos locally via MPC, and measured user-received
video quality applying the same automation techniques as
previously discussed. Results are shown in Table 6.

TABLE 6: Performance benchmark

Basketball Squirrel Transformer
True FPS 25/1 25/1 24/1
Avg. recv-FPS 23.77 24.26 22.98
Avg. recv-FPS(%) 95.08 97.04 95.75
recv-PSNR (dB) 43.00 43.09 45.48
recv-SSIM 0.9957 0.9960 0.9937
user-received quality Excellent Excellent Excellent

The slight difference between captured FPS and the
source video FPS may come from the usage of the TCBench
tool as it captures the rate of pixel change in one specified
region rather than the entire client screen. Choices of the
capturing region will cause a small variation in the resulting
recv-FPS. The difference could also come from limitations in
the MPC capabilities.

Values of recv-PSNR and recv-SSIM for local video play-
back are related with the selection of video renderer. Though
our choice of Overlay Mixing Renderer may lead to small
degradation in frame quality, the overall user-received video
quality is excellent as we expected.

5.1.3 Results

Figure 5 shows the user-received video quality with the
high-end user device. The output is organized so that each
column shows results of one display protocol, and each row
shows the comparison of each metric output among the
three display protocols. In general, PCoIP delivers frame
updates with the lowest recv-FPS but the highest frame

quality, while the Blast H.264 codec provides frame up-
dates with the highest recv-FPS but lower frame quality as
compared to PCoIP, especially for the high-motion video.
The Blast JPEG/PNG codec, on the other hand, yields
videos with the recv-FPS in between PCoIP and Blast H.264,
while producing the lowest frame quality. Across different
video types, the three display protocols show the high-
est performance for the static video, Transformer, and the
lowest performance for the high-motion video, Basketball.
This situation occurs because high-motion videos involve
much more frequent changes in pixel values among frames,
leading to more computational overhead at the server.

Though PCoIP sends frame updates more frequently
with increased virtual-desktop resources, large variance in
recv-FPS is observed in PCoIP for the three videos. For Blast
JPEG/PNG codec and H.264 codec, recv-FPS increases with
virtual-desktop resources, and the corresponding variance
decreases. When the virtual-desktop resources rise from
3C3R to 3C4R, little improvement in performance is ob-
served for all three display protocols.

PCoIP delivers frames of the highest and most consis-
tent quality with values very close to the benchmark recv-
PSNR and recv-SSIM for the most static video, Transformer.
Interestingly, unexpected degradation in recv-PSNR and
recv-SSIM is observed for both Blast Extreme protocols
with the increase of virtual-desktop resources, especially
for Basketball, the high-motion video. For 3C3R and 3C4R
virtual desktops using Blast JPEG/PNG codec and Blast
H.264 codec, we observed a larger variance in recv-SSIM.
One possible interpretation is that when frame updates are
frequent and computing resources are very limited, Blast Ex-
treme protocol reduces the rate of delivering frame updates
to provide relatively good frame quality. With the increase
of available computing resources, Blast Extreme balances
frame-delivery FPS and frame quality so that it reduces the
computational overhead for frames. Overhead is reduced
by reducing quality of delivered frames occasionally to
maintain relatively high FPS delivered.

Results for playback duration, as shown in the last
row of Figure 5, suggest that 1 vCPU (2100 MHz) is not
capable of processing high-motion videos. When increasing
the assigned processor to 4200 MHz (2 vCPU), all display
protocols are able to deliver videos without a slow-motion
effect.

As the human visual system can process 10 to 12 images
per second while perceiving them as individual images, we
consider 12 FPS as the minimum requirement for a video to
be perceived as motion by the observer. That is 48% recv-
FPS for Basketball and Squirrel, and 50% for Transformer,
as represented by dashed lines in recv-FPS(%) in Figure 5.
We denote thresholds of excellent and good frame quality
by two dashed lines for both recv-PSNR and recv-SSIM,
respectively, as suggested by Table 1. We thus conclude
that PCoIP provides higher frame quality but requires more
virtual-desktop processing resources as compared to Blast
Extreme protocol. It is limited in frame-delivering rate by
the high motion video even with sufficient computing re-
sources. Whereas Blast Extreme protocol appears to strike
a balance between the frame quality and updating rate,
sacrificing a small amount of frame quality to ensure high
delivering rate for all videos when given adequate amount
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Fig. 5: User-received video quality using a high-end user device

of processing resources. Further, reducing virtual-desktop
resources to 1 vCPU is insufficient for any videos.

5.2 Application Performance with Audio Inclusion

Applications, services, and demand for digital multimedia
communication have increased significantly in recent years
[32]. Increased usage of multimedia applications has been
accompanied by expectations for better Quality of Expe-
rience. Therefore, we evaluate the quality of multimedia
delivered by edge cloud from the aspects of audio quality
and audio-visual synchronization as supplements to our
previous assessment of the video quality.

5.2.1 Setup and Automation

An HP EliteDesk 800 G3 was used as the client device
that was directly connected to the Anvil Connection Server

through Ethernet with an RTT less than 1 ms. We used
four multimedia files for the audio-quality measurement,
as shown in Table 3, and a specialized multimedia file for
the audio-visual synchronization evaluation, as described
in Section 4. We used four virtual-desktop specifications: (i)
1C2R, (ii) 2C2R, (iii) 3C2R, and (iv) 3C3R as described in
Table 4, and three display protocols as shown in Table 5.
Metrics used are listed as follows:

• ViSQOLAudio
• Audio-visual sync
Degraded audio files were obtained by using Audacity

[33] at the client device to record user-received audio sig-
nals. Audacity is an open-source audio recording applica-
tion that runs on multiple platforms. An AutoIt script was
developed to automate the measurement process, which can
be stated as follows:

a) Start Audacity prior to multimedia playback at the
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Fig. 6: Audio quality obtained using a high-end user device

client device.
b) Play the multimedia file using the virtual desktop.
c) Stop audio recording when the playback ends.
d) Cut off any silent period from the recorded audio file

using -30 dB as the threshold.
e) Use ViSQOLAudio to generate the ViSQOL-MOS score

by comparing the processed recorded audio file with
the original audio file.

In the experiment, each multimedia playback using one
display protocol with one virtual-desktop specification was
repeated 20 times, and thus generating 20 ViSQOL-MOS
scores.

To measure audio-visual synchronization, we used the
specialized multimedia file as described in Section 4. OBS
studio [34], an open-source streaming recording program,
was applied to record both video (at 30-FPS as the highest
FPS achieved by any of the display codecs in Baseline
Application Performance is below 30) and audio (at 48 kHz)
of multimedia playback. We ran an AutoIt script similar
to the previous audio recording to automate our recording
process. Another Python script was developed for data
processing after extracting audio signals from the recorded
file, with steps summarized below:

a) Call functions from Librosa library [35] to obtain times-
tamps of extracted audio signals.

b) Find the nearest video frame and the corresponding
moving bar position for each extracted audio times-
tamp.

c) Calculate the audio-visual shift as the difference of the
moving bar position between the recorded file and the
reference for each audio signal.

d) Convert the position shift to a time-based shift.
For each multimedia playback, the experiment was re-

peated 25 times. As each multimedia playback contains 10
audio signals, a total number of 250 shifts were obtained
for each display codec per virtual-desktop specification. We
also performed benchmark test by measuring the audio-
visual shift of playing the multimedia locally on the client
device. The median value of the audio-visual time shift
obtained from the benchmark test was subtracted from the
experimental data.

5.2.2 Results

Figure 6 shows the quality of audio signals delivered by
edge cloud virtual desktops. Support vector regression is

used to map similarity scores to ViSQOL-MOS scores in the
range of 1 to 5. For audio quality, the maximum ViSQOL-
MOS value is expected to be 4.75. Blast JPEG/PNG codec
and Blast H.264 codec deliver all four types of audio signals
with excellent quality. A degradation in performance is
observed for increasing audio frequency range of the audio
signals when using PCoIP. A decrease in the audio quality
is also observed when audio signals are accompanied by
high-motion video content. Further, few differences in the
audio quality are found among various virtual-desktop
specifications.

Fig. 7: Audio-visual synchronization evaluation using a high-end user device

Figure 7 shows the audio-visual time shift after cali-
bration using three remote display codecs with different
virtual-desktop specifications, where positive values indi-
cate that video is advanced with respect to sound. Though
no obvious differences in time shifts are observed for PCoIP
with different virtual-desktop specifications, low comput-
ing resources (i.e., 1C2R) introduce larger time shifts for
both Blast H.264 and JPEG/PNG codec. In general, PCoIP
delivers audio signals late, while both Blast H.264 and
JPEG/PNG codec send audio signals prior to the vision with
an overall smaller time shift. This is expected since unlike
PCoIP, Blast enables audio-video buffering at the client side.
It is noteworthy that all positive outliers observed for two
Blast codecs have values close to PCoIP, and are related to
the first audio signals in multiple playbacks, for which our
interpretation is that the client has an empty buffer at the
beginning of each multimedia playback.
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5.3 Network Impact
We next vary network parameters to determine the mini-
mum conditions necessary for edge cloud virtual desktops
to deliver videos with a good user-received quality. We
cover a wide range of real-world situations showing virtual-
desktop performance with latency and packet loss rate
from extremely low to comparatively annoying. Since edge
computing moves the processing power closer to residential
users in our case, we do not consider network bandwidth as
one of the performance bottlenecks in this study. The actual
network usage of delivering videos via edge cloud is shown
in Figure 12.

5.3.1 Setup and Automation

An HP EliteDesk 800 G3, directly connected to the Anvil
Connection Server was used as the high-end client device
for virtual-desktop performance evaluation with network
control. We chose the minimum virtual-desktop specifica-
tion with the highest performance using Blast H.264 codec
in Baseline Application Performance, 3C3R, and the high-
motion video, Basketball, as shown in Table 2, to investigate
network impact on user-received video quality.

TABLE 7: Network Control Parameters

Fixed latency Normally distributed latency
10 ms N (10 ms, 1 ms)
20 ms N (20 ms, 2 ms)
50 ms N (50 ms, 5 ms)
100 ms N (100 ms, 10 ms)

Periodic packet loss Gilbert-Elliott loss
0.10% peak loss = 0.10%
0.50% peak loss = 0.50%
1.00% peak loss = 1.00%
2.00% peak loss = 2.00%
5.00% peak loss = 5.00%

Four fixed and four normally distributed latency val-
ues were applied for the evaluation, as shown in Table 7.
Specifically, we picked 10 to 100 ms latency to demonstrate
virtual-desktop performance under the upcoming fifth-
generation (5G) wireless cellular network and the current
fourth-generation (4G) wireless cellular network conditions,
as suggested by Chen et al. [36]. For packet loss rate, we
chose to compare performance of periodic loss and the
Gilbert-Elliott loss. The Gilbert-Elliott model [37], is a 2-state
Markov chain that provides estimation for real-time services
on the Internet by enabling burst loss. In the Gilbert-Elliott
loss settings, we assigned 0.00% loss rate to the good state
(state G) with a 10.0% transition probability, and assigned
0.10%, 0.50%, 1.00%, 2.00%, 5.00% as the bad-state (state
B) peak loss rate with a transition probability of 90.0%,
respectively. The time slot for transitions were set as 10
milliseconds. We used these metrics:

• recv-FPS
• recv-PSNR/recv-SSIM
• Playback duration
We used the Network Emulator for Windows Toolkit

[38], a software-based network-environment emulator. The
emulator was executed in the virtual desktop, and network
control was applied to the downstream (or outgoing) traf-
fic. Computational resources consumed by this emulator
could be ignored as compared to that of running MPC for

video playback. Also, we took advantage of the automation
techniques described in the previous Baseline Application
Performance.

5.3.2 Results

Figure 8 shows the mean values of recv-FPS, playback dura-
tion, recv-PSNR, and recv-SSIM with different latency. With
fixed latency, while recv-FPS remains unaffected, degrada-
tion in both recv-PSNR and recv-SSIM is observed. Though
recv-PSNR drops when fixed latency goes beyond 50 ms,
the mapped video quality remains good within 100 ms of
fixed latency. As a comparison, video files show stronger
dependency on fixed latency for the recv-SSIM metric as
it decreases when fixed latency starts to increase from 0,
leading to degradation in the mapped video quality with
fixed latency greater than 50 ms. Playback duration remains
unaffected until fixed latency goes beyond 50 ms, which
reflects the fact that Blast Extreme takes advantage of audio-
video buffering at the client side. Therefore, we conclude
that with Blast H.264 codec, the performance of video play-
back delivered by edge cloud virtual desktops is preserved
with fixed latency no greater than 50 ms.

With normally distributed latency, a decrease in recv-
FPS, recv-PSNR, recv-SSIM, and an increase in playback
duration are observed. Particularly, when the mean value
of normally distributed latency goes beyond 20 ms, recv-
FPS drops below 50% and the video delivered is no longer
perceived as motion by the observer. A slow-motion effect
becomes more serious as well due to the varied delay in
frame delivery. Though the frame quality in PSNR remains
good as recv-PSNR only drops from 34 − 35 to 32, the
frame quality in SSIM drops significantly from fair to poor
with the increase of normally distributed latency. In general,
the acceptable highest mean value of normally distributed
latency is no more than 20 ms.

Fig. 8: Video quality with injected latency

Figure 9 shows the user-received video quality with
packet loss. When packet loss rate increases, for both pe-
riodic loss and Gilbert-Elliott loss, the largest impact is on
recv-FPS and playback duration. With periodic loss, a sharp
drop in recv-FPS and a rapid burst in playback duration
are observed when packet loss rate increases beyond 2%.
With Gilbert-Elliott loss, recv-FPS drops below 50% for a 2%
peak loss rate. It is then concluded that a packet loss rate
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with peak loss below 2% is required for cloud-based virtual
desktops to deliver videos with good quality.

Fig. 9: Video quality with injected packet loss rate

A relatively large variance is observed in recv-SSIM with
either latency or packet loss rate. This is consistent with our
previous observation in Baseline Application Performance
where Blast H.264 codec drops frame quality occasionally
to maintain a relatively high delivered FPS when provided
with sufficient computing resources.

5.4 Residential-deployment Emulation Experiments

Switching from standard personal computers to affordable
thin clients using VDIs over edge clouds is appealing for
the potential to provide quality computing experiences at
favorable costs. A Chromebook differs from a standard
personal computer because the Chromebook is designed to
perform a variety of tasks taking advantages of the Google
Chrome browser with most applications and data resid-
ing in the cloud. The low cost of the hardware, software,
and upkeep make Chromebook an affordable residential
computing platform. However, Chromebooks traditionally
suffer from poor computing performance due to the limited
thin client computational capabilities. Thus, the addition
of edge cloud based VDI has the potential to overcome
this shortcoming by utilizing the cloud based processing.
Similar arguments can be made for other thin-client devices
such as Microsoft Surface Go. Surface Go is a 10-inch 2-in-
1 detachable laptop, or tablet, equipped with Windows 10
Home in S-mode. As compared to ChromeOS, the Windows
operating system may provide users more flexibility in task
performance. We also note that zero clients offer similar cost
savings and performance using VDI without the benefit of a
local operating system. Zero clients have been studies else-
where [14]. This section quantifies the performance of the
edge cloud virtual-desktop solution using two thin-client
devices, a Chromebook and a Surface Go. Table 8 shows the
corresponding specification and processor/integrated GPU
capability as compared to the high-end desktop. As a side
note, the Surface Go is installed with standard Windows 10
Home rather than S-mode. We reference processor and GPU
scores from Geekbench Browser [39].

TABLE 8: User device specification

High-end desktop
Manufacturer HP
Processor Intel(R) Core(TM) i7-8700T CPU @ 2.40GHz
Number of cores 6
Number of threads 12
RAM (GB) 16
Processor score (multi-core) 4949
Professor graphics Intel(R) UHD Graphics 630
Professor graphics score 4903
Operating system Windows 10 Pro

Chromebook
Manufacturer Acer
Processor Intel(R) celeron(R) CPU N2840 @ 2.16GHz
Number of cores 2
Number of threads 2
RAM (GB) 4
Processor score (multi-core) 373
Professor graphics Intel(R) HD Graphics 500
Professor graphics score 1222
Operating system ChromeOS

Surface Go
Manufacturer Microsoft
Processor Intel(R) Pentium(R) CPU 4415Y @ 1.60GHz
Number of cores 2
Number of threads 4
RAM (GB) 4
Processor score (multi-core) 885
Professor graphics Intel(R) HD Graphics 615
Professor graphics score 3539
Operating system Windows 10 Home

5.4.1 Setup and Automation

The Acer Chromebook and Microsoft Surface Go were used
as VDI client devices to access virtual desktops hosted on
the server Anvil. Both devices were connected to the Anvil
Connection Server via the university wireless connection
with a round-trip time less than 5 ms. As limited by the
original display resolution, both thin-client devices were
connected to external monitors that support 1920 × 1080
resolution via HDMI cables to enable 1080p video playback.

We study the application performance of using a
Chromebook as the VDI interface with different display
protocols and virtual-machine specifications. We further
compare the user-received video quality of using thin-client
devices with the result we obtained in Baseline Application
Performance using 3C3R, the minimum specification with
the highest performance. We used three videos as described
in Table 2.

5.4.1.1 Chromebook
Due to ChromeOS limitation, only the following metrics
were used to evaluate the video quality:

• recv-PSNR/recv-SSIM
• Playback duration
To measure recv-PSNR/recv-SSIM, 20 screenshots were

taken for each complete run of video playback. The exper-
iment was repeated 20 times and a total number of 400
screenshots were obtained per video playback. No notice-
able overhead was observed during screenshot capturing.
Captured frames were then used to calculate recv-PSNR
and recv-SSIM using the same automation techniques as
described in Baseline Application Performance.

Playback duration was measured using an AutoIt script,
which records the starting time and ending time of MPC.
The measurement was repeated 20 times per video play-
back.
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5.4.1.2 Surface Go
As Surface Go runs the Windows 10 operating system, the
measurement tools and scripts developed in Baseline Appli-
cation Performance also apply to Surface Go. Therefore, all
three video-quality metrics were included:

• recv-FPS
• recv-PSNR/recv-SSIM
• Playback duration
We used the same automation techniques described in

Baseline Application Performance to quantify user-percv
FPS and recv-PSNR/recv-SSIM. No noticeable overhead
was observed during screenshot capturing. However, to
measure playback duration, we used the AutoIt script, as
described above, to record the starting and ending time of
MPC execution in the virtual desktop rather than capturing
the corresponding traffic trace at the client device since
we observed that running network capturing tools on the
thin-client significantly increases the processor workload,
introducing a slow-motion effect to video playback.

5.4.1.3 Calibration on Playback Duration
Given that the playback duration obtained by running the
AutoIt script includes not only the actual playback duration,
but also the execution time of starting the MPC program
and the time consumed to load the video file, we perform
calibration on the obtained data, which is summarized as
follows:

a) We measure playback duration by running the AutoIt
script using the high-end desktop.

b) We estimate the extra processing time by comparing
the duration obtained from the above step to that in
Baseline Application Performance.

c) We calculate the true playback duration using thin-
client devices as the difference between the obtained
duration and the extra processing time.

Fig. 10: User-received video quality using a Chromebook client device

5.4.2 Results

Figure 10 shows the video quality with the 1C2R, 2C2R,
and 3C2R vitual-desktop specification using a Chromebook.

Similar to Baseline Application Performance, we conclude
that PCoIP provides users with the highest frame quality,
and the 1C2R virtual-desktop specification is not able to
handle video playback tasks as it introduces serious slow-
motion effect. Comparing to the result obtained in Baseline
Application Performance, small degradation in the frame
quality is observed with low specifications, suggesting that
a high-end user device may provide users with better per-
formance when limited computing resources are allocated
for the virtual desktop.

Figure 11 shows the comparison of user-received video
quality using different client devices with 3C3R virtual-
desktop specification. Overall, results from three client de-
vices are consistent where PCoIP delivers frame updates
with the lowest FPS but the highest frame quality, and Blast
H.264 codec sends frame updates most frequently but with
lower quality as compared to PCoIP. It is worth noting that
the large variance in recv-SSIM, especially for Basketball,
was again observed using all user devices.

While using a high-end client device may result in more
stable performance, no remarkable difference in video qual-
ity is observed among three user devices. Though the video
quality delivered by PCoIP shows a slight drop in values
with thin-client devices, the mapped quality based on Table
1 keeps almost the same with that using the high-end user
device.

We conclude that the performance of edge cloud virtual
desktops using a thin-client model shows little to no de-
pendence on the capability of user devices when sufficient
computing resource is allocated for virtual desktops. In the
study, using a Chromebook or a Surface Go as the user
device obtains nearly the same video quality as that of
using a high-end user device with the 3C3R virtual-desktop
specification.

6 ENABLING RESOURCE SHARING USING VIR-
TUAL DESKTOPS

We next determine how to maximize the number of users
that share edge cloud resources while maintaining good
performance. We make this determination by experimenting
with resource allocation shares in the edge cloud virtual-
desktop service. The resource-allocation sharing function-
ality is supported by VMware vSphere. Shares specify the
relative priority of a virtual desktop. A virtual machine
is entitled to consume more resources if it is assigned
with higher shares when there is resource over-commitment
among virtual desktops in the same resource pool.

6.1 Setup and Automation

A resource pool containing two virtual desktops, VM 1 and
VM 2, was created and assigned 3 vCPU (6300 MHz) and
6 GB vRAM. Each virtual desktop was initially allocated
with 3 vCPU (6300 MHz) and 3 GB vRAM. Those values
were determined so that when only one virtual desktop is
powered on, it could be provided as much processor power
as it was assigned. However, when the two virtual desktops
are both powered on at the same time, the total available
processing power would be limited to the amount allocated
to the resource pool. Therefore, processor over-commitment



IEEE TRANSACTIONS ON CLOUD COMPUTING 14

Fig. 11: User-received video quality using a high-end user desktop, a Surface Go, and a Chromebook as the client device with the 3C3R virtual-desktop specification

could occur between the two virtual desktops. In the ex-
periment, two machines, an HP EliteDesk 800 G3 and a
Microsoft Surface Pro 6, Intel(R) Core(TM) i5-8250U CPU
@ 1.60 GHz and 8 GB RAM with Windows 10 Operating
System, were used as two client devices to connect to VM 1
and VM 2 via Blast H.264 codec, respectively.

TABLE 9: Phases of user-behavior simulation

VM 1 VM 2
Phase I Basketball playback Notepad typing
Phase II Basketball playback YouTube watching
Phase III Basketball playback Basketball playback
Phase IV idle Basketball playback

Two AutoIt scripts were executed in virtual desktop
VM 1 and VM 2 simultaneously to simulate four phases
of user behavior, as shown in Table 9. Each phase lasted
200 seconds. Performance evaluation was carried out on
the high-end client device, HP EliteDesk 800 G3, for VM 1
only. Metrics used in this section are listed as follows where
the resources consumed by virtual desktops were monitored
and recorded in real-time by vSphere:

• Video quality
– recv-FPS
– recv-PSNR/recv-SSIM

• System resource monitoring
– CPU usage
– Memory usage
– Network usage

To automate the measurement process, the Basketball
video was played in the repeated mode for the entire
evaluation period. TCBench was configured to continuously
monitor a 5-second average FPS. Meanwhile, a screenshot of
video playback was taken each 5.6 seconds. Both capturing

techniques were activated from the beginning to the end
of VM 1 video playback at the client. The experiment was
repeated twice: once with the same shares specified for VM
1 and 2, and the other with high shares for VM 1 and normal
shares for VM 2. As high and normal shares specify share
values with a 2:1 ratio, we expected VM 1 to exhibit twice
as much processor usage as that of VM 2 when CPU over-
commitment occurrs.

6.2 Results

Figure 12 shows the resources consumed by VM 1 and VM 2
during the experiment, and the user-received video quality
of VM 1. Tasks assigned to VM 2 in Phase I and II are
not CPU-consuming. Therefore, no CPU over-commitment
occurs in the first two phases, and two virtual desktops
can use resources independently in response to the task-
execution requirement. However, we observe a burst in the
resource consumed by VM 2 when switching tasks, which
corresponded to a drop in the resource consumed by VM 1
and results in a sudden decrease in recv-FPS. On the other
hand, recv-PSNR and recv-SSIM remained unaffected.

Starting from Phase III, VM 2 switches to a video-
playback task and starts to require more computational
resources, leading to CPU over-commitment. When no pre-
emption is given, VM 1 and VM 2 share the computational
resource evenly. Degradation in recv-FPS is observed at
the start of Phase III due to the decrease in the allocated
resources. An increase in recv-PSNR happens at the start of
Phase III with the decrease of allocated resources. This is
consistent with our previous result when allocated resource
becomes limited, Blast H.264 codec reduces frame-delivery
rate to keep a relatively high frame quality. Similarly, though
there is an occasional drop in recv-SSIM as observed in the
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Fig. 12: Resource consumption and performance evaluation of resource sharing

baseline experiment, the overall recv-SSIM remains stable.
In contrast, when preemption is granted for VM 1, VM 1 is
able to consume the same amount of resources even when
CPU over-commitment happens, and thus preserving the
video quality delivered to the client.

In Phase IV, we show that when VM 1 becomes idle,
no matter whether the preemption is given, VM 2 grabs
as much resources as it is initially assigned to perform
processor-consuming tasks.

We demonstrate only CPU-sharing in this study. Given
that video playback is not memory-intensive, very limited
memory resources would need to be initially assigned to the
resource pool to trigger memory over-commitment among
virtual desktops. In that case, VMware Memory Ballooning
is activated from the moment when virtual desktops are
powered on, resulting in a large degradation in virtual-
desktop performance. Therefore, we conclude that allocat-
ing memory below our minimum specification in order to
trigger memory allocation sharing is unnecessary for low
memory-consuming tasks.

The results suggest that resource allocation shares can be
scaled to a much larger resource pool containing dozens of
users to maximize the number of users that share edge cloud
resources, and that preemption should be given to users
who need to to perform high resource-consuming tasks to
preserve good user-received performance.

7 IMPACT OF EDGE-CLOUD SERVER CAPABILI-
TIES

A commodity datacenter sever differs from those designed
for commercial virtual-desktop offerings because the former
typically has no GPU. Therefore, we compared virtual-
desktop capabilities on graphics processing for video play-
back tasks with GPU-virtualization disabled and enabled.
We conducted measurements on server image-rendering
performance. We further addressed the issue of balancing
cost and performance of edge cloud residential virtual-
desktop computing.

7.1 Setup and Automation

A Dell R730 was configured to function as the edge-cloud
server with VMware ESXi 6.5, 12 CPUs × Intel(R) Xeon(R)
E5-2670 v3 @ 2.30GHz, and 64 GB RAM. The server was
equipped with an Nvidia GRID K2 that supports GPU
hardware virtualization and allows multiple users to share
a single GPU using virtual-desktop solutions. Measurement
was conducted in two modes:

• GRID K2 disabled mode: no GPU virtualization
• GRID K2 enabled mode: set Nvidia GRID K2 as the

primary GPU for VSGA
Three videos, as shown in Table 2, and five virtual-

desktop specifications, as shown in Table 4, were included
in server capability evaluation. Differing from the previous
experiments, virtual desktops were accessed via VMware
remote console and the measurement was taken on the local
server given that not only can the remote display protocol
affect the video quality but also the rendering processing at
the server side. Therefore, no remote display protocols were
involved in the measuring process. Metrics used to evaluate
server capabilities are:

• Video quality
– recv-FPS
– recv-PSNR/recv-SSIM

• System resource monitoring
– CPU usage
– GPU usage

The MPC video render filter was applied to measure
recv-FPS for each complete run of video playback. During
playback, a Python script that cooperates with PyAutoGUI
[40] and psuti [41] was used for screen capturing and
CPU monitoring, respectively. Measurements for recv-FPS
and CPU/GPU consumption were repeated 5 times per
video playback, and for each video, 20% of frames were
captured for frame quality evaluation. The same techniques
as described in Section Baseline Application Performance
was used to quantify recv-PSNR and recv-SSIM. Further,
Unigine Heaven Benchmark [42] was used to evaluate GPU-
virtualization performance of the 3C4R virtual desktop with
1920× 1080 resolution and Direct3D9 API.

TABLE 10: Unigine Heaven Benchmark for the 3C4R virtual-desktop specification

GRID K2 disabled Min. FPS Max. FPS Avg. FPS
1.1 1.6 1.3

GRID K2 enabled Min. FPS Max. FPS Avg. FPS
8.3 134.3 45.3
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Fig. 13: recv-FPS(%) and resource consumption of virtual-desktop video playback
with GPU-virtualization disabled and enabled

7.2 Results

Table 10 shows Nvidia GRID K2 GPU-virtualization perfor-
mance. By enabling GPU-virtualization, virtual desktops are
capable of processing frames at a much higher rate, with an
average FPS reaching nearly 35 times as that of disabling
GPU-virtualization.

Figure 13 shows the recv-FPS and corresponding
CPU/GPU consumption of video playback. Though CPU
usage remains almost the same, enabling the Nvidia GRID
K2 GPU-virtualization sharply raises the FPS for all virtual-
desktop specifications. Figure 14 shows the frame quality
produced by various virtual-desktop specifications. A de-
crease in the frame quality, especially in terms of recv-
PSNR, is observed when enabling Nvidia GRID K2 GPU
virtualization, though the mapped quality remains excellent
for all three videos.

We conclude that with GPU-virtualization enabled, even
the virtual desktop with the lowest specification, i.e., 1C2R,
can deliver end-users videos of excellent quality. However,
the issue of balancing cost and performance exists as GPUs
are usually high in cost, ranging from hundreds of dollars
to thousands of dollars. With VMware ESXi 6.5, Nvidia
GRID K2 supports 2 vGPU and only serves two virtual
desktops at the same time, dramatically raising the cost
per end-user. Previous results in Baseline Application Per-
formance suggest that without GPU virtualization, edge
cloud virtual desktops with sufficient computing resources
and appropriate display protocols are capable of providing
users with good performance in video delivery. Therefore,
we conclude that though the virtual-desktop performance
limitation goes away with GPU-virtualization, careful con-
siderations should be given to the cost and the number of
users that can be supported to determine whether GPU-
virtualization is necessary for residential virtual-desktop
computing.

Fig. 14: Frame quality of virtual-desktop video playback with GPU-virtualization
disabled and enabled

8 CONCLUSION

This study provides objective measurements to quantify
edge cloud based virtual-desktop computing performance
for residential use. The experimental results can be summa-
rized as follows:

• Comparison of user-received performance was made
among three display codecs and various virtual-
desktop specifications using different types of videos.
In general, PCoIP provides higher frame quality with
a lower updating rate, whereas Blast Extreme protocol
makes a trade-off between the frame quality and the
frame-delivering rate based on available computing
resources.

• The good quality of video playback delivered by the
virtual desktop via edge cloud is preserved within 50
ms of fixed latency, 20 ms (mean value) of normally
distributed latency, and 2% of peak packet loss rate.

• The delivered video quality shows very little reliance
on the capabilities of client devices when sufficient com-
puting resources are granted for the virtual desktop.

• Resource allocation sharing makes it possible to max-
imize the number of users that share edge cloud re-
sources while maintaining good application perfor-
mance.

• Using a server equipped with GPU, even low-
specification virtual desktops could deliver users
videos of excellent quality.

We plan to extend our study by evaluating residential ap-
plication performance across various VDI solutions and per-
forming quality evaluation on highly interactive residential-
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use applications, including Skype calls and gaming. The
performance of open-source remote display protocols is
another promising direction which potentially reduces the
cost of edge cloud residential virtual-desktop computing.
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